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Direct Transmittance Estimation in
Heterogeneous Participating Media Using

Approximated Taylor Expansions
Daniel Jönsson, Joel Kronander, Jonas Unger, Member, IEEE, Thomas B. Schön, Senior Member, IEEE,

and Magnus Wrenninge

Abstract—Evaluating the transmittance between two points along a ray is a key component in solving the light transport through
heterogeneous participating media and entails computing an intractable exponential of the integrated medium’s extinction coefficient.
While algorithms for estimating this transmittance exist, there is a lack of theoretical knowledge about their behaviour, which also prevent
new theoretically sound algorithms from being developed. For this purpose, we introduce a new class of unbiased transmittance
estimators based on random sampling or truncation of a Taylor expansion of the exponential function. In contrast to classical tracking
algorithms, these estimators are non-analogous to the physical light transport process and directly sample the underlying extinction
function without performing incremental advancement. We present several versions of the new class of estimators, based on either
importance sampling or Russian roulette to provide finite unbiased estimators of the infinite Taylor series expansion. We also show that
the well known ratio tracking algorithm can be seen as a special case of the new class of estimators. Lastly, we conduct performance
evaluations on both the central processing unit (CPU) and the graphics processing unit (GPU), and the results demonstrate that the new
algorithms outperform traditional algorithms for heterogeneous mediums.

Index Terms—Path tracing, rendering, computer graphics, scientific visualization.
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1 INTRODUCTION

Computing the attenuation of light through participating media,
such as smoke, clouds and fire is one of the most fundamental parts
of solving the radiant transport problem, i.e., how light travels in
a scene. Because of its central role in rendering an image, it has
been a long term goal of computer graphics to develop efficient
algorithms for computing the attenuation though participating
media. Similar radiant transport problems are also faced in several
other application domains such as neutron transport and medical
radiation dosimetry, thus highlighting the importance of radiant
transport in a wide range of application areas. While much
progress have been made towards robust and efficient algorithms
for rendering participating media, scenes containing heterogeneous
participating media are still computationally challenging to render,
and can often be a bottleneck in production rendering.

The central challenge of evaluating the radiant attenuation along
a path is often formulated in terms of computing the transmittance,
describing the exponential decay of visibility along the path.
In homogeneous media, where the media density is constant,
evaluating the transmittance is trivial and has a closed form
solution in Beer’s law. However, in heterogeneous media where
the density varies spatially, traditional methods often approximate
the transmittance along the path by sampling the media density
at a large number of points, which often leads to computationally
expensive estimators.
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While many of the traditional methods are guaranteed to
generate correct results given enough samples, i.e. they are
unbiased, there is a lack of theoretical knowledge about their
behaviour such as their variance. This lack of theoretical knowledge
means that it is difficult to make optimal choices and one must
instead rely on experimental results.

To bridge this knowledge gap, we derive a new theoretical
view on unbiased Monte Carlo transmittance estimators using a
Taylor expansion of the exponential term. By combining the infinite
Taylor sum, resulting from the expansion, with an unbiased Monte
Carlo estimator we end up with an unbiased practical theoretical
formulation for transmittance estimation. This new formulation
provides a solid basis for analyzing and reasoning about Monte
Carlo transmittance estimators and comes with a number of benefits.
First of all, it allows us to derive theoretical variance bounds for
the transmittance estimator and show that it is always better to
use a higher upper bound than to average several (residual) ratio
trackers along a single ray. Second, we can show that the previously
proposed Ratio and Residual Ratio tracking algorithms [16] are
special cases in our general formulation. Thus, our presented
proofs also include these special cases which, in their original form
had unknown variance bounds. Third, our theoretical foundation
allow us to devise new transmittance estimation algorithms with
properties suitable for different scenarios, e.g. better estimations
without auxiliary costly data structures.

To this end, our main contributions are:

1) A new theoretical view of unbiased transmittance estima-
tion algorithms based on a truncated Taylor expansion of
the exponential.

2) Derivations of explicit variance bounds for the new class of
estimators (including previous work on Ratio and Residual
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Ratio tracking).
3) New types of Residual Ratio Tracking algorithms (3 and

4) that do not rely on additional costly data structures,
yet outperforms previous Residual Ratio Tracking in
heterogeneous media. .

4) A thorough parameter analysis and comparison between
the transmittance estimators using both the CPU and the
GPU.

2 TRANSMITTANCE ESTIMATION AND FREE-FLIGHT
SAMPLING

For producing photorealistic renderings of participating media such
as water, smoke, fire etc, it is necessary to consider light transport
models accounting for the effects of how light interacts with the
media in the scene. In computer graphics, and in many other fields
of science such as neutron transport [21] and medical physics [1],
the media is modeled as a large number of microscopic scattering
particles interacting with the light. In computer graphics we are
interested in simulating the interactions between particles in the
media and photons with relatively low energy (visible light). This
allows us to model interactions using two type of events, either
a photon is absorbed (e.g. converted to heat) or it collides and
scatters in another direction. In other fields, considering photons
with higher energy, such as radiation dosimetry [1], more complex
collision events, such as Compton scattering and pair production,
have to be considered as well [19].

The optical properties of a participating medium are commonly
described by its absorption coefficient, σa, and scattering coeffi-
cient, σs, which are both defined in inverse length (i.e. m−1) units.
They define the number of e-foldings occurring as a quantity of
light passes through a unit length of the medium, meaning that light
is attenuated by a factor of e over one unit of length for a medium
with σa = 1. The inverse property, mean free path is easier to intuit:
it specifies the mean distance between collision events for photons
traveling through the medium. Media where σa(x) and σs(x) are
constant for all x are referred to as homogeneous, otherwise, if the
coefficients vary spatially, the media is heterogeneous. The sum of
σa(x) and σs(x) define the extinction coefficient, σt , and the ratio
σs/σt is referred to as the albedo of the medium.

The fraction of light that passes along a ray in a medium up to
a distance d is given by the transmittance along the ray:

T (d) = exp
(
−
∫ d

0
σ(t)dt

)
, (1)

where σ(t) is extinction coefficient and the integral in the
exponent,

∫ d
0 σ(t)dt, is the optical depth (or optical thickness).

