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Hur svårt kan det vara?





Abstract
Azimuth thrusters are a rising trend for propulsion in today’s maritime market.
An azimuth thruster is a propeller mounted on a pod beneath the hull of the ship.
This pod is able to rotate around its axis making it possible to change the di-
rection of the force acting on the ship. This thesis investigates the possibilities of
controlling a scale model ship using linear quadratic control and a linearized hydro-
dynamic model of a scale model ship with two azimuth thrusters. The controller
uses estimates of linear velocities and angular rates obtained from GPS and IMU
measurements to control the ship. The input signals are the rotational speeds of
the azimuths’ propellers and the angles of the thrusters in relation to the ship.

Ship models are nonlinear for three main reasons, the centripetal and Coriolis
forces, the hydrodynamic damping and the input thrusters. All these effects are
assumed to be approximately linear around a working point for the sake of the
controller. The models in this thesis are constructed to fit two different controllers,
one which controls both thrusters simultaneously and one with differential steering.

In order to test the suggested controllers, a simulation study is performed where
step responses of the closed system in surge and yaw rate are compared. The
former to validate the model and the latter to observe how well the model and
controller perform together. The surge speed simulations show quick responses but
the rotational speed of the propellers showed to have a more significant impact
on the system than the orientation of the thrusters. In the yaw rate simulations,
the azimuth angle behaviour did not follow the circular constraints that comes
with a rotational device. The calculated angles reached larger values than 2π,
which, with a trigonometric function, gives the same result as zero angle. In other
words, the forces would depend linearly on the azimuth angle. This is concluded
to be a result of the actuator linearization and a proposed solution is to implement
gain scheduling to better accommodate with the thrusters’ rotational behaviour.
Another thing that is contributed to these behaviours is the decoupling between
surge speed, sway speed and yaw rate predicted by the linear controller. This is
a problem since, in reality, these would have some impact on each other. This is
concluded to be the result of using an oversimplified model or a misplaced work-
ing point of the centripetal and Coriolis linearization. Despite these problems, the
simulations showed potential of the model and controller being used in these kinds
of situations.

A few modifications to significantly improve the model and simulations are also
proposed. One of the main changes that could be done is implementing gain
scheduling on the azimuth thruster linearization. This would result in the rota-
tional speed of the propellers having a larger impact on the directional forces and
the ship behaving more as intended.
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Notation

Abbreviations

Abbreviation Meaning
lqr Linear Quadratic Regulator
imu Inertial Measuring Unit
gps Global Positioning System
ecm Electronically Commutated Motor
dof Degrees of Freedom
rpm Revolutions Per Minute

Signals and States

Variable Description
u Input signal
x State signal
y Output signal
r Reference signal
e Tracking error
z Measured signal
A State matrix
B Input matrix
C Output matrix
D Feedforward matrix
M Measurement matrix
L Feedback gain
Lr Reference gain

Reference Frames

Frame Description
b-frame Body-fixed reference frame
n-frame World-fixed reference frame
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xii Notation

Generalized Position

Variable Description
x Position relative the n-frame
y Position relative the n-frame
z Position relative the n-frame
φ Roll angle relative the n-frame
θ Pitch angle relative the n-frame
ψ Yaw angle relative the n-frame
µ Vector with position and attitude states

Generalized Velocities

Variable Description
u Surge speed, linear velocity along the xb axis of

the b-frame
v Sway speed, linear velocity along the yb axis of

the b-frame
w Heave speed, linear velocity along the zb axis of

the b-frame
p Roll rate, angular velocity along the xb axis of the

b-frame
q Pitch rate, angular velocity along the yb axis of

the b-frame
r Yaw rate, angular velocity along the xb axis of

the b-frame
ν Vector with velocity states



1
Introduction

1.1 Background and Purpose

Most modern ships are driven by a mechanical system propelled by a combustion
engine or electric motor that is driving an underwater propeller. The direction
of the propeller is usually fixed relative the hull of the ship and the steering is
done mainly by a rudder at the stern. Some ships also have a tunnel thruster
mounted at the bow or stern and pointing sideways to improve the maneuvering
capabilities, for example, when docking. Another propulsion and maneuvering
method that is on the rise is the azimuth thruster. This system has the propeller
mounted on a pod that itself is mounted below the hull in such a way that it
can be rotated about its vertical axis. The propeller is driven by a mechanical
transmission which connects it to an engine inside the ship or an electrical motor
that is mounted inside the pod itself. This kind of propulsion method eliminates
the need for a rudder and gives the ship better maneuverability in tight spaces
[1]. With more maneuvering capabilities comes more steering scenarios to consider
which requires either a more skilled operator or a more complex control system.

This thesis describes an investigation of how well a smaller scale ship with az-
imuth thrusters can be controlled using a linear quadratic regulator, LQR. This
will require mathematical modelling of both the ship’s behaviour in water and
thrust behaviour from the propellers. Since the LQR requires linear models for
the design, some simplifications and linearizations will be needed. The thesis will
therefore also implement a linearized model to describe the motion of this kind of
water vessel. The scale model ship that is going to be controlled in this thesis is
shown in Figure 1.1 and the azimuth thrusters in Figure 1.2.
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2 1 Introduction

Figure 1.1: Scale model ship.

Figure 1.2: Azimuth thrusters of the scale model ship.

1.2 Objective
This master’s thesis focus is to find a simple LQR that can operate a small scale
ship that has azimuth thrusters propulsion and steering and to see how it would
function in a real world environment. This main goal has been divided into sub-
objectives to get a better overview of the problem:

• Assemble the scale model ship.

• Identify a model describing the ship and actuator behaviour.

• Adapt the model to work with an LQ regulator and develop a controller for
the system.

• Make a simulation study testing the capabilities of the approach.
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1.3 Approach
In order to solve the objective of this thesis, the approach has been divided into
five stages. These stages are:

1. Literature review over maritime vessel behaviour and thruster forces com-
bined with studies of the physical ship.

2. System modeling and linearization using the literature overview as a basis.

3. Determination of the state space form for the controller and reference follow-
ing.

4. Controller tests via simulations.

5. Review of model and controller and conclusions.

1.4 Limitations
Since this thesis was done during the winter half of year and during a pandemic,
the possibilities of physical tests and data collections were minimal. To have a
working model relatively quickly a number of simplifications had to be done. To
be able to produce a simple model, some degrees of freedom (DOF) were excluded
since they were determined to have a low impact on the system. Thus only 3 de-
grees of freedom (DOF) out of 6 (surge, sway and yaw) were used in the modeling.
Some parts of the resulting mathematical model are going to be non-linear and
therefore some linearizations are needed in order for the model to work with the
LQR.

Simulations and regulator design are carried out using only nominal values since
no data collection could be done.

1.5 Outline
In Chapter 2 a brief background to physical modelling of marine vehicles is pro-
vided, beginning with how the coordinate system of a ship is defined and how
certain forces apply to the ship in a water environment. After this, it is explained
how the azimuth thrusters impact the ship with their forces and torques depending
on the angle and rotational speed. These mathematical models are then merged to
form the state space representation which the regulator will be based on. Then it
is described how the LQR works and how to find an optimal regulator by using the
model and the Riccati equation. It is also explained how to include reference fol-
lowing. In Chapter 3, the results of a simulation study are presented. Here, tuning
of the regulator and reference input controller are done to achieve the sought after
results and an analysis is made thereafter. In the simulation study, the benefits
of choosing various operating points for the model linearization are explored for
different regulator tunings. In Chapter 4 the results and discussion are presented
and in Chapter 5, conclusions and future work are provided.





