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Abstract

An accurate estimate of the mass of a passenger vehicle is important for several
safety systems and environmental aspects. In this thesis, an algorithm for esti-
mating the mass of a passenger vehicle using the recursive least squares method
is presented. The algorithm is based on a physical model of the vehicle and is de-
signed to be able to run in real-time onboard a vehicle and uses the wheel torque
signal calculated in the electrical control unit in the engine. Therefore no estima-
tion of the powertrain is needed. This is one contribution that distinguishes this
thesis from previous work on the same topic, which has used the engine torque.
The benefit of this is that no estimation of the dynamics in the powertrain is
needed. The drawback of using this method is that the algorithm is dependent
on the accuracy of the estimation done in the engine electrical control unit.

Two different versions of the recursive least squares method (RLS) have been
developed - one with a single forgetting factor and one with two forgetting fac-
tors.

The estimation performance of the two versions are compared on several dif-
ferent real-world driving scenarios, which include driving on country roads, high-
ways, and city roads, and different loads in the vehicle. The algorithm with a sin-
gle forgetting factor estimates the mass with an average error for all tests of 4.42
% and the algorithm with multiple forgetting factors estimates the mass with an
average error of 4.15 %, which is in line with state-of-the-art algorithms that are
presented in other studies.

In a sensitivity analysis, it is shown that the algorithms are robust to changes
in the drag coefficient. The single forgetting factor algorithm is robust to changes
in the rolling resistance coefficient whereas the multiple forgetting factor algo-
rithm needs the rolling resistance coefficient to be estimated with fairly good
accuracy. Both versions of the algorithm need to know the wheel radius with an
accuracy of 90 %.

The results show that the algorithms estimate the mass accurately for all three
different driving scenarios and estimate highway roads best with an average error
of 2.83 % and 2.69 % for the single forgetting factor algorithm and the multiple
forgetting factor algorithm, respectively. The results indicate it is possible to use
either algorithm in a real-world scenario, where the choice of which algorithm
depends on sought-after robustness.
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1
Introduction

The aim of this thesis is to develop an algorithm that estimates the mass of a
passenger vehicle. This thesis project was carried out at Syntronic AB. In this
chapter, a background to the problem, related work, and a problem formulation
is presented. Some limitations to the thesis are also presented.

1.1 Background

Detecting overload and accurately determining the mass of a passenger vehicle is
important from a security and environmental point of view. The braking distance
is increased with the increased weight of a vehicle and increased weight changes
the vehicle dynamics. Accurately estimating the mass is important for the anti-
lock brake controller and can also help reduce emissions. By knowing the mass
the appropriate gear can be selected, the cruise control can be more economic
which both helps reduce emissions and improve the comfort of the ride.

Given the vehicle dynamics equation, the vehicle mass and road grade needs
to be estimated simultaneously on-board. There exist some hardware-based so-
lutions, which have the need for extra sensors in the cars, which is costly to put
in all production cars. By using the signals that already are available on all ve-
hicles and no extra sensors a software-based and cost-effective solution can be
developed to estimate the mass of the vehicle.

The aim of this thesis is to develop an algorithm that estimates the mass of a
passenger vehicle only using signals already available on the CAN-bus.

1



2 1 Introduction

1.2 Related work

There have been several studies that have been studying load estimation using
different techniques. Ghosh et al. [6] estimate the mass and road grade by using
a recursive least squares, RLS, estimator combined with a torque observer that
estimates the wheel torque. The authors also filter the signals to get rid of high-
frequency factors such as drag and rolling resistance. The results show that the
algorithm estimates the mass within 5 % of the actual mass and when using the
torque observer it converges to the actual value much faster than without the
torque observer. By filtering the signals their algorithm is not sensitive to the
effects of drag and rolling resistance.

In [20] the authors use an observer-based parameter estimator and then use
two different methods for smoothing the mass estimate. They use a Kalman filter
and an analysis of the mass parameter to determine periods of convergence. They
achieve a mass estimate within 10 % and the estimate settles within 60 seconds.

Lin et al. [11] also use an RLS algorithm to estimate the mass and discuss the
impact of system errors in the model. They treat the system error as a parame-
ter to estimate in the RLS instead of assuming it to be Gaussian. They discuss
several parameters that can have an impact on estimates, e.g. accuracy of sig-
nals, tire slip, parameters that change during the motion, such as tire pressure.
When not considering the system error the mass estimate error is 16 % and when
considering it the error is 9 %. The algorithm was used on a heavy-duty vehicle.

Rezaeian et al. [14] estimate the forces acting on the tires of a passenger ve-
hicle. To estimate the forces a mass estimate is needed. The authors do the mass
estimation by using a longitudinal vehicle model and an RLS algorithm to esti-
mate the mass. They achieve an accuracy of the mass estimate of 3 %, but in the
estimation, they have assumed the center of gravity to be known and yaw rate to
be measured and this may not be available in all cars.

Vahidi et al. [16] estimate the road grade and the mass of a heavy-duty vehicle
(HDV) using two different methods. First, they estimate the mass and road grade
with an observer and then with an RLS algorithm. They also investigate the RLS
algorithm with two different forgetting factors, one for mass and one for road
grade. When using a single forgetting factor the estimates are very poor and only
converge to the actual values when the road grade is constant. Using multiple
forgetting factors they show that both the estimates can become very accurate.
This article is the basis of [17] where the authors use this theory to conduct real-
life experiments.

Vahidi et al. [18] expand this theory by proposing an ad hoc modification of
the update law for the gain in the RLS. The authors also investigate the perfor-
mance of the algorithm on experimental data and discuss how the noise in the
signals affects the estimation. They show that during times without gearshift the
algorithm estimates the mass with a maximum error of 3 %. During gearshifts,
the estimate overshoots, and therefore they propose a solution that turns off the
estimation during those periods. This approach has been proven to be very slow
and inaccurate when applied to passenger vehicles [5].

In [5] the authors propose a new algorithm that is based on that the inertial dy-
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namics dominate vehicle motion over certain types of maneuvers. During those
maneuvers, the mass estimation is done with an RLS algorithm. Together with
band-pass filtering to get rid of high-frequency components the algorithm con-
verges to an estimate near the actual mass fast. No values of accuracy are pre-
sented. In the article, they discuss that the algorithm is dependent on the persis-
tence of excitation which may be a problem if the vehicle is driven carefully.

Jonsson Holm [8] estimates the mass of an HDV and the road grade using
an extended Kalman filter with a longitudinal model. Two different methods
are used, one where both the mass and the road grade are estimated and one
where the road grade is measured with a sensor and only the mass is estimated.
Jonsson Holm is showing that when estimating both the mass and the road grade
the mass estimate is in the range of 5 % of the actual value, but when using the
measurement of the road grade the mass estimate is within 2 % of the actual
value.

In [9] the authors investigate four different methods that estimate mass and/or
road grade. These include recursive least squares (RLS) with multiple forgetting
factors, extended Kalman filtering, a dynamic grade observer, and a method de-
veloped in this research that is parallel mass and grade estimation using a lon-
gitudinal accelerometer. It is concluded that the RLS and EKF give an estimate
within 5 % of their actual value when given a good initial guess.

Kim et al. [10] propose a combined longitudinal dynamics and roll dynamics
to be able to estimate the mass during all types of driving. They use a model
for roll dynamics during cornering and have two different RLS-algorithms where
one algorithm is being run when moving longitudinal and one during cornering.
The two different algorithms are then fused with a weighting function to give a
good estimate. This is verified in simulations and they get good results. However,
in the roll dynamics, they assume the center of gravity is known, which can vary
with different loads and can be difficult to measure. They have only verified the
results in simulation and not in real-world experiments.

To summarize most of the previous work has been done on heavy-duty ve-
hicles and all of the previous work has used engine torque and estimated the
driveline dynamics to acquire wheel force. Most of the literature on passenger
vehicles has used additional sensors or highlighted the importance of accurately
estimating the power train inertia. In most of the literature, only one driving sce-
nario has been investigated and the error of the estimated mass is around 5-10
%.

1.3 Problem formulation

The purpose of this thesis is to develop an algorithm able to estimate the mass of
a vehicle. This thesis will focus on answering the following questions:

1. How to adapt previously developed algorithms to incorporate wheel torque
instead of engine torque?
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2. How accurate is the algorithm compared to other algorithms that have been
developed in terms of root mean square error and mean error?

3. Which driving scenarios have the largest effect on the performance of the
algorithm?

4. Which parameters have the largest effect on the algorithm?

1.4 Limitations

Due to the scope of this thesis, the vehicle is not equipped with any additional
sensors such as inclination sensors. This thesis only focuses on mass estimation,
and therefore the road grade estimation is not of interest. As a consequence, no
ground truth for road grade was calculated. When examining the results of the
algorithm, only the result of the mass estimate is of interest.

1.5 Outline

The outline of this thesis is as follows. Chapter 2 provides a model for the vehicle
dynamics and a mathematical description of the RLS method. It also presents
the evaluation metrics that will be used throughout the thesis. Chapter 3 the
proposed algorithm is presented. This includes how the vehicle model is incorpo-
rated in the RLS method, how the resampling and signal filtering is done. It also
includes a description of a longitudinal motion detector that turns on the estima-
tor when several conditions are met. This is used to conclude when the vehicle
model is not valid and pause the estimation during these times. In Chapter 4
the experiments are presented and the results are presented and discussed. This
also includes a sensitivity analysis. Finally, Chapter 5 provides conclusions to the
problem formulation and also provides some remarks on future work.