In homogeneous media with a constant extinction coefficient σ

the transmittance simplifies to T (d) = exp(−dσ). However, in
heterogeneous media the transmittance is generally intractable. In
practice, different forms of estimators are used to approximate the
true transmittance instead of exact analytical solutions. Deriving
efficient and robust transmittance estimators is one of the main
challenges in simulating light/neutron transport in participating
media, and is the focus of this paper.

A closely related problem to transmittance estimation is that
of free-flight sampling, aiming at randomly sampling distances
between consecutive interactions in the media. Specifically, the

free-flight distance, s, between two consecutive interaction points
in the media is given by the probability density:

p(s) = σ(s)exp
(
−
∫ s

0
σ(t)dt

)
(2)

For homogeneous media this pdf can be sampled using the standard
inversion method [18]. However, for heterogeneous media the
inversion method is only tractable for special cases where analytical
solutions to the optical depth are known [3].

2.1 Previous work

Below we categorize and survey existing techniques for estimating
the transmittance in heterogeneous participating media.
Estimating the optical depth A simple approach to estimate
the transmittance is to evaluate the integral in Equation 1, the
optical depth, using standard numerical quadrature. This approach
is often referred to as ray marching and implemented by traversing
the ray using a fixed step size while assuming a constant σ(t)
between the queried points along the ray. However, even if an
unbiased estimate is used to approximate the optical depth the
exponential required to evaluate the transmittance Equation 1 makes
the resulting transmittance estimator biased. A large number of
samples can be used to more accurately approximate the optical
depth, but this tends to produce inefficient estimators in practice.
Free-flight sampling estimators To sample free-flight distances
in heterogeneous media an algorithm related to rejection sampling
known as delta tracking can be used. This method is also sometimes
referred to as Woodcock tracking, null collision tracking or pseudo
tracking and was developed independently in neutron transport [25]
and plasma physics [20]. The method depends on knowing an upper
bound of the extinction coefficient along the ray, also known as the
majorant extinction, σu >σt . The central idea is to introduce virtual,
or fictitious, particles into the media corresponding to a extinction
coefficient of σv along the ray. The density of virtual particles
introduced along the ray is varied so that the total extinction
coefficient from both real and virtual particles is constant, and
equal to the majorant extinction, i.e. σu = σt +σv. The algorithm
then advances along the ray by sampling free-flight distances in
accordance to the majorant extinction, and decides randomly at
each visited point whether the collision is with a real or virtual
particle. Another free-flight distance is generated if the collision is
with a virtual particle, otherwise the sampled distance is returned.
A formal proof that this algorithm samples from the desired
distribution can be found in [5]. The efficiency of this algorithm
directly depends on how tight the upper bound of the extinction
coefficient is. Several methods have been proposed to provide
better bounds for both voxel-based and procedurally generated
participating media using localized upper bounds. For example
using super voxel grids, where a separate upper bound is stored
in each super voxel [16], [23] or other spatial subdivision data-
structures such as octrees and kd-trees [26] or Wrenninge’s volume
aggregates [7].

Free-flight sampling estimators can also be used for generating
an unbiased estimate of the transmittance along a ray. By first
generating M free-flight distances si, i ∈ [1,M], the transmittance is
estimated as the ratio of binary samples corresponding to 1 : si > d
to 0 : si < d, i.e. the average of a series of binary random variables.
However, to provide low variance estimates it is often necessary to
average a large number of binary samples, which can lead to long
rendering times.
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Rao-Blackwellized free-flight estimators To reduce the variance
of delta tracking Novák et al. [16] proposed ratio tracking that can
be seen as a Rao-Blackwellized version of delta tracking where the
ray is traversed until the end, and the actual probability that the
delta tracking procedure would reach all the way to the end is used
as an estimate of the transmittance. They also considered using
a control variate type of approach where a known, pre-computed,
constant extinction can be subtracted from the extinction along the
ray to further reduce the variance. An equivalent algorithm has also
independently been derived in the neutron transport literature [15].
The residual ratio tracking algorithm is summarized in algorithm 1.
See Novák et al. [16] for more details. Kutz et al. [12] used the
same approach, but reformulated in a probabilistic framework and
with a focus on reducing the cost of taking samples instead of the
variance. Kutz et al. [12] also do not derive theoretical variance
bounds as done in this work. Szirmay-Kalos et al. [22] also utilized
the control variate, but removed the restriction of requiring an
upper bound in their Rao-Blackwellized formulation. Similar to
our work, Szirmay-Kalos et al. [22] derive variance bounds in their
probabilistic mathematical formulation.

Piecewise integration with varying extinction majorants In
production rendering, the extinction coefficient can vary widely
throughout a scene. For example, both thin (but heterogeneous)
fog and thick smoke can be present in the same image. Yue et
al. [26] has showed that tracking-based estimators can be applied
to sub-regions in a piecewise fashion while remaining unbiased.
Recently, Villemin and Wrenninge [24] showed that the piecewise
varying-majorant problem can be reinterpreted as a piecewise
constant-majorant one. As a consequence, we only consider single-
interval integration in this paper, knowing that it will generalize to
more complex cases using the aforementioned techniques.

Our approach We propose to compute the transmittance using a
new class of algorithms using an unbiased truncation of the Taylor
expansion of the exponential function. Thus, unlike the majority
of previous work basing their formulation on the introduction
of virtual particles, we instead utilize standard Importance or
Russian roulette Monte Carlo estimates of the infinite Taylor
expansion series. In a recent independent work, Georgiev et
al. [9] propose a new set of integral formulations for transmittance
estimators, including a power series formulation. While some of
the underlying ideas are similar to our work, we approach the
problem from a different mathematical formulation allowing us
to provide additional insights and mathematical proofs. We also
show how these new mathematical formulations are related to
the computational statistics literature, while Georgiev et al. ’s
mathematical approach is more similar to the classical transport
theory literature. We propose several new transmittance estimators,
and general proofs, not found in Georgiev et al. ’s work, for example
Algorithm 3, and 4. Using our new mathematical formulation and
insights, we also provide several guidelines for parameter settings
of different algorithms not found in previous work. In addition, we
provide new experimental insights including algorithm behaviour
related to CPU and GPU usage. Since our mathematical formulation
allows the transmittance estimation to be seen from a new viewpoint
not studied before in either computer graphics, transport theory
or other related fields, we believe that it also has the potential for
opening up the area for new ways of approaching the problem.

