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Linköping, 581 83, Sweden

Editor: Ryan Adams

Abstract
Bayesian inference in the presence of an intractable likelihood function is computationally
challenging. When following a Markov chain Monte Carlo (MCMC) approach to approxi-
mate the posterior distribution in this context, one typically either uses MCMC schemes
which target the joint posterior of the parameters and some auxiliary latent variables, or
pseudo-marginal Metropolis—Hastings (MH) schemes. The latter mimic a MH algorithm
targeting the marginal posterior of the parameters by approximating unbiasedly the in-
tractable likelihood. However, in scenarios where the parameters and auxiliary variables are
strongly correlated under the posterior and/or this posterior is multimodal, Gibbs sampling
or Hamiltonian Monte Carlo (HMC) will perform poorly and the pseudo-marginal MH
algorithm, as any other MH scheme, will be inefficient for high-dimensional parameters. We
propose here an original MCMC algorithm, termed pseudo-marginal HMC, which combines
the advantages of both HMC and pseudo-marginal schemes. Specifically, the PM-HMC
method is controlled by a precision parameter N , controlling the approximation of the
likelihood and, for any N , it samples the marginal posterior of the parameters. Additionally,
as N tends to infinity, its sample trajectories and acceptance probability converge to those
of an ideal, but intractable, HMC algorithm which would have access to the intractable
likelihood and its gradient. We demonstrate through experiments that PM-HMC can
outperform significantly both standard HMC and pseudo-marginal MH schemes.
Keywords: Hamiltonian Monte Carlo, pseudo-marginal, Markov chain Monte Carlo,
latent variable models

1. Introduction

Let y ∈ Y denote some observed data and θ ∈ Θ ⊆ Rd denote parameters of interest. We
write θ 7→ p(y | θ) for the likelihood of the observations and we assign a prior for θ of density
p(θ) with respect to Lebesgue measure dθ. Hence the posterior density of interest is given
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by
π(θ) = p(θ | y) ∝ p(y | θ)p(θ). (1)

For complex Bayesian models, the posterior (1) needs to be approximated numerically.
When the likelihood p(y | θ) can be evaluated pointwise, this can be achieved using standard
MCMC schemes. However, we will consider here the scenario where p(y | θ) is intractable, in
the sense that it cannot be evaluated pointwise. We detail below two important scenarios
where an intractable likelihood occurs.
Example: Latent variable models. Consider the model

Xk
i.i.d.∼ fθ(·), Yk |Xk ∼ gθ(· |Xk), (2)

where (Xk)k≥1 are Rn-valued latent variables, (Yk)k≥1 are Y-valued. We write i : j :=
{i, i+ 1, ..., j} for any i ≤ j. Having observed Y1:T = y1:T = y (thus, Y = YT ) the likelihood
is given by p(y1:T | θ) = ∏T

k=1 p(yk | θ), where each term p(yk | θ) satisfies

p(yk | θ) =
∫
Rn

fθ(xk)gθ(yk |xk)dxk. (3)

If the integral (3) cannot be computed in closed form then the likelihood p(y1:T | θ) is
intractable.
Example: Approximate Bayesian computation (ABC). Consider the scenario where
θ 7→ p̃(y | θ) is the “true” likelihood function. We cannot compute it pointwise but we assume
we are able to simulate some pseudo-observations Z ∼ p̃(· | θ) using Z = γ(θ, V ) where
V ∼ λ(·) for some auxiliary variable distribution λ and mapping γ : Θ× V → Y. Given a
kernel K : Y × Y →R+, the ABC approximation of the posterior is given by (1) where the
intractable ABC likelihood is

p(y | θ) =
∫
Y
K(y | z)p̃(z | θ)dz =

∫
K(y | γ(θ, v))λ(v)dv. (4)

Two standard approaches to perform MCMC in these scenarios are:

1. Implement standard MCMC algorithms to sample from the joint distribution of the
parameters and auxiliary variables; e.g. in the latent variable context we would tar-
get p(θ, x1:T | y1:T ) ∝ p(θ)∏T

k=1 fθ(xk)gθ(yk |xk) and in the ABC context p(θ, v | y) ∝
p(θ)λ(v)K(y | γ(θ, v)). Gibbs-type approaches alternate between sampling from the pa-
rameters conditioned on the data and auxiliary variables, and sampling the auxiliary
variables conditioned on the parameters and data. These approaches can converge very
slowly if these variables are strongly correlated under the target (Andrieu et al., 2010,
Section 2.3). Hamiltonian Monte Carlo (HMC) methods (Duane et al., 1987) offer a possi-
ble remedy, but can also struggle in cases where there are strong non-linear dependencies
between variables, or when the joint posterior is multimodal (Neal, 2011, Section 5.5.7).

2. Use a pseudo-marginal MH algorithm jointly accepting or rejecting the parameters and
auxiliary variables replacing the intractable likelihood term by a non-negative unbiased
estimate of the true likelihood; see (Andrieu et al., 2010; Andrieu and Roberts, 2009;
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Beaumont, 2003; Flury and Shephard, 2011; Lin et al., 2000). For example, in the ABC
context the pseudo-marginal MH algorithm is a MH algorithm targeting p(θ, v | y) using a
proposal distribution q(θ, θ′)λ(v′). As for any MH algorithm, it can be difficult to select a
proposal q(θ, θ′) which results in an efficient sampler when Θ is high-dimensional.

In many scenarios, the marginal posterior (1) will have a “nicer” structure than the joint
posterior of the parameters and auxiliary variables which often exhibit complex patterns of
dependence and multimodality. For example, discrete choice models are a widely popular
class of models in health economics, e-commerce, marketing and social sciences used to
analyze choices made by consumers, individuals or businesses (Train, 2009). When the
population is heterogeneous, such models can be represented as (2) where fθ(·) is a mixture
distribution, the number of components representing the number of latent classes; see e.g.
(Burda et al., 2008). In this context, the paucity of data typically available for each individual
is such that the joint posterior p(θ, x1:T | y1:T ) = p(θ | y1:T )∏T

k=1p(xk | yk, θ) will be highly
multimodal while the marginal p(θ | y1:T ) will only have symmetric well-separated modes
for T large enough (or one mode if constraints on the mixture parameters are introduced).
Such problems also arise in biostatistics (Komárek and Lesaffre, 2008). In these scenarios,
current MCMC methods will be inefficient. In this article, we propose a novel HMC scheme,
termed pseudo-marginal HMC (PM-HMC), which mimics the HMC algorithm targeting the
marginal posterior (1) while integrating out numerically the auxiliary variables. The method
is a so called exact approximation in the sense that its limiting distribution (marginally in θ)
is exactly π(θ), despite the fact that the algorithm is using a finite-precision approximation
of the likelihood internally.

1.1 Related Work

Stochastic gradient MCMC (Welling and Teh, 2011; Chen et al., 2014; Ding et al., 2014;
Leimkuhler and Shang, 2016)—including HMC-like methods—are a popular class of algo-
rithms for approximate posterior sampling when an unbiased estimate of the log-likelihood
gradient is available. The typical scenario is when the number of data points T is prohibitively
large for evaluating the full gradient, in which case subsampling (mini-batching) can be used
to approximate the gradient unbiasedly. This is in contrast with the setting studied in this
paper, where we assume that we have access to an unbiased estimate of the likelihood itself,
but not of the log-likelihood gradient. Furthermore, these methods are inconsistent for finite
step sizes and typically require some type of variance reduction techniques to be efficient
(Shang et al., 2015). Recently, Umenberger et al. (2019) have proposed to use debiasing
(Jacob et al., 2020) of log-likelihood gradients within stochastic gradient HMC, but this
still results in an inconsistent method. Another approach to solving this issue is by Dang
et al. (2019), who proposes the use of energy-conserving subsampling which combined with
a signed pseudo-marginal algorithm (Quiroz et al., 2021) can be made exact.

Hamiltonian ABC (Meeds et al., 2015) also performs HMC with stochastic gradients
but calculates these gradients by using forward simulation. Similarly to stochastic gradient
MCMC (and in contrast with PM-HMC), this results in an approximate MCMC which does
not preserve the distribution of interest. Constrained HMC (Graham and Storkey, 2017)
uses HMC to jointly infer the parameters and auxiliary variables in an auxiliary variable
formulation of a Gaussian kernel ABC posterior.
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Kernel HMC (Strathmann et al., 2015) is another related approach which approximates
the gradients by fitting an exponential family model in a reproducing kernel Hilbert space.
If the adaptation of the kernel stops after a finite time, or if the adaptation probability
decays to zero, then the method can be shown to attain detailed balance, and thus targets
the correct distribution of interest. However, the kernel-based approximation gives rise
to a bias in the gradients which is difficult to control and there is no guarantee that the
trajectories closely follow the ideal HMC. Kernel HMC requires the selection of a kernel
and, furthermore, some appropriate approximation thereof, since the computational cost of
a full kernel-based approximation grows cubically with the number of MCMC iterations; see
Strathmann et al. (2015) for details.

Pseudo-marginal slice sampling (Murray and Graham, 2016) is closely related to PM-
HMC in the sense that both algorithms target the same extended distribution (given by
(8) in the consecutive section) as the pseudo-marginal MH and are therefore also exact
approximations (Andrieu and Roberts, 2009). Pseudo-marginal slice sampling relies instead
on alternating the sampling of the parameters given the likelihood estimate and sampling
the likelihood estimate given the parameters. In this framework different MCMC methods
such as slice sampling (Neal, 2003) and Metropolis—Hastings can be used to sample from
the conditional distributions—typically one always uses elliptical slice sampling (Murray
et al., 2010) for sampling of the likelihood estimates. In comparison our proposed algorithm
samples jointly the parameters and the likelihood estimate.

Building on a preprint of the present article Nemeth et al. (2019) have proposed the so
called pseudo-extended HMC method for sampling multimodal target distributions. This
can be viewed as a special case of PM-HMC applied to a model with a single latent variable
and no top-level parameter. Osmundsen et al. (2018) have also built on the present work
and propose a version of PM-HMC using efficient importance sampling, which they apply to
inference in dynamical systems.

1.2 Outline of the Paper

Our paper is organized as follows. In Section 2 we present our algorithm by first introducing in
Section 2.1 the standard HMC method. The PM-HMC algorithm is presented in Section 2.2
with an illustration on the latent variable model in Section 2.3. In Section 2.4 we present
a customized numerical integrator—an essential component of PM-HMC that is needed
for handling the increasing dimension of the latent variable space. This completes the
specification of the PM-HMC algorithm. The theoretical justification of our algorithm
is presented in Section 3 with the proofs postponed to the appendix. Finally we present
numerical results demonstrating the usefulness of our algorithm in Section 4.

2. Pseudo-marginal Hamiltonian Monte Carlo

In this section we present the proposed method. First we give some background on Hamilto-
nian Monte Carlo (HMC) and, specifically, we consider the case of targeting the marginal
posterior π(θ) using HMC. This results in an ideal but intractable algorithm. We then
present PM-HMC, an exact approximation of the marginal HMC.
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2.1 Marginal Hamiltonian Monte Carlo

The Hamiltonian formulation of classical mechanics is at the core of HMC methods. Recall
that θ ∈ Θ ⊆ Rd. We identify the potential energy as the negative unnormalized log-target
and introduce a momentum variable ρ ∈ Rd which defines the kinetic energy 1

2ρ
>ρ of the

system.1 The resulting “exact” Hamiltonian is given by

Hex(θ, ρ) = − log p(θ)− log p(y | θ) + 1
2ρ
>ρ. (5)

We associate a probability density on Rd × Rd to this Hamiltonian through

π(θ, ρ) ∝ exp(−Hex(θ, ρ)) = π(θ)N (ρ | 0d, Id), (6)

where N (z |µ,Σ) denotes the normal density of argument z, mean µ and covariance Σ.
Assuming that the prior density and likelihood function are continuously differentiable,

the Hamiltonian dynamics corresponds to the equations of motion

dθ
dt = ∇ρHex = ρ,

dρ
dt = −∇θHex = ∇θ log p(θ) +∇θ log p(y | θ). (7)

A key property of this dynamics is that it preserves the Hamiltonian, i.e. Hex(θ(t), ρ(t)) =
Hex(θ(0), ρ(0)) = H0 for any t ≥ 0. This enables large moves in the parameter space to be
made by simulating the Hamiltonian dynamics. However, to sample from the posterior, it is
necessary to explore other level sets of the Hamiltonian; this can be achieved by periodically
updating the momentum ρ according to its marginal under π, i.e. ρ ∼ N (0d, Id).

