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Abstract
The most common way to track the position of a vehicle is by using the Global Nav-
igation Satellite System (GNSS). Unfortunately, there are many scenarios where
GNSS is inaccessible or provides low precision, and it can therefore be vulnera-
ble to only rely on GNSS. This master’s thesis is done in collaboration with the
Swedish Defence Research Agency (FOI), who is looking for a solution to this prob-
lem. Therefore, this master’s thesis develops a system that globally localizes a
vehicle in a map, without GNSS. The approach is to combine odometry and the
scan registration algorithm iterative closest point (ICP), in an extended Kalman fil-
ter (EKF), to provide global position estimates. The ICP algorithm aligns two
different sets of data points, referred to as point clouds. In this thesis, one set
consists of light detection and ranging (LIDAR) data points collected from a sen-
sor mounted on a vehicle, and the other consists of LIDAR data points collected
from an aircraft which forms an elevation map of the area. In the ideal case, the
algorithm finds the position on the elevation map where the vehicle collected the
data points.

For the EKF to function, the uncertainty of ICP must be estimated. Different
methods are investigated, which are; unscented transform based covariance, co-
variance with Hessian, and covariance with correspondences. The result shows
that all the methods are too optimistic when estimating the uncertainty. The
reason is that none of the methods take all sources of error into account, and
it is therefore difficult to correctly capture the uncertainty of ICP. The unscented
transform based covariance is the least optimistic, and covariance with correspon-
dences is the most.

A second problem investigated in this thesis is how odometry and ICP with an
elevation map as reference can be combined to provide a global position estimate.
As mentioned, the chosen approach is to implement an EKF which weights the
different data sources based on their covariance, to one single estimate. The de-
veloped global localization system is evaluated in a real time experiment, where
the data is recorded using equipment from FOI. The goal of the experiment is to
localize a vehicle while it is driving in different environments, including urban,
field and forest environments. The result shows that the performance of the sys-
tem is viable, and it manages to provide localization within a few meters from
ground truth. However, since the ICP covariance estimates are not fully accurate,
the performance of the EKF is decreased as it cannot weight the different esti-
mates properly.

The ICP algorithm used in the system has a lot of flaws. The worst is that it
easily converges to incorrect solutions, in other words that it estimates the wrong
position of the vehicle. How this risk can be decreased is also investigated in this
thesis. A method that decreases this risk drastically, and makes the viable per-
formance of the system possible, is developed. The approach of the method is to
exclude incorrect positions by removing a large amount of points from the point
clouds, and keeping the most informative. By only utilizing the most informative
data points in the point cloud, global positions with high accuracy are achieved.
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1
Introduction

This chapter presents the background of this thesis and puts the problem in con-
text, along with the problem formulation and an overview of the system. It also
presents how the project is divided between the two authors and the outline for
the rest of the report.

1.1 Background

The most commonly used localization tool today is the Global Navigation Satellite
System (GNSS), but unfortunately it is not available or very precise at all loca-
tions. Relying fully on GNSS can therefore be vulnerable. A variety of other lo-
calization methods have been developed during the last decades. The most used
method can be found in for example [19], where simultaneous localization and
mapping (SLAM) is used to locate a vehicle in urban environments with centime-
ter precision. SLAM systems usually suffer from odometry errors, which is why
in [11] WiFi is tested as a method to use in indoors environments. The Swedish
Defence Research Agency (FOI) has a SLAM system that uses landmarks detected
by a LIDAR sensor, together with odometry to estimate a map of the environment,
and locates the vehicle in that map. The localization is only local and not global,
meaning that it only provides a position relative to the starting position. It can
estimate positions in urban and forest environments, but gives poor positioning
in open field terrain due to lack of landmarks [14].

This master’s thesis is about vehicle localization, and is a collaboration with FOI.
The aim is to develop a global localization system that provides the position of a
vehicle in global coordinates, regardless of landmarks and GNSS. This would ad-
dress the shortcomings of FOI’s current localization system, and be an alternative
to GNSS that can be of use in areas where GNSS is inaccessible or in situations
where the position of a vehicle is of great significance.

1



2 1 Introduction

1.2 Problem Formulation

To find the position of a vehicle in a global map without GNSS, sensor data that
provides information about the environment can be used and compared to the
information in a map of the area. A registration algorithm called iterative closest
point (ICP) aligns two data point clouds that contain similar information, and is
therefore suitable to use. It does not need landmarks to align the point clouds,
therefore it also addresses shortcomings of FOI’s SLAM system. From a LIDAR
sensor mounted on a vehicle, a point cloud in local coordinate frame of the sen-
sor describing the ground around it can be obtained. This point cloud can be
matched against a global point cloud map containing the height curves of the
area using the ICP algorithm, which provides a position estimate of the vehicle
in that map. However, ICP has a lot of flaws [7], and should therefore not be
the only source that provides position estimates in a localization system. To in-
crease robustness, odometry can be used in the system as well. The problem
of how these different position estimates can be combined to provide accurate
global localization of a vehicle is addressed in this thesis. When combining these
estimates, it is beneficial to know the uncertainty of ICP to be able to decide how
trustworthy the position estimates are. Therefore, different ways to determine
the uncertainty of ICP is looked into as well.

As mentioned, the ICP algorithm has flaws. The main drawback is that it does
not take into account if it has found the best matching position on the whole map,
or just the best match in the vicinity of the initial position. In other words it does
not differentiate between global and local minimums. How convergence to these
incorrect solutions can be decreased is investigated in this thesis as well. A pro-
posed approach is to select an informative subset of points to be used in the ICP
algorithm, with the purpose of excluding incorrect local minimums.

This problem description sums up to the following questions that are going to
be answered in this thesis

• What are some different possibilities to estimate the uncertainty of ICP, and
how correct are the results?

• How can odometry and ICP with an elevation point cloud as reference be
combined to provide a global position estimate?

• How can the risk of ICP converging to incorrect solutions be decreased?

1.3 System Overview

In this section, an overview of the developed global localization system is pre-
sented, along with the purpose of each part. The system is implemented in C++
together with Robot Operating System (ROS) [30].
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Figure 1.1: An overview of the system. The green parts are created in this
thesis, and the grey are existing parts at FOI that are used straight off.

Figure 1.1 illustrates the structure of the system that is developed in this thesis.
In the figure, it is shown that some parts are taken straight off from the existing
system at FOI. The purpose of these parts is to convert the sensor data into data
that is needed in the rest of the system. As mentioned, FOI’s existing system per-
forms SLAM [12], but the developed global localization system is not integrated
into the SLAM part. It only uses the odometry computations (which provide
position estimates relative to the starting position, and associated covariance esti-
mates) to be able to evaluate it separately from SLAM. How the odometry in FOI’s
system is computed, as well as how SLAM functions, is described in a previous
master’s thesis [14].

Except for the odometry computations, a part that extracts the ground points
from the LIDAR sensor data is used as well. These ground points represents
the height curves around the vehicle without trees, houses, and other landmarks.
This is needed since the elevation map used as reference only contains ground
points, and the data sets used in ICP must be as similar as possible.
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In addition to the parts that are taken from FOI’s existing system, the rest of
the developed system can be divided into three steps; pre-processing, global posi-
tion estimation, and global position filtering. The purpose of the pre-processing step
is to prepare the point clouds that are going to be used in the ICP algorithm. One
single scan from the LIDAR sensor does not contain enough information to be
able to match it against the reference map. Therefore, the point cloud merge part
is needed to fill the cloud with a suitable amount of information. Previous work
done on point cloud filtering, which is a source of inspiration for the filtering
part of the pre-processing step, is found in [15]. The common factor is that both
this system and the one presented in [15] uses large noisy data sets as input, and
the methods they use to remove the noise are shown to be successful and very
common. To decrease the risk of ICP converging to incorrect solutions, a subset
of informative points are extracted as a final part of the pre-processing step.

The purpose of the global position estimation step is, as the name suggests, to pro-
vide a position estimate in the global coordinate frame. As mentioned, the ICP
algorithm can, if used with an elevation point cloud map as reference, achieve
global position estimates regardless of landmarks. Therefore, it is suitable to use
in this system. It also addresses two shortcomings of FOI’s existing SLAM sys-
tem, which are that the SLAM system only provides local localization, and that it
is dependent on landmarks. The uncertainty of ICP is determined in this step as
well, and why it is needed is explained in the next paragraph.

Both odometry and ICP have flaws, and it is doubtful to individually trust the
position estimates that they provide. Therefore, a global position filtering step
with the purpose to combine these estimates is needed. An EKF is a common
algorithm that achieves this. It weights the different estimates, i.e. decides how
trustworthy they are, based on their covariance. This is why the uncertainty of
the ICP is determined in the previous global position estimation step. Previous
work regarding this is found in [20], where map-based localization is achieved by
merging information from ICP with odometry in an EKF.

1.4 Delimitations

The following delimitations are set in the thesis.

• FOI’s existing system computes a path based on odometry which is used in
this developed global localization system. How these computations, includ-
ing the covariance of these measurements, are made is out of the scope of
this thesis, but is described in [14].

• The global localization system only estimates a 2D position of the vehicle,
i.e. a position in a map seen from above, which are the most relevant coor-
dinates.
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1.5 Division of labor

The two authors, Rebecka and Katherine, have divided the work in the follow-
ing way. Rebecka has created and written about the implemented ICP algorithm
which uses functions from PCL (Section 4.1.1), along with methods that help
avoid incorrect local minimums, as selecting subset clouds (Section 3.4) and us-
ing stochastic initial positions (second part of Section 4.1.4). She has also created
and written about the EKF that estimates the filtered global position (Section
5.1). Katherine has created and written about the extended ICP algorithm that is
based on unscented transforms (third part of Section 4.1.4), along with methods
that estimates the uncertainty of the ICP result, as different covariance variants
(Section 4.2) and fitness score (Section 4.1.2). She has also created the algorithm
for merging point clouds (Section 3.2). The remaining work has been performed
together.

1.6 Outline

After this introductory chapter, Chapter 2 contains theory about point clouds,
the ICP algorithm, covariance estimates and EKF, which are needed to under-
stand the components of the global localization system developed in this thesis.
Chapter 3, 4 and 5 then presents and evaluates the three different parts of the
developed system, which are pre-processing, global position estimation and global
position filtering. After evaluating the system parts individually, two system varia-
tions are created and tested in an experiment where a vehicle is driving different
routes and the goal is to provide global localization during that time. This exper-
iment is presented in Chapter 6. At last, Chapter 7 contains the conclusions and
future work of this thesis.





2
Theory

This chapter presents the background theory of this thesis. First, there is informa-
tion about point clouds and how they can be processed. This theory is used in the
pre-processing step. Then introducing the ICP algorithm, along with methods to
estimate its uncertainties, to give the understanding needed for the global position
estimation step. The position filtering method EKF, which is used in the global po-
sition filtering step, is also found in this chapter. Last, there is information about
a software library used in the system.

2.1 Point Clouds

A point cloud is a set of data points containing coordinates, which constitutes
an object or an environment. Point clouds can be created by hand, through 3D-
modelling software programs, or given as output from a sensor as described in
Section 2.1.1. Point clouds collected from a sensor in real life will always contain
noise and a large amount of data, which can be handled with downsampling and
outlier removal algorithms described in Section 2.1.2. Some point cloud match-
ing methods, as for example ICP, requires information about the surface that the
point cloud represents. This information can be obtained by estimating surface
normals, described in Section 2.1.3.

2.1.1 LIDAR Point Clouds

A LIDAR sensor measures distances to objects in the surrounding by sending out
laser light that reflects on targets and measures how long it takes for the light to
return. With this, the distance can be calculated and thus giving a point cloud.
The LIDAR sensor can be placed on a ground vehicle for local perception of the
surroundings or on a aircraft to create a digital elevation map, among others. Fig-

7



8 2 Theory

ure 2.1 shows a LIDAR point cloud taken from a vehicle in an urban environment
during the experiment presented in Chapter 6.

A LIDAR point cloud contains noise, which comes from multiple sources. Ex-
amples of this are drift effects, observed material and incidence and beam angles
[6]. The drift effects are caused by temperature, the effect of surface color and
the dependency of the distance to an object [44]. These sources can be modelled
as sensor bias noise. Unmapped objects in the world such as leaves, trees and
houses can also be seen as a type of noise in the point clouds. Laser beams are
also a source of noise since there may be beams that do not return, creating lack
of information in an area. If the laser beams hit an object but only one beam
is returned then this causes outliers to appear which can be seen as noise. The
sources of noise that are difficult to find an appropriate model for can be mod-
elled as white noise.

Figure 2.1: A point cloud collected from a LIDAR sensor mounted on a
vehicle, where the vehicle is driving in an urban area during one of the

experiments in Chapter 6.

2.1.2 Point Cloud Downsampling and Outlier Removal

When receiving a LIDAR point cloud, it contains outlier noise and a large amount
of data resulting in computationally demanding processing. The number of points
can be reduced with downsampling algorithms, which will lower the computa-
tional cost. Although, this can cause the point cloud to contain noise since points
are being replaced by approximated ones instead. Outliers can be removed with
outlier removal algorithms to reduce the noise in the point cloud. This has the
opposite effect of downsampling, where it decreases the noise but increases the
computational cost.

There are different types of downsampling methods. The one that is used in the
system is a method that returns an approximated cloud that represents the orig-
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inal cloud but with fewer points and is called Voxel grid sampling. This method
is described below. The outlier removal method Statistical outlier removal used in
the system is found below as well. C++ implementations of these methods can
be found in the Point Cloud Library, described in Section 2.7.