2
Theory

This chapter presents the vehicle dynamics and a model for a longitudinal mo-
tion. It also provides a mathematical background for the RLS method, which
is a common method in these applications and will be used in the estimator al-
gorithm. Both the standard method and one with forgetting factors will be pre-
sented. The evaluation metrics that will be used are also presented.

2.1 Vehicle longitudinal dynamics

Newton’s second law of motion states that the relation between force and acceler-
ation is

F = ma, (2.1)

where m is the mass of the object and a is the acceleration. The main forces
acting on a vehicle when traveling in a longitudinal motion are shown in Figure
2.1. The forces acting on a vehicle combined with (2.1) gives an equation for the
longitudinal motion as

ma = Fwheel − Fbrake − Fdrag − Frollresist − Froadgrade. (2.2)

The traction force, Fwheel, depends on the engine torque and dynamics in the
transmission. The brake force, Fbrake, depends on the brake pressure. Fdrag is
the aerodynamic drag which depends on the vehicle longitudinal velocity v, the
effective frontal surface of the vehicle S, the air density ρ and the aerodynamic
drag coefficient Cd as

Fdrag =
1
2
ρSCdv

2. (2.3)

The rolling resistance Frollresist and resistance force Froadgrade are

Frollresist = mgCr cos θ (2.4)

5



6 2 Theory

Froadgrade = mg sin θ, (2.5)

where m is the mass of the vehicle, g is the gravitational acceleration, Cr is the
rolling resistance coefficient and θ is the road grade angle [6].

Figure 2.1: Free body diagram of a vehicle travelling in a longitudinal mo-
tion.

We can write (2.2) as

a = (Fwheel − Fbrake −
1
2
ρSCdv

2)
1
m
− g(Cr cos θ + sin θ), (2.6)

and by using the substitution θµ = arctanCr and a = v̇ we get

v̇ = (Fwheel − Fbrake −
1
2
ρSCdv

2)
1
m
−

g

cos θµ
(sin(θ + θµ)), (2.7)

which can be written as

v̇ =
[
φ1 φ2

] [θ1
θ2

]
, (2.8)

where

φ1 = Fwheel − Fbrake −
1
2
ρSCdv

2 (2.9a)

φ2 = −
g

cos θµ
(2.9b)

θ1 =
1
m

(2.9c)

θ2 = sin(θ + θµ). (2.9d)

The unknown parameters are

θ =
[
θ1
θ2

]
(2.10)

and

v̇x, φ =
[
φ1
φ2

]
, (2.11)

can be calculated from measured signals and known parameters. The unknown
parameters θ can be estimated using RLS which are presented next.



2.2 Recursive least squares 7

2.2 Recursive least squares

The least squares method is a common method when estimating unknown pa-
rameters. The method states that the parameter θ should be chosen to minimize
the loss function

V (θ, n) =
1
2

n∑
i=1

(y(i) − φT (i)θ̂)2, (2.12)

where y is the observed variable, θ is the parameters to be estimated, and φ are
known functions from the model. Solving for minimizing parameters the closed
form solution is given as [3]

θ̂ =
( n∑
i=1

φ(i)φT (i)
)−1( n∑

i=1

φ(i)y(i)
)
. (2.13)

When estimating parameters in real-time, it is desirable to make the calcu-
lations recursively. Updating the estimates when new data is available is more
computationally efficient. The recursive form is given by

θ̂(k) = θ̂(k − 1) + L(k)
(
y(k) − φT (k)θ̂(k − 1)

)
, (2.14)

where
L(k) = P (k)φ(k) = P (k − 1)φ(k)

(
I + φT (k)P (k − 1)φ(k)

)−1
(2.15)

and
P (k) =

(
I − L(k)φT (k)

)
P (k − 1). (2.16)

P (k) is referred to as the covariance matrix and L(k) is referred to as the update
gain.

As seen from (2.14) the standard form RLS can be seen as a filter that aver-
ages the data to give an estimate. This is a good strategy if the parameters are
constant. In this case, at least the road grade is time-varying and therefore can
not be tracked with the standard form RLS. In section 2.2.1 it is described how
the RLS method can be modified to be able to track time-varying parameters.

2.2.1 Recursive least squares with forgetting factor

In the standard form recursive least squares method, the parameters are assumed
to be constant. If the parameters are time-varying a forgetting factor λ can be
introduced, which gives more weight to newer data. The loss function (2.12)
combined with a forgetting factor is defined as [3]

V (θ̂, k) =
1
2

k∑
i=1

λk−i
(
y(i) − φT (i)θ̂(k)

)2
, (2.17)

where λ is the forgetting factor, which is 0 < λ ≤ 1 [18]. The same update equa-
tion (2.14) as in the recursive form is used, but with update gain L(k) and covari-
ance matrix P (k) as

L(k) = P (k − 1)φ(k)
(
λ + φT (k)P (k − 1)φ(k)

)−1
(2.18)



8 2 Theory

and
P (k) =

(
I − L(k)φT (k)

)
P (k − 1)

1
λ
. (2.19)

2.2.2 Recursive least squares with multiple forgetting factors

In the standard recursive least squares method with a single forgetting factor, it
is assumed that the parameters vary with similar rates. When two parameters
vary with different rates one can introduce multiple forgetting factors to be able
to track multiple parameters with greater accuracy [18]. In this case, the mass
and the road grade vary with different rates. With multiple forgetting factors the
covariance matrix is given as:

P (k) = Λ−1
(
I − L(k)φT (k)

)
P (k − 1)Λ−1, (2.20)

where Λ = diag(λ1, λ2), and λ1, λ2 are the forgetting factor for the first and
second parameter. By using two different forgetting factors, the difference in
varying rate can be incorporated in the recursive least squares method. This also
gives more degrees of freedom in the update gain L(k) = [L1(k), L2(k)].

For the special case, with estimation of two unknown parameters, we define
the loss function as [18]

V (θ̂1(k), θ̂2(k), k) =
1
2

k∑
i=1

λk−i1

(
y(i) − φ1(i)θ̂1(k) − φ2(i)θ2(i)

)2
+

1
2

k∑
i=1

λk−i2

(
y(i) − φ1(i)θ1(i) − φ2(i)θ̂2(k)

)2
.

(2.21)

The first term on the right hand side of the equation describes the error of the
step k due to the first parameter estimate, θ̂1(k), and the second term describes
the error of the step for the second parameter, θ̂2(k). In (2.21), λ1, corresponds
to the forgetting factor for the first parameter and λ2 corresponds to the forget-
ting factor for the second parameter. The optimal estimates minimizes the loss
function and are obtained as [18]

∂V

∂θ̂1(k)
= 0 =⇒

k∑
i=1

λk−1
1 (−φ1(i))

(
y(i) − φ1(i)θ̂1(k) − φ2(i)θ2(i)

)
= 0. (2.22)

By rearranging equation (2.22) we get

θ̂1(k) =
( k∑
i=1

λk−i1 φ1(i)2
)−1( k∑

i=1

λk−i1 (y(i) − φ2(i)θ2(i))
)
, (2.23)

and when doing the same operations for θ̂2 we obtain

θ̂2(k) =
( k∑
i=1

λk−i2 φ2(i)2
)−1( k∑

i=1

λk−i2 (y(i) − φ1(i)θ1(i))
)
. (2.24)
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By using the same methodology available between (2.23) and (2.24) and the clas-
sical form (2.13) the recursive form can be deduced:

θ̂1(k) = θ̂1 + L1(k)
(
y(k) − φ1(k)θ̂1(k − 1) − φ2(k)θ2(k)

)
, (2.25)

where

L1(k) = P1(k − 1)φ1(k)
(
λ1 + φT1 (k)P1(k − 1)φ1(k)

)−1
(2.26a)

P1(k) =
(
I − L1(k)φT1 (k)

)
P1(k − 1)

1
λ1
. (2.26b)

Similarly for θ̂2 we obtain

θ̂2(k) = θ̂2 + L2(k)
(
y(k) − φ1(k)θ1(k) − φ2(k)θ̂2(k − 1)

)
, (2.27)

where

L2(k) = P2(k − 1)φ2(k)
(
λ2 + φT2 (k)P2(k − 1)φ2(k)

)−1
(2.28a)

P2(k) =
(
I − L2(k)φT2 (k)

)
P2(k − 1)

1
λ2
. (2.28b)

By replacing θ1(k) and θ2(k) with their estimates θ̂1(k) and θ̂2(k), which is
justified when the estimate and the actual value is very close or within the region
of convergence for the algorithm, we get [18]

θ̂1(k) + L1(k)φ2(k)θ̂2(k) = θ̂1(k − 1) + L1(k)
(
y(k) − φ1(k)θ̂1(k − 1)

)
(2.29)

θ̂2(k) + L2(k)φ1(k)θ̂1(k) = θ̂2(k − 1) + L2(k)
(
y(k) − φ2(k)θ̂2(k − 1)

)
, (2.30)

which has the solution[
θ̂1(k)
θ̂2(k)

]
=

[
1 L1(k)φ2(k)

L2(k)φ1(k) 1

]−1
θ̂1(k − 1) + L1(k)

(
y(k) − φ1(k)θ̂1(k − 1)

)
θ̂2(k − 1) + L2(k)

(
y(k) − φ2(k)θ̂2(k − 1)

)
 .

(2.31)
The determinant of the term[

1 L1(k)φ2(k)
L2(k)φ1(k) 1

]
is always non-zero due to the fact that P1 and P2 are always positive. Therefore,
the inverse of the matrix always exists.

