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Abstract

The agricultural industry is facing a major technological change with autonomous
vehicles in focus. This follows the global trend, where the interest lies in increas-
ing production, while reducing costs with the help of automation. Considering
the vast amount of different agricultural machines on the market today, the pro-
cess of automating these machines is long and needs to start on one machine.
This thesis covers the process of developing an automatic control system for a
seedbed tine harrow.

The seedbed tine harrow cultivates the soil at a certain depth in preparation
for planting. The different functions on the harrow are today manually controlled
from the cab of the tractor, which means that the farmer must constantly moni-
tor the process. The proposed control system uses radar sensors to measure and
hydraulic systems to control the harrowing depth and the crossboards. The de-
velopment of the control system consists of modeling the harrow, creating a sim-
ulation environment, choosing a filtering strategy, and testing different control
algorithms.

The resulting control algorithm, implemented and tested on the harrow, con-
sisted of a Kalman filter with separate PD-controllers for each function, the har-
rowing depth, and the angle of the crossboards. The crossboard controllers use
an additional feedforward control from measured disturbance. The thesis also
explores a set of experimental control algorithms, for instance, cascade control.
These are not possible to implement on this generation of the harrow but show
promising potential from simulation.
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1
Introduction

Figure 1.1: Overview of the tine harrow.

1.1 Problem Formulation

1.1.1 Motivation

In this thesis, the possibility to produce a robust control strategy for a tine harrow,
shown in Figure 1.1, will be investigated. Currently, the different functions of the
harrow are controlled from the tractor cab manually and require constant super-
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2 1 Introduction

vision. The goal is to be able to create an autonomous system working predictably
and desirably to ease the workload and strive towards a fully autonomous system.

Figure 1.2: A side view of the tine harrow
∗Crossboards are linear over the entire width of the machine unlike the fig-
ure shows.

1.1.2 Purpose

The farming industry is facing a major technological revolution where the main
goal is to automate the harrowing process and get rid of the need for supervision
from a farmer. This will result in increased efficiency and profit for the farmer
and is the reason why the company1 is striving to automate its wide range of
agricultural machinery. The tine harrow has been in the company’s production
line since the 70s and has continuously been developed through the years into,
among others, the tine harrow model focused on in this report. The next step
in development is to automate the main functions, the working depth, and cross-
board intensity. The performance of the harrow is dependent on the soil quality,
weather, and other disturbances. Therefore, the farmer constantly needs to mon-
itor the process and tune the machine if needed. Using radar sensors the depth
and crossboard intensity can be estimated and then used in an automatic control
system to ensure that the harrow performs proficiently.

1.1.3 Problem Statement

Questions covered by this thesis are:

• How advanced does a model of the real system need to be in order to design
a robust control system?

1This thesis is done towards an agricultural company. Because some components and technology
are at an early development stage the company will, however, only be referred as the company and not
its real name.



1.2 Seedbed Tine Harrow 3

• What measurements are necessary and how should these be filtered to suit
the control system?

• What control strategy is most suitable for this application considering the
development cost, system characteristics, and robustness with respect to
measurement noise and model errors?

1.1.4 Delimitations

The control system will be developed to control an already existing product and
will not be designed with other products in mind. This means that the three
existing control functions can not be modified and the thesis will not focus on
the development of these hardware components.

1.2 Seedbed Tine Harrow

A seedbed tine harrow is used to loosen up, level, and cultivate the soil in prepa-
ration for planting. The harrow, which the thesis is covering, comes in different
setups depending on the customer’s demand. In Figure 1.2 the three components
which are working the soil are displayed, the two main components which come
as standard are the front crossboard and the tines.

The crossboard is used to level the field and destroy bigger chunks of soil by
pushing a wall of soil in front of the harrow. The work intensity is controlled by
adjusting the angle of the crossboard. The rear crossboard works in the same way
as the front and is an addition which further levels the soil.

The tines, which are the black "hooks" underneath the harrow in Figure 1.2,
are used to cultivate the soil, and are designed like springs which enables them
to flex back when digging into the soil. This causes the tines to vibrate during
the harrowing and moves larger aggregates to the top and smaller clusters to the
bottom which is a desirable distribution for optimal growth. The front crossboard
and tines during work are shown in Figure 1.3.

The crossboards and the height of the harrow, which sets the depth of the
tines, are controlled by hydraulic cylinders. Each component is driven by three
cylinders which are series-connected and are dimensioned in a way that provides
synchronized movement.

1.3 Related Work

The possible applications and benefits of automatic control in agricultural ma-
chinery was recognized already twenty years ago [14]. Even if the applications
seemed possible at the time, there have not been many agricultural companies
that have delivered machines using automatic control since then. Even the re-
search in the area has been limited and in 2020 a number of researchers con-
cluded that "...very few researchers have focused on application of control algo-
rithms for agriculture related practices" [13].
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Figure 1.3: The tines and crossboard working together to level and cultivate
the soil.

Even though the research on this topic is limited, some papers exist where the
possibilities of controlling the tillage depth are researched. In [7] the possibility
of controlling the depth of a rotary tillage machine was investigated with promis-
ing results. In [15] researchers developed a control system for the working depth
of a seed drill. Here they used a cascade control with the stroke of the hydraulic
cylinder as the secondary loop. In this article, they used the optimal PID-tuning
rule from [2]. This tuning rule is developed with regard to integrated processes
in agricultural applications, which is also relevant for this work.

The big difference between the works mentioned and this project is the extent
of the control system. The control systems mentioned control one function of the
machine, usually the tillage depth, using several different sensors, while this the-
sis will focus on multiple dependent functions, harrowing depth, and crossboard
wall heights, using only one type of radar sensor.



2
Modelling and Simulation

This chapter describes the system and the process of developing motion models
and a simulation environment.

2.1 System Overview

In order to design a desirable control system without large-scale testing, the char-
acteristic of each controllable component needs to be described mathematically.
This is done using drawings of, and tests on, the harrow. The harrow has up to
three controllable components which are the front and rear crossboard and the
wheel axle, see Figure 1.2. The crossboards are varied by changing the angle of
attack against the soil. Increasing the angle results in the crossboard digging
deeper into the soil and creating a more perpendicular angle between soil and
crossboard. This results in an increased work intensity which builds a bigger
wall in front of the crossboard, shown and explained in more detail in Figure 2.1.
The position of the wheel axle sets the height of the entire harrow, thus affecting
all components. The main purpose of changing the height is to vary the working
depth of the tines where a lower height results in the tines penetrating the soil
deeper. Because all components are affected by the height, the work intensity of
the crossboards also increases by lowering the height. The depth of the tines and
the height of each wall are the variables to be controlled.

The components are controlled by separate hydraulic systems. Each hydraulic
system contains three or four series-connected cylinders which control one of the
three functions of the harrow. The three functions of the harrow are design in
similar ways. The generic mechanics of all three functions can be seen in Figure
2.2. The input signal u moves the hydraulic cylinder length Lc which then rotates
a pivot arm. This rotation θ is then mechanically translated to a movement of the
function, which in turn results in a change in an angle of attack or a height y. This

5



6 2 Modelling and Simulation

will be further explained in section 2.3.

Figure 2.1: The crossboard shoving a wall of soil in front. By rotating the
beam on which the crossboard is mounted the work intensity is adjusted.
Pushing the crossboard against the soil creates higher intensity as a result of
crossboard depth and angle between soil and crossboard.

Hydraulic Cylinder Rotation Main movement
u Lc θ y

Figure 2.2: Generic diagram of the mechanics of each of the functions, where
u is the input signal, Lc is the length of the cylinder, θ is the rotation of the
pivot arm, y is the output either a angle of attack or the harrow height.

2.1.1 Hydraulic System

The hydraulic systems of the harrow are designed using a "master-slave" setup.
This setup guarantees that cylinders spread across the harrow work synchronously
even if the load affecting the harrow is uneven. The cylinders for each component
are connected in series, four cylinders for the motion of the front crossboard and
three for the motion of the rear crossboard and the height of the harrow. The
synchronized motion is accomplished by dimensioning the cylinders in such a
way that two connected chambers have the same piston area, this is illustrated in
Figure 2.3.

The hydraulic cylinders get oil pressure from the internal pump of the tractor.
The flow of the oil is controlled by two "2 way normally closed, proportional flow
control valve" for each function, one to control the flow to the upper chamber and
one to control the flow to the lower chamber. The valves are fed with a controlled
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current and the flow of oil can be closely approximated to be proportional to this
controlled current as qv = Kv(i − i0), where qv is the flow from the valve, Kv
is the valve gain, i is the provided current and i0 is the opening current. The
approximation can be seen in Figure 2.4.