Voxel grid sampling

A voxel grid filter reduces the number of points in a point cloud by creating a
3D voxel grid, which is equivalent to 3D boxes, that covers the whole cloud [23].
The voxels then contain different amount of points and some will not contain any
at all, where in the latter case the voxel is discarded. The point cloud is then
downsampled by choosing the centroids, which is the average of all points inside
of each voxel. The size of the voxels decides how many points that are removed,
where the larger the size, the more approximated the cloud becomes. It is a bal-
ance between the importance of the cloud’s original structure and the importance
of low computational costs, which increases linearly with the number of points
and the size of the voxels. This approach represents the surface more accurately
than by approximating the points with the center of the voxel, but has a slower
computational time in comparison. An implementation of this method is found
in [35].

Figure 2.2 shows a 2D example of voxel grid filtering, where the image to the
left represents the original point cloud, the image in the middle shows the voxel
grid applied and the calculated centroid of each box marked in green. The re-
sult after sampling is shown in the image to the right. Another faster version of
voxel grid sampling is to approximate the points with the center of each voxel.
However, the approach described in this section retains the original layout of the
points more accurately.

Figure 2.2: An illustration of a 2D voxel grid filter process. The point cloud
displayed to the left is the original. In the middle figure, it is divided into

four voxels, where the green point is the computed centroid for all points in
each box. The resulting point cloud is seen to the right.

Statistical outlier removal

Statistical outlier removal is based on the computation of a distribution that is
assumed to be Gaussian [36]. For each point, the mean distance to its neighbours
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in the cloud is calculated. The number of neighbours that should be taken into
account is chosen by the user. The distribution of all the mean distances are as-
sumed to be Gaussian, and all points whose mean distances are outside of the
standard deviation of the mean are removed since they are seen as outliers. The
user can increase or decrease the number of points that are removed by choosing
a standard deviation (STD) multiplier. An implementation of the statistical out-
lier removal algorithm is found in [33].

A 2D example of this is show in Figure 2.3, where four points have been tested so
far. Two nearest neighbours are found for each point, and the mean of those dis-
tances are computed. It is clear that the points marked in red would be outside
of the standard deviation of the mean, since they have a significantly larger mean
distance to its neighbours than the rest. These points are seen as outliers and are
removed.

Figure 2.3: An illustration of a statistical outlier removal process, where
four points have been tested so far. After all points have been tested, the

two points marked in red are removed as they have a larger mean distance
than the rest of the points.

2.1.3 Surface Normals

A surface normal is a vector perpendicular to an object, a plane or a line, and it is
an important property of a geometric surface. The surface normals of each point
in a point cloud can be approximated by either using meshing techniques to ac-
quire a surface from the point cloud and computing the normals from the mesh,
or by approximating the normals directly from the point cloud as in [36]. The lat-
ter method estimates a tangent plane in each point using surrounding neighbour
points, and the normals are found perpendicular to the planes. The planes are
estimated with least square fitting, which is further described in [36]. Pre-made
C++ functions that performs the surface normal estimation of a point cloud is
found in [34]. The amount of neighbour points that are considered when estimat-
ing the planes are determined by either setting a fixed number of neighbors, k,
or to set a fixed radius of a sphere, r, where all points inside are neighbors. The
size of r or k determines the accuracy of the normals. A large scale can suppress
finer details, while a too small scale can cause lack of information which leads to
normals with wrong direction. If there are no nearby points, the normal cannot
be calculated as there is no way of determining how the plane should be oriented.
Figure 2.4 illustrates a 2D example of how different radii affect the normals.
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Figure 2.4: Surface normal estimation in 2D, seen from the side. The
normals are only shown for a few points, and they are created with different

sizes of the radius, r. The size of the tangent plane, which is drawn
perpendicular to the normal, corresponds to the size of r for visual

purposes. The blue normal, belonging to the middle point, has a large r that
takes all points into account when estimating the plane. This leads to a loss

of the characteristics of the curve. The green normals are created with a
better suited size of r that only takes the nearest points into account when

estimating the tangent planes, this retains the shape of the curve.

2.2 Iterative Closest Point

The ICP algorithm is used in the global position estimation step in the system. It
is a widely used scan registration method that aligns a source point cloud to a
fixed target point cloud by finding the optimal translation and rotation that min-
imizes the distance between them [3]. There are different variations of ICP, for
example point-to-plane which has been shown in [32] to have better convergence
than for example the most standard variation point-to-point. The specific parts
of point-to-plane are described in the next section, the general algorithm is de-
scribed below.

The source cloud S and target cloud O is denoted as

S = {si}, i ∈ 1, ..., Ns, (2.1)

O = {oj }, j ∈ 1, ..., No, (2.2)

where si and oj are points in the source and target cloud respectively, and Ns and
No are the number of points in each cloud.

To achieve the data alignment, the first step is to find a corresponding point in
the target cloud for each of the points in the source cloud. These correspondences
are found by minimizing a distance metric

d(si , O) = min
oj∈O
‖oj − si‖, (2.3)

where the distance from si to each point in O is computed, and the point in O
that is closest is chosen and further on denoted oi∗ . This is iterated for each si ,
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and all the correspondences are saved.

The next step is to apply a rotation R and translation t to the source cloud that
minimizes the distance between it and the target cloud. R and t are found by
minimizing a cost function E(R, t), which uses the correspondences found in the
first step. This cost function varies depending on which type of ICP is used. After
R and t are applied to the source cloud, the algorithm iterates until convergence,
where new correspondences are found in each iteration. The rotation R and trans-
lation t are stored inside a 4 × 4 matrix called a transformation matrix

Tk =
[
Rk tk

01×3 1

]
, (2.4)

which is the kth iteration used to transform and move the source point cloud
closer to the target point cloud. All transformation matrices are multiplied with
its former matrix creating the final transformation matrix, TICP ,

TICP =
nICP∏
k=1

Tk , (2.5)

where nICP is the total amount of iterations performed. In Figure 2.5 an ideal
example of the ICP point-to-plane process is shown.

Figure 2.5: An example of an ICP iteration process on a point cloud. The
red point cloud is the source cloud and the grey is the target cloud. The

image to the left shows the starting positions of the two clouds, where the
source cloud is an exact copy of the target but with a transformation

applied. In the middle image, the ICP algorithm has been iterated 7 times,
and 23 times in the right image which results in fully aligned clouds. Point

cloud model is created by the Blender Foundation [10].

2.2.1 Point-to-plane

The point-to-plane variant of ICP is often better at finding the optimal transfor-
mation than the standard point-to-point type, as shown in [32]. The correspon-
dences are found with (2.3). By estimating surface normals, as described in Sec-
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tion 2.1.3, tangent planes are created in each of the points in the target cloud.
The surface normals for each point in O are denoted nj .

s1
s2

n2*

n1*

o2*

o1*

Figure 2.6: 2D example of point-to-plane ICP. The distances marked with
grey arrows are minimized in the error metric cost function, only two

distances are shown for visual purposes.

The error metric cost function is defined as the sum of the square distances be-
tween each point in the source cloud, and the plane that belongs to the corre-
sponding point in the target cloud

E(R, t) =
Ns∑
i=1

[(
oi∗ − (Rsi + t)

)
ni∗

]2
, (2.6)

where ni∗ is the surface normal of the corresponding point oi∗ in the current iter-
ation of ICP. The rotation and translation is applied to the source cloud as

si+1 = Rsi + t. (2.7)

2.2.2 Sources of Error

There are a few sources of error that have to be considered when implementing
ICP [7]. The first one is wrong convergence, where ICP converges to a local mini-
mum instead of the global. This often proves to be the dominant error, since ICP
itself does not take this into account when minimizing the cost function. To avoid
this error, an initial alignment can be performed to transform the source cloud
closer to the global minimum before applying ICP. This can be done either with
a qualified guess, or by randomly choosing different initial positions. Another
method to avoid local minimums is proposed in [25], where stochastic ICP is in-
troduced. As the article describes, a random Gaussian noise translation is added
to the source cloud before each iteration of the ICP algorithm, which allows the
algorithm to relocate itself from a local minimum.

The second source is the under-constrained situations, for example in environ-
ments where there is not enough information to estimate the position and orien-
tation of the object in question. It can be seen as "sliding" occurring in one of
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the coordinate axes in the different results, because the ICP cannot pinpoint the
exact placement of the object.

The third source of error is the sensor noise which can change the outcome of
the solution, even though the source cloud is initially positioned in the region of
attraction of the true solution before the ICP algorithm is performed. The rea-
son is that the source and target cloud are not as similar as they ideally would
be. To decrease this error, outlier removal algorithms described in Section 2.1.2
can be used but only if done so properly, as wrongly defined parameters in the
filtering can increase the error. The outliers in the point cloud can be seen as
singular points or small groups of points spread out in the cloud. These points
skew the alignment due to the ICP algorithm trying to find correspondences for
every point in the cloud [26]. To decrease this problem, it is possible to filter the
outliers before performing ICP, such that the points are discarded if they are too
far away from the points in the target cloud.

2.3 Uncertainty

The uncertainty of the ICP algorithm can be observed by estimating the covari-
ance, which shows the variability between each pair of elements of a given ran-
dom vector. How accurate the estimate is depends on what sources of error it
considers. An estimated covariance matrix can also be used in Kalman filtering.
There are multiple methods to estimate it, where there is a trade-off between ex-
ecution time and accuracy. Monte Carlo simulations is one example of where the
accuracy is high but so is the execution time as well.

One estimation method is to use the Hessian to calculate the covariance [4, 7]
and another one uses correspondences between two point clouds [27]. What they
have in common is that both linearize the cost function used by the ICP around
the convergence point. This leads to the covariance only taking sensor noise —
from the three sources of error mentioned in Section 2.2.2 — into consideration
[6].

2.3.1 Cost function linearization

To be able to compute the covariance of ICP with Hessian and correspondences,
the cost function mentioned in Section 2.2.1 must be linearized.

The roto-translation vector in 3D can be written as X = [XTr XTt ], where Xr is
the rotational vector with the elements Xr1, Xr2 and Xr3 around the x, y and z
axis respectively, and Xt is the translational vector with elements Xt1, Xt2 and
Xt3. The cost function is nonlinear because a received angle, Xr1, is not linear
in the rotation matrix, but the matrix can be linearized by assuming small in-
cremental rotations and approximating cos(Xr1) = 1 and sin(Xr1) = Xr1 [13]. A
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small rotation around the x axis of angle Xr1 gives

Rx =

1 0 0
0 cos(Xr1) −sin(Xr1)
0 sin(Xr1) cos(Xr1)

 ≈
1 0 0
0 1 −Xr1
0 Xr1 1


≈ I +

0 0 0
0 0 −Xr1
0 Xr1 0

 = I + Xr1(

10
0

)×,
(2.8)

where (a)× ∈ R
3×3 denotes a skew symmetric matrix associated with the cross

product with a ∈ R3 (a is an arbitrary vector, which for (2.8) would be [1 0 0]T ).
Small rotations around the y and z axis can be calculated in a similar way as in
(2.8) using Xr2 and Xr3 and all three rotations can be combined to a full rotation,
which is approximated as

R =

 1 −Xr3 Xr2
Xr3 1 −Xr1
−Xr2 Xr1 1

 = I + (Xr )×. (2.9)

If the two input clouds have been aligned beforehand (which is necessary as ICP
can only guarantee convergence locally) then it is possible to take the rotation
matrix, R ∈ SO(3), in (2.6) as close to identity. This justifies the possibility to use
the linearizing approximation given in (2.9). By defining the row vector t = Xt ,
Xt ∈ R

3 from the vector X and employing (2.9) on the cost function in (2.6) for
point-to-plane gives the following:

E(X) =
Ns∑
i=1

[(
oi∗ − (Xt + si + (Xr )×si)

)
ni∗

]2
. (2.10)

The multiplication of a skew symmetric matrix with another vector can be writ-
ten as a cross product between the two vectors, (Xr )×si = Xr × si , and (2.10) can
be rewritten as

E(X) =
Ns∑
i=1

[(
oi∗ − (Xt + si + Xr × si)

)
ni∗

]2
. (2.11)

Equation (2.11) can be written as

E(X) =
Ns∑
i=1

‖yi − BiX‖2, (2.12)

where yi and Bi are defined as

yi = nTi∗(si − oi∗ ), Bi = [−(si × ni∗ )T − nTi∗ ]. (2.13)

The term (si × ni∗ ) comes from the scalar triple product, (Xr × si) · ni∗ =
(si × ni∗ ) ·Xr .
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2.3.2 Covariance with Hessian

As mentioned previously, assuming the point clouds S and O start close to each
other, the ICP cost function can take the form of sum-of-squares (2.12). The esti-
mate computed by the ICP is denoted with X̂ and the true transformation is X∗.

The ICP is biased if it converges to a local minimum and therefore also have the
wrong convergence. Here it can be considered unbiased because of the assump-
tion that the clouds start close to each other (an initial alignment was performed)
which means that the ICP converges to a global minimum. Due to this it is possi-
ble to assume that the ICP is an unbiased estimator E(X̂) = X∗ and the covariance
is thus

P = E
(
(X̂ − E(X̂))(X̂ − E(X̂))T

)
= E

(
(X̂ − X∗)(X̂ − X∗)T

)
. (2.14)

The minimizing solution X = X̂ is obtained by taking the gradient of the cost
function in (2.12) and finding its critical point, which is when the gradient is
equal to zero. Thus, X̂ is written as

X̂ = A−1b =
[∑

i

BTi Bi

]−1 ∑
i

BTi yi . (2.15)

A =
∑
i B

T
i Bi represents the (half) Hessian of the cost function and is symmetrical

(AT = A) [5].