By defining Lnew(k) as

Lnew(k) =
1

1 + P1(k−1)φ1(k)2

λ1
+ P2(k−1)φ2(k)2

λ2

 P1(k−1)φ1(k)
λ1

P2(k−1)φ2(k)
λ2

 (2.32)
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we can rewrite (2.31) in the same form as (2.14) as

θ̂(k) = θ̂(k − 1) + Lnew(k)
(
y(k) − φT (k)θ̂(k − 1)

)
. (2.33)

By using this RLS with multiple forgetting factors both parameters can be tracked
with greater accuracy, even though they vary with different rates.

The effective sample size, wN,λ, approximates the number of observations that
we are averaging over and for λ ∈ (0, 1] then [4]

wN,λ =
N∑
i=1

λN−i =
1 − λN

1 − λ
, (2.34)

and when N →∞
w∞,λ =

1
1 − λ

. (2.35)

From the equations we can see that if λ = 1 then wN,λ = N and if λ = 0 then
wN,λ = 1. Generally λ is chosen as 0.9 ≤ λ ≤ 1 [7]. If λ = 0.9 is chosen then
wN,λ = 10, and if λ = 0.99 is chosen then wN,λ = 100.

2.3 Evaluation metrics

During the parameter estimation and mass estimation, the algorithm will be eval-
uated using different metrics. One of the measures used is root mean square error,
RMSE, which is calculated as

RMSE =

√√
1
n

n∑
i=1

(ŷi − yi)2, (2.36)

where ŷ is the predicted signal and y is the measured signal. Another measure
that will be used is mean error percentage which is calculated as

MEP =
1
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣. (2.37)

In previous literature, the mass estimate is achieved with an accuracy of 5-10 %,
and therefore the time within 5 % of the true mass will also be a measure that
will be taken into consideration. For all tests, these metrics will be started when
the velocity is larger than 0 and then calculated for the whole duration of the test.
This is done due to the different amount of time between the start of the data
collection and when the vehicle starts moving for the different tests should not
affect the result.



3
Estimator algorithm

This chapter describes the implementation of the estimator algorithm. This in-
cludes how the vehicle longitudinal model is combined with the RLS method.
How the resampling and signal filtering is also presented. An explanation of the
longitudinal motion detector is also presented in this chapter.

3.1 Vehicle model combined with RLS

By combining the vehicle longitudinal model and the RLS method the parameters
θ, the mass and road grade, can be estimated by using (2.10)-(2.11). An overview
of the algorithm is shown in Figure 3.1.

The inputs Fwheel, v2 and v̇ are available on the CAN bus and ρ, S, Cd , g,
θµ are constants that can be determined, this is described in Chapter 4. The
wheel torque τwheel is calculated in the electrical control unit in the engine and
broadcast on the CAN bus. The wheel force is calculated as

Fwheel =
τwheel

rwheel
, (3.1)

where rwheel is the wheel radius. Therefore no estimation of the dynamics in the
driveline is necessary, which is needed in previous literature. The RLS method
estimates the parameter θ with the inputs Fwheel, v2 and v̇.

The initial guess to the RLS algorithm in all tests were

minitial = mcurb + mdriver + mfuel, (3.2)

where mcurb = 1421 kg, mdriver = 70 kg, and mfuel was calculated as the measured
amount of fuel multiplied by 0.78 kg/l, which is the density of petrol.

The true mass of the vehicle was calculated as

mtrue = mcurb + mdriver + mfuel + mload, (3.3)

11
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CAN-bus signal

Resampling and filtering

Create  and  for each
time instance

Recursive Least Square

Longitudinal motion
detector

Mass estimate and road grade estimate

Model valid

Model not valid

Figure 3.1: Flow of the estimator algorithm.

where mload is the additional load in the vehicle.

Two different variants of the algorithm were analyzed, one with a single for-
getting factor, SFF-RLS, and one with multiple forgetting factors, MFF-RLS.

3.2 Resampling and signal filtering

The signals are received from the CAN bus with different frequencies depending
on the signal received, therefore a resampling is necessary. The resampling is
done with a fixed frequency of 50 Hz. The last value of the signal between t − 1
and t is saved at time t. Most of the signals arrive at approximately 50 Hz or
lower, therefore not that much data is dropped.

After the resampling the signals are filtered. In the filtering a moving average
filter is used to low-pass filter the signals. The span used is 10. The signals that
are integers, as current gear and fuel level, are not filtered. An example of the
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moving average filter with span 3 is given by

y(1) = y(1)

y(2) = (y(1) + y(2))/2

y(3) = (y(1) + y(2) + y(3))/3

y(4) = (y(2) + y(3) + y(4))/3

...

(3.4)

By using a moving average with a large window the fast dynamics in the signal
will not be detectable, but the signal will be much smoother. When using a large
window it will filter out fast dynamics in the signals that can occur due to irreg-
ularities in the road as potholes and similar. It is also done to filter out noise in
the signals.

3.3 Longitudinal motion detector

When the signals have been resampled and filtered the mass and road grade are
estimated simultaneously with the recursive least squares method as described in
section 2.2. The estimation is only done when several conditions are met. When
these conditions are not met the vehicle longitudinal model is not valid due to
other forces acting on the vehicle. For example, when having a large lateral accel-
eration other forces are acting on the vehicle than described in section 2.1. When
the longitudinal motion detector is turned off no estimation is done but the result
is maintained until the next time the motion detector is turned on.

The estimation is done when all these conditions are met:

• No gear shift is in progress.

• The absolute value of the lateral acceleration is smaller than 0.5 m/s2

• The absolute value of the longitudinal acceleration is larger than 0.3 m/s2.

• The velocity is larger than 15 km/h.

• No brake is applied.

The first condition is inspired by [18] where the authors show that the algo-
rithm performs better when turned off during gear shifts. During gear shifts, the
transmission disengages which means that the power transmitted to the wheels
is reduced and for a short moment no power is transmitted to the wheels. This
makes the wheel torque change quickly during gear shifts which affects the esti-
mator. The time for a gear shift is short and therefore it is not necessary to run
the estimator during gear shifts.

The second and third conditions are because during low speeds or high lateral
movement the longitudinal model is not valid due to other forces being applied
that affect the dynamics of the vehicle. These conditions were found after anal-
ysis of the physical model and the values in these conditions were found after



14 3 Estimator algorithm

investigating the performance of the estimator algorithm. The values were also
chosen to ensure that the motion is predominantly longitudinal.

The fourth condition was inspired by [6], where it is discussed that the vehicle
model works well when the speed is not very close to 0 km/h.

The last condition is because the brake force is difficult to estimate and there-
fore no estimation is done during braking.



4
Results and discussion

This chapter presents what experiments were performed and how the data was
collected. It also presents the results of the estimation of the constant parameters.
The results and performance of the estimation algorithm developed are shown in
this chapter. A sensitivity analysis is also performed and presented.

4.1 Experiments and data collection

Data were collected at two different times, the first time during snow conditions
and the second during dry road conditions. Test numbers 1-5 were done during
the first test run and the remaining tests during the second test run. Test 1 was
done 10 times and test 2 was done 5 times, all other tests were done by driving
the vehicle for 30 minutes in traffic. A description of all tests is presented in table
4.1. During the tests, all data sent on the CAN bus were collected and saved into
a text file.

All tests are constructed to reflect typical scenarios for driving a passenger
vehicle. All tests are performed on an open road with traffic, which makes the
experiments realistic. The tests are split into three different typical driving sce-
narios, country roads, city roads, and highways. This is done to investigate if the
algorithm performs better in any scenario or if it is not possible to use during
certain scenarios. In these scenarios, several different tests are performed. In all
these scenarios there are similar tests done but with different extra loads in the
vehicle, in order to see how the algorithm reacts to different weights of the vehi-
cle. This also reflects typical real-life scenarios, where 200 kg extra load in the
vehicle roughly corresponds to driving with 3 passengers in the vehicle.

For country roads, the tests consist of three tests with regular driving, one
without additional weight, one with 200 kg extra load, and one with 400 kg extra
load. There is also one test where the speed is constantly varied between 70 −

15
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80 km/h, to have lots of excitation of the inputs.
The city road scenarios are split into three different tests, all of which consist

of regular driving in the city. The first test is without any additional weight, the
second with 200 kg extra load and the last with 400 kg extra load.

The highway scenario is split into two tests, one with regular driving on a
highway without any additional load and one with 400 kg extra load.

Table 4.1: Description of all tests where data was collected.

Test num-
ber

Type of road Description Extra
load (kg)

Test run 1
1 Coast-Down Used when determining drag coef-

ficient and rolling resistance. Dur-
ing this test 10 coast-down scenar-
ios was done.

0

2 Country roads Acceleration from 0-80 km/h, done
5 times.

0

3 Country roads Driving during normal traffic condi-
tions on country roads with speed
varied from 70-80 km/h.

0

4 Country roads Driving during normal traffic condi-
tions on country roads.

0

5 City roads Driving during normal traffic condi-
tions on city roads.

0

Test run 2
6 Country roads Driving during normal traffic condi-

tions on country roads.
200

7 Country roads Driving during normal traffic condi-
tions on country roads.

400

8 City roads Driving during normal traffic condi-
tions on city roads.

200

9 City roads Driving during normal traffic condi-
tions on city roads.

400

10 Highway Driving during normal traffic condi-
tions on highway.

0

11 Highway Driving during normal traffic condi-
tions on highway.

400

4.2 Parameter identification

Before estimating the unknown parameters, mass and road grade, the constant
parameters in the model, described in (2.11), need to be determined. The con-
stant parameters are the rolling resistance Cr , the surface area S, and the drag
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coefficient Cd . These parameters are determined by doing coast-down scenarios.
One coast-down scenario consists of accelerating to a high speed, putting the car
in neutral gear, and letting the car coast down to low speed. This is done on flat
ground, where the road grade is close to 0 degrees. The data was logged and the
different segments that contain the 10 coast-down scenarios were merged into a
file for later analysis. Using (2.11), y and φ can be created as

φ =


−mg 1

2ρv
2
1

−mg 1
2ρv

2
2

...
...