ALGORITHM 1: Residual ratio tracking (Novák et al. [16])
Input :Upper bound σ̄ > σ(t), Control extinction σc

Set t = 0
Set Tc = exp(−dσc)
Set Tr = 1
while true do

Sample r ∼ exp(r|− σ̄d)
Set t = t + r
if t > d then

break
end
Tr = Tr(1− (σ(t)−σc)/σ̄)

end
Return TcTr

3 EXPRESSING TRANSMITTANCE USING TAYLOR
EXPANSION

A key idea of this paper is the formulation of the transmittance
using a Taylor expansion. Using this formulation, we then explore
different methods to form Monte Carlo estimators of the Transmit-
tance. Here, we introduce the basic mathematical formulation used
as a basis to derive the different algorithms.

Inspired by previous work [16], we note that, given a constant,
σu < ∞, we can formulate the transmittance as

T (d) = exp
(
−
∫ d

0
σ(t)dt

)
= exp

(
−
∫ d

0
σ(t)+σu−σudt

)
= exp(−dσu)exp

(∫ d

0
σu−σ(t)dt

)
(3)

where σu could for example be chosen to be an upper bound of
σ(t). However, as we will discuss later, other choices are also
possible.

By considering the Taylor expansion of the second exponential
in Equation 3, the transmittance can be expressed as

T (d) = exp(−dσu)exp(τ(d))

= exp(−dσu)
∞

∑
k=0

(τ(d))n

n!
(4)

where τ(d) =
∫ d

0 σu−σ(t)dt.
Now assume we have access to an unbiased estimator of τ(d)

given by τ̂(d), i.e. E[τ̂(d)] = τ(d). In this paper we will consider
τ̂(d) to be a Monte Carlo integral estimator with a single sample,

τ̂ = d(σu−σ(ε)) ε ∼U [0,d]

where U [0,d] denotes the uniform distribution between 0 and d.
We can then substitute all occurrences of τ(d) in Equation 4 by
i.i.d estimators τ̂ j(d), to form the estimator:

T̂ (d) = exp(−dσu)
∞

∑
k=0

dk

k!

k

∏
j=1

(
σu−σ(ε j)

)
(5)

where ε j are i.i.d. uniform variables, i.e. ε j ∼U [0,d]. It is easy to
show that this estimator is unbiased, i.e. E[T̂ (d)] = T (d).
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4 FINITE UNBIASED EVALUATION OF INFINITE SE-
RIES

A problem with the estimator given by Equation 5 is that it consists
of an infinite number of terms, making a direct evaluation infeasible.
However, we can approximate the infinite series with an unbiased
estimator using only a finite number of terms. To this end, we will
propose two different approaches.

First, in subsection 4.1, we derive a class of estimators based
on forming an unbiased estimate of the transmittance by sampling
a single term in the Taylor expansion using importance sampling.
This approach is inspired by so called Poisson Estimators developed
in the statistics literature [2]. Three different types of algorithms
are proposed based on this Poisson formulation. The first type
only require an upper bound of the extinction, the second type
also require a precomputed control extinction but can lead to
reduced variance estimators, while the third type instead utilizes
online computation of control extinction computation, trading a
small amount of bias for reduced variance. We also derive explicit
variance results of these estimators, enabling insights into the
different trade-offs between them, and guidelines in the selection
of optimal parameters for different problem settings. We also show
that the previously proposed Ratio Tracking and Residual Ratio
Tracking algorithms [16] can be seen as special cases of this class
of estimators.

The second class of algorithms we consider are based on using
Russian Roulette [4], [13] to truncate the infinite series. This class
of estimators have different theoretical properties compared to the
first class of estimators as discussed in subsection 4.2. For this
class, we present an algorithm adapting samples according to the
underlying extinction. This algorithm belongs to the first type, i.e.
only requiring an upper bound of the extinction. We also discuss
how this class of estimators is related to the previously proposed
delta tracking algorithm [16], and how they differ.

Lastly, we briefly discuss the benefits of partitioning the
transmittance integral into shorter segments.

4.1 Single Term Estimators
Single term estimators are based on importance sampling over the
terms in the Taylor expansion. Consider first sampling an auxiliary
variable k ∈ [0...∞] with probability q(k). Using importance sam-
pling, to approximate the sum in T (d) (Equation 5), an unbiased
estimator of T (d) can then be formed by

T̂s(d) = exp(−dσu)
dk

q(k)k!

k

∏
j=1

(
σu−σ(ε j)

)
, (6)

where ε j are i.i.d. uniform variables, i.e. ε j ∼U [0,d]. The variance
of this estimator is given by

Var[T̂s(d)] =exp(−2dσu)
∞

∑
k=0

(
dk

q(k)(k!)2

(∫ d

0

(
σu−σ(t)

)2dt
)k)

−T (d)2

See appendix A for mathematical details and proofs.
The choice of the importance distribution q(k) can have a big

effect on the variance of the estimator. By minimizing the variance
with respect to q(k), one can show that the optimal distribution is a
Poisson distribution Po(λ ∗) with intensity

λ
∗ =

(
d
∫ d

0

(
σu−σ(t)

)2dt
)1/2

. (7)

Again, see appendix A for mathematical details and proofs. Given
that we now know the optimal choice of q(k), we can set out

to design practical algorithms imitating importance distribution
close to the known optimal Poisson distribution. In the following
subsections, we describe four different variants of such algorithms,
and discuss how their parameters can be tuned. The basic algorithm
that the other algorithms are based on is the Poisson Estimator, that
we describe in detail first. Note that each algorithm has different
trade-offs that we describe in detail below.

4.1.1 Poisson Estimator
While the optimal intensity λ ∗ depends on an intractable integral,
a conservative approach is to use λU = dσu. This choice is
motivated by the fact that it is an upper bound, i.e. λU ≥ λ ∗,
which ensures that the importance distribution has longer tails than
the target distribution, a desirable property of importance sampling
estimators [17]. Using a Poisson distribution with intensity λU as a
proposal distribution for k in Equation 6 results in the following
estimator of the transmittance, T (d),

T̂p =
k

∏
j=1

(
1−

σ(ε j)

σu

)
k ∼ Poisson(k|λU ), (8)

where ε j are i.i.d. uniform variables, i.e. ε j ∼U [0,d]. This, Poisson
estimator is summarized in algorithm 2 with σc = 0.