The residuals are defined as

ri = yi − BiX∗ ⇒ yi = BiX
∗ + ri , (2.16)

and can be used to replace yi in (2.15) which gives the covariance matrix:

P = E
((
A−1

∑
i

BTi ri
)(
A−1

∑
i

BTi ri
)T )

= A−1
∑
i

∑
k

(
BTi E(ri r

T
k )Bk

)
A−1.

(2.17)

An error model for the residuals, ri , has to be assumed in order to assess (2.17).
Replacing Bi and yi with their terms in (2.16) gives the residual ri = wi · ni∗ =
nTi∗wi . With this it is possible to rewrite (2.17), giving the final covariance

P =
[∑

i

BTi Bi

]−1 ∑
i

∑
k

(
BTi n

T
i∗E(wiw

T
k )ni∗,kBk

)[∑
i

BTi Bi

]−1
, (2.18)

where wi ∈ R
3 is the post-alignment error at the ith pair of points due to sensor

errors. The post-alignment errors, wi can be assumed as Random noise errors,
where it is assumed that the errors are independent and identically isotropically
distributed as

wi ∼ N (0, σ2I3).
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N (0, σ2I3) denotes an independent Gaussian distribution with zero mean and σ2

variance. With these assumptions, the error E(wiw
T
k ) = E(wi)E(wTk ) = 0, i , k

reduces the double sum to a single sum. E(wiw
T
k ) = σ2I3 when i = k simplifies

(2.18) to

P =
[∑

i

BTi Bi

]−1
σ2

∑
i

BTi Bi

[∑
i

BTi Bi

]−1
= σ2

[∑
i

BTi Bi

]−1

= σ2A−1.

(2.19)

The matrix Awill have a fixed size of 6×6 but the computational cost comes from
the increasing amount of points in the point cloud that has to be summarized in A
and the computation of its inverse. Random noise errors has been proven to give
a too optimistic covariance. This is because the Gaussian noise that was assumed
in the errors wi becomes negligible for increasing number of scanned points [4].

2.3.3 Covariance with Correspondences

The method to estimate covariance with correspondences tries to find correspon-
dences between points in the source cloud to points in the target cloud in the
last iteration of ICP. It is done by taking the closest neighbouring point. The cor-
responding point pairs are then used in the estimation of the covariance matrix,
which is described below.

Consider a function F with output X̂ and input b, i.e X̂ = F(b), that minimizes
an objective function E(X̂). Using Taylor series expansion of F at a value b = b0
gives

X̂ =
(
F(b)|b=b0

)
≈ F(b0) +

∂F
∂b0

(b − b0) = F(b0) +
∂F
∂b0

b − ∂F
∂b0

b0, (2.20)

where ∂F
∂b0

= ∂F
∂b |b=b0

. The covariance of an algebraic expression on the form of

X̂ = Db + c, where c is a constant, is

P = Dcov(b)DT , (2.21)

assuming stochastic variables in b with Gaussian distribution. This equation can
be used for (2.20), where F(b0) and ∂F

∂b0
(b0) represent the constant c.

P ≈ ∂F
∂b0

cov(b)
∂F
∂b0

T

. (2.22)

The implicit function theorem, which is explained more in detail in the appendix
of [7], is written as

∂F
∂b0

= −
(
∂2E

∂X2

)−1(
∂2E
∂b∂X

)
, (2.23)
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where E is the same error cost function mentioned in previous section, (2.6). Us-
ing (2.23) in (2.22) gives the final covariance equation:

P ≈
(
∂2E

∂X2

)−1(
∂2E
∂b∂X

)
cov(b)

(
∂2E
∂b∂X

)T (
∂2E

∂X2

)−1

. (2.24)

As the matrix,
(
∂2E
∂X2

)−1
, is symmetric, taking the transpose of it would not make a

difference. It can be seen from (2.24) that three terms,
(
∂2E
∂X2

)−1
,
(
∂2E
∂b∂X

)
and cov(b)

have to be calculated. The three parameters in the terms are X, b and E, where
X is the same state vector as previously defined. Note that the state vector is
reversed in all the equations defined in [27]. The parameter b is defined as the
nc sets of correspondences {Sm, Om}, where Sm and Om are vectors containing the
coordinates for the two point clouds at correspondence m. The computations of
the three terms can be found in [27]. This method is based on the pioneering
formula by Censi in [7], but it is known to be very optimistic, see [22].

2.4 Unscented Transform based ICP and Covariance

The method of estimating covariance with Hessian and correspondences can be
used together with the ICP algorithm described in Section 2.2. A newly discov-
ered way of calculating the covariance of ICP is to use the unscented transform
(UT) [6], which requires a different approach to the ICP algorithm. This section
presents UT, the ICP adaption and how the covariance is computed.

2.4.1 Unscented Transform

The unscented transform is a method for approximating the statistics of a ran-
dom variable subject to a nonlinear transformation [16, 43]. The procedure is to
choose a set of points, called sigma points, in such a way that their sample mean
and covariance are x and Pxx, which corresponds to the true mean and covariance
of the prior random variable. The nonlinear function is applied to each point and
yields a cloud of transformed points with y and Pyy as the statistics of the poste-
rior. The method has some resemblance to the Monte-Carlo type methods, with
the difference that the samples are not randomly drawn, but instead drawn from
a specific deterministic algorithm.

The n-dimensional random variable, X, with mean µX and covariance Pxx is ap-
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proximated by 2n + 1 sigma points, which are given by

X0 = µX , (2.25)

Xi = µX + (
√

(n + λ)Pxx)i i = 1, 2, . . . , n (2.26)

Xi+n = µX − (
√

(n + λ)Pxx)i i = 1, 2, . . . , n (2.27)

Wm
0 =

λ
n + λ

, (2.28)

W c
0 =

λ
n + λ

+ (1 − α2 + β), (2.29)

Wm
i = W c

i =
1

2(n + λ)
i = 1, 2, . . . , 2n, (2.30)

where n is the dimension of the state vector X, (
√

(n + λ)Pxx)i is the ith column of
the matrix square root of (n + λ)Pxx and Wi is the weight associated with the ith

point. Wm is the weight for the mean and W c is the weight for the covariance.
The parameter λ is a scaling parameter, λ ∈ R, defined as

λ = α2 · (n + κ) − n. (2.31)

The parameter α determines the spread of the sigma points, κ is a secondary scal-
ing parameter and β is used for incorporating prior knowledge of the distribution
of X.

The transformed sigma points can be obtained by propagating each point through
the transformation function as

Yi = f (Xi). (2.32)

The weighted average of the transformed points gives the mean

µY =
2n∑
i=0

Wm
i Yi , (2.33)

and the weighted outer product of the transformed points gives the covariance

Pyy =
2n∑
i=0

W c
i (Yi − µY )(Yi − µY )T . (2.34)

The sigma points capture the same mean and covariance no matter what matrix
square root is used, which means that stable and numerically efficient methods
can be used and an example of this kind of method is the Cholesky decomposi-
tion.

Performing Cholesky decomposition on the covariance matrix of the prior state
estimate, Pxx, gives a lower triangular matrix, L. The sigma points from (2.25)-
(2.27) can thus be combined into a matrix

X = µX +
[
06×1 LT −LT

]
. (2.35)
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2.4.2 ICP Adaptions

With the theory of the UT it is possible to adapt the ICP algorithm, which is
needed for the computation of the covariance estimate.

The ith column vector in X has to be converted to a transformation matrix in
order to transform the point cloud with the sigma points before performing ICP.
This is done by calculating exp(Xi), where exp( · ) denotes the exponential map of
SE(3) and maps the elements of Xi to the format of a transformation matrix. The
equations and procedure of the exponential map are described more in detail in
the appendix of [2]. The ICP algorithm is performed for each sigma point, giv-
ing new transformation matrices, which have to be propagated in the covariance
estimate. This is described more below.

2.4.3 Covariance Estimate

The covariance of the unscented transform based ICP can be divided into two
parts. The first part depends on the unscented transform and accounts for wrong
convergence and under-constrained. The second part is a mix between the method
based on Hessian in Section 2.3.2 and the method based on correspondences in
Section 2.3.3 and accounts for sensor noise [6]. The two parts give two covariance
matrices which are summed together to obtain the final covariance estimate

P = (I6 − J)Pxx(I6 − J)T + KPsensorK
T = Pyy + Psn, (2.36)

where Psensor is the covariance matrix for the sensor noise, w, in the scanner, and
I6 is a 6 × 6 identity matrix.

Covariance with unscented transform

Following equation (2.32), the sigma points from (2.35) are propagated through
the ICP transformation function, giving the new set of sigma points, Yi [6]. Yi can
be inserted to (2.33), giving the components needed to estimate the covariance
matrix, Pyy , in (2.34).

Covariance considering sensor noise

The second term of the final covariance matrix considers an unknown bias, b. The
matrix is computed in the same way as the method based on Hessian in Section
2.3.2, except that the noise is w = b + vi , where vi is a white noise with variance
σ2. More details about the procedure is found in [6]. The covariance estimate
considering sensor noise is defined as

Psn = KPsensorK
T = σ2A−1 + A−1Ccov(b)CTA−1, (2.37)

where A =
∑
i B

T
i ·Bi , as defined before, and C =

∑
i B

T
i . The first term in (2.37) is

the same as the expression in (2.19) and the second term is the one that is similar
to (2.24), where A and C are equivalent to ∂2E

∂X2 and ∂2E
∂z∂X respectively.
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2.5 Covariance Evaluation Method

The methods to compute and estimate the covariance have to be assessed to de-
termine if the estimates are too optimistic or pessimistic. The evaluation method
used in this thesis is called Normalized Estimation Error Squared (NEES), and is
defined as

εX,k = X̃T P −1X̃, (2.38)

where X̃ = X̂ − X and P is the estimated covariance matrix. The goal is to get the
value of NEES as close to the number of states that the variable has, which in 2D
is three and in 3D it is six. The estimation is considered optimistic if the value is
above it and pessimistic if it is below [8]. The reason behind using the number of
states comes from εX,k being χ2 (chi squared) random variables with n degrees
of freedom (also known as number of states), where the mean of χ2 is n and the
variance is 2n.

2.6 Position Estimation

To get an accurate position estimate, an EKF can be used to merge position in-
formation provided by different sensors or algorithms. Based on their covariance
estimates, the EKF weighs the information and provides a single estimate. The-
ory about EKF, as well as an odometry motion model that can be used in the EKF,
is presented in this section.

2.6.1 Extended Kalman Filter

The Kalman filter, described in [40], is a Gaussian filter that first predicts and
then corrects the next states in a linear system. In the prediction step, a model of
the system dynamics is used to estimate the states at the next time step. The co-
variance of the state vector is predicted as well. In the correction step, the model
is adjusted with observation updates. The filter decides how trustworthy the ob-
servation is through the Kalman gain, which evaluates the error in the prediction
along with the error in the observation.

The EKF is a variant of the Kalman filter that allows nonlinear functions to de-
scribe the measurements and/or observations. For example when estimating the
movement of a car when it is moving in a circular motion, a nonlinear model must
be used. The EKF linearizes the nonlinear functions using Taylor Series, and its
algorithm is found below [40]. The state and observation models are denoted

Xk = f (Xk−1, uk) + wk , (2.39)

zk = h(Xk) + vk , (2.40)

where f (Xk−1, uk) and h(Xk) are nonlinear functions of the previous states Xk
and the control vector uk at time step k. The process and observation noise are
denoted wk and vk respectively. They are Gaussian distributed stochastic vari-
ables with mean zero and variance Q and R, which are covariance matrices of the
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process and observation noise.

The prediction step is described by

X̂k|k−1 = f (X̂k−1|k−1, uk), (2.41)

Pk|k−1 = Jf Pk−1|k−1J
T
f + Qk , (2.42)

where X̂k|k−1 is the predicted state vector and Pk|k−1 is the predicted covariance.
Jf is the Jacobian, the partial derivatives, of the state model f (Xk−1). The Jacobian
linearizes the function at the current estimate. Qk is the covariance matrix of the
process noise.

The correction step is described by

Kk = Pk|k−1J
T
h (JhPk|k−1J

T
h + Rk)

−1, (2.43)

X̂k|k = X̂k|k−1 + Kk(zk − h(X̂k|k−1)), (2.44)

Pk|k = (I − KkJh)Pk|k−1(I − KkJh)T + KkRkK
T
k , (2.45)

where Kk is the Kalman gain. The gain becomes large (Kk → In×n, where n is the
number of states) if the observation error matrix Rk is small, which means that
the filter will trust the observation. Instead, if Rk is large, the gain will become
small (Kk → 0n×n) and the filter will mostly ignore the observation. Jh = δh

δX̂
is the Jacobian of the measurement equation h(Xk). X̂k|k is the corrected state
vector that updates X̂k|k−1. The expression inside the parenthesis in (2.44) is the
innovation, which is the difference between the computed observation and the
estimated. The state covariance Pk|k is updated as well, by using Joseph’s form
in (2.45) since it does not assume that the Kalman gain is optimal and that it
guarantees symmetry [38]. After the correction step is performed, the algorithm
starts over at the prediction step.