A1

A1

A2

A2

Control valve

Cylinders

Figure 2.3: Illustration of a "master-slave" cylinder setup. Equal piston area
in two connected chambers allows for synchronized movement.

2.2 Modeling Theory

To be able to model and simulate the harrow some theoretical background is
needed.

2.2.1 Model Estimation of Hydraulic System

In contrast to the mechanics of the motion of the harrow, the hydraulic system
has several unknown characteristics that are hard to estimate from drawings and
technical documentation. Therefore the hydraulics of the system is modeled us-
ing system identification.

System Identification

System identification is about estimating parameters, θ̄, in a proposed model
structure Ĝ(p, θ̄) to best fit measured data of the system [10]. The measured data
is the input signal u(t) and the output signal y(t). This gives that for each u(t) in
the measured data, the proposed model will give an estimate of the output

ŷ(t|θ̄) = Ĝ(p, θ̄)u(t) (2.1)
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Figure 2.4: The flow as a function of applied current. It shows the true flow
and a comparison to a true proportional flow. It also shows the dead-zone of
the system, i.e the opening current i0, 0 − 0.64A.

where p is the differential operator and ŷ is the estimated value of the output.
From this the prediction error is defined as:

ε(t, θ̄) = y(t) − ŷ(t|θ̄). (2.2)

Using this prediction error for every measurement t = 1, 2, ..., N , the following
performance measure can be created

VN (θ̄) =
1
N

N∑
t=1

ε2(t, θ̄). (2.3)

This measure indicates how well the estimated model using θ̄ predicts the true
model. Naturally, the goal is to find

θ̄∗ = arg min
θ̄

VN (θ̄), (2.4)

i.e the parameters that best fit the data in terms of minimizing the cost function
VN .

Proposed Model Structure

In order for (2.4) to estimate the true system G0(p), the proposed model needs
to have the right order of the differential equation. This can be achieved either
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by using the known information about the system and setting up a proposed dif-
ferential equation. It is also possible to propose a higher-order model and let the
algorithm find the best suiting parameters. These two techniques are called grey-
box and black-box modeling respectively. A drawback of black-box modeling is
that the algorithm takes longer to find an optimum and might fit the model to
the sensor noise thus giving an bad model.

Since there is prior knowledge about the hydraulic system, the best approach
is to use a grey box model.

The hydraulic cylinder is controlled by the proportional valve which controls
the flow of hydraulic oil. As shown in Figure 2.4, this flow can be approximated
as linear.

q = Kv ic, (2.5)

where q is the flow through the valve, and Kv is the valve gain. Furthermore,
ic = i(t) − i0 where i0 is the dead zone of the valve and i(t) is the controlled
current. The flow into the cylinder gives the following equation:

q = Avc + Kβ v̇c, (2.6)

where A is the area of the cylinder chamber which the fluid flows to, seen in
Figure 2.5,vc is the piston speed, and Kβ v̇c is to describe the compression of the
fluid in the system. Combining (2.5), (2.6) and applying the Laplace transform
gives:

Vc(s) =
Kv

(A + sKβ)
I(s). (2.7)

The measured data from the hydraulic system is the input current i(t) and the
output is the cylinder length Lc(t) = Ls(t) + Lc0. Therefore, the (2.7) need to be
integrated to describe the change of stroke

Ls(s) =
Kv

s(A + sKβ)
I(s). (2.8)

Combining the parameters and adding a time delay Td to the system gives the
final model

Ls(s) =
K

s(1 + sT )
e−sTd I(s), (2.9)

with the model parameter θ̄ = [K, T , Td]. This is commonly referred to as a first
order lag plus integral plus delay (FOLIPD) process model [2].

2.3 Modeling

2.3.1 Overview

The model of the harrow has been divided into three parts where each part de-
scribes the relationship between a control signal and a system output. These
parts are:
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Apos

Aneg
Ls

vc

qpos

qneg

Figure 2.5: Generic diagram of a hydraulic cylinder. qneg is the flow for
negative movement, qpos is the flow for positive movement, Aneg and Apos is
the area of which the hydraulic oil pushes for each direction.

• Crossboard Front

• Harrow Height

• Crossboard Rear

Each model is structured as: A controlled current steers a hydraulic propor-
tional valve which creates a flow of hydraulic oil. This flow moves the hydraulic
cylinder with a speed proportional to the flow which rotates a pivot arm. These
rotations finally translate to a motion for each model. In order to obtain these
mathematical models, measurements and testing on the harrow have been car-
ried out, and drawings of the harrow have been used.

2.3.2 Hydraulic Cylinder

The hydraulic cylinders were modeled using measurements from the harrow to-
gether with the proposed model in (2.9). The measurements were done by mea-
suring the applied current to the valve, compensated for the opening current i0,
as well as the stroke of the cylinder with a linear potentiometer. Data from the
measurements can be seen in Figure 2.6.

Using the collected data together with System Identification Toolbox [8] in
MATLAB the optimal parameters θ̄ that minimized the cost function in (2.4) were
obtained. The result showed that the model could estimate the true system fairly
well, with small deviations at some speeds. The resulting model with estimation
and validation data is shown in Figure 2.7

The hydraulic cylinders are asymmetrical, which means that they will have
different dynamic properties if they are contracting or expanding. This is solved
by dividing the model into two parts one for positive (expanding) and one for
negative (contracting) movements.
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Figure 2.6: Measured data from the hydraulic system of the crossboard front.
The data y1 is the cylinder stroke Ls, while u1 is the applied current i.
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Figure 2.7: Estimated hydraulic model of front crossboard. z1 is the data
used for estimation, z4 is validation data, m is the estimated model output.

The resulting model constants from the System Identification toolbox are
shown in Table 2.1
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Table 2.1: Model constants for hydraulic cylinders

Model: Direction K T Td

CB front Pos 0.094981 0.16 0.01
CB front Neg 0.074141 0.02 0.19
Harrow Height Pos 0.057597 0.10 0.07
Harrow Height Neg 0.078936 0.02 0.07
CB rear Pos 0.117950 0.01 0.05
CB rear Neg 0.107020 0.18 0.04

2.3.3 Rotational Dynamics

As the hydraulic cylinder moves, it pivots a rotational arm, as seen in Figure 2.8.
This rotation can be described as a function from the length of the cylinder Lc to
an angle on the pivot arm θ. This mechanism is the same on all three models, but
the dimensions are different.

Figure 2.8: The hydraulic set up on the harrow. The picture shows CB front
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x

y
Lc

La θ

(xp, yp)

(x1, y1)(x0, y0)

Figure 2.9: Diagram of the rotational motion. Lc is the cylinder length, La is
the length of the rotational lever and θ is the rotation.

From the mechanical diagram in Figure 2.9, the following equations can be
produced.

x1 − La sin(θ) = xp (2.10)

y1 + La cos(θ) = yp (2.11)√
(xp − x0)2 + (yp − y0)2 = Lc (2.12)

Equations (2.10), (2.11), (2.12) together with the fact that (x0, y0) = (0, 0) gives
the following equation:

(x1 − La sin(θ))2 + (y1 + La cos(θ))2 = L2
c (2.13)

Rewriting (2.13) gives the angle θ as a function of Lc.

θ = sin−1

x
2
1 + y2

1 + L2
a − L2

c

2La
√
x2

1 + y2
1

 + tan−1
(
y1

x1

)
(2.14)

Linear Assumptions

In control design, it is often desirable to have linear models. Equation (2.14) is
nonlinear, but as it turns out, the equation can be approximated as linear, which
will be useful when designing the control system. For small angles of θ the angu-
lar velocity ω can be approximated as a function of the piston speed vc as

θ̇ = ω ≈ −vc
La

. (2.15)

Using (2.15) and the initial angle θ0, the linear approximation can be used to
compute the approximated angle θ̂. The comparison between the approximation
and the actual angles for the three models are shown in Figure 2.10, 2.11, and
2.12.
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Figure 2.10: Comparison be-
tween θCBF and θ̂CBF .
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Figure 2.11: Comparison be-
tween θCBR and θ̂CBR.
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Figure 2.12: Comparison between θh and θ̂h.

From Figure 2.10 - 2.12 it can be concluded that (2.15) can approximate (2.14)
fairly well across the whole stroke of the cylinder. Worth noticing is that (2.15)
approximates with higher precision at some intervals, and this interval coincides
with the working point θW for the different functions (θW,CBF ≈ 570mm, θW,CBR ≈
560mm, and θW,h ≈ 670mm).

2.3.4 Harrow Depth

The height of the harrow is controlled by an axle with two rigid arms, La and
Lw, illustrated in Figure 2.13. The hydraulic cylinder is connected to (xp, yp) and
the wheel suspension to (xw, yw). When the cylinder extends, the wheel arm is
lowered and the height is increased.