2
Theory

2.1 Ship Modeling
This section covers the modeling theory behind ship movements and forces acting
on the ship. Since this thesis mostly focuses on controlling a ship and not develop-
ing new theory, most parts of the model will be based on the existing theory from
literature such as [2]. The only exception is the linearizations and simplifications
suitable for the regulator which decrease the system complexity.

2.1.1 Description of Motion for Marine Vehicles
In order to determine the position, orientation and velocities of a marine vehicle,
appropriate reference frames are needed. These are the inertial frame, and the
body fixed frame which are defined in Definitions 2.1 and 2.2. The most adopted
representation for a body-fixed system creates hull-symmetry around the xbzb-
plane, approximate symmetry around the ybzb-plane and the origin of the zb axis
by the water surface. This is visualised in Figure 2.1.

The inertial frame is used to describe the ship’s position and orientation in global
coordinates and Euler angles as [x y z]T and [φ θ ψ]T , respectively. The body-
fixed frame describes the forces, torques, linear velocities, and angular velocities
as [X Y Z]T , [K M N ]T , [u v w]T , and [p q r]T , respectively. The motion of
a ship can be described in six DOFs which are divided into two categories. These
are the translational motion, in three directions: surge, sway, and heave, and the
rotational motion about the three axes: roll, pitch, and yaw. This is the standard
notation used in marine vessel modeling [3].

5



6 2 Theory

Definition 2.1 (b-frame). The b-frame has its origin, Ob, fixed to the ship. The
xb-axis is pointing towards the bow (forward), the yb-axis is pointing starboard
(right) and the zb-axis is pointing downwards. These directions are represented in
Figure 2.1.
Definition 2.2 (n-frame). The n-frame has its origin, On, fixed to the earth.
The reference frame is a north-east-down (NED) coordinate system, i.e., the xn-
axis is pointing towards the north, the yn-axis is pointing towards the east and the
zn-axis is pointing towards the center of the earth. These directions are represented
in Figure 2.1.

Surge
xb, u, X

Roll
p, K

Sway
yb, v, Y

Pitch
q, M

Heave
zb, w, Z

Yaw
r, N

Ob Body-fixed Frame

xnφ

yn

θ

zn
ψ

On Inertial Frame

Figure 2.1: Standard notation and conventions for ship motion descriptions
as described in Definitions 2.1 and 2.2.

2.1.2 Maneuvering Model
A common model simplification is to neglect the heave and pitch motions. In
order to obtain a simple model, the roll angle is also assumed small. With this in
mind the position-orientation vector η and linear-angular velocity vector ν can be
defined as

η , [x y ψ]T, (2.1)
ν , [u v r]T. (2.2)

These generalized positions and velocities have a geometric relationship that can
be described as

η̇ = J(η)ν, (2.3)

and the equations of motion of the ship in the body-fixed frame are given by

MRBν̇ + CRB(ν)ν +D(ν)ν = τact. (2.4)
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MRB is the rigid body intertia matrix, CRB(ν)ν represents the centripetal and
Coriolis terms, D(ν) is the damping matrix, and τact is a vector with generalized
external forces. Initially for this simple model, the Coriolis terms and the damping
matrix will be approximated by a linear function. This setup of equations of
motions are based on [2] and the different force descriptions are based on [4], [5]
where models in 4 DOF are studied (where roll is the extra DOF), instead of 3 as
in this case. In the 3 DOF case the equations can be more similar in shape to [6]
and [7]. The equations are as follows

J(η) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

, (2.5)

MRB =

 m 0 −yG
0 m mxG

−myG mxG Iz

, (2.6)

CRB(ν) =

 0 −mr −mxGr
mr 0 −myGr
mxGr myGr 0

, (2.7)

D(ν) =

Xu 0 0
0 Yv 0
0 0 Nr

, (2.8)

where the total mass of the ship is assumed to be m and is located at rg = r̄G =
[x̄G, ȳG] and Īz are the moment of inertia about the z axis expressed in the b-frame.
Xu, Yv and Nr is the scaling coefficients of the damping.

2.1.3 Actuator Forces

In a conventional marine vessel, the actuator forces come from the rudder, the
fixed propellers and the thrusters. However, since the ship studied in this thesis
is propelled by an azimuth thruster, the mapping from actuator to forces will be
different. An azimuth thruster is a propulsion device that can rotate 360 degrees
about its vertical axis. This makes it possible to apply forces in the x- and y-
directions and, depending on the mounted position, apply a torque to the ship.
The following model calculations, which use input from rotational speed, n, and
azimuth angle, α, are mainly from model calculations used by Ljungberg, [8]. How-
ever they also take influence from Liang, [9], and Pedersen, [10], which are focusing
more on the azimuth forces as input instead of the rotational speed.
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xb

yb

∆y,i

∆x,i

αi

Figure 2.2: The position and rotational angle of thruster i.

Assume that there are Na thrusters mounted to the hull of the ship. Let i be
a thruster with ni as the rotational speed of propeller i and αi the angle of the
resulting force. The forces in the xb direction from azimuth thruster i can then be
denoted as

Fx,i = gx(ni, αi, ua,i), (2.9)

where ua,i is the speed of the water passing the thruster in the negative xb-direction.
This is needed since during higher speeds and when ua,i and ni cos(αi) are of the
same sign, there will be efficiency losses. An assumption in the model is a linear
relationship between gx and ni as

gx(ni, αi, ua,i) = µini cos(αi)− κ′iniua,i cos(αi), (2.10)

where µi and κ′i are positive constants, determined by physical testing, and ua,i
can be described as

ua,i = (1− wi)ur. (2.11)

Here, wi is the wake fraction number, meaning it is the ratio of the velocity of
the water flowing trough the propeller and the speed of the ship and ur is the
relative velocity between the ship and the surrounding water. By merging the
wake fraction factor with κ we can simplify the second term in (2.10) by using

κi = (1− wi)κ′i, (2.12)

and inserting this into (2.10), which becomes

gx(ni, αi, ur) = µini cos(αi)− κiniur cos(αi). (2.13)

Thus, we have a generalized model of the forces from the thrusters. However, the
true function gx(· ) is more complex due to water dynamics but the approximate
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function defined here will be adequate for the purposes of this project.

In a similar way, the force in the yb-direction

Fy,i = gy(ni, αi, vr) = µini sin(αi)− κ′iniva,i sin(αi)
= µini sin(αi)− κinivr sin(αi).

(2.14)

can be found with the same assumptions as for the x-direction. The azimuth
thruster i will also generate torque on the ship depending on where it is mounted
with respect to the ship’s center of rotation. The torque can be described as

Mi = ∆x,iFy,i −∆y,iFx,i. (2.15)

The generalized torque vector

τact =


∑Na

i=1 µini cos(αi)− κiniur cos(αi)∑Na

i=1 µini sin(αi)− κinivr sin(αi)∑Na

i=1 ni

[
µi
(
∆x,i sin(αi)−∆y,i cos(αi)

)
− κi

(
∆x,ivr sin(αi)−∆y,iur cos(αi)

)]
,

(2.16)
contains the forces and moments from all azimuth thrusters added together. In
order to make the model even simpler, the high-speed losses in the yb-direction will
be neglected since the speeds in that direction are significantly lower than those
in the xb-direction.

