
RE S EARCH ART I C L E

Empirical analysis of practitioners’ perceptions of test flakiness
factors

Azeem Ahmad | Ola Leifler | Kristian Sandahl

Linköping University, Linköping, Sweden

Correspondence
Azeem Ahmad, Department of Computer
Science, Linköping University,
581 83 Linköping, Sweden.
Email: azeem.ahmad@liu.se

Funding information
Chalmers Tekniska Högskola; Linköpings
Universitet

Summary
Identifying the root causes of test flakiness is one of the challenges faced by
practitioners during software testing. In other words, the testing of the soft-
ware is hampered by test flakiness. Since the research about test flakiness in
large-scale software engineering is scarce, the need for an empirical case-study
where we can build a common and grounded understanding of the problem as
well as relevant remedies that can later be evaluated in a large-scale context is
a necessity. This study reports the findings from a multiple-case study. The
authors conducted an online survey to investigate and catalogue the root
causes of test flakiness and mitigation strategies. We attempted to understand
how practitioners perceive test flakiness in closed-source development, such as
how they define test flakiness and what practitioners perceive can affect test
flakiness. The perceptions of practitioners were compared with the available
literature. We investigated whether practitioners’ perceptions are reflected in
the test artefacts such as what is the relationship between the perceived factors
and properties of test artefacts. This study reported 19 factors that are
perceived by professionals to affect test flakiness. These perceived factors are
categorized as test code, system under test, CI/test infrastructure, and organiza-
tion-related. The authors concluded that some of the perceived factors in test
flakiness in closed-source development are directly related to non-determinism,
whereas other perceived factors concern different aspects, for example, lack of
good properties of a test case, deviations from the established processes, and
ad hoc decisions. Given a data set from investigated cases, the authors
concluded that two of the perceived factors (i.e., test case size and test case
simplicity) have a strong effect on test flakiness.

KEYWORDS
flaky tests, non-deterministic tests, practitioners’ perceptions, software testing, test smells

1 | INTRODUCTION

Regression testing, automatic or manual, is intended to ensure that changes made in any part of the system do not
break existing functionality. Developers submit code changes with the expectation that test failures will be associated
with the code modifications. Unfortunately, rather than being the result of changes to the code, some test failures occur
due to flaky tests. In the literature, the most common definition of a flaky test is: a test that exhibits both passing and
failing outcomes when no changes are introduced into the code base [1]. King et al. extend this definition [2]: “flaky
tests exhibit both passing and failing results when neither the code nor test has changed”. Flaky tests are defined as
“unreliable tests whose outcome is not deterministic.”

Received: 15 April 2021 Revised: 2 August 2021 Accepted: 5 August 2021

DOI: 10.1002/stvr.1791

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Software Testing, Verification & Reliability published by John Wiley & Sons Ltd.

Softw Test Verif Reliab. 2021;e1791. wileyonlinelibrary.com/journal/stvr 1 of 24
https://doi.org/10.1002/stvr.1791

https://orcid.org/0000-0003-3049-1261
mailto:azeem.ahmad@liu.se
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/stvr
https://doi.org/10.1002/stvr.1791
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.1791&domain=pdf&date_stamp=2021-08-24

Many large-scale software projects suffer from a high amount of test flakiness. For example, Google has reported
that 80% of failing tests were due to flakes and only about 20% were actual regressions [3]. Another study confirmed
1 in 7 of the tests at Google sometimes fail due to test flakiness [4]. Labuschagne et al. studied 61 Java projects to
examine test failures. They concluded that 13% of these failures were due to flaky tests [5]. Hilton et al. [6] reported that
half of all builds failed due to tests failures containing flakiness. Flaky tests are common in large code bases, and the
current approaches to handling flakiness are not satisfactory [7]. We have observed that current studies for addressing
test flakiness mostly depend on software artefacts (i.e., source code and test cases), which are just a small part of the
bigger problem, and many core issues are still not addressed for test non-determinism. In this study, we therefore take a
step back to investigate the perceptions of test flakiness among practitioners in a closed-source development. We believe
that practitioners at software companies are struggling to understand the root causes of test flakiness and how to avoid
or reduce it, thus forming a local and narrow opinions about test flakiness. Practitioners sometimes favour local
opinion over empirical evidence when adopting new techniques, which makes perception important [8]. The need to
understand practitioners’ perceptions with respect to software engineering has received significant attention from the
scientific community. Researchers have investigated practitioners’ perceptions of continuous integration [9], software
design (e.g., code smells or exception handling) [10-13], software testing [14-16], and software quality [17-20] and have
observed differences in practitioners’ perceptions of the subjects under investigation. Since flaky tests are a serious
concern of software professionals, we decided to investigate professionals’ perceptions about what factors are perceived
to affect test flakiness. Capturing these perceptions together with the comparison of prior work will enhance the
understanding of test flakiness to an extent where it is non-ambiguous resulting in avoiding problems of people
misunderstanding each other. A similar approach was adopted by Eck et al. [21] in a study where they investigated
developers’ perceptions of the causes, fixing efforts, significance, and challenges of test flakiness in an open-source
project (Mozilla).

In addition to understanding the perceptions among practitioners, we investigated whether or not the developers’
perceptions match with what they have marked as flaky or not. The idea is to investigate what practitioners perceive
and whether these perceptions are reflected in the test artefacts. Only those factors that relate to properties of test code
are assessed in this way such as test case simplicity and size. For example, do flaky tests contain on average more
assertions than non-flaky tests? Are flaky tests bigger (i.e., lines of code)? The other factors such as perseverance of a
team to detect and prevent flakiness will not be related to properties of test code, thus were not included in the
investigation.

Several studies have investigated the relationship between test smells and test flakiness [7,22] but did not
conclusively state that the test flakiness is only caused by the test smells. We inspected test artefacts at two companies
and listed test smells that induce test flakiness together with corresponding mitigation strategies. We investigated the
following research questions in this study:

The major contributions of this paper are as follows.

C1: The survey results about what are the root causes in test flakiness and how practitioners in closed-source industry
manage test flakiness. (RQ1, Section 4.1)

C2: A list of identified test smells that are known to induce test flakiness in test artefacts as well as the mitigation
strategies to address those test smells. (RQ1, Section 4.2)

C3: An attempt to study practitioners’ perceptions of test flakiness, such as how they define test flakiness and what
factors (other than test smells), they believed, can either increase or decrease test flakiness. These perceived factors
were further mapped to current literature to categorize them. (RQ2, Section 4.3)

C4: A comparison of our findings with what was presented by Eck et al. [21]. During our study, we identified 8 new
factors that have not been mentioned in Eck et al. [21]. (RQ2, Section 4.3)

C5: We investigated whether or not the developers’ perceptions match with what they have actually marked as flaky or
not. (RQ3, Section 4.4). Only those factors that relate to the properties of test code are assessed in this way such as
test case simplicity and size. The other factors such as perseverance of a team to detect and prevent flakiness will
not be related to properties of test code, thus were not included in the investigation.

2 of 24 AHMAD ET AL.

Related work is presented in Section 2. The research protocol is presented in Section 3. Section 4presents results
such as answers to RQ1, RQ2, and RQ3 in Sections 4.1–4.4, respectively. Section 5presents an evaluations of the
perceived factors. A discussion is presented in Section 6 and potential threats to our study’s validity in Section 7. The
conclusion is presented in Section 8.

2 | RELATED WORK

Luo et al. [7] categorized the causes of test case flakiness by investigating 52 open-source projects. They
manually inspected 201 commits of selected projects. Asynchronous wait (45%), concurrency (20%), and
test-order dependency (12%) were found to be the most common causes of test flakiness. Based on these findings,
Luo et al. suggest avoiding specific code smells that lead to test flakiness. Another empirical study of the root
causes of test flakiness in Android Apps was conducted by Thorve et al. [22] by analysing the commits of
51 Apache open-source projects. Thorve et al. complemented the results of Luo et al. and Palomba and Zaidman,
but they also reported two additional test smells categorized as user interface and program logic that induce
test flakiness in Android Apps. In addition to these studies, researchers have investigated the root causes of
test flakiness in different applications such as web applications [23,24], Android apps [25], and Automated REST
APIs [26].

Eck et al. [21] investigated developers’ perceptions of the causes, fixing efforts, significance, and challenges of test
flakiness, in open-source project. Their work discovered four new types of causes such as (1) too restrictive range in
test assertions (i.e., valid output values are outside the assertion range), (2) test case timeout, (3) platform dependency,
and (4) test suite timeout. After a survey and interview with developers, they concluded that the broader view of test
flakiness should include both source code and its management as well as the team’s organization, resolution process,
and test case design. We designed this study to capture more factors covering more areas of software engineering than
presented by [21] (a comparison of their work with our findings has been provided in different parts of this paper,
wherever needed, particularly in Table 6).