The height of the harrow is mainly controlled to set a working depth for the
tines. The height is calculated from a point on the underside of the frame and
lax is the length from this point to the rotating axis. The depth dtine is simply
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ltine
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Figure 2.13: Replication of the arms controlling the height of the harrow.

calculated by comparing the height of the harrow, including the radius of the
wheels rw, to the length of the tines. α0 is the angle of the wheel arm Lw when
θ = 0. Using (2.16) the angle of the wheel arm α can be calculated for any given
θ. The deepest working depth is obtained when the hydraulic cylinder is fully
compressed resulting in θ obtaining its highest possible value.

α = α0 − θ (2.16)

h = Lw · sin (α) + rw − lax (2.17)

dtine = ltine − h (2.18)

Tine Dynamics

The tines on the harrow are constructed to spring back in order to vibrate and cul-
tivate the soil. When the depth dtine increases, the length of a tine ltine decreases
as a result of this spring back. The tine dynamics are modeled in a black-box
fashion using measurement on the harrow. The resulting model is

ltine =

ltine,0 − Ktine
pTtine+1 (ltine,0 − h), if(ltine,0 − h) > 0

ltine,0 otherwise
(2.19)

where ltine,0 is the initial length of the tine, Ktine is the model gain, and Ttine is
the time constant.
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2.3.5 Crossboard

The variable that needs to be controlled for the crossboards is the height of the
wall of soil that builds up in front of the crossboard. The wall is dependent on
the the angle of attack and depth that the crossboard penetrates the soil. These
variables are in turn dependent in the angle of rotation from (2.14).

Crossboard Front

The crossboard in front has an attack angle of 0◦ when the hydraulic cylinder
is fully contracted, which means that the angle of attack α is dependent on the
angle of rotation θ as well as the initial angle θ0. The mechanics of the crossboard
are shown in Figure 2.14 and the equations that describe the front crossboard are

α = α0 − θ (2.20)

dCBF = LCBF cos(α) − hCBF . (2.21)

LCBF

θ

α
hCBF

dCBF

Figure 2.14: Mechanical diagram of the front crossboard where θ is the ro-
tation angle, hCBF is the height above ground, α is the angle of attack, LCBF
is the length of the crossboard, and dCBF is the working depth.

Crossboard Rear

The rear crossboard has mirrored movement compared to the front. When the
hydraulic cylinder is fully contracted the angle of attack is at its minimum. The
mechanics of the crossboard are shown in Figure 2.15 and the equations of the
movement are
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α = α0 + θ (2.22)

β = β0 + α (2.23)

dCBR = LCBR cos(β) − hCBR. (2.24)

LCBR

θ

β
hCBR

α

dCBR

Figure 2.15: Mechanical diagram of the rear crossboard where θ is the ro-
tation angle, hCBR is the height above ground, α is the angle of attack,β is
the crossboard angle, LCBF is the length of the crossboard, and dCBR is the
working depth.

Soil Wall

The wall of soil that builds up against the crossboard needs to be modeled in or-
der to simulate the system and design a controller that accurately controls this
wall. The biggest problem with modeling this wall is that the dynamics is de-
pending on several unknown parameters, such as the composition of the soil,
humidity of the soil, and the speed of the harrow. Instead of doing extensive
work with modeling and estimating unknown parameters in a grey-box fashion,
a black-box model for the dynamics is estimated using measurements from runs
of the system.

Since it is known that the wall builds up by shoving the soil, and that the wall
height increases by lowering the crossboard, it can be assumed that the wall is
directly dependent on the crossboard working depth dCB. It can also be assumed
that the system reaches a steady state if there is no influence of external distur-
bances. Given these assumptions the wall can be modeled using a differential
equation, most commonly expressed as a transfer function [11]

wCB = Gw(p)dCB, (2.25)

where w is the height of the wall and Gw is the transfer function. The most basic
approach to model this system is to assume the transfer function is a first order
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system

wCB =
Kw

Twp + 1
dCB. (2.26)

But observing the real system shows some overshoots in the wall height, which
is not possible with a first order system. Using an experimental identification
method, the wall dynamics could be modeled using a second order system with
a zero as

wCB =
a2p + a1

b3p2 + b2p + b1
dCB, (2.27)

where the constants a1,2 and b1,2,3 are determined to achieve a static gain between
4 and 6, rise time between 3 and 5 seconds and an overshoot of about 20%. Worth
noting is that these parameters do not have to be exact, this is because of the
uncertainty in the dynamics and that the controller needs to be able to control an
arbitrary wall.

2.3.6 State Space Models

Many popular control strategies such as LQ controllers, require a linear state
space model [9]. In order to use such control strategies the nonlinear equations
need to be linearized. This is done around a given working point where the har-
row usually operates.

Depth model

Combining (2.9), (2.15), (2.16), (2.17) and (2.18) with states x1(t) = d, x2(t) = ḋ,
and the control signal u(t) = i(t), the linearized state space model for the depth
is

ẋ1 = x2 (2.28a)

ẋ2 =
−1
T
x2 −

Lw cos(α0 − θ0)K
T La

u, (2.28b)

where θ0 is the working point of the linearization.

Crossboard Model

The crossboard model is more advanced than the depth model and it is thus more
difficult to linearize. Using (2.9), (2.15), (2.20) and (2.21) together with (2.26),
instead of (2.27) for simplicity, with the states, x1 = wCBF , x2 = θCBF , x3 = θ̇CBF ,
the control signal u(t) = i(t) and with the disturbance v(t) = hCBF , the nonlinear
state space model of the front crossboard is expressed as

ẋ1 =
−1
Tw
x1 +

KwLCBF
Tw

cos(α0 − x2) − Kw
Tw

v (2.29a)

ẋ2 = x3 (2.29b)

ẋ3 =
−1
T
x3 −

K
T La,CBF

u. (2.29c)



2.4 Simulation and Validation 19

In the same way, with (2.9), (2.15), (2.22), (2.23) and (2.24) together with
(2.26) the nonlinear state space model of the rear crossboard is expressed as

ẋ1 =
−1
Tw
x1 +

KwLCBR
Tw

cos(α0 + β0 + x2) − Kw
Tw

v (2.30a)

ẋ2 = x3 (2.30b)

ẋ3 =
−1
T
x3 −

K
T La,CBR

u. (2.30c)

2.4 Simulation and Validation

When producing a control system for the first time, a lot of testing and calibrat-
ing is required. Real-world testing is expensive and takes a lot of time, especially
when big machines, such as harrows, are used. Therefore, being able to simulate
tests is essential for efficiency and cost. With this in mind a simulation environ-
ment of the harrow was established in Simulink. Simulink is a tool created for
modelling and simulation of dynamic systems. The ability to use it together with
MATLAB creates a combination of textual and graphical programming which is
helpful in this kind of work.

2.4.1 Implementation

The movement of the different components was implemented using (2.16)-(2.24)
from above, where θ is given by (2.14). The cylinders was modeled in Simulink
according to Figure 2.16. The control signal u is a current sent to the control valve
controlling the cylinders. The dead zone and the saturation represents the dead
zone and the maximum current of the valve. Depending on whether the signal is
positive or negative the cylinder extends or contracts. The characteristics of the
movement was implemented as described in (2.9) using parameters produced in
Chapter 2.3.2. To get cylinder movement the signal is integrated.

Figure 2.16: Implemented cylinder model in Simulink for extension and
contraction dependent on control signal u.

For a complete overview of the entire system implemented in Simulink, see
Appendix A.
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2.4.2 Disturbances

Disturbances created by varying soil hardness as well as an uneven surface are
random and in order to get an accurate model, these have to be simulated as well.
The disturbances affecting the height and the crossboards differ a lot and were
therefore generated differently in the simulation environment.

Height

To determine the characteristics of the disturbances data from previous testing,
presented in Figure 2.18, was used. The data shows a large underlying distur-
bance with a rather constant period of approximately 4 seconds. On top of this
two higher frequency disturbances were apparent, one with a frequency of 3-4
Hz and one smaller with an even higher frequency of 20 Hz. Using these observa-
tions the disturbance affecting the height could be modelled. To ensure that all
modelled sensors had a similar behaviour a single random signal representing
the large disturbance was used. This signal was split into four signals with dif-
ferent time delays to mimic the placements of the sensors. An offset was added
to each signal as well as the two higher frequency disturbances which gave each
signal different attributes. The resulting disturbance is presented in Figure 2.19.