It is also assumed that every thruster is equally efficient, for simplicity’s sake,
and thus

µi = µj , µ ∀ i, j = 1, . . . , Na, (2.17)
κi = κj , −κ ∀ i, j = 1, . . . , Na, (2.18)

which gives

τact =


∑Na

i=1 µni cos(αi) + κniurcos(αi)∑Na

i=1 µni sin(αi)∑Na

i=1 µni
(
∆x,i sin(αi)−∆y,i cos(αi)(1− κur)

)
. (2.19)

Since τact has a dependence on ur, which itself is dependent on the surge speed,
the model becomes nonlinear. For simplicity, these terms will be neglected and
the notation for the generalized torque vector can be simplified to

τact =

µτ̃xµτ̃y
µτ̃ψ

 =

 µ
∑Na

i=1 ni cos(αi)
µ
∑Na

i=1 ni sin(αi)
µ
∑Na

i=1 ni
(
∆x,i sin(αi)−∆y,i cos(αi)

)
, (2.20)

where ni, αi will be the control inputs. Then µ is the only parameter left to be
determined.
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2.2 Linearization
2.2.1 State Linearization
Since CRB(ν) is dependent on ν the term CRB(ν)ν becomes non-linear. However,
using the LQR requires a linear model. Thus, a linearization is needed to simplify
the model further.

A linearization is described by the function

L(x) = f(a) + f ′(a)(x− a), (2.21)

where L(x) is called the linearized function, f(a) is the function to be linearized
evaluated in a, f ′(a) is the derivative of f(x), with respect to x, evaluated in a, in
this case the Jacobian of f(x). Lastly, x is the linearization variable (in this case
ν) and a is the chosen operating point. In this case the linearizing terms are

f(ν) = CRB(ν)ν =

 0 −mr −mxGr
mr 0 −myGr
mxGr myGr 0

uv
r

 (2.22)

=

 −mrv −mxGr2

mru−myGr2

mxGru+myGrv

, (2.23)

which has the Jacobian

J(ν) =

 0 −mr −mv − 2mxGr
mr 0 mu− 2myGr
mxGr myGr mxGu+myGv

. (2.24)

The operating point is based on what kind of state the system should be in. Since
the system will operate with a constant forward velocity and with small changes
to rotation, a suitable operation point is determined to be

a =

u0
v0
r0

 =

1
0
0

. (2.25)

By using this working point and linearizing CRB(ν)ν the following is found

L(ν) =

0 0 0
0 0 m
0 0 mxG

uv
r

. (2.26)

This will then replace CRB(ν)ν in the state space equation.
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2.2.2 Input Signal Linearization
In order to steer the ship using its actuators we need to treat the actuator signals
as input signals. Therefore the full equation (2.19) needs to be merged in the
controller with dependency on n and α. Because of the trigonometric functions
cos and sin which are present in (2.20), a linearization is needed for it to comply
with the LQR framework.

General Case Linearization

Since there are multiple working points that could be interesting in a simulation
study, the need for a more general case of the linearization is needed. Also, two
different linearizations are needed because of the two ways to steer the scale ship.
One with simultaneous steering, i.e., the same input signals for both thrusters and
one with differential steering, where the actuators are controlled independently.

Starting with the simultaneous steering we use the following variables

ps =
[
ni
αi

]
. (2.27)

Then (2.21) is applied on (2.20) with the before mentioned variable and the gen-
eralized working point as

f(p) = τ(p) =


∑Na

i=1 ni cosαi∑Na
i=1 ni sinαi∑Na

i=1 ni(∆x,i sinαi −∆y,i cosαi)

, (2.28)

J(p) =
Na∑
i=1

 cosαi −ni sinαi
sinαi ni cosαi

(∆x,i sinαi −∆y,i cosαi) ni(∆x,i cosαi + ∆y,i sinαi)

, (2.29)

as =
[
n̄
ᾱ

]
, (2.30)

which gives the following equation which includes a constant term

L(p) =
Na∑
i=1

 n̄ cos ᾱ
n̄ sin ᾱ

n̄ (∆x,i sin ᾱ−∆y,i cos ᾱ)

+

+
Na∑
i=1

 cos ᾱ −n̄ sin ᾱ
sin ᾱ n̄ cos ᾱ

∆x,i sin ᾱ−∆y,i cos ᾱ n̄ (∆x,i cos ᾱ+ ∆y,i sin ᾱ)

[ýn
ᾱ

]
.

(2.31)

This means that the steady-state of the actuators should be at this working point
and the regulator will control the deviation from this state. In other words, τact
can be divided into two parts as follows

τact = τ̄act + τ̃act, (2.32)
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where τ̄act is constant and

τ̃act =
Na∑
i=1

 cos ᾱ −n̄ sin ᾱ
sin ᾱ n̄ cos ᾱ

∆x,i sin ᾱ−∆y,i cos ᾱ n̄ (∆x,i cos ᾱ+ ∆y,i sin ᾱ)

[n
α

]
(2.33)

is time dependant and thus the term the LQ-controller will determine. This lin-
earization will make the actuators use the same rotational speed and propeller
angle for both thrusters.

For differential steering, the control variable will contain each individual actua-
tor signal

pd =
[
n1 n2 α1 α2

]T
. (2.34)

As before, (2.21) is applied and a new Jacobian matrix is received and the working
point ad is used. However, f(p) will still be (2.28) since its the same equation to
be linearized. The new equations are

J(pd) =


cosα1 sinα1 ∆x,1 sinα1 −∆y,1 cosα1
cosα2 sinα2 ∆x,2 sinα2 −∆y,2 cosα2
−n1 sinα1 n1 cosα1 n1 (∆x,1 cosα1 + ∆y,1 sinα1)
−n2 sinα2 n2 cosα2 n2 (∆x,2 cosα2 + ∆y,2 sinα2)


T

, (2.35)

ad =
[
n̄1 n̄2 ᾱ1 ᾱ2

]T
. (2.36)

This gives the total linearization

L(pd) =

 n̄1 cos ᾱ1 + n̄2 cos ᾱ2
n̄1 sin ᾱ1 + n̄2 sin ᾱ2

n̄1 (∆x,1 sin ᾱ1 −∆y,1 cos ᾱ1) + n̄2 (∆x,2 sin ᾱ2 −∆y,2 cos ᾱ2)



+


cos ᾱ1 sin ᾱ1 ∆x,1 sin ᾱ1 −∆y,1 cos ᾱ1
cos ᾱ2 sin ᾱ2 ∆x,2 sin ᾱ2 −∆y,2 cos ᾱ2
−n̄1 sin ᾱ1 n̄1 cos ᾱ1 n̄1 (∆x,1 cos ᾱ1 + ∆y,1 sin ᾱ1)
−n̄2 sin ᾱ2 n̄2 cos ᾱ2 n̄2 (∆x,2 cos ᾱ2 + ∆y,2 sin ᾱ2)


T 

n1
n2
α1
α2

,
(2.37)

and the differential control signal

τ̃act =


cos ᾱ1 sin ᾱ1 ∆x,1 sin ᾱ1 −∆y,1 cos ᾱ1
cos ᾱ2 sin ᾱ2 ∆x,2 sin ᾱ2 −∆y,2 cos ᾱ2
−n̄1 sin ᾱ1 n̄1 cos ᾱ1 n̄1 (∆x,1 cos ᾱ1 + ∆y,1 sin ᾱ1)
−n̄2 sin ᾱ2 n̄2 cos ᾱ2 n̄2 (∆x,2 cos ᾱ2 + ∆y,2 sin ᾱ2)


T 

n1
n2
α1
α2

. (2.38)

This linearization can then describe the thruster’s rotational speeds and angles
independently.