In addition to identifications of test smells inducing test flakiness, researchers have proposed tools and techniques to
detect test flakiness. Bell et al. proposed a new technique called DeFlaker, which monitors the latest code coverage and
marks the test case as flaky if the test case does not execute any of the changes [27]. Another technique called PRADET
[28] does not detect flaky tests directly, rather it uses a systematic process to detect problematic test order dependencies.
These test order dependencies can lead to test non-determinism. Dutta et al. categorized the common root causes of test
flakiness in applications that were built on machine learning frameworks such as Pyro, PyMC3, TensorFlow-
Probability and PyTorch [29]. They developed a technique called FLASH which detects flaky tests due to assertions
passing and failing during different executions while maintaining a same codebase. The FLASH technique is restricted
to only those assertions that failed due to differences in the sequence of random numbers of the same test in different
executions. Lam et al. developed a framework named RootFinder that instruments flaky tests to achieve logs of various
runtime properties [30]. Later, this tool finds differences in the logs of passing and failing runs [30]. In another study by
Lam et al., an automated solution named Flakiness & Time Balancer is presented to reduce the test failures caused
by synchronous calls. Shi et al. [31] studied the effects of flaky tests on mutation testing. They concluded that due to test
flakiness, many mutants are not covered during testing, although the prior coverage collection indicated that it should
be [31].

King et al. presented an approach that leverages Bayesian networks for flaky test classification and prediction [2].
This approach considers flakiness as a disease that can be mitigated by analysing the symptoms and possible causes.
This approach identifies, quarantines, and fixes flaky tests in continuous integration pipelines. This approach was
adopted by 6 teams within a software company and improved the stability of CI pipeline (i.e., reducing flaky tests)
by as much as 60%. Pinto et al. evaluated the performance of different machine learning classifiers such as Random
Forest, Decision Tree, Naive Bayes, Support Vector Machine, and Nearest Neighbour on 25 open-source projects to
predict flaky tests as well as find the vocabulary of flaky tests. They concluded that Random Forest performed best
as compared to other classifiers. Moreover, they concluded that projects with high involvement of IO exhibit more
test flakiness. Twenty words that frequently appeared in flaky tests were identified in the study. The top five words
were job, table, id, action, and oozie. These words were associated with executing tasks remotely or using an event
queue.

We take one step further in a different direction to (1) detailed quantitative analysis of the survey on issues
and mitigation strategies, (2) capture practitioners’ perceptions in the closed-source development, (3) comparative
analysis of test flakiness within the investigated companies and with what Eck et al. presented in their study, and
(4) identification of the test smells that are known to induce test flakiness in test cases collected from different
cases.

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 3 of 24

3 | RESEARCH METHODOLOGY

3.1 | Case descriptions

Table 1 provides detailed information about case companies; (1) what type of businesses the companies are involved in,
(2) the number of employees, (3) selected teams for investigation in this study, (4) participants’ experience in handling
test flakiness, (5) how much test flakiness companies have observed during continuous integration, and (6) what level of
test automation the companies have achieved. We selected companies that have different degrees of test flakiness to
cover a broad spectrum of the participants.

3.2 | Data collection

In all five cases, we collected data through online and physical workshops, site visits, and semi-structured interviews.
Most of the interactions were conducted online through Zoom or Skype. We recorded the conversation and took notes
during all workshops with prior permission from the participants. Table 2 presents detailed information about data
collection and validation protocol with respect to the number of participants, visit dates, and so forth.

3.2.1 | Survey

Prior to study, we conducted an initial survey to assess the case companies’ interest in test flakiness through a Google
form (step 1 in Figure 1). The survey can be accessed online.1 The survey contains the necessary definitions of terms
(i.e., root causes of test flakiness) and terminologies. The survey contains multiple choice questions and prepared by
analysing prior literature in test flakiness. The survey was answered by 18 participants from 5 different companies. The
survey provided answers to RQ1.

TABLE 1 Information about case companies

Case Business Total empl. Designations
Participant’s experience
in test flakiness

Test flakiness
in CIa

Automation
levelb

A Surveillance 5k Testers, Managers, Developers Yes None High

B Water 5k Testers, Managers, Developers Yes Low High

C Medical 3k Testers, Developers Yes High Moderate

D Automotive 25k Testers, Managers, Developers Yes High High

E Automotive 1k Testers, Developers Yes High None

aLow: Flaky tests appearing occasionally for example, during day-time savings, modifying CI infrastructure, unexpected circumstances, and so forth. High: Flaky tests
appearing frequently after executing each build or every other build.
bHigh: The CI pipeline support automation from commits to deployment with none or very little human intervention. Moderate: The CI pipeline support automation
from commit to testing and human intervention is required for deployment.

TABLE 2 Data collection and validation protocol

Case Type Duration (Min) Date Participants designation

A, B, C, D, E SurveyDC - 2018-10 10T, 8D

A, B, D, E WorkshopDC 120 2018-11 6T, 4D

C WorkshopDC 120 2018-12 2T, 2D

A InterviewDC,Site Visit 180 2018-12 2T

A, B, C, D, E WorkshopDV 120 2019-03 6T, 4D

Abbreviations: D, developer; DC, data collection; DV, data validation; T, test lead.

1https://tinyurl.com/yxpw3vgu

4 of 24 AHMAD ET AL.

https://tinyurl.com/yxpw3vgu

3.2.2 | Online workshops

After the online survey, we analysed the results and prepared open-ended questions for the online workshops (step 2 in
Figure 1). The set of questions, that were discussed during the workshop, can be accessed online.2 Participants did not
have access to the set of questions before the workshop. We conducted a 2-h long workshop to collect data from
cases A, B, D, and E. This workshop was conducted online through Zoom, and 10 participants (6 testers and
4 developers) from four companies participated. A similar 2-h online workshop was conducted with case C on a
different occasion due to fact that the participants in case C were not available during first workshop. We encouraged
the discussion among the participants during the workshop but we did not expect them to reach any consensus. We
analysed individual answers in this study.

3.2.3 | Site visit

Later, one of the authors visited company A to conduct an interview with 2 testers (step 3 in Figure 1). The interview
was 180 min long and was recorded and transcribed into an Excel sheet for analysis. The reason for visiting only one
company was a desire to look at their testing process and documentation in person, due to their claim of having no
flaky tests. The idea was to extract tacit knowledge from the company’s day-to-day practices. We received a complete
test suite consisting of 1609 test cases from case A as part of the data collection (during step 3). In addition, the authors
received 30 tests marked as flaky and 120 marked as non-flaky from case B. An automated script was executed to iden-
tify the test smells that induce test flakiness, from the study [7,21], which were present in the test code. Whereas in the
case B, two of the authors manually investigated flaky test cases code to investigated whether test smells that induce test
flakiness were present in the test cases.

To investigate what practitioners perceive and whether these perceptions are reflected in the test artefacts, we ran an
automated script to find non-commented lines of code and the number of assertions in each test case.

3.3 | Preparation

During data collection, two authors took notes in addition to an audio recording. Data were anonymized in such a way
that it could not be traced back to the individual participants. We obtained informed consent from the participants for
an audio recording. The audio recording was transcribed word-by-word using an audio player. The transcription was
saved into the Excel sheet. Each cell in the Excel sheet contains texts from one person during a conversation, further
labelled with the speaker. The names of participants were also anonymized with PX, where X is the number assigned by
us to the participant for increasing the readability and traceability in within the text. Two of the authors checked the
transcriptions to find any discrepancies or missing information.

F I GURE 1 Research protocol for data collection, analysis, and validation

2https://tinyurl.com/y3mvvypo

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 5 of 24

https://tinyurl.com/y3mvvypo

3.4 | Data analysis

We coded all the transcripts from the workshop and interviews according to open coding [32]. Each paragraph of the
transcripts was labelled with one or more codes. Later, we compared all paragraphs from different companies to collect
similar codes (axial codes). These codes were further divided as the influencing factor and their effect such as whether
the factors were believed either to increase or decrease test flakiness. Table 3 presents an example of how we extracted
the perceived factors and their effects on flakiness. We have used two different symbols to denote the effects of the fac-
tors in test flakiness. A plus sign (+) represents an increase and minus sign (�) represents a decrease of test flakiness.
We have provided all of the quotes, in this paper, from participants as spoken during the interview or workshop, that
is, untranslated transcriptions of what they said in English. All our subjects have experience in flaky test detection and
removal.

3.5 | Data validation

After analysis, the initial codes were checked by two of the researchers. Later, we conducted a physical workshop with
ten different participants from five companies to validate the results. For the data validation exercise, we selected differ-
ent participants from the ones who had participated in the earlier data collection phase to avoid biases in the results.
This workshop was conducted for 120 min and participants were provided with the list of influencing factors together
with their descriptions. Participants were asked to rank the importance of the factors based on the Likert scale (i.e., 1 to
5, Strongly Agree to Strongly Disagree). Each factor was discussed with the participants to ensure that they understood
it. In addition to the ranking of factor’s importance, participants were asked to rank the effect (see Section 3.4) of the
factors on test flakiness based on a similar Likert scale.

4 | RESULTS

We presented the results the same way we collected the data and investigated research questions. First, we present the
survey results following the perceived factors and their effect on test flakiness. Later we report the test smells found in
the test cases.

4.1 | Survey results—RQ1

As shown in Figure 2a, all participants from the five companies shared that they have observed test flakiness during
integration testing—testing collections of modules which have been integrated into subsystems. Eleven participants
observed it during system testing—subsystems are integrated to make up the entire system. Subsystem testing is con-
cerned with finding errors that result from unanticipated interactions within subsystems or system components. Only
one participant observed test flakiness in unit testing. Flakiness is easily captured during unit testing due to the fact that
unit testing deals with atomic methods.

