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Featured Application: The analysis of the transmission of Mueller matrices facilitates studies of
optical activity in samples that also exhibit linear anisotropy and depolarization and may have
a multilayered structure. Such studies are important for the development of applications in chi-
roptics.

Abstract: Optical chirality, in terms of circular birefringence and circular dichroism, is described by
its electromagnetic and magnetoelectric material tensors, and the corresponding optical activity con-
tributes to the Mueller matrix. Here, spectroscopic ellipsometry in the spectral range 210–1690 nm is
used to address chiral phenomena by measuring Mueller matrices in transmission. Three approaches
to determine chirality parameters are discussed. In the first approach, applicable in the absence
of linear polarization effects, circular birefringence and circular dichroism are evaluated directly
from elements of a Mueller matrix. In the second method, differential decomposition is employed,
which allows for the unique separation of chirality parameters from linear anisotropic parameters
as well as from depolarization provided that the sample is homogeneous along the optical path.
Finally, electromagnetic modeling using the Tellegen constitutive relations is presented. The last
method also allows structural effects to be included. The three methods to quantify optical chirality
are demonstrated for selected materials, including sugar solutions, α-quartz, liquid crystals, beetle
cuticle, and films of cellulose nanocrystals.

Keywords: transmission Mueller-matrix; optical chirality; CD-spectroscopy; spectroscopic ellipsome-
try; differential decomposition

1. Introduction

Mueller matrices are increasingly used for the analysis of bianisotropic properties of
complex media, including the quantification of circular birefringence (CB) and circular
dichroism (CD). Traditionally, chiral parameters are studied by CD-spectroscopy and opti-
cal rotatory dispersion (ORD) methods. The purpose here is to discuss how Mueller-matrix
analysis can complement the established methods by providing additional analytic features.
Of special significance is that access to a full Muller matrix allows for the separation of
circularly polarizing effects from linear birefringence (LB) and linear dichroism (LD). Fur-
thermore, both CB and CD are accessible simultaneously from a Mueller matrix providing
consistency checks through Kramers–Kronig analysis.

If a sample is depolarizing, the differential decomposition of a Mueller matrix can be
employed to separate out depolarization so that it will not distort the analysis of chirality
or linearly polarizing effects. However, the sensitivities obtainable with CD-spectroscopy
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or ORD are not reached with commercially available Mueller-matrix ellipsometers. Still,
the Mueller-matrix methodology is an important complement. To facilitate a comparison
among different approaches, the use of transmission Mueller matrices to determine the
chirality in samples is briefly reviewed and examples of data analysis from liquid and solid
homogeneous as well as structured samples are discussed.

Methodology based on optical activity is used as a standard technique in many fields
of science. Optical rotatory dispersion (ORD) is used in polarimetry to determine the
concentrations of sugar-based solutions and also finds frequent use to determine chiral
purity, e.g., for the separation of enantiomers in chemistry during drug development.
Essentially, the magnitude and direction of rotation of polarized light is measured, often at
a single wavelength, and related to molecular properties.

The rotation can be relatively large—on the order of degrees—and is easy to record.
ORD can also be used for the structural analysis of biomolecules; however, in most cases,
CD spectroscopy is used as it is more sensitive, has better spectral resolution, and has less
overlap of spectral features [1]. An example of structural studies is analysis of the amount
of α-helices, β-sheets, and random coils in proteins. In CD spectroscopy, the change in
ellipticity is measured, which, in most cases, is specified in units of degrees. It can be very
small and on the order of millidegrees.

Both CB and CD are included in a Mueller matrix and can be extracted directly in
the absence of linear birefringence and linear dichroism. If linear effects are also present,
a differential decomposition can be used to separate linear and circular effects as proposed
by Go [2] and further detailed by Azzam [3]. Later, Ossikovski included the separation
of depolarization [4]. Even though the methodology was proposed long ago, it has been
ignored in interpretation of Mueller matrices. More recently, Arteaga and Kahr determined
CD and CB from spectroscopic Mueller matrices measured on nickel sulfate hexahydrate
crystals [5].

Giant optical activity was observed in thin films of enantiopure squaraines with
opposite handedness [6]. Optical activity originating from structural effects in beetle
cuticles was determined together with LB and LD as well as depolarization [7]. Chiral
nanocrystalline cellulose free-standing films exhibit both linear and circular anisotropy and
can be resolved by the differential decomposition of Mueller matrices [8]. Optical activity is
contained in the electro-magnetic and magneto-electric tensors in the Tellegen constitutive
relations and can be analyzed with Kramers–Kronig consistent dispersion models using
Mueller matrices from beetle cuticles [9].

The objective of this paper is to describe three methodologic approaches to extract
CD and CB from spectral Mueller matrices. First, we show how to determine CD and CB
directly from the elements of a Mueller matrix in the case when there is no linear anisotropy.
Then follows a description of differential decomposition of a Mueller matrix to determine
all bianisotropic effects, thus including both linear and circular effects.

The differential decomposition methodology can also separate out effects of depo-
larization such that the results are not distorted. Finally, we present methodology to
analyze the CD and CB with electromagnetic modeling using the Tellegen constitutive
relations and Mueller matrices. With this method, samples with both CD and CB as well as
LB and LD can be analyzed. The methodologies are demonstrated for liquid, solid, and
structured samples.

2. Materials and Methods
2.1. Samples and Sample Preparation

Anhydrous D-glucose (J. T. Baker Chemicals B. V., Landsmeer, The Netherlands) was
dissolved in distilled water to a concentration of 0.25 g/mL. An α-quartz plate with a
diameter of 12.5 mm and nominal thickness of 1 mm was purchased from Changchun
Boxin Photoelectric Co., Ltd., Chang Chun, China. The actual thickness was measured
with a caliper and found to be 1.075 ± 0.005 mm.
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The liquid crystal sample consists of a cholesteric glassy liquid crystal (ChGLC)
sandwiched between two 3-mm thick glass substrates coated with buffed polyimide layers.
The ChGLC in this study was Bz3ChN synthesized using Scheme 1 in Wallace et al. [10].
The material was heated beyond its clearing temperature and degassed. The isotropic
material was deposited on a buffed polyimide glass substrate.

The second glass substrate was placed on top, and a small force was applied to
spread the ChGLC film to the thickness of 10 µm as determined by silica micro-rods.
Upon slight cooling to below the clearing temperature, a shearing force was applied to
the glass substrates to align the ChGLC along the polyimide. The device was thermally
annealed for 2 h at 200 ◦C after which it was quenched. A mono-domain Bz3ChN film is
capable of circularly polarizing light with a selective reflection band centered at 410 nm.

Specimens of the scarab beetle Cetonia aurata (Linnaeus, 1758) were collected just
outside Linköping in Sweden. The inside of one of the elytra from each specimen was
mechanically cleaned with a scalpel to remove the endocuticle for improved transmission.
The thickness of the optical active part of a cuticle varies slightly from beetle to beetle and
also from position to position on an elytron. A thickness value of 20 µm was found by
scanning electron microscopy [7] and was used for the samples studied here.