By applying Equation 7, we can find an explicit expression for
the variance of the Poisson tracking estimator also including ratio
tracking:

Var[T̂p] = T (d)2
(

exp
(∫ d

0

σ(t)2

σu
dt
)
−1
)

(9)

Note that the proposed Poisson estimator is more general than the
Ratio Tracking algorithm as any algorithm for sampling Poisson
distributed interaction points along the ray could be used, see
appendix A.1 for proof. This opens up for completely different
and more effective practical sampling algorithms than sequentially
sampling of exponentials as used in ratio tracking. Exploring this
type of new sampling algorithms are beyond the scope of this paper,
and we leave this for future work.

Practical guidelines for σu - From the variance expression
above it is clear that a higher upper bound σu always decreases the
variance, but it also increases the cost of the algorithm. Figure 1
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Fig. 1: Experimental test of the variance (left axis) and number
of samples taken (right axis) as a function of varying σu for the
Poisson tracking algorithm. The variance decreases rapidly until
σu ≈ 3[max(σ(t)]d0 , while the number of samples increase linearly.
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ALGORITHM 2: Residual Poisson estimator
Input :Upper bound σu ≥ σ(t), Control extinction σc

Set Tc = exp(−dσc)
Sample k ∼Pois(d(σu−σc))
Sample ε j ∼U [0,d], for j = 1..k
Set Tr = ∏

k
i=1 1− (σ(εi)−σc)/(σu−σc)

Return TcTr

shows the typical behavior of the estimated variance and number
of samples taken for the Poisson estimator when varying σu for the
second test function described in subsection 5.1. Figure 1 shows that
σu ≈ 3max[0,d](σ(t))] provides a good trade-off between variance
reduction and computational load. Interestingly, in contrast to free-
flight sampling estimators, this means that having a tight and exact
upper bound, i.e. σu = max[0,d](σ(t))] is not important.

Another way to reduce the variance of the estimated transmit-
tance is to take the average of several Poisson estimators with a
lower upper bound σuN = σu

N . Averaging N Poisson estimators with
σuN has the same expected cost as a single Poisson estimator with
the upper bound σu. A natural question in practice is then which
choice is more efficient? In Theorem 5, in the Appendix, we show
that it is always better to use a single Poisson estimator with upper
bound σU compared to using N average Poisson estimators with
upper bound σUN .

4.1.2 Residual Poisson Estimator
In some problems, it is possible to approximate the extinction along
the ray where the Transmittance is to be estimated, for example
using specialized data structures. In these cases it is possible to
reduce the variance of the estimated transmittance by using an idea
related to control variates, based on subtracting a known control
extinction, σc, from the true extinction, σ(t), along the ray [16]. In
this section we describe how this idea can be used to extend the
Poisson estimator presented in the last subsection.

First note that the equation for the transmittance along the ray
can be rewritten, Equation 1, as

T (d) = exp
(
−
∫ d

0
σ(t)dt

)
= exp(−dσc)exp

(
−
∫ d

0
σr(t)dt

)
,

where σr(t) = σ(t)−σc is the residual extinction coefficient, and
exp(−dσc) is a known constant.

We can now directly target the residual transmittance, Tr(d) =

exp
(
−
∫ d

0 σr(t)dt
)

using a Poisson estimator with an intensity

based on an upper bound on the residual extinction, i.e. σu >
σr(t) = σ(t)−σc, as

T̂rp(d) = exp(−dσc)
k

∏
j=1

(
1−

σr(ε j)

σu

)
k ∼ Poisson(k|λU ).

We refer to this algorithm as the Residual Poisson estimator,
see algorithm 2. We note that a similar estimator can also be
derived mathematically by considering the Taylor expansion of
the exponential around the point at distance −dσc along the ray.
The original Poisson estimator is obtained as a special case of the
residual Poisson estimator by setting σc to zero. Furthermore,
Novák et al. proposed to compute the residual transmittance
using ratio tracking algorithm under the name Residual Ratio

Tracking [16], which can also be shown to be a special case of the
Residual Poisson estimator (see Theorem 3 in the Appendix).

To compare the original Poisson estimator to the Residual
Poisson estimator we can consider it’s variance,

Var[T̂rp(d)] = T (d)2
(

exp
(∫ d

0

σr(t)2

σu
dt
)
−1
)
. (10)

Note that the variance expression above is similar to Equation 9, but
with the residual extinction term σr(t) exchanged for the extinction
σ(t). Thus, the previous guidelines for σu hold here as well. In
addition, it can be seen that having a good control extinction is
even more important given its squared term. Furthermore, we can
now derive the following upper bound for the variance,

Var[T̂rp]≤ T (d)2
(

exp
(

d(max[σ(t)]d0−σc)
2

σu

)
−1
)
. (11)

See appendix A.2 for proof. The bound provide us with an
important hint when it comes to understanding how to choose
σc, because the highest variance is given by the largest difference
between the actual extinction along the path and the control
extinction.

Practical guidelines for σc - By analyzing the expression for
the variance given by Equation 10, we find that for a given upper
bound σu the variance is minimized by setting σc to the mean of
σt in the interval [0,d]. This is stated in the following collary:

Collary 1. Let σu be fixed, the optimal σc, in terms of minimal
variance, is then given by

σc =
1
d

∫ d

0
σ(t)dt. (12)

4.1.3 Independent and Dependent Poisson Estimators
Inspired by Corollary 1, we can approximate the true mean by the
simple estimate σc =

1
N ∑

k
j=1 σ(ui), where ui are N i.i.d. uniform

random variables over [0,d]. This requires us to sample σ(t) N
more times, but often provides a decrease in variance compared to a
standard Poisson estimator. As we demonstrate in the experimental
section, this can be a beneficial trade-off in practice. We refer to this
estimator as the Independent Poisson estimator and its algorithm
is summarized in algorithm 3. Another important aspect of this
algorithm is that it does not require precomputation of the control
extinction and therefore also does not require additional costly data
structures to compute the control extinction.