2.6.2 Odometry

Odometry can be used to estimate the movement of a vehicle. It can either be
used alone as dead-reckoning, or as state prediction in an EKF, Section 2.6.1. The
odometry calculations are based on the angle and speed of the vehicle which
can be computed from data provided by an inertial measurement unit (IMU),
or through rotary encoders attached to the wheels. For each time step, a new
position for the vehicle is estimated and added to the previous to create a path.

Sample odometry motion model

There are multiple motion models that describe the movement of a vehicle, one
is sample odometry motion model [40]. The 2D method uses the state vector
X = [xk yk θk]T , where θ is rotation around the z-axis. It uses previous cal-
culated states [xk−1 yk−1 θk−1]T , and the difference between the previous and
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current odometry measurements [∆xok ∆yok ∆θok ]T = [xok−1 yok−1 θok−1]T −
[xok yok , θ

o
k]T to predict the next step. If odometry is used for example in an

EKF, state prediction of this kind is needed. The odometry is used for calculating
the relative measured motion parameters

δtrans =
√

(∆xok)
2 + (∆yok )2, (2.46)

δrot1 = arctan2(∆yok ,∆x
o
k) − θ

o
k−1, (2.47)

δrot2 = ∆θok − δrot1, (2.48)

where arctan2 is defined in [21] and an illustration of the motion parameters is
found in Figure 2.7.

Δθο

δtrans

δrot1

δrot2

Δxο

Δyο

Figure 2.7: Illustration of how the odometry motion parameters δrot1, δrot2
and δtrans relate to the motion of the vehicle.

The noise of the motion parameters are assumed to be random normal distributed
N (µ, σ ), where µ is the mean and σ is the standard deviation. More details about
how the noise distribution can be modelled is found in [40]. The next coordinates
[xk yk θk]T are then predicted by

xk = xk−1 + δtrans cos(θk−1 + δrot1), (2.49)

yk = yk−1 + δtrans sin(θk−1 + δrot1), (2.50)

θk = θk−1 + δrot1 + δrot2, (2.51)

which can be used as state prediction in (2.41).
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2.7 Point Cloud Library

In this section, information about one important software library used in the
global localization system is found. It is called Point Cloud Library (PCL) and
is the main library for handling point clouds, which is a great part of this thesis
work, it also contains ICP algorithms etc.

PCL is a large scale, free, BSD licensed library for processing of 2D and up to 4D
point clouds or imagery and is fully integrated with the Robot Operating System,
ROS. The library uses many other open-source libraries, for instance Eigen, Intel
Threading Building Blocks (TBB) and Fast Library for Approximate Nearest Neighbors
(FLANN) are a few of them. Point Cloud Library contains a multitude of state-
of-the-art algorithms, such as filtering, model fitting, feature estimation, registra-
tion etc. With these algorithms it is possible to, for example, filter out outliers
from noisy data, calculate the normals of a point cloud or stitch 3D clouds to-
gether. It is also possible to visualize the point clouds and surface data with its
own visualization library, based on the open-source software system Visualization
ToolKit (VTK) [37].



3
Pre-Processing

In this chapter, the data used in the designed global localization system is ex-
plained and it is described how it is pre-processed. This is the first step of the
system, seen in Figure 1.1. Figure 3.1 shows the inputs and output of this step,
along with the different parts which are further explained in the following sec-
tions.

Ground Point Clouds
and 

Global Filtered Position 

Select Point 
Subset

Point Cloud  
Merge

Point Cloud 
Filtering

Pre-Processing
Chapter 3

Processed Source 
Point Cloud 

Figure 3.1: The pre-processing step is divided into these three parts. The
inputs are ground point clouds given by FOI’s system and global position

estimates representing the current position of the vehicle, computed by the
EKF in the global position filtering step described in Chapter 5. The output

of this step is a processed point cloud.

25
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3.1 The Data

Before the different parts of this pre-processing step are explained, the data used
in the system is presented. The idea of using an ICP algorithm to locate a vehicle
in a global map requires source and target point clouds, which is described more
in the theory found in Section 2.2.

3.1.1 Point Clouds

In this application, the data used to build the source cloud is obtained from a
Velodyne Puck VLP-16 LIDAR sensor [28] which is attached to the roof of the
vehicle, see Figure 3.2. The sensor is elevated to avoid the laser being reflected
on the car and has 16 channels with a 360◦environmental view and 100 m range
that allows the sensor to create point clouds that corresponds to the environment
around the vehicle. The sensor has an integrated IMU xsens MTi-G-710 sensor,
and also an integrated GNSS. A Sokkia GRX1 GNSS receiver [41], which uses real
time kinetic (RTK) positioning, is also attached to the roof for ground-truth data.
It is, during good conditions, a more accurate GNSS with only a few centime-
ters of error. Unfortunately, the Sokkia GRX1 did not provide accurate positions
during the data collection, which is further explained in Section 6.3.1. CAN bus
data from the vehicle is also measured, which is used in FOI’s SLAM system to
calculate odometry. A computer in the car saves all the data to a rosbag [31].

Figure 3.2: The vehicle carrying the sensors. Marker one points to the
LIDAR sensor, and marker two points to the Sokkia GRX1.

Figure 3.3 shows a raw point cloud from one scan of the LIDAR sensor, where the
vehicle carrying the sensor is facing right with trees on its left side, and a field on
its right. This data is collected in collaboration with FOI.
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Figure 3.3: A LIDAR point cloud. The vehicle is moving from left to right
with trees on one side and an open field on the other.

The target point cloud, that the source point cloud is going to be matched against,
is an elevation map of the area. The target application is to use elevation maps
distributed by the Swedish authority Lantmäteriet [17], where the data is col-
lected from an airborne LIDAR sensor. The present data, already available at
FOI, is from measurements by Linköping municipality who procured its mea-
surements and post processing from a private company in 2013 [24]. This data
is representative but has a higher density of up to 15-20 points per square-meter
in open areas compared to the 0.5-1 points per square-meter available from Lant-
mäteriet. The elevation map only contains a ground-surface model of the area,
while all the trees, road signs, houses etc. have been removed by approximating
the surface underneath. In this case the private company did the classification
of ground points while FOI provided the final ground model. The quality of the
more generally available target data from Lantmäteriet, and how objects typically
are removed are reported in [18].

Figure 3.4: A piece of an elevation map with a road going through it. It is
used as target cloud in the system.
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Figure 3.4 shows a piece of an elevation map used in the system. A road is going
through the map from top to bottom, and houses that in real life are located on
the right side of the road are now gone. An elevation point map that contains a
whole route that a vehicle travels can become very large and cause computational
costs. Therefore, to make the system more time efficient, only a piece of the map
around the estimated position of the vehicle is sent to the ICP algorithm. The po-
sition estimate is given by the EKF, in the global position filtering step, described
in Section 5.1. This also provides some robustness to the system as the map is
narrowed down.

To be able to achieve a match with the ICP algorithm, the source cloud must
be as similar to the target cloud as possible. Therefore, only the points of the
ground from the LIDAR sensor are used to create the source cloud. These points
are extracted in an existing part of FOI’s system, using code from [9]. The code is
not completely accurate since some points representing objects can be mistaken
for ground. These mistaken points are seen as noise and is discussed more below.

3.1.2 Noise

As mentioned previously, one source of noise that can clearly be seen in the point
clouds is the unmapped objects that have been mistaken for ground when FOI’s
system extracted them. They can be seen as points randomly spread out in certain
areas and floating above the rest of the point cloud where an unmapped object is
known to be located. This noise can be classified as outliers and some of it can be
removed with filtering.

Figure 3.5: A source cloud (in red), seen from the side, with noise floating
above the more dense part of the cloud.

Figure 3.5 shows an example of this, after FOI’s system extracts the ground points,
where the point cloud is seen from the side. This area is known to have plenty
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of vegetation, which was observed when the data was recorded. The extraction
has removed some of it but clearly not all, and especially not smaller less dense
bushes etc. Points that are not removed are seen in the figure, where they are
floating on the top part of the red point cloud (the less dense upper part of it).
The noise, or outliers, are affecting the outcome of the ICP algorithm as it tries to
match every point in the source cloud to the target cloud. This causes the point
cloud to not be exactly placed against the target cloud and is instead pushed away
from it. In Figure 3.5, this would mean that the cloud is being placed slightly be-
low the target cloud because of the outliers floating on top. This can be handled
by removing outliers again and matching with ICP, which is described more in
Section 4.1.4.

All sources mentioned in Section 2.1.1 can affect the point cloud in the data set,
but to know which ones are the most dominant ones and how they affect the point
cloud can be difficult to determine. The measurement noise is usually modeled
as sensor white noise but it is not so dominant since the LIDAR has an accuracy
of ±3 cm.

3.2 Point Cloud Merge

This is the first part of the pre-processing step, where the goal is to create a source
cloud to be used in the ICP algorithm. The source cloud must be filled with a
suitable amount of information for the ICP algorithm to be able to find a position
in the target cloud that matches.

Figure 3.6: A merged cloud at an intersection seen from above, that is
containing 120 individual scans.
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To construct the source cloud, multiple scans of LIDAR sensor data taken over a
period of time are merged. If, as in this case, the LIDAR sensor is attached to a
moving vehicle, the vehicles translation and rotation between each scan must be
taken into account.

When a scan from the LIDAR sensor is received, this individual point cloud is
transformed to the current estimated global position of the vehicle which is cal-
culated by the EKF. Each point cloud that is transformed, is also merged with
the previous. This is iterated until a desired number of clouds have been merged.
A source of error that may occur is that the position estimated by the EKF can
drift over time, which is because the EKF is solely based on the odometry mea-
surements while the clouds are being merged, as explained in Section 5.1. This
can cause the later added individual point clouds to get an inaccurate position
that leads to a slightly deformed merged point cloud. This noise is not modelled
in the system and is therefore reflected in the covariance estimate. Figure 3.6
shows an example of a merged cloud containing 120 scans that form an intersec-
tion. This amount of scans is used every time a new merged point cloud is built
and is roughly estimated based on three aspects; how informative the cloud be-
comes, the aforementioned error due to EKF drift, and computational cost. Hav-
ing a high amount of scans increases the error and the computational cost. A low
amount would risk not having enough information for the ICP algorithm to find
a match, although the computational cost and error would decrease.

3.3 Point Cloud Filtering

This is the second part of the pre-processing step. The merged source cloud de-
scribed in the previous section contains noise and a large amount of points. To
reduce the noise and get a lower computational cost, the source cloud is down-
sampled and outliers are removed. Although, it becomes a trade-off as downsam-
pling a point cloud lowers the computational cost but increases the noise with
the approximations being made, while removal of outliers increase the computa-
tional cost but reduces the noise present. The noise from downsampling and the
outliers are not modelled in the system and are therefore reflected in the covari-
ance estimate. As mentioned in Section 1.3, previous work done on point cloud
filtering is found in [15], and the methods they use are successful and very com-
mon. Therefore, those methods are chosen to be implemented in this system, and
are presented below.

The downsampling method used in the system is voxel grid sampling, which is the
most common method in PCL for downsampling and is chosen based on its sim-
plicity and low computational cost. The size of the voxels are set to 0.06 × 0.06 ×
0.06 m3. More information in the cloud would be removed if the voxels were
larger, while less points would be removed and the computational cost would
increase if the voxels were smaller. When creating the merged source clouds,
multiple scans are overlapped and many LIDAR points end up in the same posi-
tion. Therefore, even if the voxel size is relatively small, a large amount of points
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are removed anyways. The chosen voxel grid size retains the important informa-
tion in the cloud, Figure 3.7 shows a source cloud before and after voxel grid
sampling is applied. The two clouds look almost identical even though about
30 % of the points have been removed. Using voxel grid in the system reduces
the computational cost by an average of 9 seconds, compared to without.

With this voxel grid size, the target cloud is still more sparse than the source
cloud. If the same point density is desired, the voxel size would have to be about
0.4 × 0.4 × 0.4 m3, but since the ICP algorithm allows multiple points in the
source cloud to be minimized towards the same point in the target cloud, it is not
necessary to remove that large amount of information from the source cloud.

(a) Before. (b) After.

Figure 3.7: The effect of voxel grid sampling. Approximately 30 % of the
point cloud is removed.

Figure 3.8: After outliers are removed. The cloud before is shown in 3.7.

The outlier removal method used is statistical outlier removal, which is also chosen
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based on its simplicity. It only requires one parameter to be set, which is the
number of neighbours to take into account. This is set to 150 which is shown
trough tests to reduce the outliers, where a higher value would remove more
and possibly important points in the cloud and having a low value would keep
too many unnecessary points such as noise from different sources. A result of
the filtering is shown in Figure 3.8. The STD multiplier can be changed as well,
but it is kept at its default value 1. Using this outlier method has an average
computational time of 1.7 seconds, but at the same time it removes points which
reduces the computational time of the system. It is impossible to remove all noise
from a point cloud obtained from a LIDAR sensor, instead, it should be reflected
as uncertainty in the covariance estimate.

3.4 Point Cloud Subset

The last part of the pre-processing step is to extract a subset of points from the
merged and filtered source cloud, as well as from the target cloud. How and why
these subsets are extracted are described in this section.

As mentioned in Section 2.2.2, the most common source of error is wrong con-
vergence as the algorithm gets stuck in a local minimum. When performing ICP
for localization, the source cloud corresponds to only a small part of the global
target map. If the source cloud is given a starting position in the map that is far
away from the correct position, the ICP algorithm will minimize the distances to
the target points that are closest and is likely to get stuck in a local minimum. The
preferred way would be if the algorithm could move the source cloud towards the
global minimum, ignoring the incorrect local minimum on the way.