Crossboards

The crossboard disturbances can be separated in three parts: harrow movement,
uneven soil and measurement errors. According to (2.21), (2.24) and (2.27) the
wall height is dependent on the height of the harrow, thus the changing harrow
height can be seen as a measurable disturbance. Due to the considerable length
of the harrow, soil quality is not constant across the harrow. This implicates that
the wall height at each sensor will be different and is modeled with a randomly
slowly changing offset for each sensor. The changing soil quality is modeled by
adding slow changing noise to the wall height from (2.27). Lastly, to simulate the
measurement noise, white independent noise is added to the simulated signal.

2.4.3 Validation

To ensure that the implemented model behaves in the same way as the real sys-
tem, data from simulations are compared with data collected from the system.

System Validation

The model controlling the height was validated using a simple test where a con-
trol signal was sent to the control valve for a sett amount of time. This was made
both ways while standing still on flat ground to eliminate any disturbances. The
same test was performed in Simulink and the results are compared in Figure 2.17.
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Figure 2.17: Comparison of simulated model and real system, the green
straight line represents the simulation and the others the real test. LH, RH,
MH, and FH are the different sensors measuring the height of the harrow.

Disturbance Validation

The measured and the simulated data are presented in Figure 2.18 and 2.19. Be-
cause the disturbances affecting the harrow are totally random they are hard to
recreate. A similar behaviour can, however, be created. By comparing the data
the large underlying disturbance is apparent in both, with the biggest difference
being that the simulated output has a fixed sample time while the real output
varies a little. Looking at the higher frequency disturbances, the largest peaks
in the real data, mainly occurring on the yellow sensor, are not present in the
simulations. The reason for this is because these are considered as outliers and
are unnecessary to model. When looking at the zoomed in graphs to the right,
both have a very similar behaviour. The entire graph, on the other hand, shows
some differences between the data. The main difference is that the offset between
the four sensors are smaller in the simulated data. The reason for this is how the
model is created and the fact that all signals are based on the same disturbance.
This is however not considered to be an issue since the signals are being processed
later on.
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Figure 2.18: Data gathered from four sensors during a real test.
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Figure 2.19: Simulated data representing four sensors.



3
Sensors and Filtering

This chapter describes the sensor setup on the harrow as well as the proposed
filtering strategies. Moreover, suitable filtering strategies for this process and the
number of sensors needed to get a satisfying result are discussed.

3.1 Sensors Overview

The sensor used on the harrow is a radar sensor with millimeter precision. It is
a 60 GHz pulsed radar that calculates the distance by measuring the time from
when a pulse is sent to when the echo is received and has a maximum update
rate of 1500 Hz. In total there are nine sensors mounted on the harrow, four
measuring the height, two on each crossboard measuring wall height, and one
measuring the spring back of a tine.

Height

The four sensors measuring the height are mounted on the main frame of the
harrow, one in the middle and three towards the rear of the harrow. The sensors
in the rear are mounted, one on each side and one in the center. The sensors are
pointed straight down measuring the distance to the ground. The placement on
the rear of the harrow gives a more accurate representation of the soil behind the
harrow, i.e the result after harrowing.

Tine

The sensor measuring the spring back of the tine is mounted on the main frame
pointing straight down measuring the "flat" surface of the tine, illustrated in Fig-
ure 3.1. This sensor is used to get an understanding of the actual depth of the
tines.

23
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Sensor

Figure 3.1: Illustration of how the
springback of a tine is measured.

Sensor

Soil wall

Figure 3.2: Illustration of how the
height of the wall is measured.

Crossboard

The signal created by the radar has an angle rather than being a straight line. Be-
cause of this angle, pointing the sensor directly towards the soil wall resulted in a
relatively big radar surface. A big radar surface together with the characteristics
of the soil wall did not yield proficient results. Instead the sensor is mounted on
the axis which rotates the crossboard itself. It is pointing at a surface shaped as a
part of a circle, redirecting the signal in such a way that the radar surface area is
minimized. This is illustrated in Figure 3.2.

3.2 Filter Theory

The raw data from the radar sensors contain not only the true distance that is
measured, but also different disturbances. These disturbances can be in the form
of sensor noise, uneven soil, bias in the placement of the sensors, or dust and
debris. To get the desired information from the sensors, the data needs to be
filtered and fused. This will provide an estimate of the true value of the measured
state.

Given N sensors that measure one state x, each measurement can be modeled
as,

yn = hn(x) + en (3.1)

where yn is the measured value from sensor n, hn( · ) is the sensor model and en
is the measurement error which contains all sources of measurement errors. The
goal is to find the best state estimation x̂, i.e x̂ s.t yn ≈ hn(x̂) for all n = 1, ..., N .

In this thesis, two different approaches will be investigated. The first one
is a low pass filter with an average over sensors. The idea is that the low pass
filter will eliminate the high-frequency disturbances and then take the average
between all N sensors, thus compensating for bias and uneven soil. The other
approach is to use a more sophisticated filter, the Kalman filter.
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3.2.1 Low Pass Filter

The low pass filter (LP) is defined in the frequency plane. The main concept is
to let frequencies below a certain limit pass unaltered while frequencies above
this limit are removed completely. This limit is called the cut-off frequency, ωc.
The ideal LP filter where all frequencies above the limit are completely removed
is not realizable in real-world applications. Instead, the goal is to dampen these
high frequencies as much as possible. [4]

The time-discrete transfer function of the first order LP filter is defined as

H(q) =
1 − pLP
q − pLP

(3.2)

where q is the forward shift operator, and pLP is the pole of the filter. The cut-off
frequency is then defined as,

ωc =
1
T

arccos
(
−1 + 4pLP − p2

LP

2pLP

)
. (3.3)

Using (3.2), the filtered data from each sensor n can be expressed as,

x̂n,k = H(q)yn,k (3.4)

By taking the average over all sensors, the estimated state x̂k from the LP filter
will be

x̂k =
1
N

N∑
n=1

x̂n,k , (3.5)

where N is the number of sensors.

Delay

One drawback of filtering the measured data is that it introduces a phase delay
into the system [4]. This phase delay is defined as the shift of phase between the
input and the output of the filter. Consider the frequency function of the filter as
H(eiω). The phase of the function is then defined as

φ(ω) = argH(eiω). (3.6)

If the input to the filter is a pure sinusoidal u(t) = cos(ωt) the output will be

y(t) = |H(eiω)| cos(ωt + φ(ω)), (3.7)

i.e the resulting signal is a pure sinusoidal with a change in amplitude as well as
a shift in phase. This shift φ(ω) is defined as the phase delay. The delay in phase
can be converted to time delay as

tω =
−φ(ω)
ω

. (3.8)

For the LP-filter (3.2), the time delay increases with the pole, i.e lower cut-
off frequency yields larger time delay. In Figure 3.3 the Bode diagram of three
different LP filters is shown. The corresponding time delays for each LP filter
when the input is a pure sinusoidal with ω = 1rad/s are shown i Table 3.1.
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Table 3.1: Time delay for a signal with frequency 1 rad/s.

ωc [rad/s] tω[s]

1 0.8029 s
4.5 0.2601 s
14.5 0.0960 s
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Figure 3.3: Comparison between low pass filters with three different poles.
pLP ,1 = 0.95 with ωc = 1rad/s, pLP ,2 = 0.8 with ωc = 4.5rad/s, pLP ,3 = 0.5
with ωc = 14.5rad/s

3.2.2 Kalman Filter

The Kalman filter (KF) is an optimal filter for linear sensor models and Gaussian
noise that uses the underlying dynamics of the estimated states [5]. KF uses these
dynamics together with the measurements to estimate the state. Given that the
measured state is from a dynamic process, it can be written as a discrete state
space model

xk+1 = Fxk + Guuk + Gvvk (3.9a)

yk = Hxk + Duk + ek , (3.9b)

where k is the current time step, uk is the input signal to the system and vk is the
process noise, including disturbances and model error. Using this model, the KF
is defined in two parts. First a so-called time update where the state of the next
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time step is predicted, with the motion model

x̂k|k−1 = Fx̂k−1|k−1 + Guuk (3.10a)

Pk|k−1 = FPk−1|k−1F
T + GvQkG

T
v , (3.10b)

where P is the covariance matrix of the estimated state x̂, andQk is the covariance
matrix of the process noise vk . The second step is a measurement update where
the estimated state of the next time step is corrected with information from the
measurements. The measurement update has the form

x̂k|k = x̂k|k−1 − Kkεk (3.11a)

Pk|k = Pk|k−1 − KkSkKTk (3.11b)

where

εk = yk − Hx̂k|k−1 (3.12a)

Sk = HkPk|k−1H
T
k + Rk (3.12b)

Kk = Pk|k−1H
T
k S
−1
k , (3.12c)

and where Rk is the covariance matrix of the measurement error.