−mg 1
2ρv

2
n

 , ycoast =


a1m
a2m
...

anm

 , (4.1)

from known constants and measured signals. From this we can get the estimates
as

Cest = R−1
N FN (4.2)

RN = φTφ (4.3)

FN = φT ycoast , (4.4)

where Cest =
(
Ĉr
Ĉsd

)
. By combining the drag coefficient and surface area we can

estimate them as one variable as Ĉsd = SĈd . The covariance matrix of Cest is
calculated as

PN = Cov(θ̂N ) =
1
N
σ̂NRN , (4.5)

where

σ̂N = VN (Ĉest) =
1
N

N∑
t=1

(
y(t) − φT (t)θ̂N

)2
, (4.6)

which will be used to determine the insecurity of the estimated parameters Cest .
The diagonal elements of PN is the variance of each parameter.

The vehicle was weighed to get the curb weight, where the amount of fuel
was measured before weighing the car. The curb weight is constant for each car
model and only needs to be measured one time. The air density, ρ, was calculated
by measuring the ambient temperature and getting the air pressure and relative
humidity from SMHI. This value was calculated during the first test run. During
the year typical values for the air density varies between 1.15-1.35 [1]. The wheel
radius was measured by hand and can be seen as constant as long as the wheel is
not changed. The used constants is shown in Table 4.2.

The constant parameters Cest were estimated by using (4.2)-(4.4). The seg-
ments of the test where coast-down were performed were merged into one file
that only contains these coast-down scenarios. The different segments is marked
in Figure 4.1. The estimated parameters are

Cest =
(
Ĉr
Ĉsd

)
=

(
0.0103
1.0512

)
. (4.7)
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Table 4.2: Values of the constant parameters.

Description Constant Value Uncertainty
Curb weight of the car mcurb 1421 kg ± 0.5 kg

Air density ρ 1.31 kg/m3 ± 0.02 kg/m3

Wheel radius rwheel 0.358 m ± 0.01 m
Gravitational acceleration g 9.81 m/s2

The covariance matrix of the parameters is

PN = 10−4
(

0.0001 −0.0016
−0.0016 0.1284

)
, (4.8)

which indicates that the certainty of the estimation of Cest is high.
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Figure 4.1: Measurement of wheel torque during coast-down scenarios with
the coast-down marked in red.

The coast-down scenario was performed during the first test run. There was
not a possibility to do coast-down scenarios during the second test run due to the
covid-19 pandemic. Due to the different road conditions between the first test
run and the second test run, another value for Cr was chosen for the second set of
tests. The value of Csd is assumed to be the same for all tests, and for the second
test run the rolling resistance was chosen as Cr = 0.02 which is a typical value for
passenger cars on dry asphalt [13].
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4.3 Mass estimation

In this section, the results for the mass estimation for the different tests are pre-
sented. The mass was estimated using the SFF-RLS and the MFF-RLS. Plots for
mass estimate and road grade estimate for all tests can be found in Appendix B.

4.3.1 Single forgetting factor

With a single forgetting factor for both the mass estimate and the grade, it is
difficult to track both parameters as they vary with different rates, as described
in Section 2.2. The average MEP for all tests for different λ is shown in Figure 4.2,
where the MEP is calculated for each test and then the average MEP is calculated.
From the figure it can be seen that λ = 1 gives the best result.

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1
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Figure 4.2: Average MEP for all tests with different λ.

When using RLS with a forgetting factor of 1 the road grade is assumed to be
constant which makes the estimate near-constant. The mass estimate and road
grade estimate for test 4 can be seen in Figure 4.3. From the figure, it can be
seen that the grade estimate does not vary as much as can be expected but the
algorithm gives a good estimate of the mass. The mass estimate is within 5 % of
the true mass after 60 seconds after the vehicle starts moving and stays within
the limit the whole test. The estimate changes during the duration of the test, but
converges towards the true mass. In Table 4.3 the results for all tests can be seen.
The algorithm estimates the mass within 10 % of the true mass in all tests, and
within 5 % of the true mass in 5 of the tests. The largest mean error is in test 2
where the mean error is 8.08 %. When looking at the average error over all tests
it is 4.42 %.

When lowering the forgetting factor but keeping it near 1, the grade estimate
can improve but the variance of the mass estimate is large. Test 4 with a forgetting



20 4 Results and discussion

Table 4.3: Results for the different tests with a single forgetting factor.

Test RMSE MEP (%) Percentage of time within 5 % of the true mass (%)
2 128.83 8.08 12.57
3 27.46 1.41 99.14
4 38.01 1.58 97.29
5 103.13 6.61 1.17
6 92.76 5.33 27.71
7 138.55 6.82 22.64
8 64.77 3.5 94.52
9 106.01 5.19 45.32

10 28.93 1.22 96.82
11 95.71 4.43 64.01

factor of λ = 0.995 can be seen in Figure 4.4. As described in Section 2.2.1 a
forgetting factor of λ = 0.995 corresponds to that approximately 200 samples is
used in the estimate. With the sampling frequency of 50 Hz, this corresponds to
4 seconds of data.
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Figure 4.3: Mass and road grade estimate during test 4 with a single forget-
ting factor, λ = 1.
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Figure 4.4: Mass and road grade estimate during test 4 with a single forget-
ting factor, λ = 0.995

Discussion

As can be seen in Table 4.3 the RLS algorithm with a single forgetting factor gives
a good estimate for the mass in all tests and is within 10 % of the true mass
in all tests. The road grade estimate is small and does not vary as much when
using λ = 1 but the mass estimate converges towards the true mass. As the road
grade estimate is close to 0 degrees and is estimated with λ = 1 another suitable
approach would be to not estimate the road grade but to use a value of 0 for the
road grade during the whole test. When estimating the road grade with λ the
road grade will be near-constant which does not reflect the real-world conditions.
As seen in the average MEP for all tests the estimator gives a good mass estimate
when using λ = 1 for both the mass and the road grade, and therefore we can
estimate the road grade and mass simultaneously.

If driving on a road with a large road grade, or a road grade that varies much,
the algorithm would estimate the force induced by the road grade, seen in (2.5),
too small compared to the actual force affecting the vehicle. The mass estimate
could thus become far from the true mass as the road grade estimate would still
be very small. Another aspect that is worth noting is that when using λ = 1 for
the road grade the algorithm will be giving different estimations if the vehicle is
driven in a slope during the first minute of estimation or after a long time, given
that the algorithm is taking all measurements into consideration. This could
make the estimate far from the true mass if there is a large slope at the begin-
ning of the estimation, and as λ = 1, this estimate would affect the estimation for
the whole duration of the run.
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It takes some time before the algorithm gives a good estimate, around one
minute. The error is relatively small for all tests, and therefore this approach
could be suitable when implementing in a real vehicle.

When using λ < 1 the mass estimate varies a lot and is therefore not a suitable
approach when estimating the mass. When using λ = 0.995 approximately 4
seconds of data is used, and as the mass changes very slowly this value is too low
when estimating the mass. The mass only changes a few kilograms during the
whole test run but the road grade change more frequently and for this parameter
a forgetting factor of λ = 0.995 is more realistic, and could be a more suitable
approach if the road grade is large or varies a lot. As seen in Figure 4.4 the mass
estimate, in this case, becomes far from the true value. This, combined with the
results shown in Figure 4.2, indicates that the value of λ is more important to
choose so that it matches the varying rate of the mass rather than the road grade.
Therefore it is reasonable to choose a forgetting factor of λ = 1 in our case, where
the road grade is not that varying.

4.3.2 Multiple forgetting factors

As mentioned in section 2.2.1 a way to more accurately track both the mass and
the road grade is to introduce multiple forgetting factors, one for each parameter,
where λ1 is associated with the mass and λ2 is associated with the road grade.
First, the MEP was calculated for each combination of λ1 and λ2, where λ1 was
kept near 1 as the mass is a near-constant parameter. As mentioned in Section
2.2.1 the forgetting factor is generally chosen within 0.9 ≤ λ ≤ 1, and therefore
λ2 was varied between 0.9 and 1. When examining the results λ2 < 0.98 did not
give good results and therefore 0.98 ≤ λ2 ≤ 1 was examined further. The average
MEP for all tests is shown in Figure 4.5. Note that for λ1 = 1, λ2 = 1 we get
classical RLS.
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Figure 4.5: Average mean error for different combinations of λ1 and λ2.

From Figure 4.5 it can be seen that the combination that gives the lowest av-
erage error is λ1 = 0.999 and λ2 = 0.99. In Figure 4.6 the mass and road grade
estimate is shown for test 6, with the optimal forgetting factors. From the fig-
ure, it can be seen that the algorithm gives a reasonable mass estimate within 25
seconds. The mass estimate changes during the whole duration of the test but is
within 5 % of the true mass for the whole duration.