Suitable Stationary Points

Since this is a simplification of the model, some stationary points provide better
results depending on what maneuver the vehicle is expected to make. The simpli-
fied trigonometric function of the thruster orientation is an important aspect when
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choosing the stationary point since they are periodic. Following a linearization, a
trigonometric function loses its characteristic behaviour and a higher α will always
increase the torque. Therefore, the derived simulation behaviour must correspond
to the stationary point in order to get the most realistic result. In a turning sce-
nario of the scale ship, a nonzero value of α would be reasonable and in a surging
scenario, a higher value of n and zero value of α is preferable. These two different
approaches to the linearization will be used and are described as follows, starting
with the surging scenario

a =
[
20
0

]
. (2.39)

Using this stationary point and inserting the values of ∆x,i and ∆y,i of both
thrusters into (2.33) gives

τ̃act =

2 0
0 40
0 −16

[n
α

]
. (2.40)

For the turning scenario the stationary point is

a =
[

10
−π/6

]
. (2.41)

adjusted to fit with a non-zero angle. The rotational speed has also been decreased.
Inserting this and the values of ∆x,i and ∆y,i in (2.33) gives

τ̃act =

√3 10
−1 10

√
3

0.4 −4
√

3

[n
α

]
. (2.42)

These will be the two different linearizations that will be used during the simula-
tions. In theory, the latter should provide better results during a simulation with
highly varying yaw rate. Two stationary points

ad =
[
20 20 0 0

]T
, (2.43)

ad =
[
10 10 −π/6 −π/6

]T
. (2.44)

will also be used for the differential linearization and have equivalent values. These
stationary points result in

τ̃act =

 1 1 0 0
0 0 20 20
−0.1 0.1 −8 −8



n1
n2
α1
α2

, (2.45)

τ̃act =


√

3
2

√
3

2 5 5
− 1

2 − 1
2 5

√
3 5

√
3

4−
√

3
20

√
3+4
20 − 1+4

√
3

2
1−4
√

3
2



n1
n2
α1
α2

. (2.46)

This linearization can increase the maneuverability of the scale ship and create
different approaches to solving the control problem.
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2.3 State Space Representation

In order to use the LQR, the model needs to be in a state space form:

ẋ = Ax + Bu, (2.47)
y = Cx + Du, (2.48)

where x is the states that are controlled, u is the input signals and y is the output
signals. A is the state matrix, B is the input matrix, C is the output matrix, and
D is the feedforward matrix. Therefore, (2.4) needs to be rewritten as (If MRB is
invertible)

ν̇ = M−1
RB (−L(ν)−D(ν)ν + τact) . (2.49)

Using this equation and inserting the parameters and variables from (2.6), (2.26),
(2.8), and τact we can simplify the equation. τact will be replaced by τ̃act which is
one of the linearizations in Section 2.2.2. The equation can be simplified as follows

ν̇ =

u̇v̇
ṙ

 =


mx2

G−Iz

m2x2
G

+m2y2
G
−Izm

xGyG

mx2
G

+my2
G
−Iz

−yG

mx2
G

+my2
G
−Iz

xGyG

mx2
G

+my2
G
−Iz

my2
G−Iz

m2x2
G

+m2y2
G
−Izm

xG

mx2
G

+my2
G
−Iz

−yG

mx2
G

+my2
G
−Iz

xG

mx2
G

+my2
G
−Iz

−1
mx2

G
+my2

G
−Iz


·
(
−

0 0 0
0 0 m
0 0 mxG

uv
r

−
Xuu 0 0

0 Yvv 0
0 0 Nrr

+ µτ̃act

)

=
(

1
mx2

G +my2
G − Iz

)(mx
2
G−Iz

m xGyG −yG
xGyG

my2
G−Iz

m xG
−yG xG −1

µτ̃act−
−

Xu(mx2
G−Iz)
m YvxGyG −NryG

XuxGyG Yv(my2
G − Iz) NrxG −mx2

G −my2
G + Iz

−XuyG YvxG −Nr

uv
r

).

(2.50)

By assuming that r̄G is significantly small, it can be approximated to 0. The
equation for ν can then be simplified even further to

ν̇ =

−Xu

m 0 0
0 −Yv

m 1
0 0 −Nr

Iz

uv
r

+

− µ
m 0 0

0 − µ
m 0

0 0 − µ
Iz

 τ̃act. (2.51)
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This form can now be considered a state space representation where

x = ν, (2.52)

A =

−Xu

m 0 0
0 −Yv

m 1
0 0 −Nr

Iz

, (2.53)

u =
[
n
α

]
, (2.54)

B =

− µ
m 0 0

0 − µ
m 0

0 0 − µ
Iz

 τ̃act. (2.55)

B is going to change depending on which linearization of input signal that is used,
for example if (2.40) of (2.42) is used. From (2.3) and (2.5) these values can be
transferred into the n-frame where there is an assumption that ψ = 0. This is
because sensors used to determine position and velocities are in the inertial frame
which gives the following

y =

uv
r

, (2.56)

C =

1 0 0
0 1 0
0 0 1

, (2.57)

D =

0 0
0 0
0 0

. (2.58)

2.4 Linear Quadratic Regulator
The typical goal of control theory is to minimize a design criterion, i.e., balancing
between the size of the tracking error, e = y − r and the size of the input signal
u. This can sometimes be viewed as an optimization problem where the system
is described using a linear differential equation and the cost is described using a
quadratic function. Then the goal is to find the control law u = −Lx where

L = argmin
L

∞∫
0

(
zT (t)Q1z(t) + uT (t)Q2u(t)

)
dt, (2.59)

u = −Lx, (2.60)

where Q1 and Q2 are the weighting matrices, which can be used as design variables
for this resulting controller. The solution to the optimization problem is given by

L = Q−1
2 BTS, (2.61)
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Figure 2.3: Representation of feedback and reference gain on system.

where S is a positive semidefinite matrix that solves the algebraic Riccati equation

ATS + SA + MTQ1M− SBQ−1
2 BTS = 0. (2.62)

A solution to this equation can readily be found using software like Matlab.

In order to achieve the desired design behaviour of the system there needs to
be an iterative process, by simulating and adjusting Q1 and Q2 accordingly to the
observed behaviour to find the optimal value.