All investigated companies have test code review processes (Figure 2b), but flaky tests can still sneak into the test
suite. All participants reported that their test design processes do not include guidelines to prevent flakiness. We
observed that another reason for having test flakiness could be that practitioners do not label flaky tests as represented
by Figure 2g. All participants except one answered “No” to the question “If you notice a test case as flaky, do you use
any type of annotation such as ‘@FlakyTest’, ‘@Repeat’, ‘@Ignore’ or ‘@ReRunThis’.” The only person who answered
“Yes” to this question belonged to company A. In case there are only a few flaky tests, the reason for not labelling the
test case is justified but as represented in Figure 2c, 13 out of 18 participants estimated that flaky tests accounted for

TABLE 3 Identification of influencing factors and their effect

Original text “for the project we have now, where we lack requirements, the reason for test flakiness was test case code.
Some of the changes were made in a test case. This is for an undefined project and unclear requirement”

Identified factor Requirements clarity

Effect - Test flakiness (decrease test flakiness)

Textual description Clear requirements decrease test flakiness

Notation Requirements clarity ! - Test flakiness

6 of 24 AHMAD ET AL.

5%–10% of their total tests, while 4 other participants reported 1%–5% flaky tests. These percentages may appear small,
but if the companies have many thousands of test cases, then these percentages matter. Our results can be compared
with the study of Mozilla [21] where 100–150 flaky tests were detected, every week [21].

More than 50% of the participants shared that they spent between half an hour and an entire day resolving test case
flakiness (Figure 2d). Four participants shared that they have spent up to a day to resolve test flakiness on many occa-
sions. At the other extreme, only one participant shared that he spent a few minutes to half an hour, only on a few
occasions, to resolve issues related to test flakiness. The results of our analysis (closed-source) overlap significantly with
Eck et al [21]. The fixing efforts (very easy to very hard) described by developers in [21] range from 1.0 to 4.0 given the
nature of test flakiness and matches to what we have identified that the fixing effort ranges from half an hour to several
days. This time does not include administrative hours such as creating bug reports or assigning issues to concerned user;
however, it does include time to inspect test execution logs, test case definitions, or resetting the testing
environment, etc.

F I GURE 2 Survey results presented with questions in each facet

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 7 of 24

The most common mechanism to determine whether tests exhibit test flakiness is to rerun the tests. This is similar
between closed-source and open-source industry. (Figure 2e). Figure 2e lists “Inspecting the test execution logs” as the
second most common approach followed by “Changing or resetting the test execution environment.” Only one partici-
pant reported that the company instrumented the software to find whether failing tests cover changed code. We
assumed that this variance in activities to detect test flakiness is one of the reasons that developers spend a lot of time to
resolve test flakiness.

We observed high variance in participants’ response of the question “Given your recent experience, where you
noticed test flakiness, please describe your immediate action.” Practitioners performed different actions such as
investigated source code or test case code, created a bug report and let other professionals handle it or disabled
the flaky test.

In addition to capturing the different aspects of managing/identifying test flakiness, we investigated the root causes
of test flakiness in terms of the test smells experienced by the professionals. Many studies [7,21,22,33] have investigated
the relationship between test smells and test flakiness. We provided the list of test smells in the survey that is known to
relate to test flakiness. “Asynchronous wait” and “configuration & dependency issues” have been mentioned as a major
root cause of test flakiness by all participants, as represented by Figure 2h. These are the main root causes because
companies have different types of hardware, running with a different platform (Windows, OSX, and Linux with
different kernels) and libraries being used (open-source or commercial). The other major concerns by approximately
more than half of the participants were “GUI,” “I/O operations,” “Randomness,” “Test order dependency,” and
“Time.” As represented in Figure 2h, four of the test smells such as “Concurrency,” “Resource leak,” “Floating-point
operations,” and “Unordered collections” were not experienced by any of the participants.

4.2 | Root causes in terms of test smells and mitigation strategies—RQ1

Table 4 presents information about test smells in the test cases received from companies. Case A shared their complete
test suite containing 1609 test cases. Since case A did not mark which test cases are flaky, we ran an automated script to
identity test smells that are known to induce test flakiness and reported by many researchers in [7,21,33]. We identified
402 (22%) test cases that contain test smells and may exhibit flaky behaviour. After the identification of test smells, we
assigned it to predefined categories by researchers in [7,21,33]. We received 150 test cases from case B where 30 test
cases were marked as flaky. These test cases were marked as flaky and include the information of causes (i.e., test
smells) and mitigation strategies.

4.2.1 | Async wait

A test makes an asynchronous call and does not wait properly for the result of the call to become available leading
to test flakiness. In the context of case B, during several occasions, the test case does not receive acknowledgment
when it sends the reset command to the device under test leading to nondeterministic test outcome. Listing
1 represents the flaky test case code and Listing 2 represents the test execution logs. The variable
WriteTData&Verify (line 2 in Listing 1) set to the value 1337 (the reason for this specific value cannot be stated
due to non-disclosure agreement). After a short delay, the reset command is sent to the hardware and data (i.e., 0)
is written to a variable named testValue (i.e., not showing in Listing 1—some variables and logic have been
removed due to non-disclosure agreement) on the device to compare with the value of WriteTData&Verify. This
testValue is then accessed to ensure that value and device have been reset in the WaitForTData (line 6 in
Listing 1). Listing 2 Line 3 and 4 represent the expected test value and actual test value which are different,
resulting in test case failure.

TABLE 4 Information about test smells inducing test flakiness in cases A and B

Case Received tests Confirmed flaky tests Test cases exhibited test smells Test smells Frequency

A 1609 0 402 Async wait 369

Randomness 24

Input/output 9

B 150 30 30 Async wait 15

Platform dependency 8

Time 7

8 of 24 AHMAD ET AL.

In the context of case A, we identified 369 (91%) test cases out of 402 that contain test smells related to async wait
category. These test cases use instructions such as Sleep (91 occurrences), Wait (36 occurrences), Timeout (29 occur-
rences), and Network (213 occurrences) to wait for definite period of time for an external resource to be available for
use. In this case, the resource takes more time to become available, the test cases fail. Another example of test flakiness
with Network is when test cases interact with Internet. Tests whose execution depends on Internet can be flaky because
the network is a resource that is hard to control [7].

4.2.2 | Platform dependency

Platform dependency was observed only in case B. Testbeds are used to study system modules and interactions in order
to gain detailed insight into the essence of the real system [34]. Testbeds are built of prototypes and pieces of real system
components [34]. Company B described the reason of flakiness as multiple tests were observing lower motor speed than
expected which was caused by air bubbles in the water. The water pressure in the testbed had fallen to almost 0 bar.
The testbed and tests were designed to be at around 1.5 to 2.5 bar. The pressure slowly decreased over time until it
reached to 0. It took around 2 months to fall from 2 bar to 0 bar. To resolve this issue a testbed self-test, as presented in
Listing 3, is now run once a day as part of the test plan. This self-test checks the integrity of the testbed and sets or
resets the pressure if it gets too low.

4.2.3 | Time

This type of flakiness was identified in case B. The test to check the real time clock on the device failed on several occa-
sions. A Factory reset in the test caused the time counter to advance by 1 h. Since the test also sets Daylight Savings
to be enabled, the test case fails twice a year. In addition to this, the delay to re-save time on the clock varies by 0.3 s
affecting the time comparisons between expected and actual values. Listing 4 represents the log for the flaky test that
involves clock manipulation in the embedded systems.

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 9 of 24

4.2.4 | Randomness

In case A, 24 (5%) test cases contain test smells that are related to randomness. Test cases are flaky because it use a
random number generator in a way that did not function for the test [33]. This type of flakiness occur due to a use of
randomized seed when testing the correctness of batch normalization. The mitigation strategy is to switch to a user
defined seed. Test cases in case A did not use Seed function when using a random generator.

4.2.5 | Input/output

9 (2%) test cases contain test smells that are related to Input/Output (IO) in case A. This type of flakiness is related to
file descriptors or resources that do not exist [33]. We observed 7 cases where tests try to access external resource with-
out checking if the resource exists or not. Another 2 cases when tests open a file and finish execution without closing
it. Another test that would try to open the same file would pass or fail depending on whether the file was already
garbage collected or not.

4.3 | Perceived factors and their effect—RQ2

This section explains each perceived factor in detail together with the practitioners’ quotes and assigned category.
A factor according to an online dictionary [39] means: “a fact or situation that influences the result of something.”
In the context of our study, the “a fact or situation,” in the aforementioned definition, represent the identified
perceived factors, the “influences” represent reduction or increase, and the “event” represents test flakiness. During
data collection, we did not intend to capture dependencies between perceived factors. For example, the factors
Perseverance to reduce test flakiness and Team experience in handling test flakiness
will eventually lead to simple and robust test cases, but participants did not reveal their experiences/perceptions
about these types of dependencies. This is why all factors, in this study, were reported independently of each
other.

Table 5 presents the category, the identified perceived factors, and their mapping to the available literature. For
example, “simple test case” (i.e., one of the identified perceived factors in this study) is mentioned as “simplicity” in
[35] in the context of identifying good tests. As presented in Table 5, (1) six perceived factors (i.e., test code) are
reported in the literature as qualities of good test cases, (2) three perceived factors are related to a system under test,
(3) eight perceived factors concern CI/Test infrastructure, and (4) two perceived factors were categorized as
organization-related.

4.3.1 | Test code-related factors

All of the factors in this section are categorized as “test code” because these factors have been mentioned in the
literature in the context of test case quality. These factors are perceived by practitioners to affect test flakiness. In
addition to practitioners’ quotes, we present the definition of each perceived factor together with its perceived effect
(i.e., reduce or increase) on test flakiness.