Another, related idea, is to reuse the random uniform look-ups
already performed in the Poisson tracking estimator, i.e. to reuse the
N number of ε j random variables already sampled to also estimate
σc. In practical experiments we have found that this is often a
useful tracking estimator, although it suffers from a small bias. Due
to its dependency between samples, we refer to algorithm 4 as the
Dependent Poisson estimator.

4.1.4 Poisson Distribution Alternatives
As the optimal intensity λ ∗ is generally intractable, a Poisson
distribution might not necessarily be the best possible choice.
Other natural choices in this context are the geometric distribution
and the negative binomial distribution.
Geometric Distribution:
A simple choice is to set q(k) to a geometric distribution, with
parameter p in Equation 6, resulting in the estimator:

T̂s(d) = exp(−dσu)
dk

(1− p)k pk!

k

∏
j=1

(
σu−σ(ε j)

)
, (13)

appendix.pdf{}{}{}#theorem.5{}{}{}
appendix.pdf{}{}{}#theorem.3{}{}{}
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ALGORITHM 3: Residual Poisson estimator with independently
estimated control extinction
Input :Upper bound σu ≥ σ(t)

Number of independent samples N

Sample ui ∼U [0,d], for i = 1..N
Set σc =

1
N ∑

k
i=1 σ(εi)

Sample k ∼Pois(d(σu−σc))
Sample ε j ∼U [0,d], for j = 1..k
Set Tc = exp(−dσc)
Set Tr = ∏

k
i=1 1− (σ(εi)−σc)/(σu−σc)

Return TcTr

ALGORITHM 4: Residual Poisson estimator with dependent
estimate of control extinction
Input :Upper bound σu ≥ σ(t)

Sample N ∼Pois(dσu)
Sample ε j ∼U [0,d], for j = 1..N
Set σc =

1
N ∑

N
i=1 σ(εi)

Set Tc = exp(−dσc)
Sample k ∼Pois(d(σu−σc))
Sample ε j ∼U [0,d], for j = N..k
Set Tr = ∏

k
i=1 1− (σ(εi)−σc)/(σu−σc)

Return TcTr

where ε j are i.i.d. uniform variables, i.e. ε j ∼U [0,d].
Negative Binomial:
Another approach is to use a Poisson distribution but model λ

with a Gamma distribution with mean λ ∗, the resulting distribution
q(k) will then be a Gamma-Poisson distribution, also known as a
negative Binomial distribution. This approach is explored in the
context of stochastic differential equations by [6].

However, we have not seen any benefits from considering these
proposal distributions in our practical experiments, so we leave
further analysis to future work.

4.2 Russian Roulette

Ray tracing and particle transport applications extensively use
Russian Roulette for terminating random walks with small con-
tributions. Here, we describe how it can be used to truncate the
infinite series in Equation 5. Our method works by replacing each
term in the sum in Equation 5 with the unbiased estimator

T̂ (d)
k

RR =


exp(−dσu)

dk
k! ∏

k
j=1

(
σu−σ(ε j)

)
∏

k
i=1 (1−qi)

if Ui > qi for i = 1...k

0 otherwise
(14)

where Ui are i.i.d. uniformly distributed random variables, and
q1,q2, ....qi ∈ (0,1]. The combined estimator is then given by

T̂ (d)RR = T (d)0 +
∞

∑
k=1

T (d)k
R. (15)

A simple choice is to set qi = q with q ∈ (0,1], allowing for trade-
offs between variance and number of samples taken.

A better choice is to adapt q to the the signal at hand. By taking
inspiration from delta tracking we consider qi =

σ(εi)
σu

, providing

ALGORITHM 5: Russian Roulette Tracking
Input :Upper bound σu ≥ σ(t)

Set Tr = 1 (First term in Equation 5)
Set k = 1
Sample ε1 ∼U [0,d]
Set q = σ(ε1)

σu
Set qk = q
Sample η ∼U [0,1]
While(η > q)

Set Tr = Tr +
1
qk

σk
u dk

k!
Sample εi ∼U [0,d]
Set q = σ(εi)

σu
Set qk = qk−1q
Set k = k+1
Sample η ∼U [0,1]

end
Return exp(−dσu)Tr

us with an estimator

T̂ (d)
k

RR =


exp(−dσu)

dk
k! ∏

k
j=1

(
σu−σ(ε j)

)
∏

k
i=1 (1−

σ(εi)
σu )

= exp(−dσu)
σk

u dk

k! if Ui > qi for i = 1...k
0 otherwise

(16)

This Russian roulette tracking algorithm is summarized in algo-
rithm 5. Note that the resulting algorithm is similar to the estimator
of the transmittance based on delta tracking proposed in previous
work (Section 2.3 in [16]). However, the delta tracking based
estimator samples points sequentially from a homogeneous Poisson
process, i.e. it generates a k and ε j : s such that ε1 < ε2, ...,< εn,
but here we do not need to keep track of the order of the uniform
variables in the interval.
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(a) Test function A,
α = 0.1, β = 1.0.
Reference T (d) = 0.3897.
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(b) Test function B,
α = 0.25, β = 4.0.
Reference T (d) = 0.094788.

Fig. 2: Plots of the two test functions used for numerical illustration,
where (a) represents more slowly varying functions while (b)
represents more high frequency functions.

4.3 Partitioning Methods

The terms in the Taylor expansion, see Equation 5, will decay at a

slower rate when the integral
(∫ d

0 σu−σ(t)dt
)

is large compared
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Fig. 3: Transmittance RMSE when taking equal number of samples for tight upper bound (blue bars) and loose upper bounds (orange/grey
bars). Poisson/Ratio methods improve with higher upper bound, with independent/dependent Poisson having the greatest benefit .

to when the integral is small. One way to keep this quantity small
is to partition the interval [0,D] into M parts

T (d) = exp(−dσu)exp
(∫ d

0
σu−σ(t)dt

)
=

M−1

∏
m=0

exp(−dσu)exp
(∫ (m+1)d/M

md/M
σu−σ(t)dt

)
(17)

Now, we can apply the Taylor expansions on each of the
exponentials in this sum, similar to the above analysis. As∫ d/m

0 σu−σ(t)dt ≤
∫ d

0 σu−σ(t)dt, the terms in the Taylor expan-
sion will decay faster, and we thus need to evaluate less terms in the
Taylor expansion using Russian Roulette for a given accuracy. This
technique can be used together with any of the tracking methods
and we therefore refer to it as Partitioned Tracking.