The Hamiltonian dynamics only admits a closed-form solution in very simple scenarios,
e.g., if π(θ) is normal. Hence, in practice, one usually needs to resort to a numerical
integrator. Typically, the Verlet method, also known as the Leapfrog method, is used due to
its favourable properties in the context of HMC (Leimkuhler and Matthews, 2015, p. 60;
Neal, 2011, Section 5.2.3.3). In particular, this integrator is symplectic which implies that the
Jacobian of the transformation (θ(0), ρ(0))→ (θ(t), ρ(t)) is unity for any t > 0. Because of
numerical integration errors, the Hamiltonian is not preserved along the discretized trajectory
but this can be accounted for by an MH rejection step. The resulting HMC method is given
by the following: at state θ := θ[0], (i) sample the momentum variable ρ[0] ∼ N (0d, Id),
(ii) simulate approximately the Hamiltonian dynamics over L discrete time steps using
a symplectic integrator, yielding (θ[L], ρ[L]), and (iii) accept (θ[L], ρ[L]) with probability
1 ∧ π(θ[L], ρ[L])/π(θ[0], ρ[0]) = 1 ∧ exp(Hex(θ[0], ρ[0])−Hex(θ[L], ρ[L])). We refer to Neal
(2011) for details and a more comprehensive introduction.

2.2 Pseudo-Marginal Hamiltonian dynamics

When the likelihood is intractable, it is not possible to approximate numerically the Hamil-
tonian dynamics (7), as the integrator requires evaluating ∇θ log p(y | θ) pointwise. We will
address this difficult by instead considering a Hamiltonian system defined on an extended
phase space when the following assumption holds.

1. For simplicity we assume unit mass. The extension to a general mass matrix is straightforward.
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• Assumption 1. There exists (θ,u) 7→ p̂(y | θ,u) ∈ R+ where u ∈ U and m(·) a probability
density on U such that p(y | θ) =

∫
p̂(y | θ,u)m(u)du.

Assumption 1 equivalently states that p̂(y | θ,U) is a non-negative unbiased estimate of
p(y | θ) when U ∼ m(·). This assumption is at the core of pseudo-marginal methods (Andrieu
and Roberts, 2009; Deligiannidis et al., 2018; Lin et al., 2000; Murray and Graham, 2016)
which rely on the introduction of an extended target density

π̄(θ,u) = π(θ) p̂(y | θ,u)
p(y | θ) m(u) ∝ p(θ)p̂(y | θ,u)m(u). (8)

This extended target admits π(θ) as a marginal under Assumption 1. The pseudo-marginal
MH algorithm is for example a ‘standard’ MH algorithm targeting (8) using the proposal
q(θ, θ′)m(u′) when in state (θ,u), resulting in an acceptance probability

1 ∧ p(θ
′)p̂(y | θ′,u′)

p(θ)p̂(y | θ,u)
q(θ′, θ)
q(θ, θ′) . (9)

Instead of exploring the extended target distribution π̄(θ,u) using an MH strategy, we will
rely here on an HMC mechanism. Our method will use an additional assumption on the
distribution of the auxiliary variables and regularity conditions on the simulated likelihood
function p̂(y | θ,u).

• Assumption 2. U =RD, m(u) = N (u | 0D, ID), (θ,u) 7−→ p̂(y | θ,u) is continuously
differentiable and (θ,u) 7−→ log∇p̂(y | θ,u) can be evaluated point-wise.

Our algorithm will leverage the fact that m(u) is a normal distribution. Assumptions 1 and 2
will be standing assumptions from now on and allow us to define the following extended
Hamiltonian

H(θ, ρ,u,p) = − log p(θ)− log p̂(y | θ,u) + 1
2
{
ρTρ+ uTu + pTp

}
, (10)

with a corresponding joint probability density on R2d+2D

π̄(θ, ρ,u,p) = π̄(θ,u)N (ρ | 0d, Id)N (p | 0D, ID), (11)

which also admits π(θ) as a marginal. Here p ∈ RD are momentum variables associated
with u. The corresponding equations of motion associated with this extended Hamiltonian
are then given by

d

dt


θ
ρ
u
p

 =


ρ

∇θ log p(θ) +∇θ log p̂(y | θ,u)
p

−u +∇u log p̂(y | θ,u)

 := Ψ̂(θ, ρ,u,p). (12)

Compared to (7), the intractable log-likelihood gradient ∇θ log p(y | θ) appearing in
(7) has now been replaced by the gradient ∇θ log p̂(y | θ,u) of the log-simulated likelihood
p̂(y | θ,u) where u evolves according to the third and fourth rows of (12).
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Remark 1 The normality assumption is in itself not restrictive as we can think of u as the
internal random variables used to compute the likelihood estimator (we can always generate,
e.g., a uniform random variate from a normal one using the cumulative distribution function).
This assumption has also been used by Deligiannidis et al. (2018) for the correlated pseudo-
marginal MH method and Murray and Graham (2016) for pseudo-marginal slice sampling.
However, the assumed regularity of the simulated likelihood function p̂(y | θ,u) limits its range
of applications. For example, in a state-space model context the likelihood is usually estimated
using a particle filter, as in Andrieu et al. (2010), but this results in a discontinuous function
(θ,u) 7−→ p̂(y | θ,u).

In latent variable models the use of the auxiliary variables will be to construct an
importance sampling estimator. In such cases, the user has the freedom to specify the
importance distribution such that Assumption 2 is satisfied. In particular, it can be differ
from the prior distribution of the latent variables. We use this freedom in the numerical
example in Section 4.3.

2.3 Illustration on Latent Variable Models

Consider the latent variable model described by (2) and (3). In this scenario, the intractable
likelihood can be unbiasedly estimated using importance sampling. We introduce an
importance density qθ(xk | yk) for the latent variable Xk which we assume can be simulated
using Xk = γk(θ, V ) where γk : Θ×Rp → Rn is a deterministic map and V ∼ N (0p, Ip). We
can then approximate the likelihood, using N samples for each k, through

p̂(y1:T | θ,U) =
T∏
k=1

p̂(yk | θ,Uk), where p̂(yk | θ,Uk) = 1
N

N∑
i=1

ωθ(yk,Uk,i), (13)

with Uk := (Uk,1, . . . ,Uk,N ) and ωθ(yk,Uk,i) = gθ(yk |Xk,i)fθ(Xk,i)
qθ(Xk,i | yk) , where Xk,i = γk(θ,Uk,i)

and Uk,i
i.i.d.∼ N (0p, Ip). We thus have D = TNp in this scenario and

∇θ log p̂(y1:T | θ,U) =
T∑
k=1

N∑
i=1

ωθ(yk,Uk,i)∑N
j=1 ωθ(yk,Uk,j)

∇θ logωθ(yk,Uk,i), (14)

∇uk,i log p̂(y1:T | θ,U) = ωθ(yk,Uk,i)∑N
j=1 ωθ(yk,Uk,j)

∇uk,i logωθ(yk,Uk,i). (15)

The pseudo-marginal MH algorithm can mix very poorly if the relative variance of the
likelihood estimator is large; e.g. if N = 1 in (13). On the contrary, in the context of pseudo-
marginal Hamiltonian dynamics, the case N = 1 corresponds to Hamiltonian dynamics
for a re-parameterization of the original joint model p(θ, x1:T | y1:T ), which can work well
for simple targets; see e.g. Betancourt and Girolami (2015). In some sense, PM-HMC
interpolates between joint and marginal Hamiltonian dynamics as we increase N from 1 to∞.
Thus, we expect PM-HMC to be much less sensitive to the choice of N than pseudo-marginal
MH; see Section 5 for empirical results.

Remark 2 Increasing the dimension of the target distribution with N can seem counter-
intuitive as exploring a higher dimensional space is often perceived to be a harder task.
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However, when extending with multiple Gaussian variables as we do here this can actually
help us to explore complex distributions as the extended distribution can be better connected
than the marginal. Even a disconnected marginal which is hard to explore for any MCMC
method may, when extended in this way, be connected in the extended space and easier
to explore. This is exploited in the pseudo-extended HMC algorithm by Nemeth et al.
(2019) which builds upon this work and provides some empirical illustrations of this effect.
Furthermore, in Section 2.4 we propose a numerical integrator for (12) which is robust to
the increasing dimension of the target distribution when increasing N .

The construction above is based on a standard importance sampling estimator of the
likelihood, but more sophisticated estimators could be used. For instance, by building upon
our work, Osmundsen et al. (2018) have recently investigated the use of efficient importance
sampling (Richard and Zhang, 2007) to approximate the likelihood for state-space models
within a PM-HMC algorithm.

2.4 Numerical Integration via Operator Splitting

The pseudo-marginal Hamiltonian dynamics (12) can not in general be solved analytically
and, as usual, we therefore need to make use of a numerical integrator. The standard choice
in HMC is to use the Verlet scheme (Leimkuhler and Matthews, 2015, Section 2.2) which
is a symplectic integrator of order O(h2), where h is the integration step-size. However,
the error of the Verlet integrator will also depend on the dimension of the system. For the
pseudo-marginal target density (11), we therefore need to take the effect of the D-dimensional
auxiliary variable u into account. For instance, in the context of importance sampling-based
PM-HMC for latent variable models discussed above we have D = TNp, i.e., the dimension
of the extended target increases linearly with the number of importance samples N . This
is an apparent problem—by increasing N we expect to obtain solution trajectories closer
to those of the true marginal Hamiltonian system. However we also need to integrate
numerically an ordinary differential equation of dimension increasing with N so one might
fear that the overall numerical integration error increases.

However, it is possible to circumvent this problem by making use of a splitting technique
which exploits the structure of the extended target, see (Beskos et al., 2011; Leimkuhler and
Matthews, 2015, Section 2.4.1; Neal, 2011, Section 5.5.1; Shahbaba et al., 2014). The idea is
to split the Hamiltonian H defined in (11) into two components H = A+B, where

A(ρ,u,p) := 1
2
{
ρ>ρ+ u>u + p>p

}
, B(θ,u) := − log p(θ)− log p̂(y1:T | θ,u). (16)

Separately, the Hamiltonian systems for A and B can both be integrated analytically. Indeed,
if we define the mapping ΦA

h : R2d+2D 7→ R2d+2D as the solution to the dynamical system
with Hamiltonian A simulated for h units of time from a given initial condition, we have the
explicit solution

ΦA
h :


θ(h) = θ(0) + hρ(0),
ρ(h) = ρ(0),
u(h) = p(0) sin(h) + u(0) cos(h),
p(h) = p(0) cos(h)− u(0) sin(h).

(17)
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Similarly for system B we define the mapping ΦB
h : R2d+2D 7→ R2d+2D and get the

solution

ΦB
h :


θ(h) = θ(0),
ρ(h) = ρ(0) + h∇θ{log p(θ) + log p̂(y1:T | θ,u(0))}|θ=θ(0),

u(h) = u(0),
p(h) = p(0) + h∇u log p̂(y1:T | θ(0),u)|u=u(0).