The controller defined above drives the system states to zero but in this case
the controller needs to follow a given reference signal. Therefore, we need to inte-
grate the reference signal, r, in the equations. This can be done by rewriting the
input signal as

u(t) = −Lx(t) + Lrr(t), (2.63)
where Lr is chosen such that the static gain is in accordance with the reference
value. This method of using the LQR is taken from [11]. An illustration over how
the system is designed is shown in Figure 2.3.

2.4.1 Kalman Filter
In every system there are uncertainties present. Usually, these uncertainties are
modelled as a white stochastic process which is a random signal with constant
spectrum. Taking uncertainty into account, the model can be written as

ẋ = Ax + Bu + Nv1, (2.64)
z = Mx, (2.65)
y = Cx + v2, (2.66)

where v1 and v2 are white, Gaussian noise with zero mean. In order to filter out
these signals, a state observer can be implemented which uses an estimation of the
states on the form

˙̂x = Ax̂ + Bu + K(y−Cx̂) = (A−KC)x̂ + Bu + Ky. (2.67)
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This can be solved by describing it as an optimization problem as with the LQR,
but instead minimizing the variance of the estimation error. The estimation error
can be denoted as e = x − x̂ while the variance is Ee(t)e(t). If v1 and v2 are
independent and have zero mean value then we can assume that

Ev1vT1 = R1, (2.68)
Ev2vT2 = R2, (2.69)
Ev1vT2 = 0. (2.70)

Then the state observer can be described as
K = PCR−1

2 , (2.71)
where P is the optimal estimation covariance and solves the Riccati equation

ATP + PA + NR1NT − PCTR−1
2 CP = 0. (2.72)

The Kalman gain can also be found using Matlab. This solution is called the
Kalman filter where R1 and R2 are the design variables and can be tuned to filter
the process and measurement disturbances. The methods for LQR and Kalman
filtering are handled in [11]. The combination of using Kalman filtering and LQR
is called Linear-Quadratic-Gaussian control, LQG. This is a common method for
solving this kind of problem and similar approaches can be found in [12] and [13].

2.5 Sensors
To obtain the states used in the controller, there is a need to measure them. This
will be done with sensors suitable for marine navigation. The primary sensors used
in ship steering is an Inertial Measurement Unit, IMU, and a Global Positioning
System, GPS. These will be briefly described in this section.

2.5.1 IMU
An IMU uses a combination of accelerometers, gyroscopes and magnetometers to
measure angular rates, accelerations, and magnetic field. This is an essential device
for controlling ships since they can move and rotate in all 6 DOFs. Measurements
from the gyroscope and accelerometer include some biases which will create a
systematic measurement error. If the angular rates and accelerations are integrated
the result be that the linear velocity errors grow linearly with time and the attitude
error would grow quadratically over time. Therefore relying only on an IMU for
these purposes over a larger time period will provide difficulties [14].

2.5.2 GPS
The GPS is a system that uses satellites which communicates with a receiver and
provides geolocation and time information in areas with unobstructed line of sight.
The most common GPS is not that accurate as the position measurement can
vary with magnitudes of several meters. However if two is sufficient enough for
this project is something to be evaluated.
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2.5.3 Sensor Fusion
By implementing a Kalman filter to fuse the information provided by the two
sensors, the negative effects can be reduced. The bias of the IMU can be corrected
and when the GPS sensor does not have an unobstructed line of sight, the controller
will rely more heavily on the IMU until the GPS has re-obtained the line of sight.
However, since most naval routing goes through areas with open sky, a GPS signal
will always be present and thus the focus will be on correcting the IMU bias.
This kind of sensor fusion for controlling vehicles in open outdoor environments is
implemented in [15] and [16] where the latter handles land vehicles instead.

2.6 Physical Scale Ship Model
The scale ship model will be based on a regulator that uses inputs from a GPS and
IMU to determine the position, heading and velocity of the ship. From there it
will control the actuators, an Electrically Commutated Motor, ECM, and a servo,
for each azimuth thruster. The actuators are connected to the thruster via driving
belts with gears. The gear ratio between the servo and the thruster connection
is quite large. This, combined with the fact that when shifting direction, the ten-
sion of the belt switches, creates a backlash which could be a potential problem
when incremental changes to the angle α is needed. A schematic representation of
how the scale ships sensors will be connected to the actuators is given in Figure 2.4
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Figure 2.4: The physical system, from sensor to regulator to actuator to
thruster.





3
Implementation and Results

To test the behaviour of the model and if the regulator can control the system a
simulation study is made to test certain properties of the system. Every simula-
tion is done by having both simultaneous and differential steering of the azimuth
thrusters. The parameters used in the simulations are listed in Appendix A.

3.1 Surge Speed Simulation
As an initial test, a simple surge speed step was made. This is done for both
the double steering, where the input signals for both thrusters are the same, and
for differential, where the thrusters can be controlled independently. Both the
simulations are done using the actuator linearization where α is zero (2.40).

3.1.1 Double Motor Steering
The tuning goal was to get a relatively quick step response with minimal overshoot
and therefore the emphasis lies on minimizing the tracking error. This is mainly
done to see the connection between the rotational speed of the propellers and
the surge performance, and how the propeller angle behaves close to zero. The
weighting matrices and reference gain are the following

Q1 =

100 0 0
0 1 0
0 0 1

, Q2 =
[
1 0
0 1

]
,

Lr =
[
10 0 0
0 0 0

]
,

which yields the results shown in Figures 3.1 - 3.3. In these simulations it can

21
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Figure 3.1: Surge speed step re-
sponse.

Figure 3.2: Sway speed and yaw
rate.

Figure 3.3: Input signals for surge step.

be seen that the controller works well in this situation. There is a fast peak in
rotational speed that settles quickly with a constant zero angle can be seen in
Figure 3.3 which results in a fast step response and no overshoot. As excpected,
the zero angle reference results in no sway or yaw response, can be seen in Figure
3.2.

3.1.2 Differential Steering
For differential steering, the goal was the same as in the double steering simulation;
to get a fast surge step response. The tuning is therefore similar with the excep-
tion for the lower two elements in the left column of the reference gain. These
correspond to the reference and needs to be of different signs for the controller to
use them in a way that stabilizes the system. These could also be zero but then
this simulation would be no different from the double steering one. This is in fact
not a problem but it does not show the capabilities of differential steering. The
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Figure 3.4: Differential surge
speed step response.

Figure 3.5: Differential sway
speed and yaw rate.

Figure 3.6: Differential input signals for surge step.

reference gain and weighting matrices are

Q1 =

100 0 0
0 1 0
0 0 1

, Q2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

Lr =


7.07 0 0
7.07 0 0
−0.01 0 0
0.01 0 0

,
which yields the following results shown in Figures 3.4 - 3.6. Here some similar
behaviour can be seen in both Figure 3.4 and 3.5 to that in the previous simulation.
This indicates that the simulation works as it should. In Figure 3.6 some differences
can be seen. Both the thrusters seem to have a small angle pointing them toward
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the middle line of the ship. This seems to result in both the thrusters requiring less
rotational speed to gain the reference surge speed. This could also be a result of
the linearization, where the quadratic cost function makes rotational speed input
more costly than angle input. It could also be because of the (3, 1) and (4, 1)
elements in Lr being non-zero.