The film of cellulose nanocrystals (CNC) was prepared with ashless filter paper
(Whatman grade 40) as the source of cellulose. The paper was ground in a coffee mill 3
times, each for 35 s. The hydrolysis was performed with concentrated sulfuric acid (64 wt%)
with a ratio of 8.75 mL of acid per gram of paper at 45 ◦C for 120 min. The reaction was
stopped by adding distilled water at 4 ◦C using 10 times the volume of hydrolysis solution.
After resting for 24 h in a refrigerator, the diluted solution was decanted, and the recovered
slurry was centrifuged three times with distilled water at 9000 rpm for 10 min each.

The paste of cellulose nanocrystals was dialyzed against 3 L of distilled water changing
the water every 24 h until a neutral pH was reached in the water. The final pH of the
nanocrystals inside the dialysis membrane was in the range of 3–4. The concentration
of CNC was determined gravimetrically, and a suspension with 1.5 wt% of CNC was
prepared and mechanically dispersed at 9000 rpm for 10 min. The CNC suspension was
stored for one month before the film was cast by pouring 2.5 mL of CNC suspension in a
petri dish with a 3 cm diameter. The evaporation-induced self-assembly was performed
at laboratory conditions. Mueller-matrix measurements were performed six months after
preparation. A thickness of 20 µm was evaluated with scanning electron microscopy.

2.2. Instrumentation

Mueller-matrix spectroscopic ellipsometry (MMSE) data were recorded in transmis-
sion mode at normal incidence with a dual rotating compensator ellipsometer (RC2,
J. A. Woollam Co., Inc., Lincoln, NE, USA) with a beam diameter of 3 mm in the spectral
range of 210–1690 nm. Focusing probes to reduce the beam diameter to below 100 µm were
used for the measurements on beetle elytra. Complementary measurements to measure
incomplete (three rows only) Mueller matrices were performed with a rotating-analyzer
ellipsometer equipped with a compensator (VASE, J. A. Woollam Co., Inc.).

For the measurements on the glucose solution, a glass cuvette with path length of
13.8 mm was used. The cuvette was made of 1-mm thick fused quartz. With an empty
cuvette, normalized Mueller-matrix elements within ±0.005 of their nominal value (zero
or unity of the identity matrix) were obtained in the spectral range of 300–1690 nm. Be-
low 300 nm, deviations up to ±0.015 were seen in some elements at the shortest wave-
lengths. When the cuvette was filled with glucose solution, the transmitted irradiance was
low for longer wavelengths, and only data in the spectral range 210–1000 nm are presented.

Data analysis was performed with CompleteEASE and WVASE (J. A. Woollam Co., Inc.).
The latter program was employed for modeling using the Tellegen constitutive relations.
Model data were fitted to experimental data using nonlinear regression whereby best
fit parameter values and their confidence limits were obtained. The confidence limits
are defined as SCLi

√
MSE, where SCLi is the standard 90% confidence limit for the fit
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parameter i determined from the diagonal of the covariance matrix of the fit, and MSE
is the mean-squared error. Differential decomposition was performed with MATLAB.
The decomposition code included an unweighted five-point moving average filter for
spectral filtering to reduce noise.

3. Theory

Circular anisotropy can be quantified by the difference between refractive indices
Nl and Nr for left- and right-handed circularly polarized light, respectively, according to
∆Nlr = Nl − Nr = nl − nr + i(kl − kr), where n and k denote the real and imaginary part,
respectively. For transmission through a sample with thickness d and at wavelength λ, we
introduce C = CB + iCD where CB and CD are defined in Table 1 [11]. Samples may also
have linear birefringence and linear dichroism, which are described by L = LB + iLD for
the xy reference directions and L′ = L′B + iL′D for the ±45◦ reference directions. LB, LD, L′B,
and L′D are defined in Table 1 (See Appendix A.1 for sign conventions).

Table 1. Definitions of the fundamental optical properties in the L- and m-matrices.

Property L-Matrix m-Matrix

Circular birefringence CB = µd µ = 2π(nl − nr)/λ
Circular dichroism CD = δd δ = 2π(kl − kr)/λ
xy birefringence LB = ηd η = 2π(nx − ny)/λ
xy dichroism LD = βd β = 2π(kx − ky)/λ
±45◦ birefringence L′B = νd ν = 2π(n45 − n−45)/λ
±45◦ dichroism L′D = γd γ = 2π(k45 − k−45)/λ

The interaction between polarized light and a sample is here modeled in the so called
Stokes–Mueller formalism So = MSi, where So and Si are Stokes vectors of the outgoing
and incident light, respectively. The 4 × 1 matrix (the Stokes vector is formally a column
matrix but is, by tradition, called a vector) S carries all information about irradiance and
polarization including the degree of depolarization of a light beam. The 4 × 4 matrix
M is called the Mueller matrix of the optical system. A more detailed description of the
formalism can be found elsewhere [3,12]. In this work, we use normalized Mueller matrices,
which means that all elements are divided by the total transmittance, which corresponds to
the first element in the first row in a measured unnormalized Mueller matrix. The notation
of the elements in M is given by

M =


1 m12 m13 m14

m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

. (1)

Below, we discuss how optical activity data can be extracted from MMSE-data through
three routes: (I) directly from elements of a Mueller matrix if the sample only has circular
anisotropy, i.e., only CB and/or CD; (II) by using differential decomposition provided that
the sample is homogeneous along the optical path; and (III) dispersion-model analysis
using the Tellegen constitutive relations.

3.1. Method I: Evaluation of Optical Activity Directly from Mueller-Matrix Elements

This method works if a sample only exhibits CB and/or CD and is assumed to have
no linear anisotropy or depolarization. The parameter CB then corresponds to circular
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retardation. In a pure CB sample, like a sugar solution, the Mueller matrix becomes that of
a rotator, which rotates polarization by an angle α = CB/2 [12]

MR =


1 0 0 0
0 cos CB ∓ sin CB 0
0 ± sin CB cos CB 0
0 0 0 1

. (2)

Different authors use different conventions, and, in Equation (2), the upper signs of
the sin CB terms correspond to the use of the physics convention with time dependence
according to e−iωt whereas the lower signs correspond to the engineering convention using
eiωt. The signs also depend on the definition of CB. We will use the definition in Table 1
based on the difference nl − nr and not on nr − nl, which also is in frequent use.

The parameter CD is related to circular diattenuation, and the corresponding Mueller
matrix becomes that of a circular diattenuator (see Appendix A.1 for the derivation).

MD =
Tl + Tr

2


1 0 0 tanh CD
0 sech CD 0 0
0 0 sech CD 0

tanh CD 0 0 1

, (3)

where Tl and Tr are the transmittances for left-handed and right-handed polarized light,
respectively. We also note that tanh CD = −(Tl − Tr)/(Tl + Tr).