Constant Velocity Model

When the dynamic model is not known, or hard to find, a simple solution is to
estimate that the state changes with a constant speed between each time step

xk+1 =
[
1 Ts
0 Ts

]
xk +

[
T 2
s
2
Ts

]
vk . (3.13)

This is called a constant velocity (CV) model [3]. Here the state vector x is ex-
tended with the velocity, the input of the system is not a controlled signal but the
process noise vk , and Ts is the sampling time of the discrete system.

Delay

The delay that is introduced by the Kalman filter originates from the uncertainty
of the model. If the model is not true to the system, the prediction in (3.10a) will
be incorrect, and such deviations are partly captured by vk in (3.9a). These errors
are then corrected with measured data in (3.11a). Depending on the covariance
matrix Qk , the filter will trust the model more or less. More trust in the model
will introduce more time delay until the filter has corrected for this error, while
less trust in the model will result in a signal with higher frequency components.

3.3 Filter Development

The development of the filters started with collecting data from live runs of the
harrow. This raw data was then used to test and develop the different filters
offline.
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3.3.1 Data Collection

The filter data was collected in the beginning of the spring, as soon as the frost
and snow thawed. This data collection served the purpose of getting a good un-
derstanding of the different sensors, record the movement dependent on the con-
trol signal. The main reason was, however, to collect data that could be used to
develop the filters.

Each run consisted of one documented movement, which could for example
be "change the height of the harrow every twenty seconds" or "change the angle
of attack of the front crossboard each 30 seconds". The data from one of these
runs are shown in Figure 3.4 - 3.7. In this specific run, the height of the harrow
was changed at 20, 40, 140, and 160 seconds, most clearly seen in Figure 3.6.
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Figure 3.4: Data from all four
height sensors.
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Figure 3.5: Data from the mea-
sured spring back of the tine.
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Figure 3.6: Data from the two
sensors measuring the distance
between the sensor and the
front crossboard wall.
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Figure 3.7: Data from the two
sensors measuring the distance
between the sensor and the rear
crossboard wall.
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3.3.2 Filter Result

Using the measurements from the data collection the LP filter and the KF were
designed to best fit each function of the harrow. For the LP filter, the pole pLP
can be seen as a design variable. For the KF the covariance of the model error,
Qk can be seen as a design variable. These variables were tuned to satisfy two
main criteria. The first one is to dampen the higher frequency noise in the signal,
originating from disturbances and measurement errors. The second criteria is to
minimize the phase delay that the filters create since delays in the control loop
will destabilize the system. In Figure 3.8 a KF and a LP filter are applied to the
data from Figure 3.4. The filters have been designed to both have similar phase
delays. The biggest difference between the two filters is that the KF manages to
dampen higher frequencies while predicting a higher value than the LP filter. The
reason why KF predicts a higher value than LP is because that it takes the variance
of each sensor into account while predicting the state and since the data from
sensor "MH" differs from the other sensors the KF calculation puts less emphasis
on that measurement.

Worth noting is that even if conclusions can be drawn from these figures, the
actual ground truth of the estimated state is unknown. This creates uncertain-
ties in the comparison and the conclusions should be seen more as qualified esti-
mates.
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Figure 3.8: Comparison between Kalman filter and low pass filter on the
height sensors with similar phase delays.

One additional advantage of the the KF is that, in addition to being a filter,
the Kalman filter is also an observer [9]. Thus it has the ability to estimate states
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that are not measured directly. By using the CV-model (3.13), the KF predicts
the rate of change and the possibilities exist to extend the model to predict more
states. These states are necessary in order to develop more advanced controllers
like the LQ controller [9].

The filter that was chosen to implement on the harrow was the Kalman fil-
ter with a CV-model. This filter was chosen due to the possibilities of further
development and the superior performance compared with the LP-filter.



4
Control strategy

This chapter describes the theory and development of the algorithms that will
control the harrow. It will also investigate the performance of more advanced
controllers that requires further development of the harrow.

4.1 Control Introduction

The control algorithm on the harrow will control the harrowing depth and the
crossboard walls. The first decision to make is whether it will be controlled by
a single multivariable controller or multiple single variable controllers per func-
tion. Since the harrow is highly modular when the customer places an order, with
possibilities to change, for example, the size and number of crossboards, it is in-
tuitive to have a modular controller as well. In other words, it should be possible
to exclude one of the controllers and tune each function to suit the farmer.

The goal is to find the best controller in terms of development cost, system
characteristics, and robustness with respect to measurement noise and model
errors, as formulated in the problem statement. To do this, the approach is to
first develop the most basic feedback controller, the PID-controller, in the simu-
lation environment. This controller is then compared to more advanced control
algorithms to decide on which algorithm to implement on the harrow for further
testing and analysis.

4.1.1 Requirements

In order to design a suitable control algorithm, some requirements need to be
defined. The company has provided information about how a desirable control
system should behave. For example, the reference depth for the tines should be

31
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∑
Controller Harrow

Filter

r u y

Figure 4.1: A simplified overview of how the system is structured where
r is a reference signal, u is the control signal to the valves and y are the
measurements from the sensors.

between 3-6 cm, the desirable wall should be between 15-30 cm, the optimal con-
troller should not deviate more than 0.5 cm in depth and 5 cm in wall height, and
most importantly the system needs to look trustworthy, thus not have a nervous
behavior.

From these desires the system requirements are defined as:

• The mean control error of the tine depth dtine should be less or equal to 0.5
cm.

• The mean control error of the crossboard wall height wCB should be equal
to or less than 5 cm. The soil wall should never disappear, thus the height
should never be 0 cm.

• The normalized total movement of the hydraulic cylinder should be mini-
mized in order to look robust and trustworthy.

The requirements indicate that is will be a trade-off between the control error
compensation and the movement of the cylinder.

4.2 Control Theory

4.2.1 PID

A basic Proportional-Integral-Derivative controller, PID-controllerl, uses the er-
ror e to create a control signal u. The control signal is used to control a system
that creates some kind of observable signal y. The observed signal y is fed back
to the controller which computes the error e = r − y, where r is a reference. A
proportional controller simply lets the control signal be a function of this error
according to:

u(t) = KP e(t) + u0, (4.1)

where u0 is a normal setting for the control signal [11]. The proportional gain con-
trols the speed of the system with a larger KP resulting in a faster system. While
a P-controller would work on its own it can normally not eliminate a disturbance
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entirely and a static error can occur. By integrating e, static errors can be deter-
mined and eliminated. Hence, by adding an integral term to (4.1) a PI-controller
is created as follows:

u(t) = u0 + KP e(t) + KI

t∫
0

e(τ)dτ, (4.2)

where the integrating gain KI determines the speed at which the error is elimi-
nated. Using a PI-controller the control signal can be kept at a desirable value for
different disturbances. If, however, a fast system is desired, increasing KP and KI
will eventually result in instability and self-oscillation [11]. The reason for this
is that the proportional and integral terms only uses the size of the error to deter-
mine the control signal. By using a derivative term, changes to the error can be
taken into account before they fully appears. This is achieved by using the rate
of change of the error to determine the control signal. All three terms together
create a PID-controller as follows:

u(t) = KP e(t) + KI

t∫
0

e(τ)dτ + KD
d
dt
e(t), (4.3)

where the derivative increases stability and reduces overshoots enabling the sys-
tem to be fast and accurate.

Continuous to Discrete

When creating a control system the physical system is almost always described
in continuous time while the controller, which is implemented digitally, needs to
be described in discrete time. One solution to this is to describe the controlled
system with a discrete model. The continuous controller described in (4.3) can be
rewritten to discrete time by replacing the integral with a sum and the derivative
with a difference:

uk = u0 + KP ek + KI
k∑
i=1

eiTs + KD
ek − ek−1

Ts
(4.4)

Tuning

Tuning a PID-controller is highly dependent on the system and application be-
cause all systems differ somewhat. Because of this, there is no actual right or
wrong way of finding a good tuning and thus no set of parameters that are "right".
The work in [2] was motivated by the need to produce tuning parameters obtain-
ing a well-performing PID within agricultural machinery. The FOLIPD model,
which is described in (2.9), is covered therein. It motivates different tuning
strategies which are discussed and compared. The paper presents a new tun-
ing approach that introduces a minimization problem where several nonlinear



34 4 Control strategy

objective functions are optimized simultaneously. For a more in depth descrip-
tion of the tuning approach see [2]. The proposed parameters developed using
this method are:

KP =
10f (Td ,T )

KTd
, KI = 0, KD =

T g(Td ,T )

K
10h(Td ) (4.5)

where

f (Td , T ) = 0.0027(T /Td)2 − 0.0794T /Td − 0.34

g(Td , T ) = 0.02 +
(
0.51 − 0.076 log10(T )

)
T 0.15
d

h(Td) = 0.97 − 1.48T 0.15
d .