3.2 Yaw-rate Simulation
To investigate the turning behaviour of the scale ship model, a step in yaw-rate
reference is made. In order to test the capabilities and realistic implementation
in practice, two different simulations are carried out, one where there is some
leniency on settling time and an overshoot occurs (peak test) and one where the
controller tries to follow the reference as strictly as possible (smooth test). The
peak test has been adjusted so that all simulations including it have similar settling
times at approximately 10 seconds after the step. Since linearizations and model
simplifications have been done, this test could provide unrealistic results but is
still deemed to be a good indication of the capabilities of the system.

3.2.1 Double Motor Steering
The following simulations use the same rotational speed and propeller angle for
both azimuth thrusters.

Zero-angle Linearization

In this simulation, the controller uses the matrices obtained when linearizing
around a working point with forward motion of the input signals, (2.40), which is
designed to work with thruster angle α close to zero.

There are two different tunings used for the controller which is done for two pur-
poses, one where the states or the input signals are punished with 1 and the
reference gain factor adjusted to reach the goal value. The other tuning punishes
the tracking error for rotational rate higher, giving a closer fit to the reference
speed while punishing the input signal for sway speed less, making it take longer
to find its settling limit. This can give good indications of what the system is
capable of, by comparing an evenly tuned system and a more aggressively tuned
system. The weighting matrices and the reference gain, where the indices p and s
stands for peak and smooth respectively, are

Q1,p =

1 0 0
0 1 0
0 0 1

, Q1,s =

1 0 0
0 0.001 0
0 0 200

,
Q2,p =

[
1 0
0 1

]
, Q2,s =

[
1 0
0 1

]
,

Lr,p =
[
0 0 1
0 0 −22.3

]
, Lr,s =

[
0 0 1
0 0 −14.15

]
,
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Figure 3.7: Zero angle lineariza-
tion step response.

Figure 3.8: Zero angle lineariza-
tion input signals.

Figure 3.9: Zero angle linearization surge and sway speeds.

which yields the results shown in Figure 3.7 - 3.9. The final value of α from
Figure 3.8 is

αp = αs = −0.04 rad,

In Figure 3.7 the main result of the two different regulators are shown. The peak
tuning regulator makes an overshoot 7 times the reference value but settles after 10
s. This is most likely a result of the angle behaviour in Figure 3.8. Here α reaches
a very high negative value close to −20 rad, which is far from a realistic scenario
for an azimuth thruster. Now it seems to overestimate the need for the fast change
in yaw rate and is too slow to counteract it before the overshoot becomes as high
as it is. However, the settling angle for α is reasonable from a physical point
of view since a small negative angle would provide a positive torque around the
z-axis and thus a positive yaw rate. It could although be debatable if such a small
angle could have that impact and if an angle of 0 would give similar results in this
controller. Another interesting aspect is how decoupled the rotational- and surge
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speeds are from the results since they show the same behaviour in both simula-
tions. This is something that should be considered since, in a real-world test, this
would significantly impact the results

In the regulator with smooth tuning, the output seems to follow the reference
closely but has two changes from the other regulator. It does not have the same
dip in α and recovers to the final settling value in less than a second which is not
possible in practice because of the dynamics in changing actuator position. In Fig-
ure 3.9, the sway speed takes significantly longer time to settle which may indicate
that some uncoupled behaviour exists since the input signals of the system are the
same after 20 seconds but the sway speeds behave different at that time also.

Some of the unrealistic behaviour could be because of the linearization of α and
the trigonometric function. The trigonometric function, which is periodic and
only distributes the forces created by the number of revolutions between the xb
and yb-axis, can only have the highest value of 1. When applying a linearization,
the controller thinks that the higher the value of α, the higher the resulting forces
will become, which is not true in practice.

Non-zero-angle Linearization

The model can be adjusted by using the linearization (2.41), where α has a small
negative value, which is assumed to be close to the resulting final value of α in
this yaw rate simulation. This is to see if this adjustment would yield better
results than with the zero-angle linearization. The tuning design goals are similar
as for the previous simulations. One of the major differences is that the third
element in the first row of the reference gain needed tuning as well. This was
because the surge speed otherwise tends to be negative which gives the scale ship
a different behaviour pattern and makes the two simulations harder to compare.
The weighing matrices and reference gain for this simulation are the following

Q1,p =

1 0 0
0 1 0
0 0 1

, Q1,s =

0.1 0 0
0 0.001 0
0 0 200

,
Q2,p =

[
1 0
0 1

]
, Q2,s =

[
1 0
0 1

]
,

Lr,p =
[
0 0 10
0 0 −20.9

]
, Lr,s =

[
0 0 3.55
0 0 −13.95

]
,

which yields the results shown in Figure 3.10 - 3.12.
The final value of α from Figure 3.11 is

αp = αs = 0.012 rad.

These results are similar to those that were presented in Section 3.2.1 but with
some new behaviour. The peak-tuning seems to give slightly better results as its
overshoot reaches only 6 times the reference. The main difference is the higher
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Figure 3.10: Non-zero angle step
response.

Figure 3.11: Non-zero angle input
signals.

Figure 3.12: Non-zero angle surge and sway speeds.

rotational speeds of the propellers which impact the surge speed almost tenfold.
This has now acquired a non-minimum phase behaviour but seems to have gained
a faster response in reaching its top speed for the peak-tuning. The smooth-tuning
makes the regulator slower than peak-tuning but that is in line with the tuning of
Q1,s.

What is perhaps the most interesting about this simulation in comparison to the
former simulations is the input signals in Figure 3.11. The rotational speed has
greatly increased but the angle behaviour is mostly the same as before and as a
result, the step response has barely changed. This could be a result of the lin-
earization such that the controller mostly relies on the angle input and making
n obsolete unless it reaches even greater speeds. Another interesting thing about
the input signals is how the settling value for α is positive. It is very close to zero
but nonetheless positive. This should theoretically not be possible in a simulation.
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This could also be a result from the linearization having bias on n at lower an-
gles. This means that, at lower angles, the controller thinks that higher rotational
speeds will still turn the ship because of the non-zero angle linearization.

3.2.2 Differential Steering
The following simulations uses differential steering, in other words, the ability to
control both thrusters rotational speed and angle independently.

Zero-angle Linearization

First, the zero-angle linearization for differential steering is used. These simula-
tions follow the same pattern as before where two tuning designs with different
goals are explored. By using differential steering, new behaviours can be seen that
could potentially improve the controller. The weighing matrices and reference
gains are as follows

Q1,p =

1 0 0
0 1 0
0 0 1

, Q1,s =

1 0 0
0 0.01 0
0 0 250

,
Q2,p =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, Q2,s =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

Lr,p =


0 0 1
0 0 1
0 0 −15
0 0 −15

, Lr,s =


0 0 1
0 0 1
0 0 −12.2
0 0 −12.2

,
which yields the results shown in Figure 3.13 - 3.16.
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Figure 3.13: Differential zero an-
gle step response.

Figure 3.14: Differential zero an-
gle surge and sway speeds.

Figure 3.15: Differential zero an-
gle rotational speeds.

Figure 3.16: Differential zero an-
gle input angle.

The final values of αp and αs from Figure 3.16 are

αp = −0.06 rad, αs = −0.41 rad.