In general, both CD and CB are present, and the full Mueller matrix becomes

MC = MRMD =


1 0 0 tanh CD
0 sech CD cos CB ∓ sech CD sin CB 0
0 ± sech CD sin CB sech CD cos CB 0

tanh CD 0 0 1

, (4)

where the prefactor (Tl + Tr)/2 in Equation (4) has been omitted for the normalization
of MC. The matrices MR and MD commute, and thus the order of multiplication in
Equation (4) does not matter. For small values of CB and CD, as is often the case in CD
spectroscopy and ORD, we can utilize series expansions to approximate sech CD ≈ 1,
cos CB ≈ 1, sin CB ≈ CB and tanh CD ≈ CD. Furthermore, CB = 2α where α is the rotation
of polarization used in ORD. In addition, we have, from Equation (A12), that CD ≈ 2ε. ε is
named “ellipticity” in CD spectroscopy but should more correctly be called the ellipticity
angle. With these approximations, Equation (4) reduces to [13]

MC ≈


1 0 0 CD
0 1 ∓CB 0
0 ±CB 1 0

CD 0 0 1

 =


1 0 0 2ε
0 1 ∓2α 0
0 ±2α 1 0
2ε 0 0 1

. (5)

For small optical activity, ε and α are, thus, obtained directly from the secondary diag-
onal in Equation (5). In ORD applied to molecules in solution, the rotation is normalized
by the optical path length d in dm and concentration c in g/cm3 and specified at a certain
wavelength and temperature T, and also converted from radians to degrees. The specific
rotation is, then, obtained as

[α]Tλ =
α

dc
. (6)

In standard reflection ellipsometry, the complex reflectance ratio is defined as ρ =
rp/rs = tan Ψei∆, where tan Ψ = |rp|/|rs| and ∆ = arg rp − arg rs with rp and rs denoting
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the complex-valued reflection coefficients for p- and s-polarized light, respectively. We
present an analogous chiral transmittance ratio ρC defined as in [14]

ρC = tl/tr = tan ΨCei∆C (7a)

tan ΨC = |tl|/|tr| = e−
2πd

λ (kl−kr) (7b)

∆C = arg tl − arg tr =
2πd

λ
(nl − nr), (7c)

where tl = e
2πd

λ i(nl+ikl) and tr = e
2πd

λ i(nr+ikr) are the eigenpolarizations for left-handed
and right-handed polarized light, respectively. If we also observe that sec CD = sin 2ΨC,
CB = ∆C and tanh CD = − cos 2ΨC, we can rewrite Equation (4) as

MC =


1 0 0 − cos 2ΨC
0 sin 2ΨC cos ∆C ∓ sin 2ΨC sin ∆C 0
0 ± sin 2ΨC sin ∆C sin 2ΨC cos ∆C 0

− cos 2ΨC 0 0 1

. (8)

Equation (8) is applicable for samples exhibiting only optical activity and no linear
anisotropic effects and can be used as an alternative to Equation (4).

3.2. Method II: Differential Decomposition

Method I is not directly applicable if a sample has both circular and linear anisotropic
effects, as linear effects may mix with circular effects complicating the interpretation of the
Mueller-matrix elements. In method II, a differential decomposition is employed whereby
the natural logarithm of a normalized transmission Mueller matrix is calculated. For a
non-depolarizing sample, we obtain [2,3,5]

L = ln M =


0 −LD −L′D CD
−LD 0 CB −L′B
−L′D −CB 0 LB
CD L′B −LB 0

. (9)

The birefringent and dichroic properties are obtained directly from the elements of
L. For the result to be correct, the sample must be homogeneous along the optical path.
The birefringence parameters are determined from the logarithm of exponential functions
with arguments that are complex-valued. These functions are cyclic with a period of 2π.
The parameters CB, LB and L′B are, thus, obtained with an uncertainty of N · 2π, where the
order parameter N(0,±1,±2, . . . ) is an integer that depends on the optical path length,
and the sign is that of the birefringence parameter.

The MATLAB algorithm delivers values confined to the range ±π. The data can be
unfolded to the correct order by an offset adjustment of N · 2π, where N may be different
in different spectral ranges as shown by Mendoza-Galván et al. [15]. An offset adjustment
will be demonstrated in the analysis of the α-quartz sample in Section 4.2.

If the sample thickness d is known, the elementary intrinsic materials properties are
obtained from the elements of the matrix m = L/d, e.g., η = LB/d = 2π

λ (nx − ny) and
similar for the other elements of m as specified in Table 1. If the sample is depolarizing, L
becomes asymmetric and can be written as a sum of two matrices

L = Lm + Lu, (10)

where Lm is Minkowski antisymmetric and provides the birefringence and dichroic proper-
ties of the sample, whereas Lu is Minkowski symmetric and provides the depolarization
properties. Further details are given by Ossikovski [4].
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3.3. Method III: Modeling Using the Tellegen Constitutive Relations

An effective medium approach is used to determine effective chiral properties of a
sample. The method is based on the Tellegen constitutive relations

D = ε0εεεE + c−1ξξξH (11a)

B = c−1ζζζE + µ0µµµH, (11b)

where the electric displacement field D, the electric field E, the magnetic field H, and the
magnetic flux density B are interrelated by the materials tensor permittivity εεε, permeability
µµµ, and the magnetoelectric tensors ξξξ and ζζζ. The vacuum permittivity and permeability are
denoted as ε0 and µ0, respectively, and c is the vacuum speed of light. Notice that εεε and
µµµ are defined in the xyz coordinate system. The tensor ξξξ can be expanded as ξξξ = χχχ + iκκκ
where χχχ and κκκ are the nonreciprocity tensor and chirality tensor, respectively. The materials
studied here are reciprocal implying χχχ = 0, which leads to ξξξ = −ζζζT = iκκκ where T indicates
transposition [16].

In a transmission measurement at normal incident in a Cartesian xyz coordinate
system, aligned with the instrument framework and with z being the direction of wave
propagation, we do not probe the z-components of the material tensors. Furthermore, in the
presence of biaxial anisotropy, the optical axes x′ and y′ of a sample may differ an angle φ
(in-plane Euler angle) from the axes x and y. The samples studied here are either isotropic
or have their helical axis along the z-direction, and the general form of the chirality tensor
used is κκκ = diag(κx, κy, κz).

Furthermore, κx = κy and, as κz can be set arbitrarily, we can use κx = κy = κz = κ
and simplify to κκκ = κI where κ = κRe + iκIm is a complex-valued scalar representation of
chirality and I is the identity matrix. The permittivity tensor is assumed to be diagonal
εεεx′y′ = diag(εx′ , εy′ , εz). Its elements are related to the refractive index by Nj = nj + ik j =√

ε j (j = x′, y′, z). In transmission ellipsometry at normal incidence, the absolute phase is
not accessible, and there is no sensitivity to the absolute values of nx′ and ny′ . However,
the difference ∆nx′y′ = nx′ − ny′ can be evaluated.

With normalized Mueller matrices as used here, we also lose sensitivity to isotropic
absorption; however, ∆kx′y′ = kx′ − ky′ can be determined. As εz can be set arbitrarily, we
use εεε = AEdiag(N2

x′ , (Nx′ − ∆nx′y′ − i∆kx′y′)
2, N2

x′)A
−1
E , where AE is the Euler rotation ma-

trix with only the in-plane rotation angle φ 6= 0. Equation (11) can now be reformulated as

D = ε0AEdiag(N2
x , (Nx − ∆n + i∆k)2, N2

x)A
−1
E E + c−1iκH (12a)

B = −c−1iκE + µ0H, (12b)

where µ = I is assumed. The choices of dispersion models for κ, ∆n, and ∆k depend on the
material and are described separately for each material in the Results section.

For the propagation of electromagnetic plane waves in chiral media, the allowed
solutions include κ in the refractive indices according to [17].

Nl =
√

εµ− κ (13a)

Nr =
√

εµ + κ. (13b)

This leads to 2κ = Nr − Nl, i.e., 2(κRe + iκIm) = nr − nl + i(kr − kl). Combined with
the definitions in Table 1, we find

CB = −4πd
λ

κRe (14a)

CD = −4πd
λ

κIm. (14b)
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The chirality parameter κ is, thus, useful for the determination of rotation α = CB/2
in ORD and for ellipticity ε using Equation (A5) in the general case or using ε ≈ CD/2
(Equation (A12)) for a small dichroism in CD spectroscopy.