(18)

Let the integration time be given as hL, where h is the step-size and L the number
of integration steps. To approximate the solution to the original system associated to the
vector field Ψ̂ in (12), we then use a symmetric Strang splitting (see, e.g., Leimkuhler and
Matthews 2015, p. 108) defined as Φ̂hL = {ΦA

h/2 ◦ ΦB
h ◦ ΦA

h/2}
◦L. In practice we combine

consecutive half-steps of the integration of system A for numerical efficiency, similarly to
what is often done for the standard Verlet integrator, i.e., we use

Φ̂hL = ΦA
h/2 ◦ {ΦB

h ◦ ΦA
h }◦L−1 ◦ ΦB

h ◦ ΦA
h/2. (19)

In Appendix A the explicit update equations corresponding to a full step of Φ̂h are given.
Using this integration method we can prove (see next section) both that the (θ, ρ)-

trajectory of the PM-HMC algorithm converges to the ideal HMC trajectory, and that
the acceptance probability of the PM-HMC algorithm converges to that of the ideal HMC
algorithm as N → ∞, when using the likelihood estimator defined in (13). This shows
that, when using the aforementioned integration technique, the increase in dimension which
happens with increased N does not pose any problem with respect to the convergence of the
algorithm to its idealized counterpart.

An alternative method which also exploits the structure of the extended Hamiltonian
and that could be used in our setting is the exponential integration technique of Chao et al.
(2015). In simulations we found the two integrators to perform similarly and we focus on
the splitting technique for simplicity.

The proposed PM-HMC method is summarized in Algorithm 1. As this algorithm
simulates by design a Markov chain of invariant distribution π̄(θ, ρ,u,p) defined in (11), it
samples asymptotically (in the number of iterations) from its marginal π(θ) under ergodicity
conditions. We emphasize that the proposed PM-HMC algorithm is a valid MCMC method
for any nonnegative and unbiased likelihood estimator used to define the extended target
distribution (i.e., for any N ≥ 1 when the likelihood estimator is based on importance
sampling). Hence, under weak assumptions the generated Markov chain will converge to the
correct target distribution π(θ). We formalize this in the following proposition.

Proposition 3 Algorithm 1 defines a Markov kernel on (θ,u) with π̄ as its stationary
distribution. The θ-marginal of the stationary distribution is precisely π(θ). In particular,
when the likelihood estimator is defined as in (13) this property holds for any N ≥ 1.

Proof The numerical integrator (19) is a symmetric Strang splitting for the Hamiltonian
associated with the extended target distribution π̄(θ, ρ,u,p). It is therefore reversible and
symplectic (Leimkuhler and Matthews, 2015, Section 2.4). With the Metropolis—Hastings
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correction on line 3 this implies that the algorithm implements a Markov kernel with station-
ary distribution π̄(θ,u). Under Assumption 1,

∫
π̄(θ,u)du = π(θ). When using importance

sampling to define the extended target, Assumption 1 holds for any N ≥ 1.

Algorithm 1 Pseudo-marginal HMC (one iteration)
Let (θ,u) be the current state of the Markov chain. Do:

1. Sample auxiliary variables ρ ∼ N (0d, Id) and p ∼ N (0D, ID).

2. Compute (θ′, ρ′,u′,p′) = Φ̂hL(θ, ρ,u,p) using the numerical integrator (19).

3. Accept (θ′,u′) with probability 1 ∧ exp(H(θ, ρ,u,p)−H(θ′, ρ′,u′,p′)).

3. Convergence of PM-HMC Towards the Ideal Marginal HMC

In this section we establish the convergence (under suitable assumptions) of the PM-HMC,
in the sense that the performance of the algorithm will converge as N increases towards
that of the ideal marginal HMC algorithm. We note once again that PM-HMC is a valid
MCMC for the target distribution π(θ) for any N ≥ 1, so we do not rely on a large N for
the algorithm to be correct. However, as we show in this section, when N is large it will
closely mimic the ideal marginal HMC. We begin by studying the numerical integrator Φ̂hL

and analyze the error in the first two components when comparing with the results from the
ideal HMC algorithm.

For the rest of this section we will adopt the following notation: we use (θ̂[`], ρ̂[`], û[`], p̂[`])>
to denote the results of running the PM-HMC, and (θ[`], ρ[`])> the results of running the
ideal HMC algorithm (which is intractable), for ` iterations of the corresponding numerical
integrator. For the u and p variables we use the notation û[`]k,i to denote position i in
the vector associated with the observation yk, which is consistent with the notation used in
Section 2.3. Further we use the notation ‖ · ‖ for the Euclidean norm, d−→ for convergence in
distribution, and p−→ for convergence in probability. We focus here on the setting where we
use the latent variable model (2)—(3) and the importance sampling estimator (13)—(15).
The proofs of these results are postponed to the appendix.

We also present the following assumption on the weight function that will be needed for
the proofs.

• Assumption 3. The importance weight ωθ(y,u) defined in Section 2.3 satisfies:
– (θ,u)→ ∇u logωθ(y,u) is Lipschitz with constant M uniformly in y,
– (θ,u)→ ωθ(y,u) is Lipschitz with constant D uniformly in y,
– there exists constants 0 < ω < ω <∞ such that ω < ωθ(y,u) < ω,
– ‖∇u logωθ(y,u)‖ is bounded from above by C <∞.

This assumption is quite restrictive and does not hold for most practical problems.
Nonetheless we have chosen to use it to keep the following theoretical analysis simple and

10
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to the point. In the simulations below we look at models that violate this assumption and
show that the algorithm still performs as expected. We believe that it is possible to relax
these conditions but that is beyond the scope of this paper.

Proposition 4 Let (θ[L], ρ[L]) be the value associated with the ideal HMC dynamics and
(θ̂[L], ρ̂[L]) be the values associated to the (θ, ρ)-marginal of the PM-HMC dynamics after L
steps of the numerical integrator using the Strang splitting with step-size h. Furthermore, let
both of the processes start in the same point, i.e. (θ[0], ρ[0]) = (θ̂[0], ρ̂[0]).

Assume that Assumption 3 holds and that ∇θ log p(θ | y) is Lipschitz with constant
L0 <∞. Then there exists a constant L <∞, which does not depend on N or L, such that
for any L ≥ 1 and any choice of initial values (θ[0], ρ[0]) = (θ̂[0], ρ̂[0]) and (û[0], p̂[0]),∥∥∥∥∥

(
θ̂[L]
ρ̂[L]

)
−
(
θ[L]
ρ[L]

)∥∥∥∥∥ ≤ h2

√
h2

4 + 1

×
L−1∑
`=0

(1 + hL)L−(`+1)

∥∥∥∥∥∥∇θ log
(
p̂(y | θ, p̂[`] sin(h2 ) + û[`] cos(h2 ))

p(y | θ)

)
| θ=θ̂[`]+h

2 ρ̂[`]

∥∥∥∥∥∥.
By taking the expected value of both sides, over a distribution of the initial auxiliary

variables û[0] and associated momentum p̂[0], conditioned on the initial values of (θ[0], ρ[0]) =
(θ̂[0], ρ̂[0]) and using Jensen’s inequality we get as an immediate corollary that

E
[∥∥∥∥∥
(
θ̂[L]
ρ̂[L]

)
−
(
θ[L]
ρ[L]

)∥∥∥∥∥
]
≤ h2

√
h2

4 + 1

×
L−1∑
`=0

(1 + hL)L−(`+1)E


∥∥∥∥∥∥∇θ log

(
p̂(y | θ, p̂[`] sin(h2 ) + û[`] cos(h2 ))

p(y | θ)

)
| θ=θ̂[`]+h

2 ρ̂[`]

∥∥∥∥∥∥
2


1/2

.

That is, the upper bound is directly related to the second moment of the error in the
log-likelihood gradient ∇θ log(p̂(y | θ,u)/p(y | θ)). The next result establishes a CLT for this
error as N grows, in two scenarios. First we study the behavior at stationarity, that is when
û[0] ∼ π̄(· | θ). Second we show that a similar CLT holds when û[0] ∼ N (0D, ID), that is at
initialization of the algorithm.

In the following we will assume that θ is scalar for notational simplicity. In the multivariate
case the results should be interpreted to hold component-wise. We will by EN denote the
expected value under the standard normal distribution of appropriate dimension.

Proposition 5 Suppose that Assumption 3 holds. Let $θ(y,u) := ωθ(y,u)/p(y | θ) and
assume that u→ ∇θ$θ(y,u) is continuous and that ‖∇θ$θ(y,u)‖ is bounded from above by
a constant E <∞. Further assume that EN [$2

θ(yk,u)] <∞ and EN [{∇θ$(yk,u)}2] <∞,
there exists a function gk(u) which may depend on θ and yk such that |∇θ$(yk,u)| < gk(u)
and EN [gk(u)] <∞ and EN [$θ(yk,u)|∇θ log$θ(yk,u)|] <∞ for all k = 1, . . . , T .

Then, for any ` ≥ 1, the following CLT holds when û[0] ∼ π̄(· | θ) and p̂[0] ∼ N (0D, ID):

√
N∇θ log

p̂(y1:T | θ, p̂[`] sin(h2 ) + û[`] cos(h2 ))
p(y | θ)

d−→ N (0, σ2(y1:T , θ)), as N →∞,

11
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where the variance is given by

σ2(y1:T , θ) =
T∑
k=1

EN [{∇θ$θ(yk,vk,1)}2].

The same CLT also holds when û[0] ∼ N (0D, ID).

We now look at the acceptance probability of PM-HMC. As we have shown above,
the trajectory of the (θ, ρ)-marginal of the extended space used in PM-HMC converges
towards the trajectory of the ideal HMC algorithm as N increases. Thus we also expect that
the acceptance probability of the PM-HMC algorithm converges towards the acceptance
probability of the HMC algorithm at equilibrium. This is established in the following
proposition.

Proposition 6 Let Assumption 3 hold. For any θ̂[0] assume that û[0] ∼ π̄( · | θ̂[0]), ρ̂[0] ∼
N (0d, Id), and p̂[0] ∼ N (0D, ID), we then have that

H(θ̂[0], ρ̂[0], û[0], p̂[0])−H(θ̂[L], ρ̂[L], û[L], p̂[L])
p−→ Hex(θ̂[0], ρ̂[0])−Hex(θ̂[L], ρ̂[L]), as N →∞.

Here Hex is the Hamiltonian associated with the ideal marginal algorithm given in (5).

As mentioned in Section 2.4, we again note that as N increases the dimension of
the ordinary differential equations one needs to approximate numerically increases. At a
glance this might seem problematic, since the integration error typically increases with
the dimension, but in this section we have established that the increase of dimension with
N does not pose a problem to our algorithm. In fact, for any step-size h and number of
integration steps L the (θ, ρ)-marginal of the PM-HMC algorithm will converge towards the
values of the ideal HMC algorithm and the acceptance probability (directly related to the
difference in the Hamiltonian values) converges to the acceptance probability of the ideal
HMC algorithm.

4. Numerical Illustrations

We illustrate the proposed PM-HMC method on three synthetic examples and one real-world
data set. Additional details and results are given in the appendix.

For simplicity, we focus on the case when standard importance sampling-based estimators
of the likelihood are used to construct the extended Hamiltonian system. However, more
efficient estimators can be used and they will intuitively improve the performance of PM-
HMC. One illustration of this is given by Osmundsen et al. (2018), who consider the use of
efficient importance sampling in the context of PM-HMC for inference in dynamical systems.
We refer to this article for additional numerical illustrations of PM-HMC.

4.1 Gaussian Model

We consider first the following Gaussian model where Xk | θ
i.i.d.∼ N (θ, σ2

X) and Yk | (Xk =
xk), θ ∼ N (xk, σ2

Y ) and assign a Gaussian prior on the parameter, θ ∼ N (µθ, σ2
θ). We choose

12
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Figure 1: Absolute error max`∈[0,10] |θ[`]− θ̂[`]| for different initial conditions. The slope of
the linear fit, shown as a dashed line, is −0.509.

this model as a first illustration since the true posterior will be a Gaussian. This allows us
to run the ideal marginal HMC algorithm targeting p(θ | y1:T ) and we can then compare our
PM-HMC algorithm with the ideal HMC algorithm. We simulate T = 30 i.i.d. observations
using µθ = 0, σ2

θ = 10, σ2
x = 0.1, and σ2

y = 1. We apply the PM-HMC algorithm with N = 2i
for i from 0 to 13. First we check the convergence of the trajectories from the numerical
integrator Φ̂hL towards the trajectories for the ideal HMC algorithm. We do this by using
h = 0.1 and L = 10 and look at the maximal position error over the integration period. We
run the algorithm 50 times using different starting values and look at how the maximal error
depends on the choice of N . The results, displayed in Figure 1, imply a

√
N convergence

rate of the maximal error.