5 RESULTS

To evaluate how the methods behave under different practical
circumstances, we first present the results of applying the methods
to a known test function. Then, we show how the methods perform
when applying them in real-world heterogeneous medium data sets,
taking into account their evaluation time.

5.1 Numerical Illustration

To demonstrate the numerical performance of the different methods
we will consider the test function

σ(t) = α(sin(βx)2 + cos(βx)+1) (18)

over the interval t ∈ [0,2π]. Here, α controls the height and β

controls the frequency of the function. Two sets of α and β

values will be used, see Figure 2, one representing more slowly
varying extinction coefficient and one representing higher frequency
variations of the extinction coefficient.

The performance of the methods in the numerical illustration are
measured using the root mean squared error (RMSE) when restrict-
ing the number of evaluations of σ(t) to a fixed number (200). Each
method is evaluated 1000 times and the average RMSE is reported.
The control extinction is set to the average of the minimum and
maximum extinction, σc = 0.5(max[0,d](σ(t)) + min[0,d](σ(t))),
unless otherwise specified.

5.1.1 Upper Bound
To analyze the impact of choosing the upper bound, we consider
three possible settings: σu = N max[0,d](σ(t)),N ∈ [1,3,5].

Residual Estimator
Residual Poisson Estimator

0 0.05 0.1 0.15 0.2
Control extinction

0.02

0.03

0.04

0.05

RM
SE

(a) Test function A

Residual Estimator
Residual Poisson Estimator

0 0.1 0.2 0.3 0.4 0.5
Control extinction

0

0.05

0.1

0.15

0.2

RM
SE

(b) Test function B

Fig. 4: Transmittance RMSE for varying control extinction,
σc ∈ [min[0,d](σ(t)) max[0,d](σ(t))], and equal number of samples.
Vertical dotted line depicts the average extinction. As theoretically
shown, lowest error is achieved when σc equals the average
extinction. The Poisson estimator is more prone to error as σc
approaches the upper bound.

In Figure 3 it can be seen that increasing the upper bound
lowers the RMSE for the dependent and independent Poisson
methods. This is connected with the accuracy of the estimated
control extinction made by these two methods, increasing the upper
bound will cause more samples to be drawn from the Poisson
distribution (higher k), which result in lower variance. The residual
transmittance and residual Poisson transmittance estimators have
a fixed control transmittance, which make them more sensitive
to changes in control extinction than upper bound. The Russian
roulette transmittance estimator, similar to delta tracking, benefits
from having a tight upper bound.

5.1.2 Control Extinction Comparison

The residual transmittance estimator methods use control extinction
to improve their performance. To understand and verify the impact
of having a good control extinction estimate we varied the control
extinction while keeping the upper bound and number of samples
fixed. The results of this numerical experiment are inline with our
theoretical results, c.f. Equation 12, and can be seen in Figure 4,
where lowest errors are produced when the control extinction equals
the average extinction. Interestingly, it can also be seen that the
Poisson method tend to produce higher errors when σc approaches
σu, i.e. low numbers of k.
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Fig. 5: Transmittance RMSE (left vertical axis) and average number
of samples taken (right vertical axis) when varying q for Russian
roulette transmittance estimator (Alg. algorithm 5). The RMSE
decreases at the cost of increasing the number of samples, with
q > 0.8 resulting in comparably many samples.

5.1.3 Varying q in Russian Roulette Tracking
The q variable in the Russian roulette tracking algorithm provides
a trade-off between variance and number of samples taken. This
connection is illustrated in Figure 5, where q varies along the
horizontal axis. Here, RMSE is decreasing for increasing q, while
the number of samples taken are increasing. It can be seen that
q < 0.2 results in noisy behaviour for the test functions and that the
number of samples increase significantly when q > 0.8. We noted
that numerical instabilities occur when k > 119 for 64-bit floating
point and k > 16 for 32-bit floating point numbers. We therefore
limit the number of iterations depending on the precision.

5.2 Real-World Examples
The presented methods have been integrated into an OpenCL-based
path tracer in the Inviwo [10] visualization framework running
on both the CPU and the GPU. The path tracer implementation
utilizes partitioned tracking through a super-grid (83 voxels per
grid cell) storing the extinction bounds and average of each grid
cell, see [16] and [11] for more details. An Intel Xeon 2.5 GHz
CPU with 32 GB random access memory and a Geforce 1070 GPU
is uses as testing hardware. Reference images have been generated
using delta tracking-based path tracing using 50 000 iterations.
The following three data sets, with increasing extinction coefficient
difficulty level, have been used for evaluation.

Bunny cloud (Figure 9) has 577×572×438 32-bit (float)
voxels. A directional light source has been placed to the left and
the extinction is set to zero below values of 0.05 and mapped to an
extinction of 22.5 for values above. Thus, this data set represents
homogeneous mediums with changes only occurring when entering
or leaving the extinction boundary between zero and 22.5.

Smoke2 (Figure 10) has 161×610×178 32-bit (float) voxels
and represent relatively smoothly varying heterogeneous mediums.
A directional light source has been placed behind the data set and
the values are mapped to extinction by multiplication with 150.

Golden Lady (Figure 11) is a computed tomography scan of
the upper torso and head of a human. It has 512×512×625 16-bit
(uint) voxels. The voxel values have been mapped to display vessels
and bone tissues and thereby represent heterogeneous mediums
with high extinction coefficients.

First, we evaluate the impact of N and σu in algorithm 3. These
results are depicted in Figure 6, where it can be seen that it is

more important to use a high upper bound (σu ≥ 3max[0,d](σ(t))])
than improving the control estimate by taking additional samples,
i.e., increasing N. For the GPU, the more complex the medium is,
the more beneficial it is to spend computation time on improving
the control estimate by increasing N. Not surprisingly, a single
sample is enough for homogeneous mediums such as the Bunny.
Comparing the behaviour between the CPU and the GPU, it can
be seen that the results vary linearly with N on the CPU, while
they are almost constant on the GPU. This difference is most likely
caused by the the texture cache on the GPU, which significantly
reduces the cost of taking additional nearby samples. Similarly,
when observing the impact of N and σu for algorithm 4 in Figure 7,
it can be seen that the CPU results benefit significantly from re-
using samples, while it actually has a slightly negative impact
on the GPU. We believe that this negative impact is caused by
the additional registers required to explicitly cache the samples,
preventing efficient parallelization, in combination with the low
sampling cost of nearby samples due to the GPU texture cache.
Notably, in Figure 7a it can be seen that the heterogeneous data sets
(Smoke2, Golden Lady) benefit more from improving the control
estimate using higher N for algorithm 4.