This optimization covers a wide range of the parameters T and Td . It does, how-
ever, only consider values which ratio T /Td remains within [0.1, 10]. Note that
the integral gain is zero which was the case in other methods described in the
paper. In conclusion this tuning method outperformed other known methods for
this kind of process.

Gain Scheduling

When tuning a controller it might become apparent that a desirable behaviour is
hard to achieve in all operating points. If the system has an unstable behaviour
due to its characteristics or disturbances the proportional and integrating gains
needs to be small. This can however result in a slow system which often is far
from ideal. This problem can be addressed by using a predefined set of different
gains dependent on the size of the error, known as gain scheduling. Using gain
scheduling the controller can yield a fast behaviour when the error is big and a
more stable behaviour when the error is small.

Feed Forward

If a disturbance is measurable it is possible to use this information as an addition
to a controller, known as feed forward. By using a feed forward, the effect of
the disturbance can be counteracted before it is visible in the output signal. This
does however require an accurate model in order to predict how the disturbance
affects the system. [1]

The closed system in Figure 4.2 can be described by:

Y (s) =
G1G2F

1 + G2G1F
R(s) +

G2(H + G1Ff )

1 + G2G1F
V (s) (4.6)

where the aim is to eliminate the disturbance V . This is achieved either by choos-
ing a feed forward Ff which minimizes the numerator or by letting the loop gain
G2G1F be large. An ideal feed forward is obtained using

H + G1Ff = 0 =⇒ Ff = − H
G1
, (4.7)
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which completely eliminates the disturbance. However, when using a feed for-
ward the transfer function Ff needs to be stable, causal and proper which means
the ideal feed forward might not be usable. In this case one would instead use

Ff = −HG†1, (4.8)

where G†1 is an approximated inverse to G1 [1].

∑ ∑ ∑
G2F G1

Ff

−1

H

r

v

u y

Figure 4.2: Illustration of how a disturbance v is implemented in a controller
with feed forward.

Cascade Control

When multiple different signals are controlled, there is a possibility to use cas-
cade control to compute the control signals. The basic setup of a cascade con-
troller is illustrated in Figure 4.3. The process is split into two systems where the
signal z from the first system is measurable and z is fed back to a controller creat-
ing a secondary loop. The advantage with this setup is that disturbances on the
system G1 are immediately taken care of by F2, which reduces their impact on y.
A requirement for cascade control to be advantageous is that the dynamics of the
secondary, inner, loop is faster than the dynamics of the primary, outer, loop [1].

yr zr u z y
F1 F2 G1 G2

Secondary loop

Process

Figure 4.3: Illustration of the setup of cascade control. The outer loop is the
primary.
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4.2.2 Linear–Quadratic Controller

The linear-quadric (LQ) controller is an optimal state-space controller [9]. Given
a system model in time-discrete state-space form

xk+1 = Fxk + Guk + Nv1,k (4.9a)

zk = Mxk (4.9b)

yk = Hxk + v2,k (4.9c)

where z is the controlled variable, y is the measured signal, v1 is process noise
and v2 is the measurement noise. The optimal controller is then defined as the
controller which solves the criteria

min
u

(||e||2Q1
+ ||u||2Q2

) = min
u

∞∑
k=0

eTk Q1ek + uTk Q2uk (4.10)

where e = r − y, r is the control reference, Q1 is a semi positive definite weight
matrix and Q2 is a positive definite weight matrix.

If v1 and v2 are omitted in (4.9), the control reference is z = 0, and if the
system is controllable (i.e rank

[
G FG F2G ... Fn−1G

]
= n) the optimal con-

troller that solves (4.10) is linear in the form

uk = −Lxk (4.11a)

L = (GT SG + Q2)−1BT SF, (4.11b)

where S is the positive semidefinite, symmetrical solution to the following matrix
equation [9]

S = FT SF + MTQ1M − FT SG(GT SG + Q2)−1GT SF (4.12)

Reference Tracking

If a non-zero control reference (z , 0) is desired, the controller in (4.11a) can be
extended as [9]

uk = −Lxk + Lr rk . (4.13)

If the dimension of z is equal to the dimension of u, Lr is calculated as,

Lr = [M(I + GL − F)−1G]−1. (4.14)

This control strategy controls z to the reference value r, and the remaining states
to 0.

Linearization

If the system

ẋ = f (x, u) (4.15a)

y = h(x) (4.15b)
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is nonlinear the system needs to be linearized and time discretized in order to
use an LQ-controller. Therefore, the system is linearized around a working point
x0, u0 resulting in a new state, with origin in the working point x̄ = x − x0 and
ū = u − u0 [9]. The linearized state-space model is

˙̄x = Ax̄ + Bū (4.16)

where the matrix elements in A and B are

ai,j =
∂fi
∂xj

∣∣∣∣∣x = x0
u = u0

, bi,j =
∂fi
∂uj

∣∣∣∣∣x = x0
u = u0

.

4.3 Implementation

Using the theory in Section 4.2, the algorithms to control the harrow is imple-
mented using the model data and the filters described in Chapter 3 to satisfy the
requirements from Section 4.1. The work flow consists of first developing, testing
and comparing algorithms using the simulation environment in Simulink. Then
the best performing algorithm in relation to the problem statement are imple-
mented and tested on the real harrow.

4.3.1 PD-controller with Feed Forward

A PID-controller is fairly straightforward to implement in code using the discrete
controller described in (4.4). The closed loop in Figure 4.1 was implemented,
where the feedback is the filtered signal from the sensors. This setup differs some-
what between the height and crossboards. The basic setup, however, is the same.
During early testing it was discovered that the integral term did not improve the
controller and it worked just as good without it. This matches the parameter tun-
ing where the integral gain KI became zero. One of the reasons for this is that the
FOLIPD model is an integrating system deems the integral gain unnecessary and
thus a PD-controller was implemented for both height and crossboards.

Height

The setup of the closed loop controlling height is almost identical to the structure
displayed in Figure 4.1 with the addition of a disturbance. The closed loop from
r and v to y is described by:

y =
GF

1 + GF
r +

H
1 + GF

v, (4.17)

where G is a transfer function consisting of the transfer function of the cylinders
in (2.9) as well as the state space depth model in (2.28). The controller F was im-
plemented in code according to Algorithm 1 with exception to the feed forward.
The signal y is the filtered depth of the tines. The dynamics and vibrations of the
tines are considered as a disturbance and a part of v together with the disturbance
from the soil in the closed loop.
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Crossboard

The closed loop describing the crossboards differs from the height because they
are directly affected by the entire harrow. Thus the closed loop is implemented
according to Figure 4.2. The closed loop from r and v to y is described by:

y =
G2G1F

1 + G2G1F
r +

G2(H + G1Ff )

1 + G2G1F
v, (4.18)

where G1 is the transfer function describing the height and the mechanical move-
ment (2.9), (2.15), (2.20), (2.21) and (2.9), (2.15), (2.23) (2.22), (2.24) for front
and rear crossboard respectively. G2 is the transfer function for the state space
models describing the soil wall (2.26). The controller was implemented in code
according to Algorithm 1 with the implementation of the feed forward presented
below. Because of the constraint set for T and Td mentioned in Section 4.2.1 the
optimized tuning is not applicable on the crossboard controllers.

Feed forward

The feed forward added to the crossboards were implemented using the theory
described above and (4.6)-(4.8). The signal used in the feed forward is the rate
of change of the height produced by the Kalman filter. Since the disturbance
affecting the system is the height, H simply becomes an integrator H = 1

p . The
system G1 can be described by (2.9), (2.15) and (2.21) according to:

G1 =
−Lc cos(α) ·K
La(pT + 1)p

. (4.19)

The ideal feed forward therefore becomes:

Ff = − H
G1

=
La(pT + 1)
Lc cos(α)K

, (4.20)

which is not proper or causal. Instead an approximated inverse of G1 is used
resulting in:

Ff = HG†1 =
La(pT + 1)
Lc cos(α)K

·
1

pT † + 1
. (4.21)
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This transfer function was transformed to discrete time and implemented accord-
ing to Algorithm 1.