4. Results

Applications of the three methods above on samples with different complexity from
different materials classes are demonstrated. The first sample is a solution of D-glucose,
which is biisotropic and only exhibits CB. The second sample is solid α-quartz, which
also only exhibits CB. The next sample is a beetle cuticle, which is structured. Its twisted
lamellar structure acts as a circular Bragg filter. Then, we explore a cholesteric liquid crystal,
which in addition to CB, also acts as a circular Bragg filter with both CB and CD in a narrow
spectral band. Finally, a film of cellulose nanocrystals is analyzed, which is structured but
with more complexity than the beetle cuticle.

4.1. Optical Activity in Solution: Glucose

A water solution of glucose is biisotropic and is, here, included as an introductory
example of a medium with circular birefringence and with all other optical properties being
scalars. Figure 1 shows a transmission Mueller matrix for a water solution of D-glucose.
This sample has only CB, which is confirmed by the Mueller matrix as it is of the form in
Equation (2).

4.1.1. Method I

In method I we calculate the average (The minus sign on m32 and plus sign on m23 is
because the instrument used delivers data based on the eiωt convention.) of m23 and −m32
in Figure 1. We find that sin CB = sin 2α = 0.06317 at 589 nm, which, with a concentration
of 0.25 g/mL and a path length of 0.138 dm in Equation (6), gives a specific rotation
[α]20

589 = +52.5 [deg dm−1 cm3 g−1].

Figure 1. The transmission Mueller matrix of a D-glucose solution.

4.1.2. Method II

In method II, we apply a differential decomposition to the data in Figure 1 with
the results presented in Figure 2, which confirms that the linear effects LB, LD, L′B, and
L′D are very small. At λ = 589 nm, we find CB = 0.06318 rad, which corresponds to
[α]20

589 = +52.5 [deg dm−1 cm3 g−1].
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Figure 2. Birefringence and dichroism determined by differential decomposition of the MMSE data
for the D-glucose solution in Figure 1. Observe the expanded scale for LB, LD, L′B and L′D.

4.1.3. Method III

In method (III), a real-valued κ is modeled with a Cauchy model function. With λ
given in µm, it is defined by

κ = A +
B
λ2 +

C
λ4 +

D
λ6 . (15)

Figure 3 shows the Cauchy model spectra for κ of the D-glucose solution fitted to the
normalized Mueller matrix in Figure 1 using Equation (12). In the fit, we set ∆n = ∆k = 0 as
the solution is isotropic, and Nx was arbitrarily set to 1.33 + i0 as there is no sensitivity to the
absolute phase and isotropic absorption in a normal incidence transmission measurement.
The values of the Cauchy parameters are shown in Table 2. Finally, we can calculate [α]20

589.
From Figure 3, we have κRe = 2.128× 10−7 at λ = 589 nm and from Equation (14a), we
obtain [α]20

589 = +52.0 [deg dm−1 cm3 g−1].

Figure 3. Model function for the chirality κ of a D-glucose solution.
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Table 2. Cauchy parameters for κ-fits for D-glucose and α-quartz. Values in parenthesis are the
confidence limits in the last decimal.

Sample A (-) B (µm2) C (µm4) D (µm6)

D-glucose 7.24× 10−8(8) 5.41× 10−8(4) −2.14× 10−9(6) 9.8× 10−11(2)
α-quartz 7.27× 10−6(2) 1.771× 10−5(2) 9.62× 10−7(3) −7.10× 10−9(6)

4.2. Optical Activity in Solids: α-Quartz
4.2.1. Method I

Measurements on an α-cut quartz crystal are included as an example of a solid with
only circular birefringence. A transmission Mueller matrix measured on a sample with a
nominal thickness of 1 mm is shown in Figure 4. The profound oscillations in elements
m22, m23, m32, and m33 indicate that the rotation of polarization is larger than that of the
glucose solution. The polarization effects are confined to these four elements showing that
the sample is a circular diattenuator (rotator).

The remaining elements differ less than 0.002 from their expected values of zero
or unity in most of the spectral range but with deviations up to 0.01 for shorter wave-
lengths in some elements. From the data in Figure 4, we have (m23 −m32)/2 = 0.727 at
λ = 589 nm. If we use Equation (2), we find the rotation angle α = arcsin (0.727)/2 =
23.32◦, and, if we use the reference value of 21.73◦ [18], we obtain a sample thickness of
d = 23.32◦/21.73◦ mm= 1.073 mm.

Figure 4. The transmission Mueller matrix of an α-cut quartz sample.

4.2.2. Method II

Figure 5 shows CB from a differential decomposition of the data in Figure 4. The cir-
cular dichroism CD is very close to zero, and all linear effects LB, CB, L′B and C′B are small
(<10−2 for λ > 300 nm) and are not shown. Observe that the solid curve for short
wavelengths shows CB offset-adjusted by 2π to provide first-order values, whereas the
dashed curve shows the unfolded data from the decomposition. At λ = 589 nm, we find
CB = 0.8143 rad, which corresponds to a rotation of 23.33◦, and, with a specific rotation of
α-quartz equal to 21.73◦ [18], we find a thickness of 1.074 mm. As a second test, we use
CB = 2.204 rad at λ = 373 nm and with a specific rotation of 58.89◦ [18], we find a thickness
of 1.073 mm.
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Figure 5. The birefringence CB (solid curve) for an α-quartz sample determined by differential
decomposition of the MMSE data in Figure 4. The dashed curve shows unfolded CB as obtained from
the differential decomposition.

4.2.3. Method III

In a similar way as for the D-glucose results, we fitted the α-quartz Mueller matrix
to Equation (12) using the Cauchy model in Equation (15) for κ with results as in Table 2.
The fit is of similar quality as for the D-glucose solution and is not shown.

4.3. Structural Optical Activity in Cuticle from Cetonia Aurata

Several beetles in the Scarabaeoidea superfamily have circular Bragg reflectors in
their cuticle [19]. The phenomenon was observed in 1911 by Michelson [20] and has been
studied extensively by several methods. A review with a focus on biomimetics is given by
Lenau and Barfoed [21]. During the last decade, Mueller-matrix studies on beetle cuticles
have been introduced by Goldstein [22], Hodgkinson [23] and our group [7,9,24–28].

4.3.1. Method I

Figure 6 shows transmission Mueller matrices from elytra from two specimens of
the scarab beetle Cetonia aurata. Beetles are individuals and exhibit differences in their
optical features, and data from one specimen with small depolarization (sample CA1) and
one with large depolarization (sample CA2) are shown. The depolarization of the two
samples are shown in Figures S1–S3 in Supplementary Materials. A common feature is
that right-handed circularly polarized light is transmitted in a band around 550 nm as
seen in the elements m41 and m14 indicating circular dichroism. Corresponding circular
birefringence features are seen in elements m32 and m23.