The impact of bounding k for algorithm 5 (Russian Roulette)
can be seen in Figure 8. While limiting k can bias the results, it
also can improve performance and we see from the orange bars in
the figure that good choices of k lie around 6-8 for the CPU and
9-11 for the GPU.

Based on the analysis above, we show equal rendering time
results using the best combination for each method in Figures 9-11.
We refer to the supplementary material for the specific parameter
combinations used and an analysis of the upper bound parameter
for the Ratio, Residual Ratio and Residual Poisson methods. Table 1
lists the RMSE of each method and data set compared to their
corresponding reference image. Our proposed independent and
dependent Poisson transmittance estimation algorithms, algorithm 3
and algorithm 4, perform best for the more difficult data sets with
heterogeneous materials using the GPU and CPU, respectively. The
Residual ratio and Poisson transmittance methods perform best for
the data sets with more slowly varying or constant extinction.

TABLE 1: Equal time (25 s) rendering RMSE (lower is better)
of each method and data set using the CPU and the GPU. Best
result for each data set and computing platform is highlighted in
bold. Note that algorithms 3-5 do not require precomputed control
estimates σc.

Data set (RMSE)
CPU / GPU

Method Bunny Smoke2 Golden lady
Delta Tracking 1513 / 301.2 280 / 50.1 1994 / 317
Ratio Tracking [16] 947 / 197.5 181 / 46.1 1440 / 231
Residual Ratio [16] (Alg. 1) 856 / 185.7 175 / 44.8 1401 / 230
Residual Poisson (Alg. 2) 847 / 186.4 173 / 46.2 1380 / 228
Ind. Poisson (Alg. 3) 899 / 186.4 174 / 47.1 1397 / 223
Dep. Poisson (Alg. 4) 908 / 189.7 174 / 48.0 1351 / 234
Russian Roulette (Alg. 5) 895 / 187.4 201 / 51.8 1476 / 245

6 DISCUSSION

The results show that the different algorithms often result in similar
performance for mediums with small changes in the extinction
coefficients, e.g., Bunny and Smoke2. For these types of mediums
Residual Poisson perform slighly better on the CPU, while Residual
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(a) Independent Poisson (CPU) (b) Independent Poisson (GPU)

Fig. 6: Equal time renderings (25 s) for varying N and σu in algorithm 3 using (a) the CPU and (b) the GPU. The combination
resulting in best RMSE is highlighted in orange for each data set. Independent of N it is important to have loose upper bounds, e.g.
σu ≥ 3max[0,d](σ(t))]. For GPU:s, larger N are beneficial for heterogeneous mediums (Smoke2 and Golden lady).

(a) Dependent Poisson (CPU) (b) Dependent Poisson (GPU)

Fig. 7: Equal time renderings (25 s) for varying N and σu in algorithm 4 using (a) the CPU and (b) the GPU. The combination resulting
in best RMSE is highlighted in orange for each data set. Reusing samples is highly beneficial on the CPU, because the computation time
otherwise increase approximately linearly with increasing N. Larger N produces better control transmittance, which is beneficial for
heterogeneous mediums (Smoke2, Golden lady).

Ratio perform slightly better on the GPU. For the more challenging
heterogeneous mediums, e.g., Golden Lady, the Independent and
Dependent Poisson methods perform best on the CPU and GPU,
respectively. We note that because the Ratio and Residual Ratio
tracking algorithms are subsets of the Poisson tracking algorithms,
their theoretical behaviours are similar and the main differences
lie in their algorithmic design. With this being said, the presented
methods have a range of trade-offs and characteristics to consider.
As shown in Figure 4, the residual methods are largely dependent
on having good estimates of the control extinction. Increasing
the upper bound has a larger effect on the independent and

dependent Poisson methods compared to the residual ratio and
Poisson methods. This is particularly prominent in heterogeneous
media with extinction peaks, see left most bar for each N in
Figure 6, causing large RMSE. We believe that the reason for this
is that their control extinction estimate is on average worse than
the pre-calculated average extinction provided to the other two
methods. This reasoning is in line with the results in Figure 6 and
Figure 7, which shows that the control estimate is less important
for higher upper bounds (the RMSE is dominated by the choice
of upper bound). Still, especially for heterogeneous media with
extinction peaks, e.g. Golden lady, it is beneficial to use independent
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Fig. 8: Equal time (25 s) rendering log(RMSE) for varying upper limit of k in algorithm 5. The k resulting in best RMSE is highlighted
in orange for each data set. While lower k can result in a slight bias it can be beneficial from a performance perspective and good choices
of k in this case lie around 6-8 for the CPU and 9-11 for the GPU.
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Fig. 9: Equal rendering time (25 s) of each method applied to a homogeneous medium using the CPU (top row) and the GPU (bottom
row). Data set is courtesy of OpenVDB.

estimates of the control extinction when combined with a higher
upper bound. Another benefit of using the independent/dependent
Poisson methods is that there is no need to determine the control
extinction beforehand, which improves the performance when
changing the extinction coefficient to explore the data.

Our assumption was that the dependent Poisson transmittance
estimator would perform better than the independent Poisson
method in practice, since it reuses samples. However, this as-
sumption only held using the CPU. It seems as the graphics card’s
internal caching is performing well enough to remove benefits from
reusing samples. In addition, it might be that the slight bias of
reusing samples is revealed for the constant medium, i.e., Bunny,
because algorithm 4 has higher RMSE for the CPU in this case.