Algorithm 1: PD-controller with feed forward and gain scheduling

input :y, r, ḣ, ḣ−1, e−1, uf −1

output :u, uf , e, ḣ
e = r − y;
if |e| ≤ 0.1 then

vpos = KP ,pose + KD,pos
e−e−1
T s ;

vneg = KP ,neg e + KD,neg
e−e−1
T s ;

else
vpos = KgKP ,pose + KD,pos

e−e−1
T s ;

vneg = KgKP ,neg e + KD,neg
e−e−1
T s ;

end
if vpos > 0 then

u = vpos + dz;
else if vneg < 0 then

u = vneg − dz;
else

u = 0;
end
if feedforward then

uf = k1ḣ − k2ḣ−1 + k3uf −1;
u = u + uf ;

end

4.3.2 Cascade Control

The cascade controller for the harrow is implemented with the position of the
hydraulic cylinder as a secondary loop, inspired by [15]. Since measurements of
the hydraulic cylinder are not available on this generation of harrow the cascade
controller is at the moment only experimental. This means that the performance
will only be investigated in the simulation environment. The cascade controller is
fairly similar to the PD-controller, with the exception of the secondary loop and
the exception of gain scheduling. The secondary loop, controlling the hydraulic
cylinder, is a PD-controller tuned using the tuning rule in (4.5). The main loop
is tuned with a PI-controller which was tuned by hand in order to get satisfying
results. The cascade controller is implemented according to Algorithm 2.

4.3.3 LQ-controller

The LQ-controller is relatively easy to implement in code. The most complicated
part is to calculate the control constants. The LQ-controller uses the estimated
states x̂ (from the Kalman filter) instead of the "true" states x, a concept known as
a LQG-controller [6]. The KF will in other words act as an observer. Using (2.28),
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Algorithm 2: Cascade-controller with feed forward

input :y, yL, r, eL−1, I−1, ḣ, ḣ−1, uf −1

output :u, uf , eL, I , ḣ
e = r − y;
I = I−1 + KI,LTse;
rL = KP ,Le + I ;
eL = rL − yL;
vpos = KgKP ,poseL + KD,pos

eL−eL−1
T s ;

vneg = KgKP ,neg e + KD,neg
eL−eL−1
T s ;

if vpos > 0 then
u = vpos + dz;

else if vneg < 0 then
u = vneg − dz;

else
u = 0;

end
if feedforward then

uf = k1ḣ − k2ḣ−1 + k3uf −1;
u = u + uf

end

linearized (2.29), and (2.30) the control constants L and Lr are calculated using
MATLAB. Different control constants are used whether the hydraulic cylinder is
expanding or contracting. In Algorithm 3 the LQ implementations are shown.
The input is the estimated states x̂ and the state control reference r. The output
is the applied current to the hydraulic valves u. The constant dz is the dead
zone compensation from Figure 2.4. In order to control the crossboards without
a steady state error the LQ-controller is extended with an additional state. This
state will act as an integral action according to [12], thus eliminating the steady
state error.

Algorithm 3: LQ-controller
input : x̂, r
output :u
vpos = −Lpos x̂ + Lr,posr;
vneg = −Lneg x̂ + Lr,neg r;
if vpos > 0 then

u = vpos + dz
else if vneg < 0 then

u = vneg − dz
else

u = 0



5
Results

In this chapter, the results from testing in simulation and on the real harrow will
be presented. The first part consist of simulation results. The simulations are
focused on two areas. The first one is to decide on which controller that will be
implemented on the harrow to do further tests, and the second one is to do tests
that are not possible to do on the harrow today. These tests are, for example, ex-
perimental controllers, time-consuming tests, and tests with measurements that
are not possible to measure on the real harrow.

5.1 Simulation Results

To compare the performance of different control algorithms with each other, sev-
eral performance indicators are defined:

emean =
1
N

N∑
k=1

|ek | (5.1a)

umean =
1
N

N∑
k=1

|uk | (5.1b)

∆L =

t∫
0

∣∣∣∣∣dLcdt
∣∣∣∣∣ dt, (5.1c)

where emean is the normalized mean control error, umean is the normalized mean
control signal and ∆L is the normalized total movement distance of the hydraulic
cylinder. The variable ∆L will be an indication of nervous characteristics, where
more nervousness will lead to longer distances.

41
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5.1.1 Controller Comparisons

The controllers are tested in a 200 seconds long simulation. All simulations were
done with the same reference and with the same settings in a Kalman filter with
a CV model.

PD-controller with Feed Forward

The PD-controller is suitable to implement on the harrow since it only needs
measurements of the depth and wall height. The depth controller is tuned using
the optimal tuning rule in (4.5) with some adjustment on the Kp-parameter to
have a control signal below the valve saturation. The crossboard controllers were
tuned by hand to avoid oscillations and to keep the control signal below the valve
saturation. In Figure 5.1, 5.2, 5.3 and Table 5.1 the results from the simulation
are presented.

Table 5.1: Resulting performance indicators from the PD-controller with
feed forward.

Function emean umean ∆L

Depth 0.0059 0.7273 1.265
CBF 0.0535 0.6571 1.435
CBR 0.0370 0.7021 2.172
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Figure 5.1: Simulated depth, controlled using a PD-controller.

In Figure 5.1 it can be observed that the depth oscillates around the reference.
This might not look like an undesirable behaviour at first glance, however, the
mean error is only about 0.6 cm which is concluded to be an eligible behaviour.
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Figure 5.2: Simulated rear cross-
board wall using a PD-controller
with feed forward and gain
scheduling.
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Figure 5.3: Simulated front cross-
board wall using a PD-controller
with feed forward and gain
scheduling.

The crossboard is a bigger challenge to control than the depth, mainly since
this system is more complex and uncertain. In Figure 5.2 and 5.3 the wall height
is oscillating around the reference and has some problems in following the steps
in reference, but the mean error is relatively good compared to the control goals.

The feed-forward in the crossboard manages to dampen the disturbance of
changing harrowing depth fairly well. The change in depth occurs at 50 and
110 seconds. Some spikes can be observed in Figure 5.2 and 5.3. The controller
without feed-forward and gain scheduling can be seen in Figure 5.4 and 5.5. In
these simulations one can see significantly bigger spikes at the change in depth.
The controller even loses the wall in the front, which is not acceptable.
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Figure 5.4: Simulated rear cross-
board wall using a PD-controller
without feed forward and gain
scheduling.
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Figure 5.5: Simulated front cross-
board wall using a PD-controller
without feed forward and gain
scheduling.
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Cascade Controller

Even if the cascade controller is not possible to implement on the harrow, the
performance is interesting for further development of the system. The cascade
controller is expected to dampen the disturbances, thus being more robust, and
minimize the normalized total movement distance. The system was simulated in
the same way as the other controllers and the results are shown in Figure 5.6, 5.7,
5.8 and in Table 5.2.

Table 5.2: Resulting performance indicators from the cascade controller
with feed forward.

Function emean umean ∆L

Depth 0.0062 0.7531 0.950
CBF 0.0533 0.6780 0.888
CBR 0.0506 0.6755 0.642

Comparing Table 5.1 and Table 5.2, the resulting emean is about the same, but
the normalized total movement ∆L is drastically lowered. Thus showing that the
controller manages to control the depth and the wall height using less movement
of the cylinder.

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Refrence

Harrowing depth

Figure 5.6: Simulated depth, controlled using cascade control.
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Figure 5.7: Simulated rear cross-
board wall using a cascade con-
troller with feed forward.
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Figure 5.8: Simulated front cross-
board wall using cascade controller
with feed forward.

In Figure 5.6, 5.7 and 5.8, the simulated values are shown. The values never
converge and sometimes the error is quite large. But the results are still inter-
preted as successful since the movement of the cylinder is minimized while the
difference in performance is almost not noticeable compared to the PD-controller.
In future generations of the harrow, a cascade control system would be suiting.

LQ-controller

The LQ-controller is an optimal controller that is obtained by solving (4.12), but
in order to solve this equation, the state-space model needs to be linear and con-
trollable. The state-space model in (2.28) that describes the depth is linear and
controllable, thus it is possible to control the depth using an LQ-controller. The
controller was implemented and simulated and the resulting simulation is shown
in Figure 5.9 and Table 5.3.

Table 5.3: Resulting performance indicators from the LQ-controller.

Function emean umean ∆L

Depth 0.0058 0.8096 1.9625
CBF 0.0731 0.6623 0.6588
CBR - - -

Similar to controlling the depth, to control the crossboard wall height us-
ing LQ-control the state-space models (2.29) and (2.30) need to be linearized
around a working point. In addition to the linearization, the states which rep-
resent the cylinder stroke and the cylinder speed needs to be estimated using
an observer. The constant velocity model proposed is not enough to estimate
these states, therefore the KF needs to be extended with the nonlinear state-space
model. Since the original Kalman filter does not support nonlinear models the
filter needs to be extended to an extended Kalman filter presented in [3]. As it
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Figure 5.9: Simulated depth, controlled using a LQ-controller.

turned out, in order for the extended Kalman filter to estimate the states it needed
measurements of the cylinder stroke, thus this controller is not suitable to use on
the harrow and is only experimental.