Contributions from CD and CB are also observed in elements m22 and m33 in accor-
dance with Equation (4). The non-zero but small values of m31 = m13 and m42 = m24
show, however, that the elytra has some linear polarization effects. In fact, the elytra are
biaxial as revealed by analysis of Mueller matrices measured in reflection mode [26]. If the
Mueller matrices in Figure 6 are compared with Equation (4), we can make the qualitative
conclusion that the cuticle from these beetles exhibits chirality with a resonance and trans-
mits right-handed circularly polarized light in the spectral band 500–600 nm. Due to the
complex structure, a quantitative analysis using method I is not recommendable.
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Figure 6. Transmission Mueller matrices of elytra from two specimens of C. aurata. The blue and
red solid curves are data recorded on specimens with low (sample CA1) and high (sample CA2)
depolarization, respectively. The yellow dashed curve is the best fit to data from CA1 using regression
analysis in a bianisotropic model (method III).

4.3.2. Method II

Differential decompositions of the data in Figure 6 are shown in Figures 7 and 8 and
reveal the bianisotropic properties. The circular effects CB and CD dominate but some
linear effects are seen. Sample CA1 has larger optical activity with a maximum of CD = 0.5
compared to sample CA2 with a maximum of CD = 0.38. Sample CA1 has an azimuth
such that the biaxial properties are close to the ±45◦ direction of the instrument reference
coordinate system resulting in small LB and LD, and most of the information about linear
anisotropy is found in L′B and L′D. In sample CA2, linear birefringence and dichroism
are distributed between LB and L′B and LD and L′D, respectively, due to another azimuth.
Sample CA2 has larger depolarization compared to sample CA1 as seen in the Lu-matrices
in Supplementary Materials.

Figure 7. Birefringence and dichroism of the elytron from C. aurata (sample CA1).
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Figure 8. Birefringence and dichroism of the elytron from C. aurata (sample CA2).

4.3.3. Method III

The Mueller matrix from sample CA1 was used in nonlinear fitting whereby the index
difference ∆Nx′y′ = ∆nx′y′ + i∆kx′y′ and the chirality κ = κRe + iκIm in Equation (12) were
fitted in a single layer model with film thickness 20 µm and with dispersion models for the
optical functions. Two Gaussian resonances were used for κ according to

κIm(E) =
2

∑
j=1

Aje
−
(

E−E0j
Γj

)2

− Aje
−
(

E+E0j
Γj

)2 (16a)

κRe(E) = κ0 + KK(κIm), (16b)

where Aj, E0j, and Γj are the amplitude, resonance energy, and broadening of resonance
j, respectively. κ0 is a constant, and KK stands for a Kramers–Kronig transform. In
Equation (16), the spectral dependences are expressed versus the photon energy E = hc/λ
(in units of eV), where h is Planck’s constant. Details about modeling the linear properties
are found elsewhere [9]; however, in brief, linear birefringence ∆nx′y′ is fitted with a Cauchy
expression similar to that in Equation (15) but with only three terms, and a small linear
dichroism ∆kx′y′ is fitted with an exponential term, a so-called Urbach tail [9].

The sample optical axes are not aligned to the reference axes x and y of the instrument,
and a Euler rotation angle φ is included in the fit, and a value φ = −52.4◦ was found. This
is close to φ = −45◦ explaining why L′B and L′D are larger compared to LB and LD.

In Figure 9, the chirality parameter κ as obtained by regression and with best-fit
parameters as given in Table 3 is shown. The asymmetry seen in m41 and m14 and in CD
in Figure 6 is clearly revealed in κIm in Figure 9 and is reasonably modeled with the two
overlapping Gaussian resonances. The physical origin of the double resonance might be
a chiral structure with a gradient in pitch throughout the sample or with two different
pitches at different depths. An attempt to model the Mueller-matrix data from specimen
CA2 using regression analysis failed as the large depolarization could not be reproduced.

Table 3. Gaussian parameters and corresponding confidence limits for κ for the cuticle of C. aurata
(sample CA1).

Resonance Aj (-) E0j (eV) Γj (eV)

1 0.00042± 0.00002 2.138± 0.003 0.197± 0.004
2 0.00081± 0.00002 2.173± 0.001 0.066± 0.002



Appl. Sci. 2021, 11, 6742 14 of 26

Figure 9. Model function with two Gaussian resonances for the chirality parameter κ of the elytron
from C. aurata (sample CA1).

4.4. Optical Activity in Liquid Crystals

Figure 10 shows the transmission Mueller matrix of the ChGLC sample. A circular
Bragg resonance that transmits right-handed circularly polarized light with strong circular
dichroism is observed in the elements m41 and m14, which are very close to each other.
The resonance is centered at 409 nm with a width at half maximum of ≈120 nm. The cor-
responding circular birefringence is found in the four central elements analogous to the
quartz sample data in Figure 4. A major difference is that the quartz sample did not exhibit
any circular dichroism, whereas this was the case for the ChGLC sample due to the Bragg
resonance.

Furthermore, the circular dichroism is so strong that it masks the circular birefringence
in the Bragg window. This is an effect of that large values of CD that cause sech CD to be
close to zero and, thereby, down-weight the CB contributions as found by inspection of
Equation (4). This effect also causes the damping of the oscillations in the four central
elements for wavelengths close to but outside the Bragg window when sech CD decreases
from unity far from the resonance to zero in the Bragg resonance. The elements m12, m13,
m21, m24, m31, m34, m42, and m43 are close to zero indicating a very small linear anisotropy.

Figure 10. Transmission Mueller matrix of the ChGLC sample (solid curve) and the best fit obtained
using Equation (12) (dashed curves).
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4.4.1. Method I

In the Bragg band, the sample is a circular polarizer as seen in Figure 11. Elements
m41 and m14 are close to unity, but the experimental resolution is not sufficient to make
a meaningful determination of CD as tanh CD has an exponential dependence on CD.
Similarly, CB is not accessible. For wavelengths sufficiently far from the Bragg band, when
tanh CD ≈ 0 and sech CD ≈ 1, the sample represents a circular retarder as seen in Figure 10
for λ > 450 nm. If we, for example, select λ = 600 nm, we obtain a rotation angle of
α = 18.23◦ from the average of CB/2 in the elements m23 and m32.

Figure 11. Transmission Mueller matrix of the ChGLC sample in the Bragg band.

4.4.2. Method II

Figure 12 shows CB and CD from a differential decomposition of the data in Figure 10.
The linear effects LB, CB, L′B, and C′B are small and are not shown. In the Bragg band
between 365 nm and 450 nm, m41 and m14 are close to unity due to the large circular
dichroism. Ideally, these elements should asymptotically approach +1 or −1, for right-
and left-handed polarization, respectively, if the number of periods in the twisted layer
becomes large.

However, if we recall that m41 = tanh CD = (eCD − e−CD)/(eCD + e−CD), which
corresponds to CD = ln [(1 + m41)/(1−m41)], we notice that, for m41 close to +1 or −1,
the accuracy in CD becomes low (Similar reasoning also holds for m14). Due to the limited
resolution and noise (|m41| and |m14| can even be >1 at some wavelengths), differential
decomposition can not resolve CD accurately in the Bragg band explaining the noise in CD
in Figure 12.

For CB, we observe that, when it approaches the Bragg resonance from the long
wavelength side, it increases rapidly but becomes inaccessible in the Bragg band as the
left-handed component becomes completely attenuated and the transmitted light is right-
handed circularly polarized. The anomalous rotatory dispersion in the Bragg band can,
thus, not be seen as is the case in other experimental data on liquid crystals with lower
optical activity [29] as well as in the cuticle data in the previous section and for CNC in the
next section.