Test case simplicity:! (�) test flakiness

As said by Bowes et al. “Keep it simple, keep it safe” [35], test case simplicity refers to the number of assertions per test
case [35]. Participants in companies A and B perceive test case simplicity as a factor that reduces test flakiness. They
write simple test cases, for example, 1–2 assertions per test case. These companies claimed to have very low or no test
flakiness, as presented in Table 6. One of the participants said: Testers, in these particular companies, follow the

10 of 24 AHMAD ET AL.

test design principle of 1–2 assertions per test case. They reported that when a test case tests 1–2 things, its perceived
output is more deterministic as said by one of the participants:

“What is the definition of simple is of-course, not obvious but mostly, you can say it has one assertion and
on average less than two assertions to have a deterministic output”

Companies C–E claimed to write complex test cases with more than 4–6 assertions per test case and reported high
test flakiness.

Test Case Size:! (+) test flakiness

Test case size refers to the number of uncommented lines in the test code [35]. Company A and B have a design
principle of writing small test cases e.g., test cases with few lines of code. A small test case is not necessarily a simple test
case (see test case simplicity above) and this is why we label it as a unique perceived factor. One of the participants
commented about small test case:

“The small test will know how to test the specific feature in a specific way and all tests should follow this
[size] rule so that the output will always be deterministic”

Test case size was also listed as a perceived issue by another participant in Company B:

“When a test case tests so many features, it grows complex and becomes flaky [due to complex code
and hardcoded conditionals] and no one knows where things are wrong because people, in general, do
not want to spend time on complex test cases. These test cases are pending on tester’s to-do list
because we do not delete test cases if they are flaky. Thus we have more flaky tests every time we
run the build”

One of the participants from company A shared previous experience:

“It is important because earlier all tests were written by testers and developers have all types of long and
crazy code and that is why many tests were non-deterministic in our settings”

TABLE 5 Identified factors and their mapping to available literature and category

Category Identified perceived factors Mapping of identified perceived factor to available literature

Test code Test case simplicity Test case simplicity [35]

Test case size Single responsibility [35]

Test case age Obsolete test case [21,35]

Test case robustness Test case robustness [36]

Test case independence Test (in)dependency [35]

Test case smelliness Test case smelliness [36]

System under test System under test/Test case execution time Test case and test suite timeout [21]

Requirements clarity Asses conformance to regulation[37,38]

Avoiding testing of a complex feature -

CI/Test infrastructure Automated test case inspection -

Testing for test flakiness at different stages -

CI instability CI instability [21]

Undermining network infrastructure Robust network [36]

Advanced test result reporting Advanced test results reporting [21,36]

Rerunning test case Rerunning test case [27]

Handler outside test cases Too much setup code [21]

Environment understanding Lack of insight into the systems [21]

Organization-related factors Perseverance to reduce test flakiness Assure quality [37]

Team experience in handling test flakiness Experienced team [37]

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 11 of 24

One of the participants from company B shared the strategy of writing small test cases to reduce test flakiness:

“Earlier, we had crazy code in the test suite, written by very old [who have left the company] testers and we
had lots of non-determinism in test output. Then our team started dividing test cases into smaller test cases
and we are happy because we have less flaky tests now”

Companies C–E reported that they do not have small test cases (e.g., Table 6) and this could be one the reasons, as
reported by mentioned companies, that they have high test flakiness.

Test case age:! (+) test flakiness

Older test cases refer to those test cases where changes in one part of the test case were not propagated to other parts of
test cases [21]. For example, the size of a test case grew over time without adjusting the maximum execution time
leading to non-deterministic output. There could be several reasons for non-determinism such as unable to download
prerequisites, a test not producing output for a fixed amount of time and later, killed by the execution system assuming
that the test stalled [21]. One of the participants from company A stated:

“[…] When it seems to be product issues, for example, the product’s functionality has been changed long
ago and we have not updated the test case […]. The test case starts changing its outcomes on different occa-
sion leading to increasing flakiness”

The “Changes in the product,” mentioned by the developer in the above quote, do not refer to recent changes
followed by regression testing but the functionality of the specific product becoming more complex, over time, while
the test case still tests the smaller part of the original functionality. Upon different/unexpected behaviour of the specific
product, not known to a new tester, the test case may fail intermittently. As presented in Table 6, participants from
three companies perceived test case age as a factor that affects test flakiness.

TABLE 6 A comparison of perceived factors within investigated companies and Eck et al.

The perceived impact of flakiness Reported flakiness

None Very Low High High High High

Case Companies

Category Identified Perceived Factors A B C D E Mozilla

Test Code Test Case Simplicity ✓ ✓ � � � -

Test Case Size ✓ ✓ � � � -

Test Case Age ✓ ✓ � � ✓ ✓

Test Case Robustness ✓ ✓ � � � -

Test Case Independence ✓ ✓ � � � ✓

Test Case Smelliness ✓ ✓ ✓ ✓ ✓ ✓

System Under Test System Under Test/Test Case Execution Time ✓ ✓ � � ✓ ✓

Requirements Clarity ✓ � � � ✓ ✓

Avoiding Testing of a Complex Feature ✓ � - - - -

CI/Test Infrastructure Automated Test Case Inspection ✓ � - - - -

Test for Flaky Tests at Different Stages ✓ ✓ - - - -

CI Instability ✓ ✓ - - - ✓

Undermining Network Infrastructure ✓ � � � � -

Advanced Test Result Reporting ✓ ✓ � � � ✓

Rerunning Test Cases ✓ ✓ ✓ ✓ ✓ ✓

Handler Outside Test case ✓ � � � � ✓

Environment Understanding ✓ ✓ ✓ ✓ ✓ ✓

Organization-Related Perseverance to Reduce Test Flakiness ✓ ✓ � � � -

Team Experience in Handling Test Flakiness ✓ ✓ � � � ✓

Note: The symbol “✓” represents that the perceived factor was mentioned by the company and frequently observed. The symbol “�” represents that the perceived factor
was mentioned by the company but not practiced at all. The symbol “-” represents that no information is provided about perceived factor.

12 of 24 AHMAD ET AL.

Test case robustness:! (�) test flakiness

Robustness, as provided by IEEE [40], is the ability to cope with errors during execution and with erroneous input.
Company A and B reported that robust test cases should be written by assuming that flaky behaviour exists in/around
the system under test. Besides, robust test cases should address issues regarding integration with external libraries or
configurations (e.g., network or port issues), thereby leading to reduced test flakiness. One of the participants from
company B stated that

“Whenever we see flakiness due to network problems, we did not disable test cases. We did not do
anything. That is why we saw a lot of flaky tests. But later we started building robust test cases to handle a
bad network and unexpected situations and then we had less test flakiness”

One of the participants from company A said:

“In our team, we design and review test cases with detailed knowledge of the product, its dependencies and
in which environment the test case will run. We know what goes in and what goes out and how much the
test has to test”

A robust test case can only be developed if testers have clear requirements of a product’s functionality and detailed
test design and review process, as discussed above and under “requirements clarity.” There is a threat that a robust test
case can become complex if the goal is to address all uncertainties. As one participant shared:

“I will say that it should not be the test case [that contains complexity] but something else- [i.e. handler
outside test case]”

Test case independence:! (�) test flakiness

This factor complements what other researchers [7,15,41] have concluded: higher dependencies among test cases
increase test flakiness. Company A and B claim to have a design principle of having no dependency among test
cases and they reported that this is one of the reasons that we have none to very low test flakiness as presented in
Table 6. One of the participants from company A commented:

“You can take away some of the test cases so you have very little test case dependency. The test case is not
allowed to depend on another test and that is how we have reduced test flakiness”

The test cases in companies (C–E) as presented in Table 6 have higher dependencies among test cases. The reported
reasons were (1) Test suites are not maintained properly, (2) Lack of design principles in writing independent tests, or
(3) Tests being written by any member of the software team.

Test smelliness:! (+) test flakiness

Test smells are poorly designed tests and negatively affect the quality of test suites [42]. Test smells are most important
causes of test case flakiness reported in literature as well as said by one the participants:

“I would say that test code, on average, is as crappy as source code but people pay attention to the source
code but for not to test code and they add too many test smells in test code leading to increased test flakiness”

All investigated companies shared a concern that test smells can often be sneaked into test cases when new
employees—who are not aware of test design principles—write test code. All the investigated companies with none to
high flakiness have observed test flakiness due to the test smells as presented in Table 6. The test smells found in the test
cases in investigated companies are presented in Section 4.2.

4.3.2 | System under test-related factors

The factors in this section are mentioned in prior work as production code or system under test.