As described in Section 2.2.1, when using a forgetting factor of 1 the parame-
ter is assumed to be constant. As the mass estimate is near-constant an approach
of using λ1 = 1 is also considered. As shown in Figure 4.5 a value of λ1 = 1,
λ2 = 0.99 gives a slightly larger error on average than the optimal forgetting fac-
tors. In Figure 4.7 the mass and road grade estimation for test 6 is shown, with
a forgetting factor of 1 for the mass and 0.99 for the road grade. The estimate is
around 1 % of the true mass during the whole test, and changes very little during
the test, compared to Figure 4.6. The algorithm gives a good estimate after 15
seconds, and the estimate changes very little after the initial 15 seconds of the
test.
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Figure 4.6: Mass and road grade estimate during test 6 with λ1 = 0.999 and
λ2 = 0.99.
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Figure 4.7: Mass and road grade estimate during test 6 with λ1 = 1 and
λ2 = 0.99.

The results for all tests are listed in Table 4.4 and Table 4.5 for the two dif-
ferent sets of forgetting factors. The algorithm with λ1 = 1, λ2 = 0.99 estimates
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the mass quickly but when overestimating or underestimating it does not change
towards the true mass as the algorithm with a single forgetting factor does. An
example of this can be seen in Figure 4.8, where the estimate is too high and
converges towards the true mass very slowly. For all tests, both sets of forgetting
factors estimate the mass very quickly. The average error for all tests are 4.15 %
when using λ1 = 0.999 and 4.97 % when using λ1 = 1.

Table 4.4: Results for the different tests with forgetting factors λ1 = 0.999,
λ2 = 0.99.

Test RMSE MEP (%) Percentage of time within 5 % of the true mass (%)
2 133.85 8.58 1.06
3 57.16 3.42 82.70
4 98.54 4.89 61.35
5 128.19 8.05 1.07
6 33.64 1.43 99.12
7 128.99 5.72 37.42
8 35.01 1.51 99.05
9 68.59 2.56 90.38

10 22.01 0.92 96.82
11 93.42 4.45 74.76

Table 4.5: Results for the different tests with forgetting factors λ1 = 1, λ2 =
0.99.

Test RMSE MEP (%) Percentage of time within 5 % of the true mass (%)
2 124.20 8.03 1.06
3 71.09 4.59 58.69
4 144.08 9.28 1.52
5 156.37 10.09 0.87
6 24.94 1.02 99.12
7 101.90 4.88 56.73
8 37.19 1.82 99.05
9 83.14 3.40 77.64

10 36.30 2.25 97.97
11 82.54 3.94 98.85
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Figure 4.8: Mass estimate during test 4 with λ1 = 1 and λ2 = 0.99.

Discussion

When using MFF-RLS with λ1 = 1 the mass estimate converges quickly, but in
the case of estimating the mass wrong, the estimate does not change towards the
true mass. Both sets of MFF-RLS gives a good estimate in most of the tests, and
the error is within 10 % in all tests but test 5 for λ1 = 1, λ2 = 0.99 where the
error is 10.09 %. As can be seen, when examining the time within 5 % of the
true mass the MFF-RLS with λ1 = 1 either gives an estimate quickly within the
margin or the estimate stays outside of the margin for the whole duration of the
run. This is because when using λ1 = 1 all samples are taken into consideration
in the estimate. When comparing this to the SFF-RLS it can be seen that the SFF-
RLS changes more during the run, and this depends on the road grade estimate
that is very small in the SFF-RLS but varies more in the MFF-RLS.

When using λ1 = 0.999 the estimate changes more during the whole test, this
is because the algorithm approximately uses the last 1000 samples, which cor-
responds to around 20 seconds of driving. This makes the algorithm able to
converge towards the true mass, even if the initial estimate is far from the true
mass. When comparing this to the SFF-RLS one can see that the estimate from
the MFF-RLS with λ1 = 0.999 changes more than the SFF-RLS during the run,
which is because the forgetting factor for the mass is lower than 1. The MFF-RLS
with λ1 = 0.999 gives a estimate within 15 seconds of driving.

Test 5 gives a larger error for both sets of λ1, where the MEP is 8.05 % when
using λ1 = 0.998 and 10.09 % when using λ1 = 1. When looking at the plots for
this test it can be seen that after 50 seconds in the test both algorithms estimate
the mass about 250 kg below the true mass. There is a big jump in the estimate
around 48 seconds in the plot. The MFF-RLS with λ1 = 0.999 gives an estimate
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that is moving towards the true value but the MFF-RLS with λ1 = 1 stays approx-
imately the same. The reason the algorithms give such a large error can depend
on several factors such as wheel slip or a change of road conditions at the time
48 seconds where the big jump in the estimate is. When discarding the first 50
seconds of the test and starting the algorithm at t = 50 s the MEP is around 4 %
for both sets of λ1. This indicates that the type of driving scenario does not affect
the estimation. It also indicates that there was some source of error either in the
signals measured or there was a change in road conditions at that point that is
the reason for the large MEP for the test.

4.3.3 Comparison of driving scenarios

In Table 4.6 the mean error for the three different driving scenarios, country
roads, city roads, and highways, are presented. The mean error is calculated
for SFF-RLS with λ = 1, MFF-RLS with λ1 = 0.999, λ2 = 0.9, and MFF-RLS with
λ1 = 1, λ2 = 0.99. In country driving tests 3, 4, 6, and 7 are used, city driving
consists of tests 5, 8, 9, and highway driving consists of tests 10 and 11.

Table 4.6: Average error for different driving scenarios.

Scenario Average MEP (%)
SFF (λ = 1) MFF (λ1 = 0.999) MFF (λ1 = 1)

Country roads 3.79 3.87 4.94
City roads 5.10 4.04 5.10

Highway roads 2.83 2.69 3.10

From the table, it can be seen that all three algorithms estimate highway driv-
ing best. All three versions of the algorithm estimate the city roads the worst of
the scenarios.

Discussion

All three algorithms estimate highway roads best but the average MEP is close
between all different scenarios with an average MEP between 2.69 − 5.10 %. This
indicates that the algorithms are robust to changes in driving scenarios, but in
order to draw definitive conclusions more tests in each driving scenario would
be needed. This also proves that the vehicle longitudinal model is fairly accurate.
One aspect that needs to be taken into consideration is the different amount of
tests in each scenario. There are only two tests on highways, which means that
the average MEP for highway roads is quite uncertain and would need more tests
in order to certainly conclude that the algorithms perform better in that scenario.

In [5] the authors discuss the general problem that the convergence of mass
estimators is dependent on the persistence of excitation. This depends on driver
aggressiveness and the type of driving scenario. When driving on city roads it
is typically more excitation in the acceleration, but a smaller wheel force. When
driving on highways there is typically smaller excitation in acceleration due to
that the speed does not vary as much, but a larger wheel force is applied. The
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longitudinal motion detector makes sure that there is excitation in the inputs
as the estimation is stopped when the acceleration or velocity is too low. The
results indicate that the estimator works well for all driving scenarios and that
the persistence of excitation is not a problem when using the longitudinal motion
detector.

4.3.4 Estimation without longitudinal motion detector

As described in Section 3.3 the longitudinal vehicle model is not valid during cer-
tain maneuvers and during gear shifts. In Figure 4.9 the mass estimate during
test 6 is shown, without the longitudinal motion detector, using MFF-RLS with
λ1 = 0.999, λ2 = 0.99. The same estimate is shown in Figure 4.9, but with the
motion detector activated. The MEP is 14.50 % without the motion detector and
1.43 % with the motion detector. Without the motion detector, the algorithm esti-
mates the mass too high at the start of the test and the estimate slowly converges
towards the true value, and at the end of the test, it estimates the mass too low.
After 15 seconds the algorithm gives an estimate that are 2050 kg, and the true
mass is 1723 kg.
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(a) Mass estimate without the longitudi-
nal motion detector
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(b) Mass estimate with the longitudinal
motion detector

Figure 4.9: Mass estimate during test 6 with forgetting factor λ1 =
0.999, λ2 = 0.99

Discussion

As described in Section 3.3 the model is not valid during gear shifts or lateral
movement, and Figure 4.9 proves this point. As the error is around 80 % after
the initial 15 seconds it can be concluded that the algorithm is in need of the
longitudinal motion detector. As previously discussed the longitudinal motion
detector also makes sure that there is excitation in the inputs which makes the
estimator able to work.
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4.4 Sensitivity analysis

In this section, a sensitivity analysis is presented. The analysis was done by vary-
ing one parameter at a time and calculating the mean error for each value of the
parameter. The parameters that were varied were Cr , Csd and rwheel. This is
done for the algorithm both with the single forgetting factor and with multiple
forgetting factors for all tests. When using SFF-RLS the forgetting factor used
throughout this section is λ = 1, when using MFF-RLS two sets of forgetting
factors were used. The two sets are λ1 = 0.999, λ2 = 0.99, and λ1 = 1, λ2 = 0.99.

4.4.1 Rolling resistance

First, the sensitivity of the rolling resistance coefficient, Cr , was investigated. The
coefficient was varied with all other parameters kept constant. A typical value of
Cr varies between 0 − 0.03 [15], and therefore Cr was varied between 0 − 0.05 in
order to determine the effects of a slightly higher value. The mean error was cal-
culated for each Cr . This was done first for the algorithm with a single forgetting
factor and then for the algorithm with multiple forgetting factors.