Observe that CB is offset adjusted (see Section 3.2) with the order parameter N to
provide correct values. Also notice that the value of CB is uncertain with N · 2π on the short
wavelength side as the order parameter N cannot be determined. However, to align CB
with the results obtained with Method III (see below), an offset adjustment with N = −11
is done in Figure 12. The match is perfect.
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Figure 12. Circular dichroism CD and circular birefringence CB for the ChGLC sample determined
by differential decomposition of the MMSE data in Figure 10 (solid curves). An offset adjusted
curve (“Unfolding”, see text for details) for CB is also shown. The dashed curves show CB and CD

calculated from fitted κ.

4.4.3. Method III

It was found that the chirality parameter κ could not be fitted over the full experimental
spectral range when using Method III. The linear regression failed in the Bragg band.
However, for wavelengths larger than 450 nm, a combination of Gaussian oscillators and
Cauchy terms were used to model κ, ∆nx′y′ , and ∆kx′y′ in Equation (12). For wavelengths
shorter than 375 nm, the experimental data could be modeled but the model fits to the
data for the ChGLC sample should only be considered as mathematical fits, and a physical
interpretation of Gaussian resonance energies, etc. is of limited value. The model fits are
shown in Figure 10.

The obtained model data represent the bianisotropic optical properties of the sample
and allow CB and CD to be calculated from Equation (14) as shown in Figure 12. For wave-
lengths larger than the Bragg band, both CB and CD are in very good agreement with
the corresponding data obtained with Method II. This also holds for CD for wavelengths
shorter than the Bragg band, whereas the CB data from Method III are much more negative
than those obtained from Method II.

The curvature of CB for short wavelengths may be an artifact due to that the transmis-
sion drops below 350 nm, which may induce systematic errors. Another more interesting
possibility is that dispersion in ChGLC optical properties may generate additional Bragg
resonances [30,31]. The large offset in CB leads to values of the order −65 rad as seen in
Figure 12. This corresponds to a rotation of polarization α = CB/2 ≈ 1800◦ or, if normal-
ized to the 10 µm thickness, to 180,000◦/mm. This appears surprisingly large, but liquid
crystals may have very high rotatory power, even hundreds of revolutions per mm [32].
Even larger rotations have been observed in 20-nm thin films of squaraine, where a maxi-
mum in CB = 0.2 rad corresponds to a rotation approaching 3× 105◦ [6].

4.5. Structural Optical Activity in Cellulose Nanocrystals

As a final example, we discuss some preliminary studies on a freestanding film of CNC.
The film structure is more complex, exhibits a mixture of chiral and non-chiral anisotropic
phases, and is polydomain. The distribution of pitch and helical axis orientations is
also ubiquitous.
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4.5.1. Method I

Figure 13 shows the transmission Mueller matrix of a CNC film; however, no quan-
tification using method I is meaningful due to the complexity of the sample including the
mixing of information from linear and circular anisotropy as well as depolarization in the
Mueller-matrix elements. Similar to beetle cuticle, right-handed circularly polarized light
is transmitted in a band around 555 nm as seen in the elements m41 and m14.

However, the central four elements indicate more complexity than a single circular
Bragg resonance. Lower peaks and wider bands in the resonances in m41 and m14 compared
to those in the beetle cuticle indicate qualitatively that the chiral domains in the CNC film
exhibit a larger distribution in pitch than in the cuticle. The sample also exhibits linear
anisotropy as seen in elements m43, m34, m42, and m24 and is classified as bianisotropic.

Figure 13. The transmission Mueller matrix of a 20 µm cellulose nanocrystal film (solid curves).
The dashed curves shows the best model fit obtained with non-linear regression.

4.5.2. Method II

The bianisotropic effects of the CNC film can be quantified by using a differential
decomposition with results as shown in Figure 14. The circular dichroism of the CNC film
shows a resonance behavior, whereas the corresponding circular birefringence levels out at
a close to constant level in the spectral region below the resonance. The linear effects are
small and are dominated by LB and L′B, whereas LD and L′D are very close to zero.

Furthermore, LB and L′B are of similar shape and magnitude indicating that the in-
plane optic axes of the CNC film are close to π/8. The oscillations seen most clearly in
CB and CD are due to film thickness interference effects and are a sign of low absorption
confirming the small values of LD and L′D. The depolarization of the CNC film is shown in
Figure S4 in the Supplementary Materials.
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Figure 14. Birefringence and dichroism of the cellulose nanocrystal film determined by differential
decomposition of the experimental data in Figure 13.

4.5.3. Method III

The chirality parameter κ = κRe + iκIm and the refractive indices nx′ and ny′ in
Equation (12) were fitted in a single layer model with film thickness of 20 µm and with
dispersion models for the optical functions. Two Gaussian resonances were used for κ
according to Equation (16) with the best-fit parameter values as shown in Table 4. Linear
anisotropy was fitted using Cauchy models for nx and for ny similar to that in Equation (15),
but with only three terms.

The cellulose material had low absorption, and linear dichroism was not included
in the fit. The best-fit Cauchy parameters found were Ax′ = 1.57650± 0.00002, Ay′ =

1.57608± 0.00002, Bx′ = By′ = 0.0034± 0.0003 µm2, and Cx′ = Cy′ = −0.00034± 0.00001
µm4. Due to the small birefringence, the Bj and Cj terms were set equal for the x′ and y′

directions. The linear birefringence found was, thus, wavelength independent and equal
to ∆nx′y′ = Ax′ − Ay′ = 0.00042. The origin of the linear birefringence may be density or
orientation effects leading to a small in-plane linear anisotropy.

The reference axes x and y of the instrument are not aligned with the sample reference
axes x′ and y′, and a Euler rotation angle φ is included in the fit. A value φ = 23.7◦ was
found, which is in accordance with the π/8 estimate found using method II. The best
model fit is shown in Figure 13, and Figure 15 presents the model chirality parameter κ of
the CNC film.

Table 4. The Gaussian parameters for κ (offset κ0 = −0.000453± 0.000002) for the CNC film.

Resonance Aj (-) E0j (eV) Γj (eV)

1 0.000364± 0.000005 2.071± 0.005 1.37± 0.01
2 0.000329± 0.000005 2.304± 0.002 0.446± 0.008
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Figure 15. Model function with two Gaussian resonances for the chirality parameter κ of the
CNC film.

5. Discussion

The results obtained directly from a Mueller matrix (method I) may be considered as
primary data. The only filtering is noise reduction depending on the data acquisition time
chosen during the measurements. Values of CB and CD or the derived properties α and ε,
respectively, may, therefore, be affected by instrument noise and systematic errors. This
also holds for the differential decomposition approach (method II); however, as evaluation
is done on the logarithm of a Mueller matrix, noise and systematic errors will propagate
and, thereby, will be weighted differently compared to the original Mueller matrix.

In method III, a nonlinear regression is performed on the Mueller matrix elements
using dispersion functions for the spectral variation in the materials properties. The values
of these functions, which constitute the results of the analysis, are noise free, which means
strong filtering. Depending on the function chosen, this may imply that small features in
the data are missed. Systematic errors from the system as well as from model mismatch
may, in addition, introduce false information in the results.