System under test/test case execution time:! (�) test flakiness

This factor relates to software under test/test suite timeout, identified by Eck et al. [21], where a test suite has grown in
size (e.g., lines of code and complexity), while test execution time limit is still what was set when the test case was

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 13 of 24

written thus leading to non-deterministic output. Some functionalities of a product, in companies A, B, and E require
longer execution times for the system under test. Test cases that were written for these situations became flaky due to
several reasons such as memory shortage or heap size reaching the limit or test case timeout. One of the participants
explained:

“During longer executions of system under test, even though the software was not changed, the
longer running test case becomes flaky. You could call it a kind of long term testing or long term
reliability testing and for this reason, flaky behavior was detected, which was not possible without it
[longer execution]”

Requirements clarity:! (�) test flakiness

Lack of clarity about the system requirements increases the ambiguity of what exactly the system does, thus leading to
unclear tests design requirements [43]. Participants believed that test flakiness can be reduced if testers put enough effort
during test design (i.e., valid input/output values within the assertion range), with clear requirements and what is
expected from the test. “Lack of clear requirements” during test design process along with the undefined project are
mentioned as the perceived causes of the increase in test flakiness in companies B–D. One of the participants from
company B said that:

“For the project we have now, where we lack requirements, the reason for test flakiness was unclear
requirements. This [test flakiness] is for an undefined project and unclear requirements”

Companies A and E stated that they assign skilful and experienced people during requirements gathering and the
test design process whereas companies B–D reported that they form ad-hoc teams for the task at hand and welcome
anyone from any teams to write test cases.

Avoiding testing of a complex feature:! (�) test flakiness

Participants in company A strongly believed that testing of a specific features/requirements lead to test flakiness and if
they could avoid testing this specific feature/requirement, test flakiness would be substantially reduced. This belief has
been turned into a common practice in company A. As one participant mentioned:

“We are ignoring feature X and feature Y and then we avoid complex feature testing and we do not have
test flakiness”

One of the participants shared that

“When we test the functionality of ‘restart device’, we do not get acknowledgment every time that the
device has been restarted. In this case, sometimes tests pass and sometimes tests fail, we stopped testing this
feature on all devices […], thus the tests became more deterministic”

One could argue about the trade-offs between risking less test coverage and reducing test flakiness but this is not
within the scope of this paper.

4.3.3 | CI/test infrastructure-related factors

The factors in this section are mentioned in prior work as CI or test infrastructure.

Automated test case inspection:! (�) test flakiness

Company A reported that if the test case exhibits flakiness, you should write another automated test case that explicitly
catches the flakiness in the test. One of the participants commented that

“Consider that a test A is a flaky test. Then you can write a test B that explicitly catches this flakiness: a test
that repeats test A 100 times and explicitly states that it needs to succeed 100 times”

This practice is widely adopted only in company A. Other companies only rerun the tests if they suspect test flaki-
ness. Automated test case inspection is a perceived factor or recommendation to increase the likelihood of the detection

14 of 24 AHMAD ET AL.

of test flakiness. The practice of writing automated test cases to catch flaky tests increase the trust in the final product
as mentioned by of the participants:

“Writing another automated test case that explicitly catches this flakiness require more efforts and time but
on the other hand, gives us indications to trust the test suite results and the final product product”

Testing for flaky tests at different stages:! (�) test flakiness

Different testing activities (e.g., system or integration testing) should incorporate methods to reveal flakiness in the CI
pipeline. The chances to detect test case flakiness increase when you hunt for it at different testing stages. As one of the
participants said,

“The automated regression tests are not the only line of defense against flaky test but we have several
instances where we expect the flaky test to be caught on the way”

All investigated companies had observed test flakiness during acceptance, system or integration testing. The study
participants had not observed flakiness during unit testing. Company A and B recommended that each testing activity
in CI should include mechanisms to detect test flakiness. Company C, D, and E did not pay attention to flaky tests until
the system testing.

As claimed by participants in case A, test flakiness detection on multiple stages increases the trust in the test cases:

“We have many stages of checking if the test case is flaky or not. This is why, we do not have flaky tests in
our pipeline and we trust our test suites”

CI instability:! (+) test flakiness

Continuous integration platforms are claimed to play a major role in increasing test flakiness [21]. As one of the partici-
pants commented,

“On the Jenkins side, the biggest problem they had is flakiness in Jenkins. When a new release of Jenkins is
deployed, and this is invisible to the other users because the users do not care what version of Jenkins they
are using and they are running the test and suddenly tests change outcome from pass to fail and they do
not know what happened [.…]”

This factor has been experienced by all investigated companies and they claimed to invest so much debugging time
just to find out that the reason for the change in tests outcome is Jenkins instability. The solution to this type of flaki-
ness is to wait for a stable release resulting in frustrations and delays of the software release.

Undermining network infrastructure:! (�) test flakiness

Undermining network infrastructure refers to practices where companies intentionally create worst-case scenarios to
test the robustness of the test code and system under test. Company A has implemented the specific practice of
undermining network infrastructure. They reported that this is one the reasons that they have no test flakiness.
Participants at company A ensure that worst-case scenarios should be assumed when writing test cases for net-
works, ports, I/O or third-party libraries for deterministic output. As one of the participants from company A
mentioned:

“We were [not now] trying to avoid network issues by making sure that network is always up and
running. If you assume that the network (Ethernet/ IP network) is perfect, you will have non-
deterministic tests”

Another participant said:

“We are actively undermining the network, by making it worse, so you design test cases to reveal the real
failure instead of trying to clean the ways for tests”

Participants at company A reported that they had inexperienced testers who write Thread.sleep(60ms) to wait if
resources are available but if we undermine network infrastructure, more test cases will be revealed that are prone to
change their outcomes due to async wait issues.

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 15 of 24

Advanced test results reporting:! (�) test flakiness

A better mechanism to report, log and display test case results helps in detecting test case flakiness as shared by
Company A and B. One of the participants mentioned,

“As soon as Team City fails the test, we have a monitor that says which project is failing and you see which
tests have changed their outcome [through special plugins to compare builds’ output]. Through that plugin
we discover that a test has changed its outcome, so I take a look whether it is due to the device under test
or the test case code, then I assign this issue to someone in the team responsible”

Companies A and B regularly use different plugins to generate test result reports that help them identifying
flaky tests. Addressing the causes of identified flaky tests eventually reduces flakiness and this was one of the reported
reasons by companies A and B that they have none to very low test flakiness. On the other hand, as can be seen in
Table 6, companies C–E only depend on Jenkins log files. Participants in companies C–E manually parse the log files
to investigate if test cases have changed their outcome between the current and the last build. In addition to identifying
the flaky tests, the lack of detailed logs can be challenging to understand the behaviour of test cases and the causes of
failures.

Rerunning test cases:! (�) test flakiness

Rerunning test cases, as mentioned in [27], is the most widely used technique to detect test flakiness. All the participants
stated that re-running test cases over a night or weekend helps detect flakiness:

“When we write a test case we test it regularly to find out if they are flaky or not [..] After we have written
it and integrated it so we run it on all products (approx. 50) each night for 7 days two times. It
is 2�7�50¼ 700”

Companies B, C, D, and E use rerunning as the only mechanism to detect test flakiness as compared to company A
which deploys another method ‘automated test case inspection’ discussed in Section 4.3.3.

Environment handler outside test cases:! (�) test flakiness

Company A has a practice of removing complex code from test cases and placing it in helper functions or library
routines to reduce test flakiness, as mentioned by one of the participants in company A:

“We noticed a significant difference in test flakiness when we removed complex code from the test case and
placed it into a separate library named [Do-X]. All products can use [Do-X] differently so we have different
libraries that provide different [Do-X] functions. The test code only says [Do-X] and depending on the
product, we can call the corresponding function from the library”

Participants in company A shared that the other teams can use these external libraries and reduce the risk of writing
unreliable (since these libraries are reviewed and maintained properly) and redundant code which can affect the test
flakiness. Eck et al. in [21] label this factor as one of the challenges in test flakiness by naming it “too much setup code.”
The individual test case does not need to know if the network or product is not available and should always fail rather
than exhibiting non-deterministic behaviour. These external libraries will provide proper test log results such as “test
failed” due to no network availability for product X. Company A was the only company that writes external setup
code. All other companies write all setup code or handlers in the test case and reporting high test flakiness.

Environment understanding:! (�) test flakiness

The word “environment” refers to the system under test, configurations, and integration with third-party libraries.
Participants in company A shared that understanding a complex system in detail will lead to a deterministic output of
the test cases. However, system can be so complex, as mentioned by one of the participants of company A:

“It is rather that they [testers] are not seeing things that are changing in the environment and sometimes the
source of this change is a timing issue or network and you write test cases that are unaware of these changes
thus failing and passing on different occasions leading to non-deterministic behavior”

All the investigated companies reported that they put an extra effort to understand how the system under test and
continuous integration machinery works together to reduce test flakiness. Eck et al. [21] mentioned this factor as a
“Lack of insight into the system,” which can increase test flakiness.

16 of 24 AHMAD ET AL.

4.3.4 | Organizational-related factors

We observed that the following factors concerns human or organizational perspectives.