In Figure 4.10, the mean error for each test during the first test run is shown
using SFF-RLS and the second test run is shown in Figure 4.11. Note that the
used value is Cr = 0.01 for the first run and Cr = 0.02 for the second run. As can
be seen in the figure, the rolling resistance has very little effect on the estimate.
Between the lowest value of Cr and the highest the error of the estimate changes
about 2 percentage points. For all different values of Cr , the mean error is within
10 % for all tests. When looking at the tests during the first test run it can be seen
that for tests 3 and 4 the mean error is between 1-2 %, as can be seen in Figure
4.10. For test 2 and 5 different values of Cr also gives a small difference in mean
error.
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Figure 4.10: Sensitivity analysis with different Cr for the tests during the
first test run using SFF-RLS with λ = 1.
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Figure 4.11: Sensitivity analysis with different Cr for the tests during the
first test run using SFF-RLS with λ = 1.

In Figure 4.12 the mean error for the first test run, using λ1 = 0.999, for the
MFF-RLS is shown. The mean error when using λ1 = 1 is shown in Figure 4.13.
The mean error for the second test run is shown in Figure 4.14 and Figure 4.15
with the different sets of λ1.

From the figures, it can be seen that during the first test run the coefficient
can be changed up to Cr = 0.05 and the mean error is within 10 % for all tests
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but test 5 for both sets of λ1. When using λ1 = 1 the error changes more than for
λ1 = 0.999 when Cr changes. For the algorithm with λ1 = 1 the error can become
close to 0 whereas for λ = 0.999 the minimum error is about 1 % for test 3 and 4.

During the second test run, the same characteristics can be seen. When using
λ1 = 0.999 most tests have a minimum error for Cr = 0.015− 0.02 and are within
10 % for a range 0 ≤ Cr ≤ 0.04. Test 11 has a minimum value for Cr = 0.027
which is higher than the other tests. When comparing this to when using λ1 = 1
it can be seen that the variation is larger for which Cr gives the minimum error.
This can be seen in Figure 4.15. As for the first test run the minimum error can
become very close to 0 %. For all tests Cr can change ±0.005 from the estimated
value (Cr = 0.02), and stay within 10 % error.
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Figure 4.12: Sensitivity analysis with different Cr using MFF-RLS for the
tests during the first test run using λ1 = 0.999 and λ2 = 0.99.
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Figure 4.13: Sensitivity analysis with different Cr using MFF-RLS for the
tests during the first test run λ1 = 1 and λ2 = 0.99.
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Figure 4.14: Sensitivity analysis with different Cr using MFF-RLS for the
tests during the second test run using λ1 = 0.999 and λ2 = 0.99.
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Figure 4.15: Sensitivity analysis with different Cr using MFF-RLS for the
tests during the second test run using λ1 = 1 and λ2 = 0.99.
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Discussion

From Figure 4.10 and Figure 4.11 it can be seen that the SFF-RLS is robust to
changes in the rolling resistance coefficient. The mean error changes very little
when the coefficient changes, even up to Cr = 0.05. As mentioned in Section 4.3.1,
the grade estimate is near-constant and near zero, and by examining the vehicle
model, (2.4), it can be seen that Cr depends on the road grade. Given this, the
SFF-RLS is not that sensitive to changes in Cr but it could become an issue if the
estimated road grade is far from the true road grade.

The MFF-RLS is more sensitive to changes in Cr , but it also gives a very small
mean error if the coefficient is chosen correctly. When using λ1 = 1 the algorithm
is more sensitive to changes but the minimum error can become very close to 0
%. On the other hand, if the coefficient is estimated or chosen poorly the error of
the estimate can become very large. A change of 0.01 in Cr can result in a mean
error that is 10 percentage points larger. As Cr typically changes between 0-0.3,
this indicates that we need to have some knowledge of the road conditions, if it is
snowy conditions, dry conditions, or rainy conditions. The Cr could change about
0.01 between snow conditions and dry conditions. There are several companies
and car manufacturers that estimate the friction in real-time which could make
the estimate of Cr good. When using λ1 = 0.999 the algorithm becomes more
robust to changes in Cr but not as robust as SFF-RLS.

During the first test run Cr was estimated to 0.01, but the value of Cr that
gives the minimum error is between 0.2 and 0.3, for all three algorithms. One
reason could be that the road conditions could be different from the road where
the coast-down test was performed, which makes the estimation of Cr too low.
The difference in road conditions could be due to the road being de-iced between
the coast-down test and the other tests during the first test run.

For test 11 the value of Cr that gives the minimum error is larger than the
other tests for both sets of forgetting factors for MFF-RLS. Test 11 is highway
driving with 400 kg extra load in the car and the higher value of optimal Cr could
be because during higher speeds other forces will affect the vehicle dynamics. If
other forces affect the vehicle the rolling resistance coefficient will compensate for
this and a higher value of Cr will give the smallest error. The rolling resistance
could also depend on the speed, but the other highway test, test 10, does not
imply that the speed by itself has that much effect as the optimal value for test 10
is around Cr = 0.02 for both versions of MFF-RLS. Given that the MFF-RLS is fast
another cause could be wheel slip. If slip is present the longitudinal model is not
valid, and as presented in Section 4.3.2 the estimate changes very little after the
initial 15 seconds. If the wheels slip during this period the estimate could become
far from the true mass. If using MFF-RLS with λ1 = 0.999 the estimate would
slowly converge towards the true mass but if the initial estimate is far from the
true mass it might take a long time before giving a good estimate. When using
MFF-RLS with λ1 = 1 the estimate would not converge towards the true mass.
This could be a reason why test 11 gives a larger error for Cr = 0.02 than the
other tests.
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4.4.2 Drag coefficient

The sensitivity of the drag coefficient Csd was examined by keeping all other
parameters constant and changing Csd . The coefficient typically varies between
0.4 − 1.5 for different cars, and therefore Csd was varied between 0 − 2 [19]. Note
that the estimated value is Csd = 1.0512. In Figure 4.16 the mean error using
SFF-RLS is shown for all tests. From the figure, it can be seen that Csd needs to
change up to Csd = 1.5 before the error is above 10 % for all tests but test 11. For
test 11 the error is within 10 % up to Csd = 1.32.
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Figure 4.16: Sensitivity analysis with different Csd using SFF-RLS with λ =
1.

In Figure 4.17, the mean error when using MFF-RLS with λ = 0.999 is shown.
MFF-RLS with λ1 = 1 is shown in Figure 4.18. For the first set of λ1 the estimate
changes only a few percentage points between the smallest value of Csd and the
largest for all tests but test 7. For test 7 Csd needs to change above 1.5 before the
error becomes larger than 10 %. By examining Figure 4.18, it can be seen that
when using λ1 = 1 the algorithm is robust to changes in Csd as the error only
changes 3-4 percentage points for the whole span of Csd .

Discussion

The surface area and drag coefficient have a small influence on the estimate both
for the SFF-RLS and MFF-RLS. The mean error of the estimate only changes a
few percentage points for the whole span of Csd . The MFF-RLS is more robust
to changes in this parameter and the error only changes a few percentage points,
but for the SFF-RLS the error increases when Csd increases. The Csd needs to
increase above 1.5 before the error starts to increase, and due to the span that the
coefficient typically is within, the algorithm can be seen as robust to changes in
the parameter.
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Figure 4.17: Sensitivity analysis with different Csd using MFF-RLS with λ1 =
0.999 and λ2 = 0.99.
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Figure 4.18: Sensitivity analysis with different Csd using MFF-RLS with λ1 =
1 and λ2 = 0.99.

If a roof box is attached to the roof of the car the drag area increases. The
total drag could increase around 25-30 % [2]. In our case, this would correspond
to Csd increasing up to around 1.37. The error would start to increase for the
SFF-RLS and the error would increase for the MFF-RLS but not as much as for
the SFF-RLS. Given this, the error would only increase a few percentage points if
a roof box is attached to the vehicle. If there was a possibility to adjust Csd in the
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algorithm when a roof box is attached the estimate would become better.

4.4.3 Wheel radius

To investigate the sensitivity of the wheel radius it was varied and the mass was
estimated, both for SFF-RLS and MFF-RLS. The sensitivity for all tests when us-
ing SFF-RLS is shown in Figure 4.19. When altering rwheel around 2 centimeters
the error changes around 5 percentage points. The wheel radius which gives
the smallest mean error varies from 0.32 − 0.39 m, compared to the measured
wheel radius 0.358 m. Most of the tests give the smallest error for rwheel around
0.36 − 0.37 m.
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Figure 4.19: Sensitivity analysis with different wheel radius using SFF-RLS
with λ = 1.

The mean error for all tests using MFF-RLS is shown in Figure 4.20 and 4.21
for λ1 = 0.999 and λ1 = 1 respectively. When looking at the error when using
MFF-RLS the range of the value that gives the smallest mean error varies from
0.32 − 0.39 m for both sets of λ1. When using λ1 = 1 the value that gives the
smallest error is more spread out than for λ1 = 0.999. For both sets of λ1 the
radius can change ± 4 cm from the optimal value and still be within 10 % error.
When comparing the SFF-RLS and MFF-RLS we see that the value that gives the
smallest mean error varies a bit for each test for MFF-RLS using λ1 = 1, where it is
mostly the same value for most tests for SFF-RLS and MFF-RLS with λ1 = 0.999.