Next we look at the convergence of the acceptance probability as a function of N . First,
we run the ideal marginal HMC algorithm for 150 iterations (initialized from a draw from
the true posterior) using h = 0.35 and L = 20. We record the (θ, ρ)-states as well as the
average acceptance probability. Then, for each (θ, ρ)-state we perform 500 independent
runs of the PM-HMC algorithm using the same values of θ̂[0] and ρ̂[0], while û[0] and p̂[0]
are randomized for each run. This is done so that we can compare with the acceptance
probability given by the ideal HMC algorithm for the same initial values. The results
can be seen in Figure 2 where we present the median as well as the upper and lower
quartiles across the 500 independent runs. We can clearly see that the acceptance probability
converges towards the value of the acceptance probability of the ideal marginal HMC as N
increases. For comparison, we perform the same experiment but replace the Strang splitting
integrator proposed in Section 2.4 with the standard Verlet integrator. This integrator
performs similarly for small values of N , but for N > 10 we can see that it deviates from
the acceptance probability obtained using Strang splitting, and for large values of N its
acceptance probability drops to zero.
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Figure 2: Acceptance probability of the PM-HMC algorithm as a function of N in the
Gaussian example, averaged over 150 MCMC iterations. The solid line is the
median and the dashed lines the lower and upper quartiles over 500 independent
runs. The blue lines correspond to using the Strang splitting integrator from
Section 2.4 and the brown lines to the standard Verlet integrator. The thick
black dashed line is the average acceptance probability of the ideal marginal HMC
algorithm.

4.2 Diffraction Model

Consider a hierarchical model of the form Xk | θ
i.i.d.∼ N (µ, σ2) and Yk | (Xk = xk), θ ∼

g(· |xk, λ), with θ = (µ, log(σ), log(λ)), where the observation density is modelled as a
diffraction intensity: g(y |x, λ) = (λπ)−1 sinc2(λ−1(y − x)). We simulate T = 100 i.i.d.
observations using µ = 1, σ = 1, and λ = 0.1. We apply the PM-HMC with N ranging from
16 to 256, using a non-centered parameterization and the prior as importance density, as well
as a standard HMC working on the joint space using the same non-centered parameterization.2
For further comparison we also ran, (i) a standard pseudo-marginal MH algorithm using
N = 512 and N = 1024 (smaller N resulted in very sticky behavior), (ii) the pseudo-marginal
slice sampler by Murray and Graham (2016) with N ranging from 16 to 256, and (iii) a Gibbs
sampler akin to the Particle Gibbs algorithm by Andrieu et al. (2010) (using independent
conditional importance sampling kernels to update the latent variables).

Figure 3 shows scatter plots from 40 000 iterations (after a burn-in of 10 000) for the
parameters (σ, λ) for standard HMC, PM-HMC (N = 16), and pseudo-marginal slice sampling
(N = 128, smaller values gave very poor mixing). Results for the remaining methods/settings,
including the pseudo-marginal MH method and the Particle Gibbs sampler which both
performed very poorly, are given in the appendix. For the pseudo-marginal slice sampling
we ran a SS+MH algorithm, where we use a random walk for the θ variables and elliptical
slice sampling for the u-variables. It is clear from the results that standard HMC fails and
generated chains which do not mix. This is not surprising, since the diffraction intensity

2. The standard HMC, here, is equivalent to PM-HMC with N = 1. Specifically, it operates on the joint,
non-centered (θ,u) space, and it uses the splitting integrator described in Section 2.4.
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Figure 3: Scatter plots for (σ, λ) for standard HMC using a non-centered parameterisation
(left), PM-HMC with N = 16 (mid), and pseudo-marginal slice sampling with
N = 128 (right). The black × corresponds to the variables used to generate the
data.

is exactly zero whenever λ−1(y − x) mod π = 0. Consequently, there are infinite potential
energy barriers between the lobes of the sinc function. An ideal HMC algorithm operating on
the joint space, which exactly simulates the Hamiltonian dynamics, would not be able to pass
these barriers. Even though the discretization can result in occasional jumps between modes,
it is clear from our results that the discretized HMC algorithm also fails to explore the full
posterior. The extended target of the PM-HMC algorithm, on the other hand, circumvents
this problem by the introduction of latent variables that smooth out the hard multimodalities
of the target distribution. Indeed, when using an importance sampling estimator of the
likelihood, the extended target (8) is such that, marginally, the distribution of each Uk,i
is a mixture between the original posterior and the Gaussian prior (see Remark 9 in the
appendix for details). This can also be seen in the expression for the likelihood estimator
(13). Due to the summation over the importance weights for N > 1, the estimator will be
non-zero unless all of the auxiliary variables Uk,1, . . . , Uk,N result in values Xk,i for which
the sinc function is zero. While there are still points in the joint space where the extended
target distribution is exactly zero, it avoids the hard partitioning of the target space into
disjoint regions as is the case for standard HMC. While this type of “hard” multimodality is
perhaps not very common in practice, “softer” variants where the observation density terms
are strictly positive but close to zero for some inputs are very plausible, and would lead to
similar problems for standard HMC.

Pseudo-marginal slice sampling also does well in this example and we found the two
methods to be comparable in performance when normalized by computational cost.3

4.3 Generalized Linear Mixed Model

Next, we consider inference in a generalized linear mixed model (GLMM), see e.g. Zhao
et al. (2006), with a logistic link function: Yij ∼ Bernoulli(pij), where logit(pij) = Xi +ZT

ijβ

3. We do not report effective sample size estimates, as we found these to be very noisy and misleading for
this multimodal distribution. Indeed, the “best” effective sample size when normalized by computational
cost was obtained for the Particle Gibbs sampler which, by visual inspection, completely failed to converge
to the correct posterior.
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for i = 1:T , j = 1:ni. Here, Yij represent the jth observation for the ith “subject”, Zij is a
covariate of dimension p, β is a vector of fixed effects and Xi is a random effect for subject i.
It has been recognized (Burda et al., 2008; Komárek and Lesaffre, 2008) that it is often
beneficial to allow for non-Gaussianity in the random effects. For instance, multimodality
can arise as an effect of under-modelling, when effects not accounted for by the covariates
result in a clustering of the subjects. To accommodate this we assume Xi to be distributed
according to a Gaussian mixture: Xi

i.i.d.∼
∑K
j=1wjN (µj , λ−1

j ). For simplicity we fix K = 2
for this illustration. The parameters of the model are thus β, {µj , λj}2j=1, and w1 (as
w2 = 1− w1), with X1:T being latent variables. We use the parameterisation

θ = (βT, µ1, µ2, log(λ1), log(λ2), logit(w1))T ∈ Rp+5.

We used a simulated data set with T = 500 and ni = 6, thus a total of 3 000 data points,
with µ1 = 0, µ2 = 3, λ1 = 10, λ2 = 3. We set p = 8 and generate β as well the covariates Zij
from standard normal distributions (see the appendix for further details on the simulation
setup).

We ran PM-HMC, pseudo-marginal slice sampling (Murray and Graham, 2016), and
Particle Gibbs (Andrieu et al., 2010) for 7 000 iterations, all using N = 128. We note that
Gibbs sampling type algorithms (of which our Particle Gibbs sampler is an example) are the
de facto standard methods for Bayesian GLMMs. For the pseudo-marginal slice sampling we
used a SS+MH algorithm where for θ we have one MH step for each component and for u
we used elliptical slice sampling. Figure 4 shows traces for the parameters µ1 and µ2, with
additional results reported in the appendix. The PM-HMC method clearly outperforms the
competing methods in terms of mixing (the computational cost per iteration is about 3.5
times higher for PM-HMC than for pseudo-marginal slice sampling in our implementation).
In particular, compared to the results of Section 4.2, we note that PM-HMC handles this
more challenging model with a 13-dimensional θ much better than the pseudo-marginal slice
sampling which appears here to struggle for high-dimensional θ.

However, we also note that the PM-HMC algorithm gets stuck for many iterations around
iteration 1 000 (see Figure 4). Experiments suggest that this stickiness is an issue inherited
from the marginal HMC (which PM-HMC mimics) and is not specific to the PM-HMC
algorithm. Specifically, we have experienced that the PM-HMC sampler tends to get stuck
at large values of λ1 or λ2, i.e., in the right tail of the posterior for one of these parameters.
A potential solution to address this issue is to use a state-dependent mass matrix as in the
Riemannian manifold HMC (Girolami and Calderhead, 2011).

4.4 Respiratory Infection Data

As a final example we consider a version of the generalized linear mixed model from
Section 4.3 applied to a real-world data set. This data set is a subset of a cohort study of
275 Indonesian preschool children with 1200 observations. It has previously been studied
by Zeger and Karim (1991) using Bayesian mixed models and Schmon et al. (2021) with
the model used here. The probability of a respiratory infection is modeled based on 7
covariates: age, sex, height, an indicator for vitamin deficiency, an indicator for subnormal
height and two seasonal components. A linear regression model based on the covariates
Zi,j is ηi,j = ZT

i,jβ + Xi, where Xi ∼ N (0, τ) denotes the intercept for child i = 1, . . . , T
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Figure 4: Traces for parameters µ1 (blue) and µ2 (orange) for PM-HMC (left), pseudo-
marginal slice sampling (mid), and Particle Gibbs sampling (right), all with
N = 128 .

and β the regression parameters. We have J observations for each child given by the vector
Yi = (Yi,1, Yi,2, . . . , Yi,J) ∈ {0, 1}J . The parameters to infer are θ = (β, τ) ∈ R9. Given the
random effects, we assume that the observations are conditionally independent given the
random effects and satisfy for i = 1, . . . , T ,

gθ(Yi |Xi) =
J∏
j=1

exp(Yi,jηi,j)
1 + exp(ηi,j)

, fθ(Xi) = N (Xi; 0, τ).

For the β parameters we set a Gaussian prior with mean 0 and variance 10 000, for τ we use
an inverse gamma prior with shape 1 and scale 1.5. The resulting posterior distribution is of
dimension 9 + 275 = 284.

The aim of inference in mixed effects models is to find the population effects θ while
integrating out the random effects. As the corresponding marginal likelihood is intractable,
we use a pseudo-marginal approach for this problem with qθ = N (0, 32) as importance
sampling distribution. We ran PM-HMC and three different versions of the pseudo-marginal
slice sampling (Murray and Graham, 2016) for 50 000 iterations with a burn-in of 5 000 using
different values of N = {1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30}.

For the PM-HMC algorithm we use L = 50 leapfrog steps with a stepsize h = 0.01. For
the pseudo-marginal slice sampling algorithm we used elliptical slice sampling (SS+SS),
Hamiltonian Monte Carlo (SS+HMC), and Metropolis—Hastings (SS+MH) for sampling
the parameter slice. For the SS+HMC algorithm we use 50 leapfrog steps with stepsize 0.01.
For the SS+MH algorithm a Gaussian random walk with variance 0.001 is chosen.

In Table 1 we compare the values of the average integrated autocorrelation time (IAT),
effective sample size per second (ESS/s), and average acceptance probability (Pa). As
can be seen from these results, the PM-HMC algorithm has much lower IAT than the
other algorithms while maintaining a better ESS/s; i.e. we are able to generate more useful
samples from the posterior distribution using the PM-HMC algorithm compared the other
pseudo-marginal approaches using the same computational budget.
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PM-HMC SS+HMC SS+SS SS+MH
N IAT ESS/s Pa IAT ESS/s Pa IAT ESS/s Pa IAT ESS/s Pa

1 13.7 0.83 0.67 53.6 0.25 0.69 151 0.48 1 168 0.74 0.13
3 8.96 1.20 0.72 39.0 0.27 0.72 146 0.40 1 162 0.64 0.15
6 6.37 1.40 0.76 30.3 0.29 0.75 139 0.34 1 159 0.55 0.16
9 5.28 1.43 0.77 24.2 0.28 0.77 138 0.29 1 162 0.46 0.16
12 5.08 1.15 0.77 20.9 0.27 0.77 139 0.24 1 165 0.37 0.15
15 5.02 1.07 0.77 16.4 0.31 0.78 140 0.21 1 160 0.35 0.16
18 5.00 0.96 0.77 15.6 0.30 0.78 137 0.20 1 163 0.31 0.17
21 3.82 1.15 0.78 16.3 0.26 0.77 136 0.19 1 161 0.31 0.16
24 3.71 1.10 0.78 12.5 0.32 0.78 137 0.18 1 159 0.29 0.16
27 4.14 0.93 0.78 16.5 0.22 0.77 138 0.17 1 155 0.30 0.17
30 3.33 1.02 0.79 8.97 0.32 0.78 137 0.15 1 159 0.26 0.17

Table 1: Random effects model: average integrated autocorrelation time (IAT), effective
sample size per second (ESS/s), and average acceptance probability (Pa). These
results are presented for different values of N for the PM-HMC algorithm and
three different version of pseudo-marginal slice sampling.