Perseverance to reduce test flakiness:! (�) test flakiness

Perseverance, in this study, refers to practitioners’ willingness to find root causes of test flakiness and an ability to
not give-up, once the test case was marked as flaky. However, perseverance to reduce test flakiness should also
reveal efforts in writing robust/simple test cases, but none of the participants reported it. Company A and B
claim to have teams which have perseverance to reduce test flakiness. One of the participants from company B
commented:

“It was a very persistent analysis when people said that we want to know why this test case is changing its
outcomes, without any changes in the code base, and we spent days to know the reason for flakiness”

Another participant shared the same experience of being persistent:

“When we detect flakiness, one or two times we updated the test but the test case was still flaky. Then we
also debugged what could be the problem and at the end, we figured out [the reason for test flakiness]. It
was hard to find”

Software teams in companies C–E shared the confusion about identifying the person who can take the responsibility
to fix the flaky test. Practitioners shared that these confusions happened due to a lack of clear roles and responsibilities
concerning test flakiness, as mentioned by one of the participants:

“Yes, it is usually back and forth between us and developers as they say that this flakiness is due to you
[testers] and we say that this flakiness is due to you [developers] and it must be fixed by you”

Team experience in handling test flakiness:! (�) test flakiness

Previous experiences in test flakiness help as mentioned by one of the participants from company B:

“Generally I look at test logs for how many tests fail and then I can generally work out what causing it. I
can tell easily, due to past experiences [if it is flaky and why]”

Another participant from company B stated:

“Inexperienced testers—who write Thread.sleep(60ms) and they do not know how these instructions
work—can increase test flakiness”

Another participant from company A shared how experience helps in dealing with test flakiness

“[..…] Depending on how experienced the team is in writing the tests I say most of them think about
asynchronous calls and timing issues”

4.3.5 | Tentative mapping of relationships based on perceptions

During data collection, participants shared the perceived effect of the perceived factor such as that some factors can
either increase or decrease test flakiness. We grouped these perceived factors based on their effect as represented by
Figure 3. Twelve perceived factors out of nineteen are claimed to decrease test flakiness. Three perceived factors are
claimed to increase test flakiness whereas four factors affect the ability to detect test flakiness.

4.4 | Practitioner’s perceptions versus test artefacts—RQ3

We received a limited data set from the cases (i.e., A and B). Case A provided 1609 test cases which they claimed to be
non-flaky. Case A did not provide any test case that was flaky. Case B provided 150 test cases in which 30 test cases
were marked as flaky. Given the test artefacts availability, we looked for the evidence of whether or not the developers’

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 17 of 24

perceptions match with what they have marked as flaky or not-flaky. Two perceived factors (i.e., test case size and sim-
plicity) were potential candidates that can be statistically measured through automated scripts. Test case size represents
the non-comment lines of code whereas test case simplicity represents the number of assertions in the test case. Figure 4
presents the box-plot for test case size and simplicity within two companies with respect to flaky or non-flaky tests.

We noticed a clear relationship between the test flakiness and test case size in company B. Non-flaky tests in com-
pany B consist of less number of lines as compared with the flaky tests, as shown in Figure 4. The median for non-flaky
tests in cases A and B is 24 and 35, respectively. The median in flaky tests in case B is 95, which is far more higher than
from non-flaky tests. For company A, we did not have flaky tests, but we can see, in Figure 4, that the lines of codes in
non-flaky tests in company A is similar to the lines of codes in non-flaky tests in company B. We speculate that this
could be one of the reasons that company A has experienced no flakiness.

Similar clarity between test flakiness and test case simplicity was observed in case B. Non-flaky tests in case B con-
sist of less number of assertions as compared with the flaky tests, as shown in Figure 4. The median in the non-flaky
tests within cases A and B was 2 whereas the median in flaky tests in case B was 5. Case A has 1–2 assertions in each
non-flaky test case except in some cases where the number of assertions reaches 14 (i.e., outliers in Figure 4). Again, we
consider this to be the reason for no flakiness in case A.

5 | EVALUATION

We conducted an evaluation with different participants from the companies to understand how important the perceived
factors were to practitioners before evaluating each factor’s effect. During the first evaluation, the participants ranked
the importance of identified factors. Each factor was ranked with respect to their importance with a Likert scale of
Strongly disagree to Strongly agree. Each factor was discussed with all participants to avoid confusion. As presented by
Figure 5, 14 out of 19 perceived factors were ranked as Agree or Strongly agree in terms of importance by all of the

F I GURE 4 Size (i.e., lines of non-comment codes) and simplicity (i.e., number of assertions) in the test artefacts within companies A and B with
respect to flaky and non-flaky tests. Note: case A did not provide any marked flaky tests and claimed that all tests are non-flaky

F I GURE 3 Tentative mapping of relationships based on perceptions

18 of 24 AHMAD ET AL.

participants. Four perceived factors such as “Avoiding testing of a complex feature,” “Undermining network
infrastructure,” “Test case age,” and “Test case robustness” were marked as Strongly disagree by only one participant
whereas only “CI instability” was marked as Strongly agree by many participants. We expected this ranking, because
what developers perceive as test flakiness in their own organization may not be applicable to other developers in other
workspace.

In addition to the evaluation of the perceived factors, we conducted an evaluation for participants’ agreement level
on the estimated effects of the identified factors on test flakiness based in Likert scale. Figure 6 represents total agree-
ment scores, assigned to each factor’s effect by the practitioners. Participants were mostly Strongly Agreed or Agreed
with most of the effects of the perceived factors. We observed only two cases of Strongly Disagree and three cases of
Disagree. The effect of a perceived factor (i.e., CI instability ! + test flakiness and avoiding of a complex feature ! �
test flakiness) was ranked Strongly Disagree by only one participant (it is important to note that these participants are
different than what were requested for data collection). The effect of a perceived factor (i.e., Testing for flaky tests at
different stages ! � test flakiness, test case age ! + test flakiness, and SUT execution time ! � test flakiness) was
ranked Disagree by only one participant).

F I GURE 6 Ranking of the effect of identified factors on test flakiness by participants. To improve readability, we used TF to represent test
flakiness

F I GURE 5 Agreement level (in percentage) about importance of factors by participants

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 19 of 24

6 | DISCUSSION AND IMPLICATIONS

6.1 | Proper roles and responsibilities: avoid blame-game

In addition to what test flakiness is and where it originates from, we observed, during a workshop with two companies,
that software professionals at some of the companies are reluctant to take responsibility if test flakiness is detected. Due
to the lack of understanding of the actual root causes of test flakiness, practitioners play a “blame-others” strategy as
discussed in Section 4.3.4.1. We were informed, during this study, that upon detection of test flakiness, the test is
skipped, ignored, or deleted from the test suite by the teams in three companies (C–E). The testing teams in other two
companies actually hunt for the root causes of test flakiness. This hunt can be manual (i.e., looking into execution logs,
etc.) or automatic (i.e., automated test inspection—Section 4.3.3.1). We suggest that proper roles and responsibilities
should be defined within the teams to detect and fix test flakiness as per shared in Section 4.3.4. We found another
evidence for lack of proper roles and responsibilities: all the investigated companies, in this study, have a separate
department for quality assurance. However, developers were welcomed to write test cases. In some of the cases, the test
cases were suggested by external stakeholders (e.g., external companies that develop software for the hardware,
developed by the investigated companies).

6.2 | Trust on final product and testing process

We believe that test flakiness (detection, removal, prediction, and assessment) requires immediate attention because
non-deterministic tests raise a question: Can I trust my test results, test suite or even the quality of the final product?
Flaky tests decrease the confidence in the final product as well as leading to unstable continuous integration or delivery
pipeline. Deleting or skipping flaky tests increase the risk that some defects in the software can be released without
being detected by a test or a tester. However, this risk needs to be traded against the goal of having fast feed-back,
which supports productivity. With proper test-case selection techniques the risk can be mitigated [44]. During the study,
we observed that all companies dedicate enough resources for the testing activities but only two companies dedicate
proper resources for detecting and fixing flaky tests. We speculate that the increase in flaky test is not due to limited
resources but to lack of deep understanding of real root causes of test flakiness.

6.3 | Test flakiness investigation in different contexts

We observed that the flakiness of system tests in embedded system software might be different from stand-alone
software that does not require specific hardware. The existence of flakiness in web applications might be different as
compared to the desktop systems. Unfortunately, At the time of writing this article, research about test flakiness in
embedded systems is scarce. This is why, we attract researchers and practitioners attention towards this necessity We
concluded that test flakiness has a relationship with the contexts (i.e., open-source, closed-source, web programming,
embedded system, etc.), in which it has been investigated.

6.4 | Test flakiness prevention by test design

Our quantitative analysis shows that 80% of the investigated companies have test case review processes, but none of
them have any guidelines to prevent flakiness during the test design process. We suggest that companies should assign
special efforts and guidelines to prevent test flakiness at early stages of software development life cycles. All of the
identified factors have been discussed in the literature in different contexts (e.g., see Table 6) leading to a conclusion
that what practitioners perceive as factors affecting test flakiness can be addressed using the published design and
review guidelines in their test design practice to accomplish good quality tests.

We observed, during workshops, that little is known about test flakiness (causes and mitigation strategies) among
practitioners in companies C–E and they are struggling to understand the root causes of test flakiness. We suggested to all
companies that labelling test case as flaky would be a good start to maintain the database of flaky tests within the compa-
nies. The organization can learn from flaky test database and these lessons can reflected in the test design process so flaky
tests can be prevented. Developers who ignore or delete flaky test do not only increase the risk of untested functionality
but lose the opportunity to learn what caused the test flakiness resulting in repeating the same mistake again in future.

Prior research has focused on (1) the open-source industry, and (2) detecting test flakiness after test suite execution.
However, there is a strong need to prevent and predict test flakiness.

20 of 24 AHMAD ET AL.