Discussion

When changing the wheel radius the estimate changes a bit but the radius needs
to have a fairly large change, about 5 cm before the error is above 10 %. For
SFF-RLS and MFF-RLS with λ1 = 0.999 most tests give about the same value
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Figure 4.20: Sensitivity analysis with different wheel radius using MFF-RLS
with λ1 = 0.999 and λ2 = 0.99.
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Figure 4.21: Sensitivity analysis with different wheel radius using MFF-RLS
with λ1 = 1 and λ2 = 0.99.

for the wheel radius where the mean error is minimized, but for MFF-RLS with
λ1 = 1 the value is more spread out between the tests. The value of rwheel is
slightly larger than the value used for most tests, which could indicate that the
measured value is too small. It could also indicate that the wheel torque is slightly
overestimated, as a larger wheel radius gives a smaller estimated wheel force,
according to (3.1).
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Test 5 gives a minimum error for a value of rwheel = 0.33 which is lower than
for the other tests. As discussed in Section 4.3.2 the mass estimate is far from the
true mass after around 48 seconds and then slowly converges towards the true
mass. When using a smaller wheel radius the estimate is closer to the true value
after 50 seconds, which makes the error smaller. If discarding the first 50 seconds
of test 5, the value of rwheel that minimizes the error is around rwheel = 0.36.

If the type of the wheel changes the radius can change a few centimeters and
therefore it is necessary for the algorithm to know the radius of the wheel with
good accuracy, within 3-4 centimeters, in order to give a good estimate.

4.4.4 Combined sensitivity

The sensitivity with error in multiple parameters was examined by varying the
wheel radius and rolling resistance. The drag coefficient can be estimated one
time for each model and is constant for all runs. This combined with the indica-
tion that all algorithms are robust to changes in drag coefficient, only the wheel
radius and rolling resistance are examined. The wheel radius and rolling resis-
tance were varied and the MEP for each test was calculated. The MEP for all tests,
for all three algorithms, can be found in Appendix C. The sensitivity for test 6
when using SFF-RLS is shown in Figure 4.22. From the figure, it can be seen
that the MEP does not change much when Cr changes. The MEP varies more
with rwheel, with a large MEP if the rwheel is small. The MEP is minimized when
rwheel = 0.38 which corresponds to the results in Section 4.4.3.
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Figure 4.22: Sensitivity analysis during test 6 with different Cr and rwheel
using SFF-RLS with λ = 1.

The sensitivity for the MFF-RLS with λ1 = 0.999, λ2 = 0.99 can be seen in
Figure 4.23, and the MFF-RLS with λ1 = 1, λ2 = 0.99 is shown in Figure 4.24.
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From the figures it can be seen that the MEP becomes large if both Cr and rwheel
is large or if both are small. The MEP becomes smaller if the values are chosen
on the diagonal, with small Cr and large rwheel or large Cr and small rwheel. The
used value of Cr is Cr = 0.02, and if the Cr is within 0.02±0.005 the wheel radius
needs to be between 0.35 ≤ rwheel ≤ 0.38 in order for the MEP to be smaller than
8 %, for both sets of λ1.
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Figure 4.23: Sensitivity analysis during test 6 with different Cr and rwheel
using MFF-RLS with λ1 = 0.999 and λ2 = 0.99.
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Figure 4.24: Sensitivity analysis during test 6 with different Cr and rwheel
using MFF-RLS with λ1 = 1 and λ2 = 0.99.

Discussion

For the SFF-RLS it can be seen that Cr has a small effect on the MEP, and rwheel
affects the MEP the most. This is because when using SFF-RLS with λ = 1 the
road grade estimate is close to 0 degrees, and this was further discussed in Section
4.4.1.

For both the MFF-RLS algorithms it can be seen that if Cr is estimated too
low the error becomes smaller if rwheel becomes larger. This is reasonable when
looking at the rolling resistance force (2.4) and the wheel force (3.1). When Cr is
lowered the rolling resistance force becomes smaller, and when the wheel radius
increases the wheel force becomes smaller. When combining error in both Cr and
rwheel it can be seen that unless the error is large in both parameters at the same
time, the MFF-RLS algorithms give a reasonable estimate. The Cr needs to be
known with an accuracy of around 0.005 − 0.01 and the wheel radius within 2-3
centimeters. This is in line with the results shown in the previous sections.

4.4.5 Summarizing discussion

In summary, the MFF-RLS gives an estimate more quickly than SFF-RLS, and the
estimate is fairly constant. When using MFF-RLS with λ1 = 1 the estimate is
quicker than when using λ1 = 0.999. Both versions of the MFF-RLS are more
sensitive to changes in Cr , but when choosing it optimally the error becomes very
small. The SFF-RLS is more robust to changes in the rolling resistance and drag
coefficient, and error in the wheel radius affects MFF-RLS and SFF-RLS about the
same. When estimating all parameters correctly the MFF-RLS has the potential of
estimating the mass with very little error, but the SFF-RLS gives a good estimate
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in all different tests even though some parameters might be estimated with less
accuracy.

The SFF-RLS with a forgetting factor λ = 1 gives a road grade estimate that is
very low, which could affect the mass estimate negatively if driving on a big slope.
Another aspect that needs to be taken into consideration is that the timing of the
slope also affects the estimate, where the estimate will be more affected if the
slope is at the beginning of the run compared to after a long time of driving. The
MFF-RLS has a forgetting factor that is less than 1 for road grade and therefore
does not have this problem.

The mass is near-constant, and only changes around 2 kg for 30 minutes of
driving, and therefore a realistic value for the forgetting factor for the mass is
very close to 1. If using λ1 = 0.999 a value near 1 is used, but the algorithm is
able to converge towards the true mass even if the mass estimate is far from the
true value. The road grade varies more during a run, therefore a lower value of
forgetting factor is reasonable to use. When using λ2 = 0.99 approximately 100
samples are used, and this is a more realistic value to use than using all samples
for the road grade. This would in theory also improve the results if driving on
steep slopes or if the road grade varies much.

All three algorithms are viable and when choosing between them the different
characteristics decide what algorithm to choose. Both the MFF-RLS algorithms
are very quick, and if the parameters are estimated well the algorithm with λ1 = 1
is to prefer. That algorithm also gives a very stable estimate that does not change
that much during the run. The SFF-RLS is more robust to errors in the estimates
of the parameters.

As described in Section 3.1 the algorithm uses wheel torque that is calculated
in the electronic control unit, ECU, in the engine. Algorithms proposed in the
literature estimate the dynamics in the driveline in order to estimate the wheel
torque. The results indicate that the estimation of wheel torque in the ECU is
good and works well in the algorithm, but does not give any significant perfor-
mance improvements.

When comparing the algorithm to the ones from related work it can be seen
that the algorithm performs in line with most from the literature. The SFF-RLS
has an average error of 4.42 % and MFF-RLS has an average error of 4.15 % when
using λ1 = 0.999 and 4.97 % when using λ1 = 1. Ghosh et al. [6] achieve 5 %
error when using an RLS estimator with a torque observer, Lin et al. [11] get an
error of 9 % on a heavy-duty vehicle and Jonsson Holm [8] get an error of 5 %
when using EKF. The algorithm presented in this thesis is performing in line or
better, and is shown to work in all different driving scenarios.
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Conclusions and future work

This thesis aimed to develop an estimator and answering questions about its per-
formance. The aim was to develop a software-based estimator and compare dif-
ferent driving scenarios and how they affect the performance of the algorithm.
This chapter presents conclusions and a note of future work that can be done on
the subject.

5.1 Conclusions

In Section 1.3 four questions were proposed, which were how to adapt the al-
gorithm to wheel torque, how the developed algorithm performs, which driving
scenarios have the largest effect on the performance, and which parameters influ-
ence the algorithm.

The algorithm and the vehicle model contained the wheel force and as a con-
sequence, it was straightforward to convert the wheel torque to wheel force when
the wheel radius is known. The developed algorithm uses the wheel torque cal-
culated in the ECU in the engine as opposed to previous work that estimates the
dynamics in the driveline. The results indicate that the estimate from the engine
ECU is good and is possible to use in the developed algorithm.

The algorithm performed in the range of previous literature, for both SFF-RLS
and MFF-RLS. The average error for SFF-RLS was 4.42 % and for MFF-RLS it was
4.15 % and 4.97 % for λ1 = 0.999 and λ1 = 1 respectively. Previous literature on
the subject has achieved around 5-10 % error and the developed algorithm was
slightly better than algorithms in the literature on average. The maximum error
for the SFF-RLS was 8.08 %, for MFF-RLS with λ1 = 0.999 it was 8.58 % and for
MFF-RLS with λ1 = 1 the maximum error was 10.09 % which still is on par with
several algorithms from the literature.

The different driving scenarios have little effect on the performance as the
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algorithm performed equally well for the different scenarios, but to draw defini-
tive conclusions more tests would be needed. Highway driving gave the smallest
average error but with fewer tests on highways, there were not enough tests to
conclude that the algorithm was better for highway driving.

The parameter that affects the algorithms the most was the rolling resistance.
The SFF-RLS was robust to changes in all parameters that are tested, including
the rolling resistance. The drag coefficient did not have a large effect on the esti-
mate. The wheel radius needs to be known with an accuracy of 3 − 4 cm, other-
wise, the error can become very large, for both SFF-RLS and MFF-RLS.

The drag coefficient does not change and would be possible to estimate one
time for each car model with great accuracy. One way to alter the drag coefficient
and surface area is if a roof box is attached to the roof of the car, which would
increase the drag area. The increased drag area would increase the error by a few
percentage points, but if being able to adjust the coefficient the error could be
reduced. The rolling resistance changes between every ride and changes through-
out the whole ride, which makes it hard to estimate. If being able to estimate the
rolling resistance coefficient with good accuracy the estimate would be improved.
There are several companies and car manufacturers that estimate the available
friction in real-time which could be used in this application. The wheel radius
could also change during the ride but should stay within the accuracy limit.