The example on a glucose solution should be considered as a demonstration on a
simple case and not to promote the use of MMSE instead of polarimetry. Polarimetry
is a very mature technique and has a resolution of the order of ±0.01◦ or better in the
polarization angle rotation α as found on vendor sites. Low-cost instruments with a
resolution of ±0.003◦ were presented [33]. In our results, we have an estimated resolution
of ±0.02◦ determined from the noise level in α in an MMSE measurement with a 10 s
acquisition time. However, no efforts have been made to determine the attainable accuracy.

We used a medium precision balance and an ordinary measuring glass to prepare the
glucose solution. For the rather high concentrations used, a concentration adjustment of
[α]20

589 [34] should be made. Furthermore, the sodium D-line used is a doublet, and it makes
some difference if λ = 589.0 or 589.6 nm is used. However, the specific rotations of 52.5,
52.5, and 52.0 obtained with methods I, II, and II, respectively, are surprisingly close to the
data-base value [α]20

589 = +52.7 [deg dm−1 cm3 g−1] [34].
The spectral variation of κ is complex as it may arise from various chemical groups in

the glucose molecule as discussed by Listowski et al. [35]. Penzkofer used a Drude-type
dispersion model to account for resonances in the ultraviolet spectral region. We found it
sufficient to use a Cauchy model but with four terms to account for the complexity due to
overlapping CB features from different subgroups. Penzkofer detected small CB features
below 300 nm [36], which, however, could not be seen in our data.
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If a sample only has CB and/or CD, it is not necessary to measure a complete Mueller
matrix. Figure 16 shows an example of a measurement on the same D-glucose solution
as in Figure 1 using a rotating analyzer ellipsometer with a fixed compensator. This type
of instrument only records three rows of a Mueller matrix. From m23 and m32, we can
determine the specific rotation in a similar way as in Section 3.1, and we find, at λ = 589 nm,
that [α]20

589 = +52.5 [deg dm−1 cm3 g−1]. It is also possible to use symmetry conditions to
expand a non-depolarizing Mueller matrix with three rows to a full Mueller matrix [6].

Figure 16. Partial Mueller matrix measured on a D-glucose solution using a rotating analyzer/fixed
compensator spectroscopic ellipsometer.

In Method II, the natural logarithm of an experimental Mueller matrix is calculated.
This corresponds to a transformation of experimental data, from measured transmission
properties in terms of Mueller matrix elements to fundamental optical properties (CB, CD
etc.) of the sample, but without distortion except for filtering if used. An alternative method
to determine these properties is analytic inversion of a Muller matrix as suggested by
Arteaga and Canillas [13]. This method also requires a homogeneous sample; however, in
addition, the sample is non-depolarizing with a so-called Mueller–Jones matrix.

We only discussed natural and structural optical activity manifested as occurrences
of CB and/or CD. In the presence of a quasistatic magnetic field, we may also observe
similar effects, referred to as the Faraday effect, when the magnetic field is along the
optical path. More generally, it is called the optical Hall effect and has been reviewed by
Schubert et al. [37]. However, the birefringence and dichroic effects then arise from the
breaking of symmetry in the permittivity tensor and are not contained in the chirality tensor.

The use of MMSE for studies of optical activity is a valuable complement to methods
for the direct determination of spectral CB and CD properties. However, the recording
of a normalized Mueller matrix is more complex as its 15 parameters are determined
instead of a single parameter like a rotation angle in ORD or ellipticity in CD spectroscopy.
In MMSE, compromises are made to assure precision in all elements as compared to the
high resolution and accuracy obtainable in ORD and CD spectroscopy.

An ORD instrument is referred to as a polarimeter and is based on measuring changes
in the direction of polarization, whereas, in CD-spectroscopy, a dichrometer measures
changes in ellipticity. Modulation techniques are, thereby, employed, including photoelastic
modulators and lock-in amplifiers to enhance the resolution and signal to noise ratio [38,39].
However, the fundamental properties measured, i.e., polarization changes, are the same in
MMSE, ORD, and CD with the difference that MMSE in addition allows depolarization to
be monitored.

The lower resolution of an ellipsometer compared to a polarimeter or a dichrometer
with available instruments is, therefore, not a principle limitation but purely technical.
Accordingly, in ORD and CD spectroscopy, it is implied that neither linear effects nor
depolarization are present in the studied specimen. Consequently, incorrect values of
unpredictable error magnitude for CD and CB will be reported if these effects cannot be
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ignored. Therefore, MMSE can be seen as a generalization of the established methods to
study chirality.

In cases when Mueller-matrices are used, a major advantage is that access to both CB
and CD makes it possible to check the Kramers–Kronig consistency. Another advantage
is that samples with depolarization can be addressed. With differential decomposition
(method II), the depolarization properties are separated from the bianisotropic properties
and can also be analyzed. In electromagnetic modeling (method III), it is possible to address
small to medium depolarization by smearing, i.e., by assigning a distribution of parameters
during modeling.

With methods I and II, as well as with ORD and CD spectroscopy, average sample
properties are obtained, whereby it is assumed that samples are homogeneous along the
optical path. As discussed above, linear effects may distort the results in method I, whereas
isotropic effects do not interfere as long as the absorption is sufficiently low to obtain
enough light throughput. However, if a sample is structured, e.g., has a layered structure,
methods I and II fail to deliver correct results, but method III may still be applicable. In re-
flection mode, MMSE is routinely used with the electromagnetic modeling of structured
samples, and layer thicknesses and permittivity tensors can be determined [40].

Such procedures are also applied in transmission mode although less common. In re-
flection mode, the extended constitutive relations used in method III are rarely used as the
magnetoelectric tensors ξξξ and ζζζ normally are to small to resolve. However, applications
are found in transmission mode if sufficient optical path length can be achieved [6,7,11].
In the future, we will probably see more advanced applications addressing optical activity
in several layers in a multilayered structure.

6. Concluding Remarks

The evaluation of optical activity using Mueller matrices is a valuable complement
to ORD and CD spectrosocpy. Access to all 15 elements of a normalized Mueller matrix
makes it possible to determine both circular birefringence and circular dichroism for a
Kramers–Kronig consistency check. Furthermore, linear and circular anisotropic effects can
be separated, and samples that exhibit depolarization can be studied. Finally, with electro-
magnetic modeling, individual chiral layers in multilayered samples can be characterized.
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
CNC Cellulose nanocrystals
MMSE Mueller-matrix spectroscopic ellipsometry
LD Linear dichroism
LB Linear birefringence
CD Circular dichroism
CB Circular birefringence
CA Cetonia aurata
ChGLC Cholesteric glassy liquid crystal
KK Kramers–Kronig transform
ORD Optical rotatory dispersion

Appendix A

Appendix A.1. Conventions

Unfortunately, different conventions have been established in different fields of science.
Of special importance in this communication is the convention for time dependence in field
quantities. The time dependence can either be expressed as eiωt or e−iωt as both are allowed
in plane wave solutions of Maxwell’s equations. In the ellipsometry community, the eiωt

(engineering) convention is dominating [3,41,42], likely, as this field has its roots in an
electrical engineering community. In other areas of optics, it varies and both eiωt [12,43,44]
and e−iωt [1,45–48] are used and sometimes both [49]. To make a comparison easier
between the fields of ellipsometry and circular dichroism as well as circular birefringence,
we include both conventions in the expressions discussed.

There are also variations in which order the difference in index for birefringence and
dichroism is defined. Here, we use the order as defined in Table 1.