6.5 | Flaky test perception and reality

We have observed different perceptions from the very beginning when we conducted the online workshop and
site visits for data collection. Different participants had different perceptions regarding what flakiness is and
whether we should discuss test flakiness, source code flakiness, or environment flakiness. Some professionals in the
study consider the problem of test flakiness as a philosophical issue such as one of the participants stated that It
is a responsibility of the test to not to be flaky, even if you have flakiness in the SUT [.…] I hope it will not take
too much time to discuss test flakiness as this can be philosophical discussion about what is flakiness and what is
not. You can define the flakiness as a point of the observer or implementer. One the other hand, it seems that given
the data, people agree on most of the factors. This might be positive, showing that there is a large portion of
flakiness that can be agreed upon with fairly little effort that can facilitate company-to-company experience
exchange.

We concluded that two of the perceived factors (i.e., test case size and simplicity) were reflected in the test artefacts
(see Section 4.4). Thus, practitioner’s perceptions play an important role in defining, maintaining, controlling, or
reducing test flakiness within the company.

We have also observed differences in practitioners’ perceptions of factors when we conducted the workshop to test
our findings. The factor “Test case robustness” was discussed for a long time among the participants during the
meeting, where some participants did not agree that this factor affects the test case flakiness. Initially, participants
categorized it as Strongly Disagree. Similar discussion was raised among participants for “CI instability.” These factors
was initially thought to be specific to one company, but upon discussion, participants from other companies also
changed their opinion and marked it as Strongly Agree. This change in opinion motivates our claim for conducting
more research in capturing the tacit knowledge within companies in the field of test flakiness. Listening to these
arguments during the workshop, we learned that participants’ perceptions about test case flakiness are likely to
influenced by what they have heard and observed, and experienced in the workplace.

6.6 | Test smells are not the only indicator of test flakiness

Although company A reported no test flakiness but their test cases exhibited test smells as shown in Table 4. Almost all
of the test smells were related to asynchronous wait. Several studies have reported asynchronous wait as a major root
cause of test flakiness [7,22] but we observed that the presence of this test smell does not necessarily represent test
flakiness, but test flakiness might be caused by the unexpected behaviour of the external environment, thus requiring
more investigation about flakiness in production code, infrastructure and external resources.

6.7 | Test smells: open-source versus closed-source industries

During the survey (see Figure 2h), all the participants from five companies ranked Async wait and Configuration and
dependency issues as the frequent root causes to test flakiness. However, test smells such as Concurrency, Floating point
operations, Resource leak, Source code defect and Unordered collection were not or very little experienced by the
participants due to the fact that real-time properties of systems has been heavily researched, so there is already
knowledge of how to anticipate these issues and fix them.

These test smell distributions are very different from what other studies with open-source software [1,7,21] have
reported. We speculate that the dedicated testing teams tend to educate themselves about common root causes and
avoid making the same mistakes in the future. As far as the Async wait and Configuration and dependency issues are
concerned, these test smells are mostly associated with external factors such as availability of resources thus limiting the
human control over test flakiness.

7 | VALIDITY THREATS

7.1 | Internal validity

An internal validity threat could be that participants did not understand our coding and its representation correctly.
We tried to reduce this by conducting a workshop in person at our university, allowing us to explain these factors and
their effects to attendees. In addition to this, we dedicated some time for questions related to these factors and their
effects.

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 21 of 24

7.2 | Construct validity

The main purpose of addressing construct validity is to capture as much as possible of the available information to
avoid all sorts of bias. We have tried to address construct validity threat by conducting both workshops (i.e., data
collection and data validation) with different participants. We tried to reduce the researchers’ bias by involving all
3 researchers in the design of the workshop and of the questions.

7.3 | External validity

External validity refers to the extent to which it is possible to generalize the findings, as well as the extent to which
the findings are of interest to other practitioners beyond those associated with the specific case being investigated
[45]. We tried to eliminate the external validity threat by selecting five different companies that work in different
domains.

7.4 | Reliability

Two researchers, at minimum, were involved to review the research protocol and study results. We continuously
iterated the survey/workshop questions to reach to a mutual agreement. We described the method used for conducting
this study to make it easier for researchers and practitioners to understand the details of this study.

8 | CONCLUSION

The presence of flaky tests in test suites raise concerns over product quality. They affect the confidence in the
product as well as frustrate practitioners as tests change outcomes without code updates. The test flakiness prob-
lem requires practitioners’ and researchers’ focus on techniques/tools/methods/guidelines /approaches that prevent
test flakiness, rather than detecting it after test suite execution, similar to any disease where we take precautionary
measures before it spreads. It is equally important to raise awareness among practitioners about what causes test
flakiness and how to address it efficiently (RQ1). After a manual and automated analysis of the test cases code of
flaky tests, we reported the root causes of test flakiness experienced by professionals (RQ1). We attempted to
capture a practitioners’ perceptions of what they think test flakiness is and what factors affect it. We identified
19 perceived factors that either increase or decrease test flakiness (RQ2). The identified perceived factors were
categorized as Test Code, System Under Test, CI/Test Infrastructure, and Organization Related. Although the per-
ceived factors mentioned in Section 4.3, have been very helpful for the investigated companies to reduce test
flakiness, we concluded that what practitioners perceive as factors affecting test flakiness are, in reality, properties
of a good test case (i.e., “simple test case,” “small test case,” and “robust test case” and others have been catego-
rized as “simplicity,” “single responsibility,” and “robust test case” respectively, as part of a good test case
(e.g., see Table 5) and well defined software practices. The problems related to test flakiness require more under-
standing of current perceptions or reality among practitioners. In addition, two of the identified perceived
factors (i.e., test case size and simplicity) were observed in the test artefacts which represent that the
practitioner’s perceptions are important to consider to reduce test flakiness. We concluded that test flakiness
should be investigated in different contexts to extend current knowledge. After survey analysis, we determined that
“Asynchronous wait” and “configuration and dependency issues” have been mentioned as major root causes of test
flakiness followed by “test order dependency.”

ACKNOWLEDGEMENTS
The authors would like to thank the participants in our multiple case study for their availability to help us in data
collection and data validation and to ask clarifying questions about the data as well as the engaging and insightful
discussions. This work was supported by Linkoping University and project 30 on Aspects of Automated Testing of
Software center.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from Software center. Restrictions apply to the availability
of these data, which were used under license for this study. Data are available from the author(s) with the permission of
Software center.

22 of 24 AHMAD ET AL.

ORCID
Azeem Ahmad https://orcid.org/0000-0003-3049-1261

REFERENCES
1. Fowler M. Eradicating non-determinism in tests. https://martinfowler.com/articles/nonDeterminism.html. Accessed [2019-04-15 18:52:30].
2. King TM, Santiago D, Phillips J, Clarke PJ. Towards a Bayesian network model for predicting flaky automated tests. In 2018 IEEE Interna-

tional Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE Comput. Soc: Lisbon, 2018. p. 100–7.
3. Leong C, Singh A, Papadakis M, Traon YL, Micco J. Assessing transition-based test selection algorithms at Google. In Proceedings of the 41st

International Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP ’19. IEEE Press: Montreal, Quebec, Canada,
2019. p. 101–10.

4. Micco J. Flaky tests at Google and how we mitigate them. https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html.
Accessed [2019-04-15 18:48:16]

5. Labuschagne A, Inozemtseva L, Holmes R. Measuring the cost of regression testing in practice: A study of Java projects using continuous
integration. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017. ACM: New York, NY,
USA, 2017. p. 821–30. event-place: Paderborn, Germany.

6. Hilton M, Nelson N, Tunnell T, Marinov D, Dig D. Trade-offs in continuous integration: Assurance, security, and flexibility. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017. ACM: New York, NY, USA, 2017. p. 197–207.
event-place: Paderborn, Germany.

7. Luo Q, Hariri F, Eloussi L, Marinov D. An empirical analysis of flaky tests. In Proceedings of the 22Nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2014. ACM: New York, NY, USA, 2014. p. 643–53. event-place: Hong Kong, China.

8. Rainer A, Hall T, Baddoo N. Persuading developers to ‘buy into’ software process improvement: Local opinion and empirical evidence.
In Proceedings of the 2003 International Symposium on Empirical Software Engineering, ISESE ’03. IEEE Computer Society: Washington,
DC, USA, 2003. p. 326.

9. Laukkanen E, Paasivaara M, Arvonen T. Stakeholder perceptions of the adoption of continuous integration—A case study. In 2015 Agile
Conference, 2015. p. 11–20.

10. Sun W, Marakas G, Aguirre-Urreta M. The effectiveness of pair programming: Software professionals’ perceptions. IEEE Softw. 2016;33(4):
72–9.

11. Ebert F, Castor F. A study on developers’ perceptions about exception handling bugs. In 2013 IEEE International Conference on Software
Maintenance, 2013. p. 448–51.

12. Shah H, Gorg C, Harrold MJ. Understanding exception handling: Viewpoints of novices and experts. IEEE Trans Softw Eng. 2010;36(2):
150–61.

13. Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD. Do they really smell bad? A study on developers’ perception of bad code smells. In
2014 IEEE International Conference on Software Maintenance and Evolution, 2014. p. 101–10.

14. Camacho CR, Marczak S, Cruzes DS. Agile team members perceptions on non-functional testing: Influencing factors from an empirical study.
In 2016 11th International Conference on Availability, Reliability and Security (ARES), 2016. p. 582–9.

15. Percival J, Harrison N. Developer perceptions of process desirability: Test driven development and cleanroom compared. In 2013 46th Hawaii
International Conference on System Sciences, 2013. p. 4800–9.

16. Tan H, Tarasov V. Test case quality as perceived in Sweden. In 2018 IEEE/ACM 5th International Workshop on Requirements Engineering
and Testing (RET), 2018. p. 9–12.

17. Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D. Are test smells really harmful? An empirical study. Empir Softw Eng. 2015;20(4):
1052–94.

18. Wan Z, Xia X, Hassan AE, Lo D, Yin J, Yang X. Perceptions, expectations, and challenges in defect prediction. IEEE Trans Softw Eng. 2018;
46:1241–66.

19. Zou W, Lo D, Chen Z, Xia X, Feng Y, Xu B. How practitioners perceive automated bug report management techniques. IEEE Trans Softw
Eng. 2018;46:836–62.

20. Abad ZSH, Ruhe G, Bauer M. Task Interruptions in requirements engineering: Reality versus perceptions!. In 2017 IEEE 25th International
Requirements Engineering Conference (RE), 2017. p. 342–51.

21. Eck M, Palomba F, Castelluccio M, Bacchelli A. Understanding flaky tests: The developer’s perspective. Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering - ESEC/FSE 2019.
2019. p. 830–40. arXiv: 1907.01466.

22. Thorve S, Sreshtha C, Meng N. An empirical study of flaky tests in Android apps. In 2018 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), 2018. p. 534–8.

23. Morn J, Augusto C, Bertolino A, de la Riva C, Tuya J. Debugging flaky tests on web applications:. In Proceedings of the 15th International
Conference on Web Information Systems and Technologies. SCITEPRESS - Science and Technology Publications: Vienna, Austria, 2019. p. 454–61.

24. Morn J, Augusto C, Bertolino A, Riva CDL, Tuya J. FlakyLoc: Flakiness localization for reliable test suites in web applications. J Web Eng.
2020;2:267–96.

25. Dong Z, Tiwari A, Yu XL, Roychoudhury A. Concurrency-related flaky test detection in Android apps, 2020. arXiv:200510762 [cs], arXiv:
2005.10762.

26. Mascheroni MA, Irrazbal E. Identifying key success factors in stopping flaky tests in automated REST service testing. J Comput Sci Technol.
2018;18(02):e16.

27. Bell J, Legunsen O, Hilton M, Eloussi L, Yung T, Marinov D. DeFlaker: Automatically detecting flaky tests. In 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE), 2018. p. 433–44.

28. Gambi A, Bell J, Zeller A. Practical test dependency detection. In 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), 2018. p. 1–1.

29. Dutta S, Shi A, Choudhary R, Zhang Z, Jain A, Misailovic S. Detecting flaky tests in probabilistic and machine learning applications. In Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2020. Association for Computing
Machinery: New York, NY, USA, 2020. p. 211–24. https://doi.org/10.1145/3395363.3397366

EMPIRICAL ANALYSIS OF PRACTITIONERS’ PERCEPTIONS OF TEST FLAKINESS FACTORS 23 of 24

https://orcid.org/0000-0003-3049-1261
https://orcid.org/0000-0003-3049-1261
https://martinfowler.com/articles/nonDeterminism.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://doi.org/10.1145/3395363.3397366

30. Lam W, Godefroid P, Nath S, Santhiar A, Thummalapenta S. Root causing flaky tests in a large-scale industrial setting. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019. Association for Computing Machinery:
New York, NY, USA, 2019. p. 101–11. https://doi.org/10.1145/3293882.3330570

31. Shi A, Bell J, Marinov D. Mitigating the effects of flaky tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019. Association for Computing Machinery: New York, NY, USA, 2019. p. 112–22.
https://doi.org/10.1145/3293882.3330568

32. Strauss A, Corbin J. Basics of qualitative research: Techniques and procedures for developing grounded theory, 2nd ed. Sage Publications, Inc:
Thousand Oaks, CA, US, 1998.

33. Sbom A. Studying test flakiness in python projects: Original findings for machine learning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-264459

34. Fortier PJ, Michel H. Computer systems performance evaluation and prediction. Butterworth-Heinemann: USA, 2002.
35. Bowes D, Hall T, Petric J, Shippey T, Turhan B. How good are my tests? In 2017 IEEE/ACM 8th Workshop on Emerging Trends in Software

Metrics (WETSoM), 2017. p. 9–14.
36. Deursen A, Moonen LMF, Bergh A, Kok G. Refactoring test code, CWI (Centre for Mathematics and Computer Science), Amsterdam, The

Netherlands, 2001.
37. Kaner C. What is a good test case? 2003. Software Testing Analysis & Review Conference (STAR) East, Orlando, FL, May 12-16. p. 16.
38. Beer A, Junker M, Femmer H, Felderer M. Initial investigations on the influence of requirement smells on test-case design. In 2017 IEEE 25th

International Requirements Engineering Conference Workshops (REW), 2017. p. 323–6.
39. Factor definition and meaning j Collins English Dictionary. https://www.collinsdictionary.com/dictionary/english/factor
40. IEEE Standard Glossary of Software Engineering Terminology, 1990. IEEE Std 61012-1990, 1–84.
41. Lam W, Oei R, Shi A, Marinov D, Xie T. iDFlakies: A framework for detecting and partially classifying flaky tests. In 2019 12th IEEE

Conference on Software Testing, Validation and Verification (ICST), 2019. p. 312–22.
42. Garousi V, Küçük B. Smells in software test code: A survey of knowledge in industry and academia. J Syst Softw. 2018;138:52–81.
43. Dar HS. Reducing ambiguity in requirements elicitation via gamification. In 2020 IEEE 28th International Requirements Engineering

Conference (RE), 2020. p. 440–4.
44. de Oliveira Neto FG, Ahmad A, Leifler O, Sandahl K, Enoiu E. Improving continuous integration with similarity-based test case selection.

In Proceedings of the 13th International Workshop on Automation of Software Test, AST ’18. ACM: New York, NY, USA, 2018. p. 39–45.
http://doi.acm.org/10.1145/3194733.3194744

45. Runeson P, Host M, Rainer A, Regnell B. Case study research in software engineering: Guidelines and examples (1st edn.) Wiley Publishing,
2012.

How to cite this article: Ahmad A, Leifler O, Sandahl K. Empirical analysis of practitioners’ perceptions of test
flakiness factors. Softw Test Verif Reliab. 2021;e1791. https://doi.org/10.1002/stvr.1791

24 of 24 AHMAD ET AL.

https://doi.org/10.1145/3293882.3330570
https://doi.org/10.1145/3293882.3330568
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264459
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264459
https://www.collinsdictionary.com/dictionary/english/factor
http://doi.acm.org/10.1145/3194733.3194744
https://doi.org/10.1002/stvr.1791

	Empirical analysis of practitioners' perceptions of test flakiness factors
	1 INTRODUCTION
	2 RELATED WORK
	3 RESEARCH METHODOLOGY
	3.1 Case descriptions
	3.2 Data collection
	3.2.1 Survey
	3.2.2 Online workshops
	3.2.3 Site visit

	3.3 Preparation
	3.4 Data analysis
	3.5 Data validation

	4 RESULTS
	4.1 Survey results-RQ1
	4.2 Root causes in terms of test smells and mitigation strategies-RQ1
	4.2.1 Async wait
	4.2.2 Platform dependency
	4.2.3 Time
	4.2.4 Randomness
	4.2.5 Input/output

	4.3 Perceived factors and their effect-RQ2
	4.3.1 Test code-related factors
	4.3.1 Test case simplicity: (-) test flakiness
	4.3.1 Test Case Size: (+) test flakiness
	4.3.1 Test case age: (+) test flakiness
	4.3.1 Test case robustness: (-) test flakiness
	4.3.1 Test case independence: (-) test flakiness
	4.3.1 Test smelliness: (+) test flakiness

	4.3.2 System under test-related factors
	4.3.2 System under test/test case execution time: (-) test flakiness
	4.3.2 Requirements clarity: (-) test flakiness
	4.3.2 Avoiding testing of a complex feature: (-) test flakiness

	4.3.3 CI/test infrastructure-related factors
	4.3.3 Automated test case inspection: (-) test flakiness
	4.3.3 Testing for flaky tests at different stages: (-) test flakiness
	4.3.3 CI instability: (+) test flakiness
	4.3.3 Undermining network infrastructure: (-) test flakiness
	4.3.3 Advanced test results reporting: (-) test flakiness
	4.3.3 Rerunning test cases: (-) test flakiness
	4.3.3 Environment handler outside test cases: (-) test flakiness
	4.3.3 Environment understanding: (-) test flakiness

	4.3.4 Organizational-related factors
	4.3.4 Perseverance to reduce test flakiness: (-) test flakiness
	4.3.4 Team experience in handling test flakiness: (-) test flakiness

	4.3.5 Tentative mapping of relationships based on perceptions

	4.4 Practitioner's perceptions versus test artefacts-RQ3

	5 EVALUATION
	6 DISCUSSION AND IMPLICATIONS
	6.1 Proper roles and responsibilities: avoid blame-game
	6.2 Trust on final product and testing process
	6.3 Test flakiness investigation in different contexts
	6.4 Test flakiness prevention by test design
	6.5 Flaky test perception and reality
	6.6 Test smells are not the only indicator of test flakiness
	6.7 Test smells: open-source versus closed-source industries

	7 VALIDITY THREATS
	7.1 Internal validity
	7.2 Construct validity
	7.3 External validity
	7.4 Reliability

	8 CONCLUSION
	ACKNOWLEDGEMENTS
	 DATA AVAILABILITY STATEMENT

	REFERENCES