5. Discussion

HMC methods cannot be implemented in scenarios where the likelihood function is intractable.
However, we have shown that if we have access to a non-negative unbiased likelihood estimator
parameterized by normal random variables, then it is possible to derive an algorithm which
mimics the HMC method having access to the exact likelihood. The resulting PM-HMC
algorithm replaces the original intractable gradient of the log-likelihood by the gradient of
the log-likelihood estimator. Nevertheless, it preserves the target distribution as invariant
distribution. Empirically we have observed that this algorithm can work significantly better
than the pseudo-marginal MH algorithm as well as the standard HMC method sampling on
the joint space for a fixed computational budget.

However, whereas clear guidelines are available for optimizing the performance of the
pseudo-marginal MH algorithm (Doucet et al., 2015; Sherlock et al., 2015; Schmon et al.,
2021), it is unclear how to address this problem for PM-HMC. When the likelihood estimator
of PM-HMC is constructed using importance sampling with N samples, the computational
cost per iteration scales linearly with N . Hence, using N > 1 must be motivated by a
sufficiently large improvement in the mixing speed of the resulting Markov chain. As we
increase the number of samples N , the PM-HMC algorithm can be seen as moving from
an HMC sampling on the joint space (using a non-centered parameterization) to an HMC
sampling on the marginal space. Thus, even the case N = 1 results in a method which, in
some cases, works well even for large T—we do not experience the same “break down” of
the method as for pseudo-marginal MH when using a too small N relative to T .

What we have observed in practice, however, is that the extended target distribution
(with N � 1) can be much easier for the Hamiltonian trajectories to explore in an efficient
way, compared to the target distribution on the joint space (that is, with N = 1). Specifically,
in situations when there is multimodality in the posterior distribution over the T latent
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variables,4 standard HMC on the joint space of parameters and latent variables can easily get
stuck in local modes. In such situations, the extended target distribution used by PM-HMC
is a way to bridge between the modes, as illustrated empirically by Nemeth et al. (2019).
Indeed, as our theoretical analysis shows, the performance of PM-HMC will converge to that
of an ideal marginal HMC, for which the latent variables have been marginalized out, as N
becomes large.

This explains the large improvement in performance of PM-HMC compared to standard
HMC in the examples of Sections 4.2 and 4.3, which have multimodal posteriors. However,
for the example studied in Section 4.4, which does not have a multimodal posterior, we also
observed an improvement in using N > 1. We believe that this is largely due to the fact that,
in practice, the computational time does not grow linearly with N , due to a computational
overhead that can be amortized over multiple samples when using N > 1. For instance, in
our implementation, going from N = 1 to N = 30 only increased the computational time
by a factor 3.5 (see Table 1). Furthermore, modern computing architectures allow for a
high degree of parallelization over multiple samples, which could further improve the results
of PM-HMC with N > 1 (for instance, we did not make use of GPU acceleration in our
experiments). Nevertheless, in practice the number of samples N is a tuning parameter that
needs to be chosen based on the geometry of the target posterior and traded off with the
computational cost of the method.

Finally, for brevity of presentation, we have restricted ourselves here to the pseudo-
marginal approximation of a standard HMC algorithm using a constant mass matrix and a
Verlet scheme. However, we believe that the same ideas can be extended to more sophisticated
HMC schemes such as the Riemannian manifold HMC (Girolami and Calderhead, 2011) or
schemes discretizing the associated Nosé—Hoover dynamics, as described in the appendix.
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4. Even for bimodal marginals we could very well have 2T modes in the joint posterior.
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Appendix A. The One Step Integrator

We define Θ̂[`] as the full parameter vector associated with the PM-HMC algorithm after `
steps of the integrator. We let Θ̂[0] be the initial values of the full parameter vector.

Taking one step of the integrator Φ̂h = ΦA
h/2 ◦ ΦB

h ◦ ΦA
h/2 (where ΦA

h and ΦB
h is given

in Equation 17 and 18) gives us the updating scheme from Θ̂[`] = (θ̂[`], ρ̂[`], û[`], p̂[`]) to
Θ̂[`+ 1] through the following equations,

θ̂[`+ 1] = θ̂[`] + hρ̂[`] + h2

2 ∇θ
{

log p(θ) + log p̂(y | θ, p̂[`] sin(h2 ) + û[`] cos(h2 ))
}
| θ=θ̂[`]+h

2 ρ̂[`]
,

ρ̂[`+ 1] = ρ̂[`] + h∇θ
{

log p(θ) + log p̂(y | θ, p̂[`] sin(h2 ) + û[`] cos(h2 ))
}
| θ=θ̂[`]+h

2 ρ̂[`]
,

û[`+ 1] = p̂[`] sin(h) + û[`] cos(h) + sin(h2 )h∇u log p̂(y | θ̂[`] + h
2 ρ̂[`],u)

|u=p̂[`] sin(h2 )+û[`] cos(h2 )
,

p̂[`+ 1] = p̂[`] cos(h)− û[`] sin(h) + cos(h2 )h∇u log p̂(y | θ̂[`] + h
2 ρ̂[`],u)

|u=p̂[`] sin(h2 )+û[`] cos(h2 )
.

The steps in between are omitted but can easily be checked. Some use of trigonometric
identities has to be used to reach the final expressions.

Appendix B. Convergence of Simulated Trajectories

Lemma 7 Let f, f̂ : Rn → Rn be continuous functions and let x, x̂ : N→ RN be the solution
to the following difference equation:

x[i+ 1]− x[i] = h · f(x[i]), x̂[i+ 1]− x̂[i] = h · f̂(x̂[i]), (20)

both initialized using x[0] = x̂[0]. If f is Lipschitz with constant L then, for any ` ∈ N

‖x̂[`]− x[`]‖ ≤
`−1∑
i=0

h(1 + hL)`−(i+1)‖f̂(x̂[i])− f(x̂[i])‖ (21)

Proof Using (20) the proof is straightforward,

‖x̂[i+ 1]− x[i+ 1]‖ = ‖x̂[i] + h · f̂(x̂[i])− x[i]− h · f(x[i])‖
≤ ‖x̂[i]− x[i]‖+ h‖f̂(x̂[i])− f(x[i])‖
= ‖x̂[i]− x[i]‖+ h‖f̂(x̂[i])− f(x̂[i]) + f(x̂[i])− f(x[i])‖
≤ ‖x̂[i]− x[i]‖+ h‖f(x̂[i])− f(x[i])‖+ h‖f̂(x̂[i])− f(x̂[i])‖
≤ ‖x̂[i]− x[i]‖+ hL‖x̂[i]− x[i]‖+ h‖f̂(x̂[i])− f(x̂[i])‖
= (1 + hL)‖x̂[i]− x[i]‖+ h‖f̂(x̂[i])− f(x̂[i])‖.

Equation (21) then follows by repeating the recursion.

For the proof of Proposition 4 we have to compare the result of the ideal HMC algorithm
with our proposed PM-HMC algorithm. Since they live on different spaces we augment
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the ideal HMC algorithm to incorporate the u and p part in such a way that the (θ, ρ)-
marginal exactly follows the ideal HMC algorithm. We do this by introducing the following
time-stepper that will replace ΦB

t :

Φ̃B
t :


θ(t) = θ(0),
ρ(t) = ρ(0) + t∇θ{log p(θ) + log p(y | θ)}|θ=θ(0),

u(t) = u(0),
p(t) = p(0) + t∇u log p̂(y | θ(0),u)|u=u(0).

This differs from ΦB by using the gradient from the exact posterior when updating ρ(t).
Further we introduce Φ̃h = ΦA

h/2 ◦ Φ̃B
h ◦ ΦA

h/2. Using this splitting operator as numerical
integrator we have that the marginal (θ, ρ) will coincide exactly with the ideal HMC
algorithm.

Lemma 8 Let Assumption 3 hold. Also assume that ∇θ log p(θ | y) is Lipschitz with constant
L0, then it follows that Φ̃h is Lipschitz with constant L <∞ which does not depend on N .

The proof of Lemma 8 is postponed to Appendix D. Now we have all of the results
needed to prove the bound on the difference between the output of the PM-HMC and the
HMC algorithm.

Proof [Proof of Proposition 4] Under the assumptions, Lemma 8 holds and thus Φ̃h is
Lipschitz with constant L <∞.

As the space of the ideal HMC algorithm and the pseudo marginal HMC algorithm differ
we cannot directly compare them. Thus we augment the space of the ideal HMC algorithm
to reach the timestepper Φ̃h = ΦA

h ◦ Φ̃B
h ◦ ΦA

h by adding the u and p part of the PM-HMC
algorithm to the ideal HMC algorithm. Notice that this is no longer a discretization of a
Hamiltonian field but it leaves (θ, ρ) unchanged from the ideal HMC algorithm. Let Θ̂[`] =
(θ̂[`], ρ̂[`], û[`], p̂[`]) = Φ̂h`(Θ̂[0]) as above. Let Θ[`] = (θ[`], ρ[`],u[`],p[`]) = Φ̃h`(Θ̂[0]). We
have that

‖Φ̂h(Θ̂[`])− Φ̃h(Θ̂[`])‖

=

√
h4

4 + h2‖∇θ log
(
p̂(y1:T | θ, p̂[`] sin(h2 ) + û[`] cos(h2 ))

p(y1:T | θ)

)
‖
| θ=θ̂[`]+h

2 ρ̂[`]
,

by the assumption that Φ̃h is Lipschitz with constant L we have using Lemma 7 that

‖
(
θ̂[`]
ρ̂[`]

)
−
(
θ[`]
ρ[`]

)
‖ ≤ ‖Θ̂[`]−Θ[`]‖

≤
`−1∑
i=0

h(1 + hL)`−(i+1)

√
h4

4 + h2

× ‖∇θ log
(
p̂(y1:T | θ, p̂[i] sin(h2 ) + û[i] cos(h2 ))

p(y1:T | θ)

)
‖
| θ=θ̂[`]+h

2 ρ̂[`]
.
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Appendix C. Proof of CLT

Remark 9 For the proof of the CLT and the coming proof of the convergence of the
acceptance probability the following “trick” will be used. Assume that u is drawn from the
distribution π̄(· | θ). We use the fact that we can write this distribution as

π̄(u | θ) = 1
N

N∑
j=1

ψ(uj | θ)
∏
i 6=j
N (ui; 0p, Ip),

where ψ( · | θ) := N (· ; 0p, Ip)×$θ(y, ·). That is ψ( · | θ) is a mixture distribution where we
choose one component j uniformly at random and sample that variable uj from ψ( · | θ) and
the rest of the variables ui : i 6= j from standard Gaussian distributions.

What can now be done is to introduce new variables ŵ = [ŵ1, ŵ2, . . . , ŵN ] and ŵ′1 such
that ŵ ∼ N (0D, ID) and ŵ′1 ∼ ψ( · | θ). This will be used in the proofs to compute sums over
the random variables in the following way, for some function f we have that∑

j

f(uj)
d=
∑
j

f(ŵj) + f(ŵ′1)− f(ŵ1).