Ambiguity is also found due to the direction of viewing (towards the source or
towards the detector) when defining handedness and a positive direction of the polarization
azimuth. In this report, left-handed polarization corresponds to when the field vector
rotates counter-clockwise when looking towards the source, and the polarization azimuth
is counted from the x-axis and positive in the counter-clockwise direction.

The parameters for CB and CD are defined in Section 3 using the convention with
time dependence e−iωt. With the convention eiωt, the definitions will be C = CB − iCD,
L = LB − iLD, and L′ = L′B − iL′D as is used, e.g., in [11].

Appendix A.2. Mueller Matrix of a Circular Diattenuator

The Mueller matrix in Equation (3) can be derived from the circular Jones matrix of a
circular diattenuator given by

Jlr
D =

[
e−

2πd
λ kl 0

0 e−
2πd

λ kr

]
, (A1)

where the superscript lr indicates the use of circular Jones basis vectors. Conversion to
Cartesian (xy) Jones basis vectors are performed according to [14]

Jxy
D = FJlrF−1 =

1
2

[
1 1
−i i

][
e−

2πd
λ kl 0

0 e−
2πd

λ kr

][
1 i
1 −i

]
=

e−
2πd

λ
(kl+kr)

2

[
cosh CD/2 −i sinh CD/2
i sinh CD/2 cosh CD/2

]
. (A2)
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Finally, MD in Equation (3) is obtained by the Jones to Mueller conversion M = A(J⊗ J∗)A−1

where ⊗ is the Kronecker product and [14]

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 A−1 =
1
2


1 1 0 0
0 0 1 −i
0 0 1 i
1 −1 0 0

. (A3)

Equation (A1) is independent of conventions for time dependence (e−iωt or e+iωt),
which holds also for Equation (3).

Appendix A.3. Relation between CD and Ellipticity Angle ε

For elliptically polarized light, the ellipticity is defined as e = b/a where a and b are
the major and minor axes of the polarization ellipse [14]. The ellipticity angle ε = arctan e
is also in use. The relation between CD and e can be found by using Jones formalism. If an
incident linearly x-polarized light with a Jones vector E = [1, 0]T propagates through a
circular dichroic sample with a Jones matrix from Equation (A2), the emerging Jones vector
will be

Jout =

[
Ex
Ey

]
= e−

2πd
λ

(kl+kr)
2

[
cosh CD/2 −i sinh CD/2
i sinh CD/2 cosh CD/2

][
1
0

]
=

e−
2πd

λ
(kl+kr)

2

[
cosh CD/2
i sinh CD/2

]
. (A4)

The ellipticity is calculated from e = =[Ey]/<[Ex] and is

e = tan ε = tanh CD/2. (A5)

In CD-spectroscopy, the difference in absorbance ∆A = Al − Ar is measured. Here,
Al and Ar are the absorbance for left-handed and right-handed polarization, respectively.
The Jones vector in Equation (A2) can be reformulated as[

Ex
Ey

]
=

1
2

[
e−

2πd
λ kl + e−

2πd
λ kr

−i(e−
2πd

λ kl − e−
2πd

λ kr)

]
=

1
2

[ √
Tl +
√

Tr
−i(
√

Tl −
√

Tr)

]
, (A6)

and the definition of ellipticity used in CD-spectroscopy follows

e = tan ε =

√
Tr −

√
Tl√

Tr +
√

Tl
. (A7)

Beer–Lamberts law T = 10−A = e−A ln 10 implies that
√

T = e−
A
2 ln 10 and

[
Ex
Ey

]
=

1
2

[
e−

Al
2 ln 10 + e−

Ar
2 ln 10

−i(e−
Al
2 ln 10 − e−

Ar
2 ln 10)

]
=

e−
Ar
2 ln 10

2

[
e−

∆A
2 ln 10 + 1

−i(e−
∆A
2 ln 10 − 1)

]
(A8)

from which the full expression for e expressed in ∆A becomes

e = tan ε = − e−
∆A
2 ln 10 − 1

e−
∆A
2 ln 10 + 1

. (A9)

From this expression, we may also derive the relation between CD and ∆A by using
Equation (A5)

CD = ∆A ln 10. (A10)
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In CD-spectroscopy, it is customary to assume small ∆A (small e = tan ε ≈ ε) and
Equation (A9) reduces to the following relation in practical use

e ≈ ε ≈ ∆A
4

ln 10
180
π

= 32.98∆A [deg] (A11)

where the factor 180/π is a conversion from rad to degrees. Finally, we also find, from
Equation (A5), that e ≈ CD/2 for small e and, thus,

CD ≈ 2ε. (A12)

Appendix A.4. Effects of Choice of Time Dependence in the L-Matrix

Various signs due to the choice of conventions are used by different authors in the
L-matrix in Equation (9). We used the e−iωt convention and definitions of the anisotropic
parameters as in Table 1. Derivations of a few of the elements of L are given here as
examples. Further details are given by Azzam [3]. The starting point is the differential
propagation matrix defining the matrix m

m = lim
∆z→0

M(z, ∆z)− I
∆z

(A13)

where M(z, ∆z) is the Mueller matrix for propagation from z to z + ∆z in a homogeneous
material. A linear xy retarder has the Mueller matrix

M =


1 0 0 0
0 1 0 0
0 0 cos δxy sin δxy
0 0 − sin δxy cos δxy

, (A14)

where δxy = 2πdR(nx − ny)/λ and dR is the retarder thickness. For a thin slab (z→ z + ∆z)
with thickness ∆z, we can expand cosine and sine as cos δxy ≈ 1 and sin δxy ≈ δxy.
Equation (A14) then results in the Mueller matrix

M(z, ∆z) ≈


1 0 0 0
0 1 0 0
0 0 1 δ
0 0 −δ 1

 =


1 0 0 0
0 1 0 0
0 0 1 η∆z
0 0 −η∆z 1

 (A15)

where we introduced η = 2π(nx − ny)/λ. The matrix m for a linear xy retarder now
follows from its definition in Equation (A13)

m =


0 0 0 0
0 0 0 0
0 0 0 η
0 0 −η 0

. (A16)

Finally, we obtain the matrix L by multiplying with the sample thickness d, and, by
also noting that ηd = LB, we obtain

L = dm =


0 0 0 0
0 0 0 0
0 0 0 ηd
0 0 −ηd 0

 =


0 0 0 0
0 0 0 0
0 0 0 LB
0 0 −LB 0

. (A17)
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The retarder Mueller matrix for the ±45◦ direction is

M =


1 0 0 0
0 cos δ±45◦ 0 − sin δ±45◦

0 0 1 0
0 sin δ±45◦ 0 cos δ±45◦

, (A18)

and with the same procedure as above, we find

L =


0 0 0 0
0 0 0 −L′B
0 0 0 0
0 L′B 0 0

. (A19)

The diattenuator Mueller matrix for the xy direction is

M =


1 − tanh LD 0 0

− tanh LD 1 0 0
0 0 sinh LD 0
0 0 0 sinh LD

, (A20)

and with the same procedure as above, we obtain

L =


0 −LD 0 0

LD 0 0 0
0 0 0 0
0 0 0 0

. (A21)

If the engineering convention is used, the signs of LD, L′D and CD will not change in
Equation (9), whereas the signs of LB, L′B, and CB will change to the opposite.
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