(a) Whole clouds. (b) Subset clouds.

Figure 3.9: Target cloud in blue and merged source cloud in red. Two
scenarios are compared, (a) shows the whole clouds, while (b) shows the

same clouds but where only points with inclined surface normal directions
have been chosen. In both images, the source cloud is correctly positioned.
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The number of local minimum can be reduced by choosing a clustered subset of
points when creating the source and target cloud. This excludes some incorrect ar-
eas where the source cloud otherwise could converge to, and therefore allows the
cloud to relocate itself easier during the ICP algorithm due to the empty spots in
the target cloud. The points extracted to the subset must be informative and main-
tain the similarity of the two clouds, otherwise ICP becomes under-constrained
(see Section 2.2.2) and a correct match is not possible. A way to choose a subset
of points, that meets the previous mentioned requirements, is through sampling
based on surface normals. The first step is therefore to construct surface normals
as described in [36], which gives each point a direction in the form of a vector.
Then, points whose normals have high inclination are added to the subset. This
inclination limit is chosen based on the size of the height curves in the area. The
limit can be higher in areas with a lot of height curves, than in less informative
flat areas. This is because the goal of this method is to exclude local minimums,
which is only achieved if a lot of points are removed. The data used in this sys-
tem is collected from relatively flat areas and therefore the minimum inclination
limit is set to 6◦. The subset clouds would be filled with different information
if the limit is increased or decreased with only a couple of degrees. Therefore, a
future work would be to create a function that decides this minimum inclination
automatically, that for example makes sure a certain percentage of all points are
removed and checks that the remaining points are informative.

The result of this method is a new cloud with less points and that are, in best case
scenario, more clustered, which often is the case when tested on the data used in
this thesis. Due to the reduction of points, the computational cost is lower as well.
Figure 3.9 compares a whole cloud with a subset cloud. Extracting these subset
source and target clouds is the third and last step of the pre-processing step.





4
Global Position Estimation

This chapter presents an implementation of the ICP algorithm that matches a
LIDAR point cloud to an elevation map, and is the second step in the system,
seen in Figure 1.1. Figure 4.1 shows the corresponding input and output of this
step. The first part of this step is the ICP algorithm. In this master’s thesis, an
own implementation of the algorithm is made where ICP is performed two times,
further explained in the following sections. Three ICP extensions are presented
as well, outlier removal after ICP, stochastic initial positions and unscented transform
based. The second part of this step is uncertainty (covariance) estimation of ICP.
The estimation is computed in 3D since the point clouds are in 3D, but only x and
y coordinates along with the rotation around z is used to estimate the 2D global
position.

Iterative Closest 
Point

Uncertainty 
Estimate

Global Position Estimation
Chapter 4

Iterative Closest 
Point

Uncertainty 
Estimate

Global Position Estimation 
and Covariance

Processed Source 
Point Cloud

Target 
Point Cloud

Figure 4.1: The global position estimation step is divided into these two
parts. The input is the processed source point cloud from the previous

pre-processing step, as well as the target point cloud. The output from this
step is a global position estimate and its associated covariance that in the

next step (Chapter 5) is used as an observation in the EKF.

35
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4.1 Iterative Closest Point

The developed implementation of the ICP algorithm along with a method to eval-
uate its result are described in this section, which represents the first part in the
global position estimation step. Some factors that affect the convergence are de-
scribed as well. The green cloud in Figure 4.2 shows how the source cloud is
initially positioned with the position estimated by the EKF, as explained in Sec-
tion 3.2. The ICP algorithm aligns the source cloud to the global point cloud map
seen in blue, and thereby adjusts it to the global coordinate system.

Figure 4.2: Green source cloud is before ICP algorithm and red is after, blue
is the target cloud. Subset clouds are used for better illustration. The clouds

are seen from above in x and y coordinates.

4.1.1 Implementation

The input data used in the ICP algorithm are the outputs from the pre-processing
step, seen in Figure 1.1. In other words, the pre-processed source point cloud cre-
ated from the LIDAR sensor mounted on the vehicle, and the target point cloud
which in this system is equivalent to an elevation map of the area. As described
in the previous chapter, subset of points are extracted. Both these subset clouds,
as well as the whole clouds are used in this step.

In the previous pre-processing step, the source cloud is given an initial transla-
tion to the estimated position of the vehicle, described in Section 3.2, to give the
ICP algorithm better conditions and decrease wrong convergence. The algorithm
is applied in two steps in the developed system; first with the subset clouds and
then with the whole clouds, as described below. There are some extensions to the
algorithm as well, both found in Section 4.1.4.
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With Selected Subset

First, an ICP algorithm (from PCL) is applied where the subset source and tar-
get clouds containing the points with inclined surface normals are used as input.
This helps avoid wrong convergence as explained in Section 3.4. The point-to-
plane variant of ICP is chosen since it has been shown in [32] to have better
convergence. After finding the transformation matrix that minimizes the cost
function, it is applied to the source cloud which in an ideal case moves it close to
the global minimum.

Figure 4.3 shows the initial placement of the subset source point cloud in green
and the result after ICP is performed in red. The two visible lines in the source
cloud are road ditches that got extracted to the subset cloud since they have an
inclined surface. They are important environment features since they provide
sideways positioning.

Figure 4.3: The green cloud is the subset source cloud before the ICP
algorithm is performed. The red is after ICP, and the blue is the fixed target

subset cloud.

With All Points

After the source cloud has been relocated with the optimal transformation matrix
calculated by the ICP algorithm using the subset source and target clouds, seen
in Figure 4.3, the algorithm is applied again but with the whole clouds as input
to take all points into account. This adjusts the cloud in place and does not give
a very visible transformation as the ICP with subset points results in, since the
cloud is already translated to a local or global minimum. This step is mostly
needed so that the ICP evaluation method called fitness score, explained in the
next section, takes all points into account and becomes as accurate as possible,
which makes it easier to decide how correct the match is. The output from the
implemented ICP algorithm is the difference in global x, y and θ between the
initial position of source cloud, and the position where it is aligned to.
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4.1.2 Fitness Score

After performing an ICP algorithm, the match is evaluated by investigating the
relative position between the source and target point clouds. In Point Cloud Li-
brary, described in Section 2.7, there is a function called FitnessScore which can
be used for this purpose. The fitness score is found by calculating and summing
up the Euclidean distances between each point in the source cloud, to their clos-
est point in the target cloud. This score gives an idea of how close the two clouds
are located, and then also how accurate the match is.

d(s, o) =
1
Ns

Ns∑
i

|si − oi∗ |, (4.1)

where si is the ith point of the source cloud with its closest point oi∗ in the target
cloud and Ns is the total amount of points. This evaluation method is used in the
global localization system to determine if a match, i.e. a global position estimate,
found by ICP should be accepted or discarded.

There are some drawbacks with the fitness score. Clouds that look like they
have been correctly matched when visualized can be given a bad score due to
some poorly positioned points in the source cloud. The noise from unmapped
objects mentioned in Section 3.1.2 is most likely one of the factors contributing
to the faulty score. The opposite issue, where a cloud that is not matched well
visually but given a good score, could also happen because the ICP found a local
minimum instead.
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Figure 4.4: The fitness score and error for all studied point clouds. The
error is the euclidean distance from where the cloud should be positioned

to where ICP found a match instead. Blue dots are error and corresponds to
the left y-axis, red dots are fitness score and corresponds to the right y-axis.

Since the data used to create the source and target clouds are not completely simi-
lar, a zero fitness score is impossible to achieve. A low fitness score only indicates
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that the algorithm has found a good local minimum, it does not have to be the
global minimum. By studying a large amount of matches, a fitness score limit
is chosen. If a match has a score above the limit, it is seen as a bad match and
is discarded. Figure 4.4 shows the fitness score along with the error to the real
position of the studied matches and they are sorted by increased real error. Over-
all, the fitness score is increasing with an increased real error, but the drawbacks
of fitness score mentioned previously is also seen in the figure, as some matches
with low error have gotten a high fitness score and vice versa. By selecting the
fitness limit to 0.12, all the matches with low error will be accepted, and the
worst matches are discarded. This limit is only valid on the data set in this thesis
and should be reconsidered on other sets of data. Note that the outlier removal
method described further ahead in the thesis in Section 4.1.4 is used when these
values are produced, which has lowered the fitness score.

A disclaimer is that the fitness score is only compared against x and y error in
this test, and not rotational error. However, if a source cloud is wrongly rotated,
is is most likely that it has drifted away from the correct x and y position as well
since it will not fit into that position, unless the area is very flat. Therefore, if a
match has got a high fitness score and low x and y error, it is taken into account
that it can depend on wrong rotation of the source cloud.

4.1.3 Convergence factors

Except for how far away the source clouds are initially positioned, there are two
main factors that affect the ICP algorithm’s convergence; how informative the
area that the point clouds represent is and how similar the source and target
cloud used as input are. The purpose of this section is to evaluate the imple-
mented ICP algorithm, which is the first part in the global position estimation step.

Informative Areas

A factor that affects the accuracy of the ICP results is how informative the area
is. Since the target and source cloud only contains ground points, the only im-
portant information is height curves. In completely flat areas, a correct match
through ICP is impossible since it becomes an under-constrained situation. The
optimal condition is when the source and target cloud contains curves that to-
gether face all directions, which gives full constraint. An important environment
feature is road ditches, which help provide the algorithm with sideways (of the
vehicle) positioning since they often are located on each side of the roads.

Figure 4.5 shows a match where the vehicle is driving along a field with ditches
on each side. (a) shows the subset clouds, seen from above, containing the in-
clined height curves. (b) shows the whole clouds in a slightly horizontal view.
A road is seen in the diagonal in both figures. As mentioned, the ICP algorithm
is first performed with the subset clouds, and then again with the whole cloud
to take all points into account. It is clear in this situation that the algorithm can
relocate the source cloud to the road sideways, but it does not have enough infor-
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mation to position it along the road since there are no curves that gives guidance
in that direction. The match is 8.5 meters away from the ground truth position,
even though it is seemingly good positioned on the road sideways.

(a) Subset clouds. (b) Whole clouds.

Figure 4.5: An example of an area, which is informative to the side but is
uncertain along the road. Target cloud is in blue and merged source cloud is

in red.

To evaluate the performance of the subset clouds in this kind of area, another test
is made. Instead of both using the subset and whole clouds, only the whole clouds
seen in Figure 4.5 (b) are used as input. The result is that the source cloud gets
stuck near the initial position next to the road with an error of 10.5 meters, which
is worse than in the case where both subset and whole clouds are used. This is
because the gaps in the subset clouds provides important information which is
excluding incorrect positions, in other words local minimums. In summary, the
subset clouds can help provide better estimates, even in less informative areas as
in this case.

Figure 4.6: Subset clouds containing the inclined surfaces, after ICP
algorithm. The image shows a curved road and intersection. Target cloud is

in blue and source cloud is in red.
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Figure 4.6 shows another match. Unlike the source cloud in Figure 4.5, this cloud
contains more information because of the curved road and intersection that were
scanned by the LIDAR. The match is 1.7 meters away from ground truth. The
amount of information contained in a point cloud is preferred to be reflected in
the covariance estimate.

Similarity of Input Clouds

It is important that the source and target clouds used as input to ICP is similar
for the algorithm to be able to find an accurate match. As mentioned in Section
3.1, all the houses, trees and other objects have been removed from the two input
clouds. A source of error that occurs when the elevation map is processed, men-
tioned in [18], is that some forest areas can be mistaken for hills. It is also difficult
to approximate the surface underneath the trees, which leads to an inaccurate tar-
get map in forest environments. The same reasoning also applies to some extent
in urban environments, but the surface underneath is easier to approximate since
it is most often the same as the area around it.

The source clouds only contain ground points as well, as explained in Section
3.1. The ground point extraction algorithm works well in environments where
there are clear objects, as houses, but some unwanted points often get mistaken
for ground when there is a lot of vegetation. These points are removed as best
as possible with point cloud filters, for example statistical outlier removal men-
tioned in Section 2.1.2.

Figure 4.7: Subset point clouds containing points with inclined surfaces, in
forest route. Red is source cloud and blue is target cloud. Seen from above.

Since the ground points are extracted in different ways in the source and target
clouds, the similarity will decrease in areas that have a lot of objects. Therefore,
the uncertainty in forest environments is large, leading to less accurate conver-
gence. Figure 4.7 shows a match in a forest environment, where the source cloud
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is positioned almost correctly. The two clouds have different height curves even
though they represent the same position. The reason why ICP manages to posi-
tion the source cloud on the road even though the height curves of the two clouds
are different, is because of the gaps in the subset clouds where the road is. Since
the algorithm minimizes the distances between each point in the source cloud
to the closest point in the target cloud, all points strives not to be placed above
the gap. The result of this is that the gap in the source subset cloud often is
positioned above the gap in the target subset cloud.

4.1.4 Extensions of ICP

The implemented ICP can be altered with extensions to possibly improve the
result. This section presents three different extensions.

Outlier Removal after ICP

As discussed in the previous section, the similarity of the source and target cloud
is a convergence factor. A method that increases the similarity, and thereby in-
creases correct convergence, is proposed in this section. This is seen as an exten-
sion of the implemented ICP algorithm.