The convergence of the right hand side is then split to deal with the sum where all random
variables are Gaussian and the difference between a ψ( · | θ) and Gaussian distributed random
variable, which is usually much easier then working with the left hand side.

Proof [Proof of Proposition 5] We start by proving the result for i = 0, first we assume that
û[0] ∼ N (0D, ID) and secondly we relax this assumption by assuming that û[0] ∼ π̄(· | θ).
For ease of notation in the proof we will assume that we only have one observation (T = 1),
the extension to many observations is immediate.

We assume that û[0] ∼ N (0D, ID) and let v̂ := p̂[0] sin(h2 ) + û[0] cos(h2 ) then v̂ also
follows a N (0D, ID) distribution, since by definition we have that p̂[0] ∼ N (0D, ID). Now
we write

log p̂(y | θ, v̂)− log p(y | θ) = log
{

1 + p̂(y | θ, v̂)− p(y | θ)
p(y | θ)

}
= log

{
1 + εN (y, v̂; θ)√

N

}
,

where

εN (y, v̂; θ) :=
√
N
p̂(y | θ, v̂)− p(y | θ)

p(y | θ) = 1√
N

N∑
i=1
{$θ(y, v̂i)− 1}.

Taking the gradient with respect to θ we get that
√
N{∇θ log p̂(y | θ, v̂)−∇θp(y | θ)} = ∇θεN (y, v̂; θ)

1 + εN (y, v̂; θ)/
√
N
.

By the definitions we have that

E[εN (y, v̂; θ)2] = E[( 1√
N

N∑
i=1
{$θ(y, v̂i)− 1})2]

= 1
N

N∑
i=1

N∑
j=1
{E[$θ(y, v̂i)$θ(y, v̂j)]− E[$θ(y, v̂i)]− E[$θ(y, v̂j)] + 1}

=E[$θ(y, v̂1)2]− 1,

22



Pseudo-Marginal Hamiltonian Monte Carlo

where E[$θ(y, v̂1)2] <∞ by assumption. Under the assumption that û[0] ∼ N (0D, ID) we
have that εN (y, v̂; θ)/

√
N

p−→ 0 by Chebyshev’s inequality. Also noting that

E[∇θεN (y, v̂; θ)] =
√
NE[∇θ$θ(y, v̂1)] (1)=

√
N∇θE[$θ(y, v̂1)] = 0,

where (1) holds under the assumptions of the existence of the function g(·) such that
|∇θ$θ(y,u)| < g(u) and EN [g(u)] <∞ which then allows us to interchange the differential
and integral. By the continuous mapping theorem, Slutsky’s lemma and the standard CLT
applied to ∇θεN (y, v̂; θ) we get the desired results.

So far we have only proven the result when the algorithm is initialized, that is û[0] ∼
N (0D, ID). At stationarity we will have (θ, û) ∼ π̄(θ, û). Now we wish to prove the results
under the assumption of having reached this distribution, that is û[0] ∼ π̄(· | θ). We make
use of Remark 9 and introduce the variables ŵ ∼ N(0, ID) and ŵ′1 ∼ ψ(· | θ).

By adding and subtracting the term associated with p̂[0]1 sin(h2 ) + ŵ1 cos(h2 ), for ease of
notation we let p̂[0]ŵ,h := p̂[0] sin(h2 ) + ŵ cos(h2 ) and write
√
N{∇θ log p̂(y | θ, p̂[0] sin(h2 ) + û[0] cos(h2 ))−∇θ log p(y | θ)}

=
∇θεN (y, p̂[0] sin(h2 ) + û[0] cos(h2 ))

1 + εN (y, p̂[0] sin(h2 ) + û[0] cos(h2 ))/
√
N

d=
∇θεN (y, p̂[0]ŵ,h; θ) + 1√

N
(∇θ$θ(y, p̂[0]1 sin(h2 ) + ŵ′1 cos(h2 ))−∇θ$θ(p̂[0]ŵ,h1 ))

1 + 1√
N
εN (y, p̂[0]ŵ,h; θ) + 1

N ($θ(y, p̂[0]1 sin(h2 ) + ŵ′1 cos(h2 ))−$θ(y, p̂[0]ŵ,h1 ))
,

as previously we have that
1√
N
∇θ$θ(y, p̂[0]1 sin(h2 ) + ŵ′1 cos(h2 )) p−→ 0 as N →∞,

1
N
$θ(y, p̂[0]1 sin(h2 ) + ŵ′1 cos(h2 )) p−→ 0 as N →∞,

with the same results holding when we use ŵ1 instead of ŵ′1. By the continuous mapping
theorem and Slutsky’s lemma we have the result for the initial step.

Assume now that the following results hold at iteration ` for any h > 0,

1√
N

N∑
i=1
∇θ$θ(y, p̂[`]i sin(h) + û[`]i cos(h)) d−→ N (0, σ2(θ, y)), as N →∞,

1
N

N∑
i=1

$θ(y, p̂[`]i sin(h) + û[`]i cos(h)) p−→ 1, as N →∞.

This gives us using Slutsky’s lemma that
√
N∇θ log

(
p̂(y | θ, p̂[`] sin(h) + û[`] cos(h))

p(y | θ)

)
d−→ N (0, σ2(θ, y)), as N →∞.

Taking one step to iteration `+ 1 we get that

p̂[`+ 1] sin(h2 ) + û[`+ 1] cos(h2 )
= p̂[`] sin(3h

2 ) + û[`] cos(3h
2 ) + sin(h)h∇û log p̂(y | θ, û) |

û=p̂[`] sin(h2 )+û[`] cos(h2 )
,
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from the assumptions we have that $θ(y,v) > 0 and so we can use Lemma 10 and Lemma
11 which gives us that, using Slutsky’s lemma

√
N∇θ log

(
p̂(y | θ, p̂[`+ 1] sin(h2 ) + û[`+ 1] cos(h2 ))

p(y | θ)

)
d−→ N (0, σ2(θ, y)), as N →∞,

where σ2(y, θ) = E[{∇θ$θ(y,u)}2]. This finishes the proof.

Appendix D. Proof of Lipschitz Continuity

Proof [Proof of Lemma 8] By explicitly writing out Φ̃h we get that

Φ̃h(Θ) = Φ̃h(θ, ρ,u,p)

=


θ + hρ+ h2

2 ∇θ{log p(θ | y)} | θ=θ+h
2 ρ

ρ+ h∇θ{log p(θ | y)} | θ=θ+h
2 ρ

p sin(h) + u cos(h) + sin(h2 )h∇u log p̂(y | θ + h
2ρ,u) |u=p sin(h2 )+u cos(h2 )

p cos(h)− u sin(h) + cos(h2 )h∇u log p̂(y | θ + h
2ρ,u) |u=p sin(h2 )+u cos(h2 )

,

we need to find a L such that

‖Φ̃h(Θ)− Φ̃h(Θ̂)‖ ≤ L‖Θ− Θ̂‖,

or equivalently find L2 such that

‖Φ̃h(Θ)− Φ̃h(Θ̂)‖2 ≤ L2
{
‖θ − θ̂‖2 + ‖ρ− ρ̂‖2 + ‖u− û‖2 + ‖p− p̂‖2

}
.

We have that

‖Φ̃h(Θ)− Φ̃h(Θ̂)‖2

≤‖θ − θ̂‖2 + (1 + h2)‖ρ− ρ̂‖2 + 2 cos2(h)‖u− û‖+ 2 sin2(h)‖p− p̂‖

+(h2 + h4

4 )‖∇θ log p(θ | y)
| θ=θ+h

2 ρ
−∇θ log p(θ | y)

| θ=θ̂+h
2 ρ̂
‖2

+h2‖∇u log p̂(y | θ + h
2ρ,u)

|u=p sin(h2 )+u cos(h2 )
−∇u log p̂(y | θ̂ + h

2 ρ̂,u)
|u=p̂ sin(h2 )+û cos(h2 )

‖2.

Under the assumption that ∇θ log p(θ | y) is Lipschitz with constant L0 and assuming that
∇u log p̂(y | θ,u) is Lipschitz with constant L1 we have that

‖Φ̃h(Θ)− Φ̃h(Θ̂)‖2

≤(1 + L2
0(h2 + h4

4 ) + h2L2
1)‖θ − θ̂‖2 + (1 + h2 + L2

0
h2

4 (h2 + h4

4 ) + h2

4 L
2
1)‖ρ− ρ̂‖2

+(2 cos2(h) + L2
1h

2 cos2(h2 ))‖u− û‖2 + (2 sin2(h) + L2
1h

2 sin2(h2 ))‖p− p̂‖2,

it therefore holds that Φ̃h is Lipschitz with constant L =
√

2 + h2 + L2
0(h2 + h4

4 ) + h2L2
1. It

remains to prove that ∇u log p̂(y | θ,u) is Lipschitz with constant L1 and that L1 does not
grow with N .
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To establish this, note that we have∥∥∥∇u log p̂
(
y|θ̂, û

)
−∇u log p̂(y|θ,u)

∥∥∥
≤ ‖∇u log p̂(y|θ, û)−∇u log p̂(y|θ,u)‖ (22)

+
∥∥∥∇u log p̂

(
y|θ̂, û

)
−∇u log p̂(y|θ, û)

∥∥∥. (23)

Consider first term (22) (squared),

‖∇u log p̂(y|θ, û)−∇u log p̂(y|θ,u)‖2

=
T∑
t=1

N∑
i=1

∥∥∥∇ut,i log p̂(yt|θ, ût)−∇ut,i log p̂(yt|θ,ut)
∥∥∥2
.

We have

∇ut,i log p̂(yt|θ,ut) = ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

∇ut,i logωθ(yt,ut,i)

so ∥∥∥∇ut,i log p̂(yt|θ, ût)−∇ut,i log p̂(yt|θ,ut)
∥∥∥2

=
∥∥∥∥∥ ωθ(yt, ût,i)∑N

j=1ωθ(yt, ût,j)
∇ut,i logωθ(yt, ût,i)−

ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

∇ut,i logωθ(yt,ut,i)
∥∥∥∥∥

2

≤
{∥∥∥∥∥ ωθ(yt, ût,i)∑N

j=1ωθ(yt, ût,j)

(
∇ut,i logωθ(yt, ût,i)−∇ut,i logωθ(yt,ut,i)

)∥∥∥∥∥ (24)

+
∥∥∥∥∥
(

ωθ(yt, ût,i)∑N
j=1ωθ(yt, ût,j)

− ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

)
∇ut,i logωθ(yt,ut,i)

∥∥∥∥∥
}2

. (25)

Under the Lipschitz assumption on the gradient of the log-weight-function the term on
line (24) is bounded by M‖ût,i − ut,i‖. Furthermore, under the boundedness and Lipschitz
assumptions on the weight function the term on line (25) is bounded by

C

∣∣∣∣∣ ωθ(yt, ût,i)∑N
j=1ωθ(yt, ût,j)

− ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

∣∣∣∣∣
≤ C

∣∣∣∣∣ωθ(yt, ût,i)− ωθ(yt,ut,i)∑N
j=1ωθ(yt, ût,j)

∣∣∣∣∣+ C
ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

∣∣∣∣∣
∑N
j=1{ωθ(yt,ut,j)− ωθ(yt, ût,j)}∑N

j=1ωθ̂(yt, ût,j)

∣∣∣∣∣
≤ CD

Nω
‖ût,i − ut,i‖+ CD

Nω

N∑
j=1
‖ût,j − ut,j‖

≤ 2CD
Nω

N∑
j=1
‖ût,j − ut,j‖.
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Put together we get for the term (22) (squared),

∥∥∥∇u log p̂
(
y|θ̂, û

)
−∇u log p̂(y|θ,u)