The step responses for surge, sway and yaw (can be seen in Figure 3.13 and 3.14),
show similar behaviours as for the double steering simulation in Section 3.2.1. Here
the overshoot of the step response is lower, and the surge speed reaches a higher
final value. However, in the input signals some interesting things can be observed.
The angle α is the same for both thrusters with the two different tunings despite
having differential freedom. This could be because of the linearization making it
the only applicable solution. The large dip seen in Figure 3.16 is also smaller in
this simulation which is a step in the right direction. The final value of α for
the peak-tuning is practically the same as double steering but the smooth-tuning
is closer to the actual value of π/6 which is also a good indication for this controller.

The completely new behaviour of n, seen in Figure 3.15 indicates that this in-
put signal has some impact on the system. In both tunings, one of the propellers
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is rotating with a lower speed which is a benefit in practice. When one thruster
is producing more thrust it will create a torque, turning the ship. By using this
difference in rotational speed, the controller can adjust the yaw-rate more effi-
ciently. A problem which can be seen on this simulation is that the configuration
of rotational speed propels the ship in the wrong way. Since Thruster 1 is placed
on the right side of the xb-axis and Thruster 2 on the left side, this behaviour
would provide a negative yaw-rate. This is another indication that the controller
is counteracting itself. This is probably another consequence of the input signal
linearization.

Non-zero-angle Linearization

The following tunings are based on the model with the non-zero differential angle
linearization from (2.41) and have the same tuning aspects as previous simulations.
These simulations had the same problem as in Section 3.2.1 where the controller
wanted negative surge speeds so that has also been corrected with the tuning in
this controller. The weighting matrices and reference gain are the following

Q1,p =

1 0 0
0 1 0
0 0 1

, Q1,s =

1 0 0
0 0.05 0
0 0 200

,
Q2,p =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, Q2,s =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

Lr,p =


0 0 5
0 0 5
0 0 −5.28
0 0 −5.28

, Lr,s =


0 0 6
0 0 6
0 0 −9.75
0 0 −9.75

,
which yields the results shown in Figure 3.17 - 3.20.
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Figure 3.17: Differential non-
zero angle step response.

Figure 3.18: Differential non-
zero angle surge and sway.

Figure 3.19: Differential non-
zero angle rotational speeds.

Figure 3.20: Differential non-
zero angle input angle.

The final values of the azimuth angles in Figure 3.16 are

αp,1 = 3.69 rad, αp,2 = −4.72 rad,
αs,1 = 2.73 rad, αs,2 = −3.44 rad.

These simulations are the most unique of all yaw rate simulations. The peak step
can be seen having significantly lower overshoot than any of the previous simula-
tions. This overshoot reaches only double that of the reference value. In the surge
and sway graph in Figure 3.18, the behaviours of the peak and smooth simulations
are similar to the previous simulations but with different final values. These can
be tuned, using the reference gain, but this is not necessary since the purpose is
how their behaviour impacts the system and not what their final values are.

The input signals do however behave in a realistic way. Both the peak tuning
and smooth tuning result in signal plots with similar curvature but different final
values. These values have been interpreted and illustrated in Figure 3.21. Here we
see that both thrusters are, as in previous simulations, counteracting each other
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but now in a manageable way. The left thruster has a larger magnitude of its
angle in comparison to the right one, which provides a larger torque about the
z-axis and thus an increase in yaw rate. Although the right thruster has a larger
rotational speed creating a negative torque about the z-axis and thus canceling
out the forces from the left thruster. This makes it possible to achieve a constant
yaw rate. The method does however create a lot of unnecessary opposing forces
in the yb-direction. The angle magnitudes are still far from the operating point
which makes the accuracy of the linearization poor. However, this is a step in the
right direction.

F2

F1

−α2 α1

Figure 3.21: Illustration of results from the differential, non-zero angle,
simulation.

3.2.3 Defensive Tuning
To further test the capabilities of the system, a controller was designed to achieve
reasonable azimuth angles instead of strictly following the reference step of yaw
rate. This simulation was done with the differential non-zero angle linearization.
The weighing matrices and reference gains for this simulation are the following

Q1 =

0.01 0 0
0 0.01 0
0 0 1

, Q2 =
[
1 0
0 1

]
,

Lr =


0 0 6
0 0 6
0 0 −1.25
0 0 −1.25

,
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Figure 3.22: Defensively tuned
step response.

Figure 3.23: Defensively tuned
surge and sway.

Figure 3.24: Defensively tuned
rotational speeds.

Figure 3.25: Defensively tuned
input angle.

which yields the results shown in Figure 3.22 - 3.25.
The final values of α1 and α2 from Figure 3.25 are

α1 = 0.64 rad, α2 = -0.31 rad.

The result from this simulation give the lowest peak of all the previous peak
simulations but instead have a much higher settling time, reaching almost a minute.
The surge speed are also substantially larger than any previous simulation. This
simulation suggests that an appropriate controller to the model can be found
with enough time spent trimming the controller. These results show that the
controller is promising but in certain applications, a defensive tuning would not
be as suitable.





4
Discussion

In this chapter, it will be discussed what the controller might be capable of in a
real world scenario, based on the simulation results from Chapter 3. The problems
arising with the controller and model and what kind of solutions could potentially
improve the system will also be discussed.

4.1 Simulation Results
In the surge speed simulations, the results seem to show that the controller is per-
forming well. The controller settles on the reference speed quite fast and there is
no significant difference between the double motor steering and differential steer-
ing. The relation between the rotational speed of the propeller and actual surge
speed is, in the model, assumed to be linear which could be an oversimplification.
By doing more physical tests to determine the true behaviour of this relation, the
new resulting model could also improve the final controller in the yaw rate simu-
lation. Another interesting thing that could have been tested is the behaviour of
the controller when a disturbance is included in the simulation, like wind, waves
or currents in the water. Until these things are implemented in a surge speed
simulation, the results do not say very much but merely confirm that the model
is controllable and that it is performing well for a surging scenario.

For the yaw rate simulations, the results were showing the true capabilities of
the model and controller since they involved all states and input signals. The
two tunings, where one was strictly following the reference and the other were
more lenient in time to reach the reference, had similar output signal behaviour
among all of the simulations. Some interesting results could be observed in the
input signals and surge/sway speeds. For all simulations and tunings, the azimuth
angle produced a negative tip of significant size before settling to its final value.
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This behaviour would, in practice, make the thrusters spin around its axis instead
of quickly increase the yaw rate, which the controller thinks it does, based on
the linear model. This is most likely a result of two things: The over-reliance of
controlling the α angle and the input signal linearization. The over reliance on
the angle means that the controller seems to prefer only steering α to control the
general behaviour of the ship and n to adjust more delicately. An indication of the
over-reliance on the α angle can be seen in the surge and sway speeds. Here the
surge speeds are significantly lower than the sway speeds which means that the
ship mainly moves sideways in the water, which would create resistance in practice
and is not the intended movement of this kind of ship. The hull of this ship is
designed to move in a surging motion and with adjustments to orientation in order
to turn. With the simulation moving the ship in a swaying motion, the risk also
increases for it to tip over. This indicates that something is wrong with the model
and has most likely something to do with the simplifications made when the model
was derived. Right now, a majority of the elements in the state matrix, A, are
zero which would have a large impact on the true system if this was expanded
to physical tests. These elements indicate how much the states depend on each
other and to which degree. Zero elements is saying that there are no dependence
between these states which is something that the centripetal and Coriolis forces
suggest. However, the input signal linearization is what makes the controller think
that the α angle works that way. A solution could therefore also be to investigate
how to describe the relationships between input signals and actuator forces in a
better way.