(a) Before. (b) After.

Figure 4.8: 2D example of how removal of more outliers can improve the
result. Red cloud is the source cloud and blue is the target, seen from the

side.

In the pre-processing step of this global localization system, outliers are removed
from the source cloud. Since it is difficult to know which points that are outliers,
a lot of them will remain in the cloud. When performing ICP as described in
Section 4.1.1, the algorithm tries to minimize the distance from all points in the
source cloud to the points in the target cloud, the outliers included. If the source
cloud has outliers floating on the top part of it, as for example vegetation seen
in Figure 3.5, the real ground points in the source cloud will be given a lower
position than the ground points in the target cloud. This is because the algorithm
tries to minimize the distance from the outliers to the target cloud as well. An
illustration of this is seen in Figure 4.8 (a).

The proposed method suggests that after the ICP algorithm is performed and
the source cloud is positioned in a global or local minimum, the distance to the



4.1 Iterative Closest Point 43

closest point in the target cloud is found for each point in the source cloud. If
this distance is larger than a certain value dmax, that point is seen as an outlier
and is removed from the source cloud. After all outliers are removed, another
round of the ICP algorithm is performed on the whole remaining source cloud.
Since this is only an adjustment step, only a few iterations are needed in ICP. An
illustration of the new aligned clouds, without outliers are seen in Figure 4.8 (b).
This also gives a more fair fitness score, since less outliers are added to the mean.
In the system, dmax is set to a distance that is mostly meant to remove outliers in
the form of vegetation, therefore, 0.25 m is chosen. Figure 4.9 shows an example
of this on real data, in an evironment with a lot of vegetation.

Figure 4.9: Outlier removal after ICP, in a forest environment. The green
points are more than 0.25 m away from the nearest point in the blue target

cloud, and will be removed. The red points remain in the source cloud.

Stochastic Initial Position

To investigate the possibility to increase the chance of ICP converging to the
global minimum, a method with this purpose is evaluated in this section.

An extension of the implemented ICP algorithm is inspired by the Stochastic
ICP described in [25]. As the article describes, a random Gaussian noise transla-
tion is added to the source cloud before each iteration of the ICP algorithm. If
the algorithm chooses about the same position more than once, it could indicate
that it has found the global minimum and the translation noise added before the
next iteration is reduced. This can cause the source cloud to be relocated far away
from the initial position if it does not manage to find the same position more than
once, which happens when tried in this system.

An altered method of the Stochastic ICP is developed in this master’s thesis which
puts more trust in the position estimated by the EKF, described in Chapter 5. The
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method adds different random translations before the first iteration to give the
source cloud multiple initial positions. The positions are chosen randomly from
normal distribution with zero mean, in other words the position estimated by
the EKF, and a variance of 10 meters to get a proper distribution. The computed
covariance could be used instead, but as seen later in Section 4.2.2, the covari-
ance becomes very optimistic and therefore a larger value is chosen to be used
instead. The ICP algorithm is performed from each of the randomly chosen posi-
tions, and also from the EKF’s estimated position without translation added, for
comparison. If too many initial positions are chosen, the computational cost gets
high. Therefore, only four initial positions are tried in this evaluation for exem-
plification. If the EKF’s estimated position is near a wrong local minimum, this
method can give the source cloud a chance to avoid wrong convergence when an
initial translation is applied. The best result out of the performed ICP algorithms
is chosen with the evaluation method fitness score described in Section 4.1.2.

(a) Initial position 1. (b) Initial position 2.

(c) Initial position 3. (d) Initial position 4.

Figure 4.10: Results of ICP with four different initial positions, where the
algorithm chooses the seemingly correct match.

Figure 4.10 shows a performance of this method where the ICP algorithm is per-
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formed from four different initial positions. (a) is the result when the source
cloud started from position estimated by the EKF, and the rest got a random
translation applied. (b) got the best fitness score and is also seemingly most ac-
curate. The system will register that position as a location of the vehicle. This is
the ideal result of this method, since it managed to relocate itself from the local
minimum that it otherwise would have converged to.

(a) Initial position 1. (b) Initial position 2.

(c) Initial position 3. (d) Initial position 4.

Figure 4.11: Results of ICP with four different initial positions, where the
algorithm chooses the seemingly incorrect match.

Figure 4.11 shows another result. (a) is given the initial position estimated by the
EKF, without translation added. The match that is seemingly nearest the global
minimum is (b), but the algorithm chose match (c) since it has the lowest fitness
score. The problematic part of this method is therefore to evaluate the matches
correctly all the time. Therefore, this method is only evaluated here and is not
further used in the designed localization system. However, this evaluation high-
lights the risk of using fitness score to determine the accuracy of ICP results. If
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an evaluation method with higher reliability than fitness score was found, this
method could be improved. This evaluation also shows how easy the ICP algo-
rithm finds local minimums, which is the main drawback of ICP.

UT variation

Another extension is to use the ICP based on the unscented transform, as de-
scribed in Section 2.4. This method is chosen because it has the possibility to
compute a covariance that would consider all the sources of error described in
Section 2.2.2, and should therefore be better than the other covariance estima-
tion methods.

The method is based on an amount, 2n+1, of sigma points being calculated where
n depends on the size of the state vector, which is 6 in this case. The sigma points
are, unlike Stochastic Initial Position, chosen in a deterministic manner given a
mean and covariance. The point cloud is transformed and ICP is performed (as
described in Section 4.1.1) for each sigma point, giving different transformation
matrices and the best matrix, based on the fitness score, is picked. This gives the
same issue as for Stochastic Initial Position where the fitness score could choose
an incorrect match. However, since this method chooses its initial positions in a
deterministic manner and that it allows for covariance computations, it is chosen
to be further evaluated in this global localization system. The covariance that
belongs to this ICP with UT variation is evaluated in the next section. All the
parameters that have been defined in Section 2.4 are chosen to be the same as the
ones in [6], except for κ which is discussed more below in Section 4.2.2.

The computational cost of this method increases by a lot since the ICP has to
be performed for all 13 sigma points. The ICP that is done on the whole point
cloud is the source for the majority of the cost because of the high amount of
points that the ICP has to go through. Therefore, this method cannot be used in
real time.

4.2 Uncertainty Estimate

The second and last part of the global position estimation step is to find the uncer-
tainty of the result provided by ICP, which is done by estimating the covariance.
Different covariance methods and an evaluation of these methods are found in
this section.

4.2.1 Covariance

The covariance is used in the EKF to weigh the position estimates given by ICP,
described further in Chapter 5. The covariance methods that are tested are the
UT based covariance estimate described in Section 2.4.3 (which requires the ICP
with UT variation), covariance with correspondences, and covariance with Hes-
sian where the last two are described in Section 2.3. The covariance is estimated
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in 3D since the point clouds are in 3D, but the elements of x, y and θ (rotation
around the z axis) in the covariance matrix are selected and placed in a 3 × 3 ma-
trix instead, denoted Rk in Section 2.6.1. This is because the EKF only estimates
2D positions, since the odometry measurements from FOI’s existing system, i.e.
the local position estimates, are in 2D. The covariance is estimated after the ICP
algorithm, when the source cloud has been aligned to the global coordinate sys-
tem, seen in Figure 4.2.

The different covariance estimation methods are implemented and tested sepa-
rately to be able to decide how well they capture the true variance. This is eval-
uated with the method called NEES, described in Section 2.5, and the evaluation
is found below.

4.2.2 Evaluation of Covariance Methods

To evaluate the performance of the different covariance estimation methods men-
tioned above, a test is performed. The covariance matrix is estimated for approx-
imately 20 source clouds (aligned with ICP) for each method to get an overall re-
sult, and the NEES-value is computed for each of these covariance matrices. The
mean of the NEES-values for each method is used to compare its accuracy. The
20 source clouds used in the test are produced as in the pre-process step. They are
from different environments such as field, forest, and urban, which is preferred
since it gives a more general result. More information about the exact routes
where the data is collected, is found in Chapter 6.

Table 4.1: The mean NEES results for the different covariance estimation
methods.

Method NEES
UT 7.26 · 103

Hessian 8.01 · 103

Correspondences 2.15 · 1012

The transformation error, x̃ in NEES, is computed by subtracting the position
where the source cloud is aligned by ICP, from the ground truth position given
by the GNSS. In other words the difference between estimated and real position.
The same is done for the angle θ, which is rotation around z. The GNSS used
as ground truth does not compute the real rotation of the vehicle. Therefore,
it is estimated as the slope of the path provided by the GNSS (the slope in the
ground truth x and y position). To take into account is that the GNSS used as
ground truth has an accuracy of < 3 meters, therefore, the NEES results cannot
be fully trusted. As mentioned in Section 2.5, for 2D cases the best NEES-value
is three. Table 4.1 shows the results of NEES for all the different covariance es-
timation methods tested. The results show that all estimation methods are very
optimistic, where the UT based method is the least optimistic and the method
based on correspondences is the most. Optimistic covariance means that the es-
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timated uncertainty is less than it should be. Therefore, it should be taken into
account that the uncertainty is larger than it appears.

The common factor why all methods are optimistic is that there are sources of
error, specific to this system, that are not considered. These sources could be out-
liers, deformation in the merged cloud caused by drift in the EKF (mentioned in
Section 3.2), or dissimilarities in the source and target cloud caused by removed
objects. Even though the UT based method takes the most sources of error into
account, it is not enough in this system. Further, that the covariance method
using Hessian is optimistic is expected from [4], due to the reasons stated in Sec-
tion 2.3.2, which is that the Gaussian noise assumed in the error is negligible
for a high amount of points and it only considers sensor noise. Another reason
could be that the assumption of the cost function being linearized if around the
convergence point is not an accurate representation. The covariance with corre-
spondences method is the highest, which is because it, as the method based on
Hessian, only takes sensor noise into consideration. It also uses a method that is
known to be optimistic, which is stated in Section 2.3.3, as well as having the
same assumption of the cost function as the method based on Hessian.

As mentioned in the introduction of this thesis, two different system variations
are created and are further evaluated in the experiment presented in Chapter
6. The conclusion of this covariance evaluation is that the UT based covariance,
used together with the UT based ICP, gets the best NEES-value and is therefore
used as one of the system variations. The other system variation uses the estimate
from the covariance with Hessian, since it is much less optimistic than covariance
with correspondences. To have in mind is that none of the covariance estimates
takes all possible sources of error into account and is therefore not fully realistic.

A future work would be to see if the results of the Hessian based method and
UT based method could be improved by increasing the white noise design pa-
rameter σ , as seen in the theory chapter. In this evaluation, σ for the Hessian
based method was set to 5 m to compensate for the lack of error sources that the
method takes into account. For the UT based method σ was set to 0.1 m, which is
the value used in the method’s reference article. It was not set to a higher value
since it was assumed that this method takes enough sources of error into account,
which it clearly did not. Unfortunately, this design parameter is not available
for the correspondence based method, which is why its NEES-value is still very
high compared to the others. Another parameter that has also been altered in
the UT based method is κ which is changed to 144. A lower value gives a higher
covariance estimate (with a more accurate NEES-value), but this makes the EKF
trust the position estimate less, while a higher value gives the opposite effect. The
drawback of having a too high or low value on κ is that the system can become
unstable.



5
Global Position Filtering

In this chapter, global position filtering obtained by an EKF is explained. This is
the last step of the system, seen in Figure 1.1. Figure 5.1 shows the corresponding
inputs and output of this step. The inputs are the global position estimate and co-
variance from the previous global position estimation step, also position estimation
and covariance from the odometry computations in FOI’s existing system. These
inputs are weighted by an EKF that provides a merged global filtered position for
each time step, which is the output of this step.

Extended Kalman 
Filter

Global Position Filtering
Chapter 5

Global Position 
Estimate (from ICP) 

and Covariance

Global Filtered Position 

Odometry and 
Covariance (from 

FOI's System) 

Figure 5.1: The global position filtering step, with its inputs and output.
The inputs are the estimations of a global position and covariance, as well
as the odometry and its covariance from FOI’s existing system. The output

is a filtered position which is sent back to the pre-processing step, thus
closing the loop.
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5.1 Extended Kalman Filter

As mentioned in Section 1.3, an EKF is used in the system to weigh the global
position estimates, provided by ICP in the previous step, together with odometry
estimates. In between the global position estimates (provided in average each
16.5 seconds), the EKF only relies on odometry (given in average each 0.05 sec-
onds). Since odometry drifts, the position estimates from ICP is used to correct
this drift as best as possible. Figure 5.2 shows an illustration of how the EKF
corrects its position when a global position estimate is received.

1

2

3

Figure 5.2: Illustration of how the EKF corrects its filtered position when a
global position estimate from ICP is received. 1 represents the position
where the source cloud was initially positioned, 2 is the position on the

reference map where the source cloud is aligned to. 3 is the position of the
vehicle when the ICP computations are done (the vehicle is moving during

these computations), which is when the EKF corrects its position.

State Model

The odometry information that is used from FOI’s system is the difference be-
tween the current position and rotation of the vehicle and the previous, which is
expressed in the coordinate system of the vehicle. This is illustrated in Figure 5.3.
To be able to use this information in this global localization system, it needs to be
expressed in global coordinates, as seen in Figure 5.4.
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k-2 k-1
(a) Vehicle position

for k-1 relative to k-2.

k-1 k
(b) Vehicle position for

k relative to k-1.