Using the LQ-controller to control the wall it was clear that the algorithm did
not manage to follow the reference height. This is because of the model error that
is established due to linearization around a working point and the fact that the
LQ-controller is only optimal at this exact working point. If this working point
is not the equilibrium point of the reference wall height, such that z = r 9 x̄ = 0,
the states that are not 0 will induce a control signal even if the controlled state
is at the reference r. This will intuitively lead to a steady-state error caused by
a bias in the linearization error. Since the wall height is not only dependent on
the states of the model but also the height of the harrow (v in the model), and
that the model is only an approximation of the system, it is impossible to find a
linearization point that satisfies z = r and x̄ = 0. To cope with this error the LQ-
controller was extended with an integral action. The performance of this control
algorithm on the front crossboard is shown i Figure 5.10 and in Table 5.3.

As can be seen in Figure 5.10 the LQ-controller does not handle the changing
height of the harrow well and the results in Table 5.3 is not better than either
PD-control or cascade control. Th LQ-controller is therefore not suitable for this
application without more advanced modeling.

5.1.2 Filtering

During testing, it became apparent that the choice of filtering parameters had
a rather big impact on the behavior and result of the control systems. In the
Kalman filter, the ratio between R and Q determines how much the filter relies
on measurements versus the model. A larger value of Q resulted in a filter more
dependent on the measurements and vice versa. In Figure 5.11 a plot is presented
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Figure 5.10: Simulated front crossboard wall height, controlled using LQ
control.

displaying how different values of Q affects the filtered signal. It is apparent that
filters relying more on the sensor data have a smaller delay while conversely, rely-
ing more on the model results in a smoother signal. Which signal characteristics
are best depends on the system. By comparing the results from different filter
tuning in Table 5.4 it is shown that the crossboard systems are in greater need
of a small time delay while the height performs better when the signal is a bit
smoother.

Table 5.4: Results of how filtering parameters affect the mean error emean.

Q 0.1 1 10

Depth 0.0065 0.0059 0.0061
CBF 0.0671 0.0585 0.0521
CBR 0.0812 0.0395 0.0368

5.2 Tests on the Harrow

The control algorithm which was implemented on the harrow was the PD-controller
with feed forward and gain scheduling, with the motivation that it only needs
measurements of the variables to control, is fairly easy to tune and is a simple
controller to implement and to understand.

Using the parameters determined during simulations as a guide, the con-
troller was tuned to best suit the real implementation. One problem that oc-
curred was that the rear crossboard did not work as expected on the real harrow.
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Figure 5.11: Illustration of how the filtered signal differs depending on Q
compared to the mean value of all sensors.

The rear crossboard did not manage to build a soil wall even with the maximum
angle of attack. Therefore, there is no data from the real-world tests of the rear
crossboard. The resulting data and performance indicators from the real-life tests
can be seen in Figure 5.12, 5.13 and in Table 5.5

Table 5.5: Resulting performance indicators from the test on the harrow.

Function emean umean

Depth 0.0046 0.6616
CBF 0.0387 0.7544

Comparing Table 5.5 with Table 5.1 one can observe that the harrow imple-
mentation performs better than the simulation in terms of emean, with the harrow
implementation succeeding to clear the first criteria of the control requirements
in Section 4.1.1.

Comparing Figure 5.1 with Figure 5.12 the clear difference of the two plots
is the frequency of the signal, which indicates that the simulation environment
simulates disturbances with higher frequencies and that the controller applied to
the harrow is slower than in simulation.

Comparing Figure 5.3 with Figure 5.13 the first difference is the reference
height. The reason for a lower reference height is that during testing, the tractor
pulling the harrow could not cope with the force that was created by a larger soil
wall. Another difference between the two figures is that the tests on the harrow
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Figure 5.12: Measured depth from tests on the harrow.
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Figure 5.13: Measured front crossboard wall height from test on the harrow.

almost lose the wall completely at, for example, 140 s. The reason for this is that
the test runs are not straight and during U-turns, the crossboards lose the wall
which then needs to be regained.





6
Conclusions

In this thesis, a complete control system for a seedbed tine harrow has been cre-
ated. This includes modeling the harrow, creating a simulation environment, de-
signing a filter strategy, and creating and comparing different control algorithms.
This resulted in a control system that managed to live up to all requirements.

In this chapter, conclusions are drawn based on the Problem statement, Sec-
tion 1.1.3, presented in Chapter 1. Strengths and weaknesses of different control
and filter strategies are covered as well as future development which can be done
to the software and hardware.

6.1 Conclusions

Advanced control strategies require more sophisticated models of the real system.
A simple controller can cope with a coarse model, while the restrictions of the
system and simple movement patterns are sufficient. However, in order to design
a more advanced system a thorough description of the dynamics is needed. An
accurate and realistic model is especially important when testing is costly and
time-consuming as in this work. The ability to simulate in a realistic environment
saves both time and money and results in a more robust control system because
more tests can be carried out.

Likewise, the necessary measurements and the choice of filtering strategy are
dependent on the complexity of the control system. For simple controllers only
measuring the controlled variable is sufficient and only when using more ad-
vanced structures, like cascade control, the need to measure several variables in-
creases. However, because of the large size of the harrow, even a simple controller
can benefit from several measurements of the same variable. The choice of filter
strategy is of great importance, both large noise and time delay are unwanted
characteristics from the filter. When choosing and tuning the filter a trade-off
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had to be made because more aggressive filtering results in a bigger time delay,
and once again, the different systems required different filter tuning. The choice
of filter strategy is also dependent on the controller, where a more basic low pass
filter can produce the same result as the more complex Kalman filter. However,
the Kalman filter creates more flexibility because it can be used to estimate un-
measured states, which makes it possible to use more advanced control strategies,
for example, feed-forward and LQ.

With the current setup of the harrow the best-performing control strategy
considering development cost, system characteristics and robustness is a PD-
controller with feed-forward to the crossboards as it is a relatively simple yet
efficient system. Better performance can be obtained by using measurements of
the stroke of the cylinder to create a cascade controller. However, this requires
additional sensors which result in larger development costs. An LQ-controller
was also tested, which in theory is an optimal controller for linear systems. This
strategy does, however, require an exact model for it to perform optimally. Be-
cause the system the controller was applied on is nonlinear and the disturbances
are unpredictable it is not fit for use without a more advanced disturbance mod-
eling.

6.2 Future Work

The proposed PD-controller can be developed into a cascade controller. In simu-
lations this has been shown to increase performance regarding the smoothness of
the system. While maintaining a reference tracking equal to that of the PD, the
cylinder movement decreases a lot. This is desirable because it decreases wear on
joints and is perceived by the customer as a less nervous system, which is positive.
A cascade controller is easy to implement in code but the system needs additional
sensors measuring the position of the cylinder stroke.

During the final testing, it was observed that the front crossboard had a ten-
dency to build up a larger soil wall in the middle of the harrow. Because of
the placements of the two sensors measuring the wall, they did not measure the
build-up in the middle and therefore the controller did not compensate for this.
For future development of the system more sensors should be installed, at least
one in the middle. More sensors measuring the height could also result in better
performance especially if the system is implemented on larger harrows.

The control system is created in a modular way which provides the opportu-
nity to split systems, keeping in mind future implementation on larger harrows.
The crossboard could be split into sections working independently of each other
which would result in a more evenly sized soil wall across the whole width of the
crossboard. The same principle could be applied to the wheels letting the height
be controlled separately. This would be especially applicable to larger harrows
because they cover a wider area with more varying soil.

A potential system that has not yet been researched or tested in this thesis
is a pressure-controlled crossboard. Rather than controlling the position of the
cylinder stroke, hence the crossboard angle, this controller would control the oil
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pressure in the cylinder system. This system would be able to control itself be-
cause the crossboard would give in if the soil wall grew too big resulting in a
force exceeding the oil pressure. However, a controller and radar sensors mea-
suring the height of the wall would still be needed, but it could result in better
performance.
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A
Simulink model

Here follows a presentation of the Simulink model used to simulate the harrow.
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Figure A.1: The complete model for simulating the harrow. One block for
control, one for motion and one for filtering per function.

57



58 A Simulink model

Figure A.2: How the controller of the front crossboard is simulated, the other
functions are controlled in a similar way.

Figure A.3: How the motion of the controller front crossboard is simulated.
Each function is simulated in a similar way.
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Figure A.4: How the wall dynamics is simulated. Each crossboard is simu-
lated in a similar way.

Figure A.5: How the filter of the front crossboard is simulated, each filter is
simulated in a similar way.
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