In the differential setup some controller behaviour which might give good results
in practice can be seen. The rotational speed is different for the two propellers
which makes it possible to turn the ship without rotating the thrusters. In the
simulations, the controller sets the rotational speed of the propellers so that a neg-
ative yaw rate is created, thus it is counteracting the behaviour of the input angle.
This could also be a result of the over-reliance on the α angle, making the rota-
tional speed only be used for fine tuning the result. However, the last simulation,
which is differential steering with non-zero angle linearization, is where the most
physically probable scenario happens. This is also illustrated in Figure 3.21. Here
the rightmost thruster pushes the ship forward and to its right while the leftmost
is turned furthest away, creating a larger momentum to keep the ship turning right.
While this is not the desired control, since it creates a lot of counteracting forces
sideways, it is a physically plausible solution and indicates that the controller has
potential.

4.2 Problems and Possible Solutions
4.2.1 Method Problems and Possible Solution
A common problem occurring during the yaw speed simulation is the non-realistic
behaviour with the input signal linearization. When comparing to possible be-
haviour in practice, any angle that is not close to the working point would be
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sinα

cosαα

Figure 4.1: Gain scheduling visualization for a trigonometric function.

considerably different. A possible solution to fix this is to use gain scheduling.
Gain scheduling is an approach of controlling a non-linear system by using multi-
ple linear controllers. Thus, by having multiple linearizations approximating the
trigonometric function at different working points, the LQR can be applied to these
segments on their own. An illustration of how the gain scheduling is supposed to
work is shown in Figure 4.1. A similar application of gain scheduling of LQR but
in yaw-moment control is done in [17]. A possible issue that could arise is the tran-
sition between linearizations. If this transition is not considered properly there
could arise some erratic behaviour or instability in the system. The simulation
behaviour where the surge, sway and yaw speeds are less dependent on each other,
is something that also creates a few problems with controlling this ship. Going
back and redoing some of the theoretical modeling could remedy this. For example
are the centripetal and Coriolis terms, CRB(ν), also linearized and by simulating
using different stationary points, the results might be improved. The damping
matrix, D(ν), is here approximated by a diagonal matrix but has the potential to
be expanded which could therefore also be a reason for the decoupled behaviour
of the states. The value of the parameters could also be a factor to why the sim-
ulations does not produce the desired results. Therefore, some practical testing
where parameters can be found, resistances measured and azimuth performances
determined, could be valuable when trying to improve the performance.

4.2.2 New Approaches to the Problem
Sometimes it could be more advisable to see the problem from a new point of
view instead of trying to rework the method to fit. Therefore, a possible solution
to improve the results is to reconsider the type of regulator. Instead of using
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the LQR framework, which requires linearizations for it to function, a nonlinear
model predictive controller, MPC, could be used instead which eliminates the
need for linearizations. Since the MPC is also model-based, the theoretical models
described in this thesis can be reused. Another option for controlling the ship
could be to use a Fuzzy LQR which could process nonlinear systems and is the
objective of [7].



5
Conclusions and Future Work

This chapter presents the conclusions of this master thesis. By comparing the
objectives in Section 1.2 and the results from Chapter 4, this chapter will describe
what the current versions of the model and controller are capable of. Some results
of the simulations will be presented and why results behaves the way it does. Some
improvements that could be done in a future continuation of this project will also
be proposed.

5.1 Conclusions
The objective of this thesis was to identify a simple model describing the ship and
actuator behaviour and adapt it to work in the LQR framework. The model and
controller would then be tested with a series of simulations to analyze how well
they would perform. The resulting model became a basic representation of a more
complex marine vessel. This model includes some linearizations that simplifies the
model further which was necessary for it to work with the LQR. Apart from tuning
the LQR to the model using the weighting matrices Q1 and Q2, a reference gain,
Lr, was included to adjust the controller to follow a reference. The controller was
tested in two types of simulation studies: A step in surge speed reference and a
yaw rate reference step. Both types of simulations were done with both double
and differential steering. The yaw rate step-simulation also tested different work-
ing points for the actuator linearizations, one with a zero-angle working point, and
one with a non-zero angle working point. The yaw rate step-simulations also had
two different tested tunings, one with stricter reference following and the other
with less strict following. This was to see which was the most likely to work in a
practical test.

The surge speed simulations proved that the model and controller worked as in-
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tended with only a linear connection between the rotational speed n and the output
speed u.

The yaw rate simulations indicated that the controller was not yet ready for a
practical test. The controller put a high reliance on changing the thruster angle α
instead of including the rotational speed, n, more. This was most likely a result
of the actuator linearizations making the controller ignore the limitations of the
trigonometric function that a rotational thruster has. There were also some indi-
cations that the model was too simple for achieving the desired behaviour. The
sway speeds, surge speeds and yaw rate looked independent from each other which
could be because of the multiple zero elements in the state and input matrices.
The oversimplification of the model was also indicated by a tendency for the ship
simulation to propel the ship faster sideways instead of surging. The differential
steering controller, however, has potential to be used in a real-world environment.
Despite that the two azimuth thrusters where strongly counteracting each other,
the behaviour had some realistic properties. If the issue of the linearization of the
trigonometric functions could be solved, then this controller have potential to be
used in practice.

5.2 Future Work
In order to improve the behaviour in the simulations and make the controller give
more realistic output and input behaviours, some modifications and improvements
could be investigated. These modifications are only proposed model changes since
the model is the foundation that needs to work properly before proposing changes
to the controller.

The first modification that should be done is altering the input signal linearization.
The main purpose of this change is to make it act more like the trigonometric func-
tion which is possible by using gain scheduling. The advantages of gain scheduling
are that it can merge several working points from the input signal linearization.
Thus, it can more accurately describe what impact the thrusters have on the ship
depending on their orientation. However, some research needs to be done on how
many working points that are sufficient and how the transition between working
points is going to be implemented. Gain scheduling is further explained in Section
4.2.1 and illustrated in Figure 4.1.

Another issue with the current version of the model was how decoupled the differ-
ent states seemed to be from each other. This could be a result of the simplicity
of the model and that several elements in the state and input matrices are zero.
By going back to the model construction and searching for assumptions or simpli-
fications that could be removed in order to solve this and increase the complexity
of the model, new and better simulation results could be achieved. This must be
done while having in mind that the model needs to be linear for the controller to
work. Another thing that could be a reason for the simplicity of the model is the
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linearization of the centripetal and Coriolis terms, which working point is adapted
to only have a non-zero value for surge speed. By adjusting this, the former need
to remove assumptions or simplifications might be eliminated.





Appendix





A
Parameter Values

Table A.1: Parameter values used in the simulations.

Parameter Value Unit
Xu 0.2 [-]
Yv 0.2 [-]
Nr 0.2 [-]
∆x,1 -0.4 [m]
∆x,2 -0.4 [m]
∆y,1 0.1 [m]
∆y,2 -0.1 [m]
µ 0.3 [-]
m 5 [kg]
Iz 4 [kgm2]
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