Figure 5.3: Difference in vehicle position shown for two time steps. This,
along with the covariance for each step, is the information provided by

FOI’s odometry system.

k-2

k-1

k

Figure 5.4: The resulting odometry path from the state model, when a
starting pose in k − 2 is provided. This is the position differences seen in

Figure 5.3, which has been transferred to the global coordinate system and
combined.

To transfer the relative positions in Figure 5.3 to global positions in Figure 5.4,
a state model based on the odometry model found in (2.49)-(2.51) is used. The
state model becomes

xkyk
θk

 =

xk−1 + δtransk cos(θk−1 + δrot1k )
yk−1 + δtransk sin(θk−1 + δrot1k )

θk−1 + δrot1k + δrot2k

 + wk , (5.1)

where δtransk , δrot1k and δrot2k are assumed given input from the odometry. The
odometry position differences from FOI’s system are denoted ∆x̂ok , ∆ŷ

o
k , and ∆θ̂ok .

Since they are in the coordinate frame of the vehicle, they must first be translated
into relative motion parameters

δtranskδrot1k
δrot2k

 =


√

(∆xok)
2 + (∆yok )2

arctan2(∆yok ,∆x
o
k) − θ

o
k−1

∆θok − δrot1k

 , (5.2)



52 5 Global Position Filtering

which can then be used in (5.1) to compute the global coordinates by taking the
previous position and rotation into account. A more detailed illustration of how
the position differences and the relative motion parameters correlate is found in
Figure 2.7.

The noise wk is assumed to be Gaussian distributed with mean zero and covari-
ance Qk (wk ∼ N (0, Qk)). The covariance matrix of ∆x̂ok and ∆ŷok is given by FOI’s
system, denoted P ok . How it is computed is out of the scope of this thesis, but it
is shown in a previous thesis [14] to provide successful results and is therefore
used in this thesis as well. The given covariance is also in the coordinate frame
of the vehicle. To be able to use it in Qk , it must be rotated to the global coordi-
nate frame (since Qk is in global coordinates), which is done by rotating it by θk .
The x and y part of Qk , denoted Q

xy
k , is the left upper 2 × 2 corner of the 3 × 3

Qk . It is obtained by Qxyk = RθP ok (Rθ)T , where Rθ is the orthogonal 2D rotational
matrix for rotation by θk . This transformation of covariance between different
coordinate systems is motivated in [39]. Unfortunately, FOI’s system only com-
putes rotational uncertainties in quaternions, therefore, a simplification is made
that the θ part of Qk is set to 0.01 which is the error of the gyroscope in the IMU
[42].

To be able to linearize the nonlinear state model around the current estimate,
the Jacobian Jf containing the partial derivatives of (5.1) is needed

Jf =


1 0 −δtransk|k−1

sin(θ̂k|k−1 + δrot1k|k−1)
0 1 δtransk|k−1

cos(θ̂k|k−1 + δrot1k|k−1)
0 0 1

 . (5.3)

Observation Model

The observation model is based on the output of the implemented ICP algorithm,
and this output is a relative offset from the position where the source cloud was
initially positioned before ICP. This can be seen as a global position if the offset
is added to the initial position, i.e. the observation zk obtained from ICP is

zk =

x
o

yo

θo

 +


∆xICP

∆yICP

∆θICP

 , (5.4)

where xo, yo and θo are the states where the source cloud is initially positioned
in. ICP moves the source cloud by ∆xICP , ∆yICP and ∆θICP , and by adding these
differences to the initial position, the resulting global position is found. An illus-
tration of this is seen in Figure 5.2 where xo, yo and θo represents position 1, and
∆xICP , ∆yICP and ∆θICP is the difference between position 1 and 2.

The observation model is therefore described as
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zk =

xkyk
θk

 + vk , (5.5)

where zk is the computed observation, i.e. the global position from ICP. The
initial position of the source cloud [xo yo θo]T is chosen as the estimate of the
true position [x̂k|k−1 ŷk|k−1 θ̂k|k−1]T . The observed error vk is seen as Gaussian dis-
tributed noise with mean zero and covariance Rk (vk ∼ N (0, Rk)). As described in
Section 4.2.2, two different system variations are created that uses different meth-
ods to estimate the covariance Rk . The first uses UT based covariance and the
second uses covariance with Hessian, the theory about these methods are found
in Section 2.4.3 and 2.3.2 respectively. Since the observation model is linear, the
Jacobian Jh is the identity matrix (3 × 3).

Prediction and Correction Step

The prediction step is performed as in (2.41) and (2.42). The correction step be-
gins with computing the Kalman gain Kk as in (2.43), which is a 3 × 3 matrix.
It decides how much the EKF should trust the observed states, and how much
it should trust the predicted states (5.1), based on their covariance estimates Rk
and Qk . If Rk is very small, i.e. the system trusts the ICP match, then Kk will go
towards the identity matrix.

To compute the corrected state vector (2.44), an expression for the innovation
is needed. The innovation is, as mentioned in the theory chapter, the difference
between the computed observation and the estimated. Since [xo yo θo]T is chosen
as [x̂k|k−1 ŷk|k−1 θ̂k|k−1]T , the innovation can be found asx

o

yo

θo

 +


∆xICP

∆yICP

∆θICP

 −
x̂k|k−1
ŷk|k−1
θ̂k|k−1

 =


∆xICP

∆yICP

∆θICP

 . (5.6)

With this, the corrected state vector equation can be expressed asx̂k|kŷk|k
θ̂k|k

 =

x̂k|k−1
ŷk|k−1
θ̂k|k−1

 + Kk


∆xICP

∆yICP

∆θICP

 . (5.7)

Since the vehicle travels during the ICP computations, an assumption is made
that [∆xICP ∆yICP ∆θICP ]T is still valid after the computations are done, which
takes about 8 seconds. It is thus assumed that the odometry drifts very little dur-
ing this time. If refereed to in Figure 5.2, the difference between position 1 and
2 is used to update position 3. A larger study how this assumption affects the
system has not been made due to time limitations. The correct way to update a
current state with older measurements is to use an out-of-sequence update step,
as described in [1].
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When the EKF has provided a global position (which is each time step k, between
each output from ICP it only depends on the odometry), it is sent to the pre-
processing step, which closes the system loop. There, it is used to merge a new
source cloud that after processing is sent to the global position estimation step
where the ICP algorithm is performed. There, a global position is estimated and
sent, once again, to the global position filtering step. The loop continues as long as
sensor data is provided.



6
Experimental Evaluation

The developed global localization system is evaluated through experiment. The
purpose is to produce and evaluate results for the entire system and not just
specific components. The data used in the experiment is collected by driving a
vehicle, that carries the sensors, along different routes. The goal is to provide an
estimated global position of the vehicle based on that data. First in this experi-
ment chapter, the hardware and software of the system are described, then the
routes and their results are presented. The results shows the ICP matches and
their error to ground truth, along with the error of the EKF which estimates the
vehicle position.

6.1 Hardware and Software Setup

The hardware setup is described in Section 3.1, and viewed in Figure 3.2. In sum-
mary, there is a Velodyne LIDAR sensor attached to the roof of the vehicle which
has an integrated GNSS and IMU. There is also a Sokkia GRX1 attached to the
roof. CAN bus data from the vehicle is measured as well.

The software is written in C++, where Point Cloud Library (PCL) described in
Section 2.7 is partially used. The system is implemented as three different ROS
nodes [29], see illustration in Figure 6.1. The nodes corresponds to the three
steps in the system, pre-processing (Chapter 3), global position estimation (Chap-
ter 4), and global position filtering (Chapter 5), which have been described in the
previous chapters.
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Figure 6.1: Illustration of the node system.

6.2 Global Localization System Variations

Two variations of the global localization system are created for comparison, and
they are listed below. Both variations have the setup seen in Figure 6.1, but differ-
ent algorithms in the global position estimation node. The parameters used in the
two system variations are found in Table 6.1 and 6.3. Note that the parameter σ is
used in both covariance with Hessian, (2.19), and in UT based covariance, (2.37).
More details about the other parameters are found in the previous chapters.

• System variation 1 uses the ICP implementation, described in Section 4.1.1,
which performs the algorithm in two steps. First, with the subset clouds
which helps avoid wrong convergence as described in Section 3.4 and 4.1.3.
After that, ICP is performed again but with the whole clouds to take all
points into account. The extension method that removes outliers after ICP,
described in Section 4.1.4, is used as well to get a more accurate fitness
score. ICP matches are either accepted or discarded depending on their
fitness score, described in Section 4.1.2. The covariance is computed using
the method based on Hessian, which has the second best NEES value out of
the three tested methods, but it is still optimistic so the system will put a
lot of trust in the position estimates from ICP. If more work would be put
in optimizing the parameters, the covariance could be made less optimistic.
As mentioned before, the ground truth used in the NEES computations have
an accuracy of < 3 m. Therefore, it is possible that the covariance is less
optimistic than it occurs. The parameters used in this method are listed in
Table 6.1.



6.3 Routes 57

• System variation 2 uses the UT based ICP algorithm described in Section
4.1.4. It also has both the subset and whole clouds as input. The extension
method that removes outliers after ICP, described in Section 4.1.4, is used as
well. This system variation calculates the UT based covariance, described
in Section 2.4.3 and motivated in Section 4.2, which is used by the EKF.
Fitness score is used in this method as well. The parameters that are used
are listed in Table 6.1 and 6.3.

An additional system variation is evaluated in the first route as well, this variation
uses the exact same implementation as System variation 1 with the exception
that it only uses whole clouds instead of both subset and whole. This variation
provides the same kind of result on all of the routes, and its result is therefore
only presented in the first route.

Table 6.1: Common parameters for both methods.
Minimum inclination in subset cloud 6◦

Fitness score threshold 0.12 m
Voxel sampling box size 0.06 × 0.06 × 0.06 m3

Neighbours used in statistical outlier removal 150
STD multiplier used in statistical outlier removal 1

Radius search for estimating normals in source cloud 1 m
Radius search for estimating normals in target cloud 1.4 m

ICP iterations when first using subset clouds 100
ICP iterations when using whole clouds 10

Table 6.2: Parameters used in system variation 1.
White noise variance, σ 5 m

Table 6.3: Parameters used in system variation 2.
Standard deviation of translation, σcov,xt

0.2√
3
m

Standard deviation of rotation, σcov,xr
10

180 ·
√

3
·π m

α 1
β 2
κ 144

White noise variance, σ 0.1 m

6.3 Routes

In this section, three different routes and their results are presented. The vehicle
is stationary at the start and end of the route, in between the speed is kept at
20-30 km/h except at intersections. The localization results using the two system
variations, described in Section 6.2, are presented in the subsections belonging
to each of the routes. The starting position of each route is assumed to be known
and evaluating the localization along the route is the focus.
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6.3.1 Ground Truth

For ground truth, the current GNSS position is saved for each given EKF esti-
mate and each ICP match. As mentioned before, both a Sokkia GRX1 and an
integrated GNSS measures the position of the vehicle. The integrated GNSS up-
dates its position four times each second, while the Sokkia GRX1 only updates
once each second. During good conditions, the Sokkia GRX1 usually provides
very accurate positioning. In this experiment, it unfortunately did not find a fix
solution very often. The cause is probably that the used Sokkia GRX1 is rather
old and has access to fewer satellites than the more modern ones. By comparing
positions from the Sokkia GRX1 that received a fix solution with the correspond-
ing positions provided by the integrated GNSS, it is shown that the error is < 3 m.
Therefore, the integrated GNSS is seen as more suitable to use as ground truth.
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6.3.2 Urban/Field

The first route to be evaluated is shown in Figure 6.2. The route starts in an urban
environment and then goes along a field. This route is chosen to observe the
behaviour of the localization system in an area where houses have been removed.
This often causes dissimilarity in the source and target cloud, discussed in Section
4.1.3. There are also some field areas in the route with ditches on each side of the
road, which as mentioned before is a helpful environment feature.

Figure 6.2: Aerial map with route 1 marked, the vehicle moves from point
A to B. The map is from the website Eniro, and is produced by Visma

Optiway.

Figure 6.3 shows the graphic result as a trajectory seen from above when us-
ing system variation 1 that uses the ICP algorithm without extensions, and the
method based on Hessian to compute the covariance. Figure 6.4 is the result from
system variation 2 where the UT based ICP is used to compute covariance, which
affects how much the EKF trusts accepted ICP matches.

In the figures, the dark blue line is the global position filtered by the EKF. The
ICP matches used as observations in the EKF are green (if accepted match) and
yellow (if discarded match) dots. If a match is accepted the EKF will update its
position. As seen in the figures, the EKF updates its position a while after the
green matches. This is because the vehicle travels while the ICP algorithm is
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computed. The dots seen in the figure also represents the middle of each merged
cloud, and not the end. The odometry path provided by FOI’s system, which is
used as input to the dynamical model in the EKF, is the light blue line. Since
these are provided in local coordinates, the path is positioned so that the starting
position is aligned with the red GNSS path. The grey map used as background
represents the elevation map used as target cloud, where objects like houses and
trees have been removed. The layout is the same for all figures in the different
types of routes.
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Figure 6.3: Urban/field route using system variation 1.
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Figure 6.4: Urban/field route using system variation 2.

Table 6.4: Numeric results of urban/field route
using system variation 1 and 2.