∥∥∥2

≤
T∑
t=1

N∑
i=1

M‖ût,i − ut,i‖+ 2CD
Nω

N∑
j=1
‖ût,j − ut,j‖


2

=
T∑
t=1

N∑
i=1

M2‖ût,i − ut,i‖2 +

2CD
Nω

N∑
j=1
‖ût,j − ut,j‖

2

+ 4MCD

Nω
‖ût,i − ut,i‖

N∑
j=1
‖ût,j − ut,j‖


=

T∑
t=1

M2
N∑
i=1
‖ût,i − ut,i‖2 +

([2CD
ω

]2
+ 4MCD

ω

)
× 1
N

 N∑
j=1
‖ût,j − ut,j‖

2


≤
T∑
t=1

M2
N∑
i=1
‖ût,i − ut,i‖2 +

([2CD
ω

]2
+ 4MCD

ω

)
×

N∑
j=1
‖ût,j − ut,j‖2


=
(
M + 2CD

ω

)2
‖û− u‖2,

where the inequality on the penultimate line follows from Jensen’s inequality.
Next we address the term (23). Analogously to above we have

∥∥∇u log p̂
(
y|θ′,u

)
−∇u log p̂(y|θ,u)

∥∥2

=
T∑
t=1

N∑
i=1

∥∥∥∇ut,i log p̂
(
yt|θ′,ut

)
−∇ut,i log p̂(yt|θ,ut)

∥∥∥2
(26)

and
∥∥∥∇ut,i log p̂

(
yt|θ′,ut

)
−∇ut,i log p̂(yt|θ,ut)

∥∥∥2

≤
{∥∥∥∥∥ ωθ̂(yt,ut,i)∑N

j=1ωθ̂(yt,ut,j)

(
∇ut,i logωθ̂(yt,ut,i)−∇ut,i logωθ(yt,ut,i)

)∥∥∥∥∥
+
∥∥∥∥∥
(

ωθ̂(yt,ut,i)∑N
j=1ωθ̂(yt,ut,j)

− ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

)
∇ut,i logωθ(yt,ut,i)

∥∥∥∥∥
}2

≤
{

ωθ̂(yt,ut,i)∑N
j=1ωθ̂(yt,ut,j)

M‖θ̂ − θ‖+ C
|ωθ̂(yt,ut,i)− ωθ(yt,ut,i)|∑N

j=1 ωθ̂(yt,ut,j)

+ C
ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

∣∣∣∑N
j=1 ωθ(yt,ut,j)− ωθ̂(yt,ut,j)

∣∣∣∑N
j=1 ωθ̂(yt,ut,j)


2

≤
{

ωθ̂(yt,ut,i)∑N
j=1ωθ̂(yt,ut,j)

M + CD

ω

(
1
N

+ ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

)}2

‖θ̂ − θ‖2.
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Plugging this expression into (26) we get∥∥∇u log p̂
(
y|θ′,u

)
−∇u log p̂(y|θ,u)

∥∥2

≤
T∑
t=1

N∑
i=1


(

ωθ̂(yt,ut,i)∑N
j=1ωθ̂(yt,ut,j)

)2

M2 + C2D2

ω2

(
1
N

+ ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

)2

+
ωθ̂(yt,ut,i)∑N
j=1ωθ̂(yt,ut,j)

2MCD

ω

(
1
N

+ ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

)}
‖θ̂ − θ‖2

≤
T∑
t=1

N∑
i=1

{
ωθ̂(yt,ut,i)∑N
j=1ωθ̂(yt,ut,j)

M2 + C2D2

ω2

(
1
N2 +

( 2
N

+ 1
)

ωθ(yt,ut,i)∑N
j=1ωθ(yt,ut,j)

)

+
ωθ̂(yt,ut,i)∑N
j=1ωθ̂(yt,ut,j)

2MCD

ω

( 1
N

+ 1
)}
‖θ̂ − θ‖2

=
T∑
t=1

{
M2 + C2D2

ω2

( 1
N

+ 2
N

+ 1
)

+ 2MCD

ω

( 1
N

+ 1
)}
‖θ̂ − θ‖2

≤ T
(
M + 2CD

ω

)2
‖θ̂ − θ‖2.

It follows that ∥∥∥∇u log p̂
(
y|θ̂, û

)
−∇u log p̂(y|θ,u)

∥∥∥
≤
(
M + 2CD

ω

)
‖û− u‖+

√
T

(
M + 2CD

ω

)
‖θ̂ − θ‖

≤ (
√
T + 1)×

(
M + 2CD

ω

)∥∥∥∥∥
(
θ̂
û

)
−
(
θ
u

)∥∥∥∥∥.

Appendix E. Proof of Convergence of Acceptance Probability

Proof [Proof of Proposition 6] The proof is divided in two parts. In the first part, we will
show that the log-likelihood estimator log p̂(y | θ,u) converges to the log-likelihood log p(y | θ)
as N →∞. The second part of the proof will show that the remaining u and p parts of the
acceptance probability vanishes as N increases.

The first part follows by the proof of Proposition 5, see Appendix C. For completeness
we repeat that part here, we do the proof by induction to show that for all ` we have that,

log p̂(y | θ, û[`]) p−→ log p(y | θ), as N →∞.

It turns out that it is needed to show this result in a more general setting, that is for any
h > 0 we wish to show that

p̂(y | θ, p̂[`] sin(h) + û[`] cos(h)) p−→ p(y | θ), as N →∞. (27)
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When ` = 0 we prove the result in two different settings. First we assume that
û[0] ∼ N (0D, ID) and the result is clear since (13) is just the likelihood of the importance
sampling estimator under the assumption of Gaussian proposal distribution. Secondly we
look at the case when û[0] ∼ π̄( · | θ), we again introduce the variables ŵ′1 ∼ ψ( · | θ) and
ŵ ∼ N (0D, ID) by the use of Remark 9, we get that

p̂(y | θ, p̂[0] sin(h) + û[0] cos(h)) = 1
N

N∑
i=1

ωθ(p̂[0]i sin(h) + û[0]i cos(h))

d= 1
N
ωθ(p̂[0]1 sin(h) + ŵ′1 cos(h)) + 1

N

N∑
i=2

ωθ(p̂[0]i sin(h) + ŵi cos(h)),

here the first part converges to zero and the second part converges to the likelihood. By
Slutsky’s lemma and the continuous mapping theorem we have the result.

Assume now that (27) holds for any h > 0. We then have for `+ 1 and any h′ > 0 that
might differ from the integration step that

p̂(y | θ, p̂[`+ 1] sin(h′) + û[`+ 1] cos(h′))

= p̂
(
y | θ, p̂[`] sin(h′ + h) + û[`] cos(h′ + h)

+ h sin(h′ + h
2 )∇u log p̂(y | θ,u)

|u=p̂[`] sin(h2 )+û[`] cos(h2 )

)
= 1
N

N∑
i=1

ωθ
(
y, p̂[`] sin(h′ + h) + û[`] cos(h′ + h)

+ h sin(h′ + h
2 )∇u log p̂(y | θ,u)

|u=p̂[`] sin(h2 )+û[`] cos(h2 )

)
,

which converges to p(y | θ) by Lemma 11. The result now follows by the continuous mapping
theorem.

Let us take a look at the second part. For this part we will show that

û[0]T û[0] + p̂[0]T p̂[0]− û[L]T û[L]− p̂[L]T p̂[L] p−→ 0, as N →∞.

We do this by rewriting this expression using a telescoping sum to

û[0]T û[0] + p̂[0]T p̂[0]− û[L]T û[L]− p̂[L]T p̂[L]

=
N∑
i=1

(
û[0]2i + p̂[0]2i − û[L]2i − p̂[L]2i

)

=
L−1∑
`=0

N∑
i=1

(
û[`]2i + p̂[`]2i − û[`+ 1]2i − p̂[`+ 1]2i

)
.

What remains to prove is that, for all `,

N∑
i=1

(
û[`]2i + p̂[`]2i − û[`+ 1]2i − p̂[`+ 1]2i

)
p−→ 0, as N →∞.
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By taking one step of the integrator we have that, see Appendix A

û[`+ 1]i = p̂[`]i sin(h) + û[`]i cos(h) + sin(h2 )h∇ui log p̂(y | θ,ui)|ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )

p̂[`+ 1]i = p̂[`]i cos(h)− û[`]i sin(h) + cos(h2 )h∇ui log p̂(y | θ,ui)|ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )
,

combining these we get that, using some trigonometric equalities,

û[`+ 1]2i + p̂[`+ 1]2i = p̂[`]2i + û[`]2i + h2(∇ui log p̂(y | θ,ui)|ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )
)2

+ 2h(p̂[`]i cos(h2 ) + û[`]i sin(h2 ))∇ui log p̂(y | θ,ui)|ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )
.

We now need to show two results, both holding as N →∞,

(i)
N∑
i=1

(∇ui log p̂(y | θ,ui)|ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )
)2 p−→ 0,

(ii)
N∑
i=1

(p̂[`]i cos(h2 ) + û[`]i sin(h2 ))∇ui log p̂(y | θ,ui)|ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )
p−→ 0.

Starting with (i) we have that, by the assumptions on the weight functions, that
N∑
i=1

(∇ui log p̂(y | θ,ui))2 ≤
N∑
i=1

ω2

(∑N
i=1 ω)2C

2 = ω2C

Nω2 → 0, as N →∞.

For (ii) using the same bounds related to the gradient we get∣∣∣∣∣
N∑
i=1

(p̂[`]i cos(h2 ) + û[`]i sin(h2 ))∇ui log p̂(y | θ,ui)
∣∣∣∣∣

≤ 1
N

Cω

ω

N∑
i

(p̂[`]i cos(h2 ) + û[`]i sin(h2 )).

We now need to prove that

1
N

N∑
i

(p̂[`]i cos(h2 ) + û[`]i sin(h2 )) p−→ 0, as N →∞.

We will prove this for every ` ≥ 0 and for any value of h and this will be done using a proof
of induction similar to what is done in the proof of the CLT in Appendix C.

We begin when ` = 0, we have that p̂[0] ∼ N (0D, ID) and assume first that û[0] ∼
N (0, ID). Then the result is trivial. If we instead assume that û[0] ∼ π̄(· | θ). We again use
Remark 9 and introduce the set of variables ŵ1 ∼ ψ(· | θ) and ŵ2:N ∼ N (0p, Ip). We then
have that, for any h > 0,

1
N

N∑
i=1

(p̂[0]i cos(h) + û[0]i sin(h)) d= 1
N

N∑
i=1

(p̂[0]i cos(h) + ŵi sin(h))

= 1
N

(p̂[0]1 cos(h) + ŵ1 sin(h)) + 1
N

N∑
i=2

(p̂[0]i cos(h) + ŵi sin(h)).

29
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Both of these terms now converge to 0, the first part trivially does this, while the second
part is a sum of standard Gaussian variables and by the law of large numbers this sum
converges to 0.

Assume now that for any h > 0 we have that

1
N

N∑
i=1

(p̂[`]i cos(h) + û[`]i sin(h)) p−→ 0, as N →∞.

We now look at `+ 1, by taking one step of the numerical integrator we get that, for any
h′ > 0 which may be different then the integration step length,

1
N

N∑
i=1

(p̂[`+ 1]i cos(h′) + û[`+ 1]i sin(h′))

= 1
N

N∑
i=1

(p̂[`]i sin(h+ h′) + û[`]i cos(h+ h′)

+ h sin(h2 + h′)∇ui log p̂(y | θ,ui) |ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )
)

= 1
N

N∑
i=1

(p̂[`]i sin(h+ h′) + û[`]i cos(h+ h′))

+ 1
N

N∑
i=1

h sin(h2 + h′)∇ui log p̂(y | θ,ui) |ui=p̂[`]i sin(h2 )+û[`]i cos(h2 )
,

where the first term converges to 0 in probability by the induction hypothesis and the second
sum converges to 0 in probability in the same way as (i) above. This completes the proof.

Appendix F. Extension to Nosé-Hoover Dynamics

The Hamiltonian dynamics presented in (7), respectively (12), preserves the Hamiltonian
(5), respectively (10). As mentioned earlier, it is thus necessary to randomize periodically
the momentum to explore the target distribution of interest. On the contrary, Nosé-Hoover
type dynamics do not preserve the Hamiltonian but keep the target distribution of interest
invariant (Leimkuhler and Matthews, 2015, Chapter 8). However, they are not necessarily
ergodic but can perform well and it is similarly possible to randomize them to ensure
ergodicity.