6.1 σu-only methods

Comparing results from taking the same number of samples for
the methods not relying on control extinction in Figure 3, e.g.,
Delta tracking [20], [25] Ratio tracking [16], and Russian Roulette
transmittance estimation, it can be seen that the proposed Russian
Roulette method outperforms the other methods. However, when
comparing equal-time rendering results in Table 1, it can be seen
that the Ratio tracking algorithm is best for both the Smoke2 and
the Golden lady data sets. This is most likely caused by the low cost
of taking samples, i.e. the extra numerical computation required
by the Russian roulette algorithm outweighs the time it takes to
sample the volume. For out-of-core methods, where the sampling
cost may be higher it could potentially be more beneficial to use
the Russian roulette method.

Note that numerical aspects need to be considered when
implementing the Russian roulette method. We found that limiting
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Fig. 10: Equal rendering time (25 s) of each method applied to the smoothly varying Smoke2 data set using the CPU (top row) and the
GPU (bottom row). Data set is courtesy of OpenVDB.

(a) Reference

RMSE: 1994

RMSE: 317

(b) Delta

RMSE: 1401

RMSE: 230

(c) Res. Ratio

RMSE: 1380

RMSE: 228

(d) Alg. 2

RMSE: 1397

RMSE: 223

(e) Alg. 3

RMSE: 1351

RMSE: 234

(f) Alg. 4

RMSE: 1476

RMSE: 245

(g) Alg. 5

Fig. 11: Equal rendering time (25 s) of each method applied to the heterogeneous Golden lady data set using the CPU (top row) and the
GPU (bottom row). The benefit of reusing samples become evident on the CPU (f), whereas on the GPU it actually better to let rely on
the internal caching (e). Data set is courtesy of the Center for Medical Image Science and Visualization (CMIV), Linköping University.

the number of iterations worked well in this regard. On the graphics
card used for the experiments, the Russian roulette method becomes
three times slower when using double precision compared to 32-bit
floating point precision, which consequently increases the RMSE
for equal time renderings. Thus, given the setup used in this work, it
is better to limit k than to switch to double precision. Furthermore,
as seen in Figure 8, limiting k even further can improve the equal
time rendering results at the expense of slightly biasing the result.

Finally, we have shown that the control extinction, σc, and
Russian roulette q variables are key components in achieving good
results. An interesting area for future work is therefore to develop
more advanced methods for estimating these variables.

7 CONCLUSIONS AND FUTURE WORK

In this paper we explored a new mathematical formulation for
estimating the transmittance of heterogeneous participating media.
To our knowledge, our approach and mathematical formulation
of using unbiased or biased techniques to approximate the Taylor
expansion of the exponential has not been explored before for
transmittance estimation. Although our work has some similarities
to the independent, contemporary, work of Georgiev et al. [9],
our mathematical formulation of the problem is fundamentally
different, and provides additional theoretical and practical insights
into the problem, for example, in the form of several new theorems
and proofs. In particular, based on our formulation, we also
introduced two new practical rendering algorithms, Independent

and Dependent Poisson (Alg. 3 & 4) that perform best in many
applications, e.g. for medical volume rendering. Also, from the
comparison studies between CPU and GPU implementations, we
can conclude that transmittance estimation algorithms performing
well on the CPU does not necessarily translate to the GPU, and
provided several practical guidelines for GPU implementations.
In future work it would be interesting to explore the combination
of importance sampling and Russian roulette approaches, using
for example multiple importance sampling (MIS). Another topic
left for future work is to investigate the use of the debasing
techniques introduced in computational statistics, see e.g. [14],
utilizing a convergent sequence/levels of biased estimators, for
example obtained using standard quadrature techniques for the
inner integral in Equation 1 with an increasing number of samples
in the quadrature for each level.
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1 INTRODUCTION

This supplementary material presents additional results for the
upper bound σu (Figure 1) along with parameters used for the
real-world data set experiments (Table 1). Please refer to the paper
for information on the methods, experimental setup, and data sets.

TABLE 1: Parameters used for each method and combination of
CPU/GPU. For methods with σu, we use a multiplier based on the
maximum extinction coefficient in the grid cell.

Data set (RMSE)
CPU / GPU

Method Bunny Smoke2 Golden lady
Delta Tracking - / - - / - - / -
Ratio Tracking: σu 5.0 / 6.0 6.0 / 2.5 3.5 / 5.5
Residual Ratio (Alg. 1): σu 3.0 / 6.0 2.0 / 2.5 3.0 / 5.5
Residual Poisson (Alg. 2): σu 4.0 / 5.5 5.0 / 5.0 3.5 / 5.0
Ind. Poisson (Alg. 3): σu, N 4.5, 1 / 5.0, 1 3.5, 1 / 4.0, 5 3.5, 1 / 5.0, 9
Dep. Poisson (Alg. 4): σu, N 4.5, 6 / 4.5, 1 4.0, 17 / 5.5, 1 3.0, 10 / 3.5, 3
Russian Roulette (Alg. 5): k 3 / 4 8 / 11 6 / 9
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(a) CPU

(b) GPU

Fig. 1: Equal time renderings (25 s) for varying the upper bound σu for the Ratio, Residual Ratio, and Residual Poisson methods. The
upper bound multiplier resulting in best RMSE is highlighted in orange for each data set and method.
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(a) Reference (b) Delta (c) Res. Ratio (d) Alg. 2 (e) Alg. 3 (f) Alg. 4 (g) Alg. 5

Fig. 2: Equal rendering time (25 s) of each method applied to a homogeneous medium using the CPU (top row) and the GPU (bottom
row). Zoom for details. Data set is courtesy of OpenVDB.

(a) Reference (b) Delta (c) Res. Ratio (d) Alg. 2 (e) Alg. 3 (f) Alg. 4 (g) Alg. 5

Fig. 3: Equal rendering time (25 s) of each method applied to the smoothly varying Smoke2 data set using the CPU (top row) and the
GPU (bottom row). Zoom for details. Data set is courtesy of OpenVDB.

(a) Reference (b) Delta (c) Res. Ratio (d) Alg. 2 (e) Alg. 3 (f) Alg. 4 (g) Alg. 5

Fig. 4: Equal rendering time (25 s) of each method applied to the heterogeneous Golden lady data set using the CPU (top row) and the
GPU (bottom row). Zoom for details. Data set is courtesy of the Center for Medical Image Science and Visualization (CMIV), Linköping
University.
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