Description Variation 1 Variation 2
Mean error of EKF path [m] 5.61 8.19

Mean rotational error of EKF path [rad] 0.038 0.039
Mean error of all accepted matches [m] 4.05 5.17

Mean error of all matches [m] 5.85 7.48
Mean computational time per ICP algorithm [s] 8.07 59.01

As seen in Figure 6.3 and 6.4, not all matches are accepted. This can be explained
by dissimilarity in the source and target cloud which often is the case in areas
where landmarks, such as houses and trees, have been removed, which are dis-
cussed in Section 4.1.3. The 4th, 5th and 6th match using variation 1 and the 4th
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and 6th match using variation 2 are not accepted, and are all in an area where
there are houses in real life.

(a) First part. (b) Middle part. (c) Last part.

Figure 6.5: Parts of the urban/field route, where the black lines represents
the ground truth for that specific filtered position. These figures do not

compare to any of the results presented above, it is only used as an example.

The mean error of the EKF filtered position is 5.61 meters and 8.30 meters in
variation 1 and 2 respectively, which can seem like much if looking at the paths
but Figure 6.5 shows that even though the blue filtered position path is close to
the red ground truth, it sometimes falls behind. It is because the EKF only has ac-
cess to odometry measurements during that time since no matches are accepted,
which causes drift. This can be seen in (b). In (c), two matches are accepted
which put the filtered position on the correct path again. The rotational error is
fairly small in all of the routes, which is also seen in the figures.

If comparing the two system variations, variation 1 performs better with regards
to the mean error of the EKF path and the matches. As mentioned, in the UT
based ICP, the ICP algorithm is performed from 13 different initial positions to
be able to compute the covariance. The best result out of these 13 performances is
chosen based on fitness score, however, fitness score is shown to be a risky evalua-
tion method. This can cause the UT based ICP to choose incorrect positions some
times, which can be the cause of the bad performance in this route. If a more
reliable method for evaluating the results were to be found, the performance of
the UT based ICP could be improved. System variation 2 also has a much higher
computational time, which is because of the 13 ICP algorithms that has to be per-
formed. For the system to keep up with the calculations, the rosbag containing
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the data was played at a lower speed than real time. System variation 1 on the
other hand can be used in real time since it has lower computational time.

To take into consideration when comparing the two system variations is that be-
cause of the different computational time, the source clouds are not completely
the same in the two variations even though it is the same route. The initial posi-
tions of the source clouds before ICP is performed are different as well, since the
EKF in the different system variations estimates different paths.
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Figure 6.6: Urban/field route using system variation 1, but only whole
clouds are used as input and not the subset clouds, which gives bad result.

The performance of the subset clouds, which are used in both of the system vari-
ations, are evaluated in this route as well as an additional system variation. As
mentioned in Section 3.4, a way to increases the chance of avoiding incorrect local
minimums is to choose a source and target cloud subset containing points whose
normals have high inclination, as input. It is used in both of the system variations
that are evaluated in this experiment. Figure 6.6 shows the additional system that
is similar to System variation 1 but it uses whole clouds. If compared to the re-
sult in Figure 6.3 when subset clouds are used, the performance is drastically
degraded. This result shows that using the subset clouds increases convergence
to the global minimum. If using only the whole source clouds, they do not move
towards the correct position since they get stuck in an incorrect local minimum
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very quickly. This is the case since the whole target cloud contains much more
local minimums than the subset target cloud and this causes the global position
path, estimated by the EKF, to only follow the odometry path.
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6.3.3 Field

The second route to be evaluated is shown in Figure 6.7. The route goes along
a field, where a single house and some forest groves are passed. This route is
chosen to test the performance of the localization system in an area with mostly
clear ground and no landmarks. There are road ditches through out the whole
route, which is an important environment feature. Figure 6.8 shows the graphic
result of the field route using system variation 1, and Figure 6.9 shows the same
route but using system variation 2.

Figure 6.7: Aerial map with route 2 marked, the vehicle moves from point
A to B. The map is from the website Eniro, and is produced by Visma

Optiway.
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Figure 6.8: Field route using system variation 1.

Table 6.5: Numeric results of field route using system variation 1 and 2.
Description Variation 1 Variation 2

Mean error of EKF path [m] 3.40 3.45
Mean rotational error of EKF path [rad] 0.025 0.02
Mean error of all accepted matches [m] 3.24 4.04

Mean error of all matches [m] 2.86 4.11
Mean computational time per ICP algorithm [s] 9.26 69.34
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Figure 6.9: Field route using system variation 2.

In this route, the performance of both system variations is rather equal, but to
have in mind is that the error of the GNSS used as ground truth is < 3 meter.
Since a lot of matches are accepted, a lot of observations are sent to the EKF
which corrects the estimated position. If comparing the EKF path in the result
figures, it can be seen that system variation 1 trusts the matches more, this is
because it uses the more optimistic Hessian method to compute the covariance.
Therefore, the estimated position from the EKF overshoots some times as seen in
Figure 6.8. System variation 2 trust the matches less, therefore, it does not over-
shoot as much as system variation 1.

The fitness scores compared to the actual error are found in Figure 6.10 and 6.11.
The fitness score correlates to the error fairly good, but not always. The 6th match
in Figure 6.9 is seemingly good positioned on the road, but the error is 7.5 meters.
This case is similar to the one described in Section 4.1.3, Figure 4.5, since both
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areas only contains height curves in the form of ditches. It provides good posi-
tioning sideways on the road, but both areas are missing height curves in other
directions. This makes it almost impossible for ICP to provide positioning along
the road, since there is no information in that direction. The reason why fitness
score became low is because ICP has found a local minimum which is very similar
to the global minimum. The conclusion of this is therefore that fitness score is not
a fully reliable method to determine the precision of the ICP results, since it can
not differentiate between local and global minimums. The correlation between
fitness score and error is similar in the first route and is therefore not presented
there as it would not add any new insights.
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Figure 6.10: Blue dots are error and corresponds to the left y-axis, red dots
are fitness score and corresponds to the right y-axis. System variation 1.
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Figure 6.11: Blue dots are error and corresponds to the left y-axis, red dots
are fitness score and corresponds to the right y-axis. System variation 2.
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6.3.4 Forest

The last route to be evaluated is shown in Figure 6.12. This route is chosen to
be in the experiment to evaluate the performance of the localization system in a
dense forest area. Based on discussions about similarity of point clouds, Section
4.1.3, this is the worst condition for ICP. Figure 6.13 shows the graphic result of
the forest route using system variation 1, and Figure 6.14 shows the results using
system variation 2.

Figure 6.12: Aerial map with route 3 marked, the vehicle moves from point
A to B. The map is from the website Eniro, and is produced by Visma

Optiway.
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Figure 6.13: Forest route using system variation 1.

Table 6.6: Numeric results of forest route using system variation 1 and 2.
Description Variation 1 Variation 2

Mean error of EKF path [m] 3.35 2.92
Mean rotational error of EKF path [rad] 0.073 0.069
Mean error of all accepted matches [m] 3.08 2.18

Mean error of all matches [m] 4.72 1.82
Mean computational time per ICP algorithm [s] 6.56 72.54
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Figure 6.14: Forest route using system variation 2.

As discussed in Section 4.1.3, the uncertainty in dense forest areas is large be-
cause of the dissimilarity in source and target cloud, caused by the different
ground approximations. This is improved by using the extension method that
removes outliers after ICP, described in Section 4.1.4.

Even though some matches have found the global minimum, they are not ac-
cepted. This is because they got a high fitness score, seen in Figure 6.15 and 6.16.
For example, the 3rd match in Figure 6.14 has found the global minimum, but
is discarded. If comparing the fitness score and error figures in the forest route,
with those in the field route, there are less correlations in the forest route. If the
fitness score limit is increased more matches would be accepted, but it also adds
more uncertainties since wrong converged matches could be accepted.
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Variation 2 performed better than variation 1 in this route. The possible reason is
that variation 2 uses a less optimistic covariance estimation method, and because
of the many uncertainties that a dense forest environment brings, it is wise to
trust the matches less.
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Figure 6.15: Blue dots are error and corresponds to the left y-axis, red dots
are fitness score and corresponds to the right y-axis. System variation 1.
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Figure 6.16: Blue dots are error and corresponds to the left y-axis, red dots
are fitness score and corresponds to the right y-axis. System variation 2.

6.3.5 System Variation Recommendation

It is difficult to determine which system variations performs best in the overall
case since different environments requires different solutions. Also, as mentioned
before, the variations do not have the exact same source clouds as input, which
means that they cannot be fully compared since they have different prerequisites.
If comparing them separately and solely focusing on how they perform in finding
the actual position and "follow" the GNSS track, then both variations are viable.
Although, variation 1 has the computational advantage and had smaller errors in
the urban/field and field route. In these kind of areas, the system profits from
using variation 1 which trusts the matches more. It can indicate that even if a
match has some uncertainties, it can still provide a better estimate than odome-
try. In areas with higher uncertainties, such as dense forests, system variation 2
performs better since it computes less optimistic covariance estimates. To have
in mind is that the GNSS used as ground truth has an accuracy of < 3 meter.
Therefore, when comparing the two variations, it is not completely certain that
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that system variation 1 actually performed better at the first two routes, and vice
versa.

The UT based ICP tests 13 different initial positions to be able to compute the
UT covariance. The best ICP result out of the 13 initial positions is chosen based
on fitness score. Since fitness score is a risky evaluation method, it is not entirely
certain that the best is always chosen. Therefore, if a more reliable evaluation
method was found, system variation 2 would be improved. If a graphics card
were to be used, then the computational time could be decreased, since it can
speed up the process by relieving some of the heavy computations off the CPU.





7
Conclusion and Future Work

In this chapter, the conclusions related to the purpose and questions that this
thesis addresses are presented. Future work is found as well.

7.1 Conclusion

An ICP based global localization system that provides the position of a driving
vehicle, has been developed in this thesis. The purpose of the system is to be an
alternative to GNSS, which can be inaccessible or provide low precision in some
environments. The developed system has been evaluated in a real time experi-
ment where the goal was to localize a vehicle while it was driving different routes.

It has been shown that it is difficult to provide an accurate uncertainty estimate of
ICP. The different methods that have been evaluated are UT based covariance, co-
variance with Hessian, and covariance with correspondences. The result showed
that the UT based method was the least optimistic, the Hessian method was more
optimistic and the correspondences method was the worst. The result from co-
variance with Hessian and covariance with correspondences are as expected since
they only consider sensor noise as the source of error, while the UT based variant
considers convergence and under-constrained as well. Since some sources of er-
ror, for example outliers in the source cloud or dissimilarity in source and target
cloud, are not represented in any of the covariance estimates, none of the meth-
ods provide fully correct estimates. Even though the UT based covariance gave
the least optimistic result, it can not be fully recommended if choosing between
the three investigated covariance methods. This since it results in a very high
computational time which makes it unsuitable to use in real time. If the compu-
tational time was not an issue or if the UT based system was faster, then the only
thing that needs to be corrected is the optimistic covariance estimate. This can
be done by adjusting the parameters to fit the system better.

75
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The results provided by ICP have shown to be rather unreliable some times, and
are not provided frequently enough to be the only source of position estimates in
the localization system. Therefore, odometry position estimates were used as a
second source. To merge these estimates, an EKF was implemented in the system
which weights the estimates based on their covariance. As mentioned, it has been
shown that the covariance of the ICP results are not fully accurate. Therefore,
the performance of the EKF is decreased since it can not weight the estimates
correctly. However, the experiment shows that the overall estimated vehicle posi-
tions that the EKF provides are viable and localization within a couple of meters
from ground truth is provided.

The largest downside with the ICP algorithm is that it does not differentiate be-
tween local and global minimums. No solution has been found that guarantees
convergence to the global minimum, but one successful method that increases
this chance has been developed. The approach is to exclude local minimums by
removing a large amount of points and only keeping the most informative. This
because by removing points from the target cloud, some local minimums are re-
moved as well. By removing the same points from the source cloud, the similarity
is retained, and by keeping the most informative points, the ICP algorithm will
not be under-constrained.

The developed global localization system is far from perfect and there are sev-
eral improvements that would increase the localization performance. Using ICP
with a global point cloud map as reference together with odometry to provide the
position estimates works, but is not optimal at all times. Although it provides ro-
bustness in such way that the system works regardless of landmarks. However,
too many landmarks, as in a dense forest, can decrease the performance of ICP
since the source and target cloud becomes less similar in these areas. It is believed
that the best approach to increase robustness to the system would be to integrate
it with FOI’s existing feature based SLAM system. It would result in even more
sources of position estimates that the system can rely on. Other improvements
are found in the next section about future work.

7.2 Future Work

In the experiment, the starting position of each route was assumed to be known.
Therefore, a future improvement would be to develop a method that can find the
starting position by only using the point cloud data and evaluate how plausible
it is that the position is correct.

A future work would be to improve the covariance estimates by including more
sources of error, so that the EKF is provided with a more accurate uncertainty of
ICP. Another improvement to the system, as discussed a lot in this thesis, would
be to find a better way to evaluate ICP matches than with fitness score.
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Since a lot of parameters are used in the system, for example number of scans
used in the merged cloud, and the size of the voxels when downsampling the
cloud, more work could be done on optimizing these which probably would im-
prove the system.

The outlier removal method that is used after ICP, described in Section 4.1.4,
could be further evaluated. For example look into the relationship between the
number of removed points and the accuracy of the match. If a low amount of
points are removed, it could indicate that there is a good match.

As mentioned previously, an integration of this global localization system to FOI’s
existing system could increase robustness and give better position estimate to the
EKF, but there is also the possibility that it could be changed to an unscented
Kalman filter or that the EKF is not needed at all.
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