Compared to the Hamiltonian dynamics (7), the Nosé-Hoover dynamics is given by

dθ
dt = ρ, (28)
dρ
dt = ∇θ log p(θ) +∇θ log p(y | θ)− ξρ, (29)
dξ
dt = µ−1

(
ρTρ− d

)
, (30)
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where ξ ∈ R is the so-called thermostat. It is easy to check that this flow preserves

π(θ, ρ, ξ) = π(θ, ρ)N
(
ξ; 0, µ−1

)
invariant; i.e. if (θ(0), ρ(0), ξ(0)) ∼ π then (θ(t), ρ(t), ξ(t)) ∼ π for any t > 0. This dynamics
can be straightforwardly extended to the intractable likelihood case to obtain

dθ
dt = ρ, (31)
dρ
dt = ∇θ log p(θ) +∇θ log p̂(y | θ,u)− ξρ, (32)
du
dt = p, (33)
dp
dt = −u +∇u log p̂(y | θ,u)− ξp, (34)
dξ
dt = µ−1

(
ρTρ+ pTp− (d+D)

)
. (35)

This flow preserves
π(θ, ρ,u,p, ξ) = π(θ, ρ,u,p)N

(
ξ; 0, µ−1

)
.

It would also be possible to use the thermostat ξ to only regulate ρ as in (28)-(30).
It is possible to combine Nosé-Hoover numerical integrators with an MH accept-reject

step to preserve the invariant distribution Leimkuhler and Reich (2009). A weakness of this
approach is that the MH accept-reject step is not only dependent of the difference between
the ratio of the target at the proposed state and the target at the initial state but involves
an additional Jacobian factor. We will not explore further these approaches here, which will
be the subject of future work.

Appendix G. Details About the Numerical Illustrations and Additional
Results

Here we will provide additional information about the numerical illustration from Section 4.

G.1 Diffraction Model

A normal N (0, 102) prior was used for each component of θ. We used h = 0.02 and L = 50
in all cases for simplicity, resulting in average acceptance probabilities in the range 0.6—0.8.

To generate the oberservations accept-reject sampling is used to generate random variables
from the distribution

g(y |λ) = (λπ)−1 sinc2( yλ),

which are then moved using the simulated x. For proposal we use the following distribution
on the positive part of the real line

q(y |λ) =
{

(2λ)−1 0 ≤ y < λ,
λ

2y2 y ≥ λ,
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a random sign is then given to the accepted samples to generate samples from the desired
distribution.

In Figures 5—9 below we show traces for the parameter λ (which, along with σ, was the
most difficult parameter to infer) for the various samplers considered with different settings.
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Figure 5: Traces for parameter λ for the PM-HMC sampler.From top left to bottom
right: N = 16, N = 64, N = 128, N = 256.
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Figure 6: Traces for parameter λ for the standard HMC sampler, using a non-centered
parameterisation. (Note that the sampler completely misses one mode of the
posterior.)
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Figure 7: Traces for parameter λ for the pseudo-marginal MH sampler with N particles.
Left, N = 512. Right, N = 1024.
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Figure 8: Traces for parameter λ for the Gibbs sampler using conditional importance
sampling kernels with N particles to update the latent variables. From top left to
bottom right: N = 16, N = 64, N = 128, N = 256.
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Figure 9: Traces for parameter λ for the pseudo-marginal slice sampler. From top left
to bottom right: N = 16, N = 64, N = 128, N = 256.

G.2 Generalized Linear Mixed Model

In this section we give some additional details and results for the generalized linear mixed
model considered in Section 4.3 of the main manuscript.

The parameter values used for the data generation were:

β =
(
−1.1671 2.4665 −0.1918 −1.0080 0.6212 0.6524 1.5410 0.2653

)T
,

µ1 = 0, µ2 = 3, λ1 = 10, λ2 = 3, and w1 = 0.8.
All methods were initialized at the same point in θ-space, as follows: βinit was sampled

from N (0p, Ip), resulting in:

βinit =
(
0.5838 0.3805 −1.5062 −0.0442 0.4717 −0.1435 0.6371 −0.0522

)T
,

whereas the remaining parameters were initialized deterministically as µinit
1 = 0, µinit

2 = 0
λinit

1 = 1, λinit
2 = 0.1, and winit

1 = 0.5.
We used a N (0, 100) prior for each component of θ. However, for the particle Gibbs

sampler we used a different parameterisation and (uninformative) conjugate priors when
possible to ease the implementation. Varying the prior did not have any noticeable effect on
the (poor) mixing of the Gibbs sampler.

For PM-HMC and the pseudo-marginal slice sampler we used a simple (indeed, naive)
choice of importance distribution for the latent variables: q(xi) = N (xi | 0, 32) since this
was easily represented in terms of Gaussian auxiliary variables (which is a requirement for
both methods). A possibly better choice, which however we have not tried in practice,
is to use a Gaussian or t-distributed approximation to the posterior distribution of the
latent variables. For the particle Gibbs sampler, which does not require the proposal to be
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represented in terms of Gaussian auxiliary variables, we instead used the (slightly better)
proposal consisting of sampling from the prior for Xi.

The pseudo-marginal slice sampler made use of elliptical slice sampling for updating
the auxiliary variables, as recommended by Murray and Graham (2016). The components
of θ were updated one-at-a-time using random walk Metropolis—Hastings kernels. We
also updating θ jointly, but this resulted in very poor acceptance rates. The random-walk
proposals were tuned to obtain acceptance rates of around 0.2—0.3.

The particle Gibbs sampler used conditional importance sampling kernels for the latent
variables X1:T , and for the parameters random walk Metropolis—Hastings kernels were used
when no conjugate priors were available.

Figures 10—12 show trace plots for the four parameters µ1, µ2, 1/λ1 and 1/λ2 of the
Gaussian mixture model used to model the distribution of the random effects. The three
plots correspond to the pseudo-marginal HMC sampler, the pseudo-marginal slice sampler,
and the Gibbs sampler with conditional importance sampling kernels, respectively. In
Figure 13 we show estimated autocorrelations for the 13 parameters of the model for the
three samplers.
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Figure 10: Traces for parameters µ1 and µ2 (left) and 1/λ1 and 1/λ2 (right) for the pseudo-
marginal HMC sampler with N = 128.
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Figure 11: Traces for parameters µ1 and µ2 (left) and 1/λ1 and 1/λ2 (right) for the pseudo-
marginal slice sampler with N = 128.
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Figure 12: Traces for parameters µ1 and µ2 (left) and 1/λ1 and 1/λ2 (right) for the Gibbs
sampler using conditional importance sampling kernels with N = 128 particles
to update the latent variables.

36



Pseudo-Marginal Hamiltonian Monte Carlo

0 200 400 600 800 1000
-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
-0.2

0

0.2

0.4

0.6

0.8

1

Figure 13: Estimated autocorrelations for the 13 parameters of the model for the pseudo-
marginal HMC sampler with N = 128 (left), pseudo-marginal slice sam-
pler with N = 128 (mid), and Gibbs sampler using conditional importance
sampling kernels with N = 128 particles to update the latent variables (right).

G.3 Respiratory Infection Data

In this section we give some additional details and results for the random effects model
considered in Section 4.4

All methods and runs were initialized at the same point in θ-space, the initial values
were

βinit =
(
0.6956 0.8695 2.2879 −0.5346 −0.9756 −1.8065 0.5569 −0.5209

)T
,

and log τ init = 1.1049, while the initial uinit was randomized for each run.

For the parameters of the different algorithm we set them such that we got something
acceptable for the case N = 21 and used these values for all runs. It is probably possible to
achieve better results for other values of N by tuning the parameters further. In Figure 14—
16 show traces for three parameters of the β vector for the different methods and for different
values of N . In Figure 17 we see the average time for one iteration of the algorithm in
seconds for the different methods for the different values of N used in the simulations,
the simulations were done on an i7-6700k running at 4.0GHz with 16GB of memory, no
GPU was used to accelerate the computations. Note the different scales on the y-axis,
the pseudo-marginal slice-sampling with Metropolis—Hastings is the quickest while the
PM-HMC and pseudo-marginal slice-sampling with HMC are the slowest methods.
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Figure 14: Traces for parameters β1 (blue), β3 (orange), and β5 (green) when N = 1 for
the PM-HMC (top-left) pseudo-marginal slice sampler with HMC (top-
right), elliptical slice sampling (bottom-left), and Metropolis—Hastings
(bottom-right).
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Figure 15: Traces for parameters β1 (blue), β3 (orange), and β5 (green) when N = 12 for
the PM-HMC (top-left) pseudo-marginal slice sampler with HMC (top-
right), elliptical slice sampling (bottom-left), and Metropolis—Hastings
(bottom-right).
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Figure 16: Traces for parameters β1 (blue), β3 (orange), and β5 (green) when N = 30 for
the PM-HMC (top-left) pseudo-marginal slice sampler with HMC (top-
right), elliptical slice sampling (bottom-left), and Metropolis—Hastings
(bottom-right).
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Figure 17: Average iteration time (s) for different values of N for the PM-HMC (top-
left) pseudo-marginal slice sampler with HMC (top-right), elliptical slice
sampling (bottom-left), and Metropolis—Hastings (bottom-right).

Appendix H. Auxiliary Results

For the proof of Proposition 5 we need auxiliary results. These results are given here to
shorten the proofs above.
Lemma 10 Let {Xi}i∈N and {Yi}i∈N be two sequences of random variables and f a contin-
uous function with continuous and bounded first derivative which satisfies |f ′| < c. Let h be
a continuous bounded function with |h| < d for some constant d ∈ R+ and g be a strictly
positive continuous bounded function which satisfies e−1 < g < e for some e > 1. Assume
that there exists a random variable Z such that

1√
N

N∑
i=1

f(Xi) d−→ Z, as N →∞.

Then we have that
1√
N

N∑
i=1

f(Xi + h(Yi)∑N

j=1 g(Yj)
) d−→ Z, as N →∞.

Proof For any ω ∈ Ω we have by Taylor’s theorem that there exists a

X̄i ∈
[
Xi − h(Yi)∑N

j=1 g(Yj)
, Xi + h(Yi)∑N

j=1 g(Yj)

]
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such that

f(Xi + h(Yi)∑N

j=1 g(Yj)
) = f(Xi) + f ′(X̄i) h(Yi)∑N

j=1 g(Yj)
.

Now we look at

1√
N

N∑
i=1

f(Xi + h(Yi)∑N

j=1 g(Yj)
) = 1√

N

N∑
i=1

f(Xi) + 1√
N

N∑
i=1

f ′(X̄i) h(Yi)∑N

j=1 g(Yj)
,

where we use the results above to get the expression on the right hand side. We see that
by the assumption the first term converges in distribution to Z while the second term is
something that we need to control. From the assumptions we have that

− 1√
N

N∑
i=1

c·d∑N

j=1 e
−1
<

1√
N

N∑
i=1

f ′(X̄i) h(Yi)∑N

j=1 g(Yj)
<

1√
N

N∑
i=1

c·d∑N

j=1 e
−1
.

Since we have that

1√
N

N∑
i=1

c·d∑N

j=1 e
−1

= 1√
N
c · d · e→ 0 as N →∞,

we have that, by the sandwich property

1√
N

N∑
i=1

f ′(X̄i) h(Yi)∑N

j=1 g(Yj)
p−→ 0, as N →∞.

The proof concludes by using Slutsky’s lemma.

Lemma 11 Let {Xi}i∈N and {Yi}i∈N be two sequences of random variables and f a contin-
uous function with continuous and bounded first derivative which satisfies |f ′| < c. Let h be
a continuous bounded function with |h| < d for some constant d ∈ R+ and g be a strictly
positive continuous bounded function which satisfies e−1 < g < e for some e > 1. Assume
that there exists a constant µ such that

1
N

N∑
i=1

f(Xi)
p−→ µ, as N →∞.

Then we have that

1
N

N∑
i=1

f(Xi + h(Yi)∑N

j=1 g(Yj)
) p−→ µ, as N →∞.

The proof of this is analogous to the previous proof and is therefore omitted.
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