In conclusion, both SFF-RLS and MFF-RLS work well, and choosing one of
these algorithms depends on what characteristics are wanted. MFF-RLS with
λ1 = 1, λ2 = 0.99 is to prefer if the parameter estimate is good as the error can
become close to 0 if the parameters are chosen correctly. It also gives an estimate
that is fairly constant during the run. The SFF-RLS is to prefer if the parameter
estimate is uncertain due to it being robust to rolling resistance and drag area.
The MFF-RLS with λ1 = 0.999, λ2 = 0.99 is to prefer if the parameter estimate is
fairly good and a reactive estimate is wanted.

5.2 Future work

Given as the sensitivity analysis shows that for both MFF-RLS algorithms the er-
ror can become very low if the rolling resistance is correctly estimated. If imple-
menting this in a car the performance could improve significantly if the rolling
resistance could be estimated each time the car was driven.

It would also be interesting to further investigate how the rolling resistance
changes with speed. In some literature, it is mentioned that the rolling resistance
increases with speed, and therefore it would be interesting to implement a func-
tion for estimating the rolling resistance [12].

In future work, one aspect that could be examined is what happens if the mass
changes during a run, for example, if one passenger enters or exits the vehicle.
What would happen with the mass estimate in this case, how do the different
algorithms react?

Another aspect that is interesting to investigate is what happens when the sur-
face changes, for example when driving on asphalt and then driving on a gravel
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road. What algorithm reacts best to a change of surface?
If this was to be implemented in a real car it would also be interesting to see

what happens if the algorithm can be able to save certain parameters and use
them when initializing the algorithm with these values the next time it is run.
For example, the estimated weight could be used to initialize the algorithm when
it is run the next time.
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Appendix A

A.1 Measurement Signals

All signals used from the CAN-bus are listed in table A.1.

Table A.1: All used signals on the CAN-bus

Signal Unit
Time s

WheelTorque Nm
Target Gear -

Current Gear -
Brake Info Status -

Parking Brake Status -
Longitudinal Acceleration m/s2

Transversal Acceleration m/s2

Wheel Speed Front Right rpm
Wheel Speed Front Left rpm

Vehicle Speed km/h
Wheel Speed Rear Left rpm

Wheel Speed Rear Right rpm
Fuel Level l
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Appendix B

In this appendix plots for all tests are presented.

B.1 Single forgetting factor

In this section the plots for the test are presented, where a single forgetting factor
was used. The forgetting factor used was λ = 1. In each section, the mass estimate
and road grade estimate for each test are presented.
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B.1.1 Test 2
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Figure B.1: Mass estimate during test 2 with a single forgetting factor set to
1.
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Figure B.2: Road grade estimate during test 2 with a single forgetting factor
set to 1.
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B.1.2 Test 3
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Figure B.3: Mass estimate during test 3 with a single forgetting factor set to
1.
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Figure B.4: Road grade estimate during test 3 with a single forgetting factor
set to 1.
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B.1.3 Test 4
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Figure B.5: Mass estimate during test 4 with a single forgetting factor set to
1.
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Figure B.6: Road grade estimate during test 4 with a single forgetting factor
set to 1.
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B.1.4 Test 5
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Figure B.7: Mass estimate during test 5 with a single forgetting factor set to
1.
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Figure B.8: Road grade estimate during test 5 with a single forgetting factor
set to 1.
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B.1.5 Test 6
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Figure B.9: Mass estimate during test 6 with a single forgetting factor set to
1.

0 500 1000 1500 2000 2500

Time [s]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

D
e

g
re

e
s
 [
°
]

Estimated Road Grade

Figure B.10: Road grade estimate during test 6 with a single forgetting factor
set to 1.
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B.1.6 Test 7
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Figure B.11: Mass estimate during test 7 with a single forgetting factor set
to 1.
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Figure B.12: Road grade estimate during test 7 with a single forgetting factor
set to 1.
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B.1.7 Test 8
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Figure B.13: Mass estimate during test 8 with a single forgetting factor set
to 1.
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Figure B.14: Road grade estimate during test 8 with a single forgetting factor
set to 1.



B.1 Single forgetting factor 59

B.1.8 Test 9
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Figure B.15: Mass estimate during test 9 with a single forgetting factor set
to 1.
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Figure B.16: Road grade estimate during test 9 with a single forgetting factor
set to 1.
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B.1.9 Test 10
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Figure B.17: Mass estimate during test 10 with a single forgetting factor set
to 1.
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Figure B.18: Road grade estimate during test 10 with a single forgetting
factor set to 1.
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B.1.10 Test 11
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Figure B.19: Mass estimate during test 11 with a single forgetting factor set
to 1.
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Figure B.20: Road grade estimate during test 11 with a single forgetting
factor set to 1.
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B.2 Multiple forgetting factors

In this section the plots for the test are presented, where multiple forgetting fac-
tors were used. Two sets of forgetting factors were used. The two sets used were
λ1 = 0.999, λ2 = 0.99 and λ1 = 1, λ2 = 0.99. Both sets are presented under each
test.



B.2 Multiple forgetting factors 63

B.2.1 Test 2
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Figure B.21: Mass estimate during test 2 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.22: Road grade estimate during test 2 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.23: Mass estimate during test 2 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.24: Road grade estimate during test 2 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.2 Test 3
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Figure B.25: Mass estimate during test 3 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.26: Road grade estimate during test 3 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.27: Mass estimate during test 3 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.28: Road grade estimate during test 3 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.3 Test 4
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Figure B.29: Mass estimate during test 4 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.30: Road grade estimate during test 4 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.31: Mass estimate during test 4 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.32: Road grade estimate during test 4 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.4 Test 5
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Figure B.33: Mass estimate during test 5 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.34: Road grade estimate during test 5 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.35: Mass estimate during test 5 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.36: Road grade estimate during test 5 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.5 Test 6
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Figure B.37: Mass estimate during test 6 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.38: Road grade estimate during test 6 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.39: Mass estimate during test 6 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.40: Road grade estimate during test 6 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.6 Test 7
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Figure B.41: Mass estimate during test 7 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.42: Road grade estimate during test 7 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.43: Mass estimate during test 7 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.44: Road grade estimate during test 7 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.7 Test 8
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Figure B.45: Mass estimate during test 8 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.46: Road grade estimate during test 8 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.47: Mass estimate during test 8 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.48: Road grade estimate during test 8 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.8 Test 9
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Figure B.49: Mass estimate during test 9 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.50: Road grade estimate during test 9 with multiple forgetting fac-
tors λ1 = 0.999, λ2 = 0.99.
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Figure B.51: Mass estimate during test 9 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.52: Road grade estimate during test 9 with multiple forgetting fac-
tors λ1 = 1, λ2 = 0.99.
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B.2.9 Test 10
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Figure B.53: Mass estimate during test 10 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

D
e

g
re

e
s
 [
°
]

Estimated Road Grade

Figure B.54: Road grade estimate during test 10 with multiple forgetting
factors λ1 = 0.999, λ2 = 0.99.
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Figure B.55: Mass estimate during test 10 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

D
e

g
re

e
s
 [
°
]

Estimated Road Grade

Figure B.56: Road grade estimate during test 10 with multiple forgetting
factors λ1 = 1, λ2 = 0.99.
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B.2.10 Test 11
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Figure B.57: Mass estimate during test 11 with multiple forgetting factors
λ1 = 0.999, λ2 = 0.99.
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Figure B.58: Road grade estimate during test 11 with multiple forgetting
factors λ1 = 0.999, λ2 = 0.99.
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Figure B.59: Mass estimate during test 11 with multiple forgetting factors
λ1 = 1, λ2 = 0.99.
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Figure B.60: Road grade estimate during test 11 with multiple forgetting
factors λ1 = 1, λ2 = 0.99.



C
Sensitivity with multiple parameters

This chapter presents plots for the sensitivity with error in wheel radius and
rolling resistance.

C.1 Single forgetting factor

This section presents the plots using a single forgetting factor. The forgetting
factor is λ = 1.

83
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C.1.1 Test 2

Figure C.1: Mass estimate during test 2 with a single forgetting factor, λ = 1.

C.1.2 Test 3

Figure C.2: Mass estimate during test 3 with a single forgetting factor, λ = 1.
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C.1.3 Test 4
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Figure C.3: Mass estimate during test 4 with a single forgetting factor, λ = 1.
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Figure C.4: Mass estimate during test 5 with a single forgetting factor, λ = 1.
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C.1.5 Test 6
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Figure C.5: Mass estimate during test 6 with a single forgetting factor, λ = 1.
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Figure C.6: Mass estimate during test 7 with a single forgetting factor, λ = 1.
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C.1.7 Test 8
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Figure C.7: Mass estimate during test 8 with a single forgetting factor, λ = 1.
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Figure C.8: Mass estimate during test 9 with a single forgetting factor, λ = 1.
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Figure C.9: Mass estimate during test 10 with a single forgetting factor, λ =
1.
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Figure C.10: Mass estimate during test 11 with a single forgetting factor,
λ = 1.
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C.2 Multiple forgetting factors

The two sets used were λ1 = 0.999, λ2 = 0.99 and λ1 = 1, λ2 = 0.99. Both sets
are presented under each test.
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C.2.1 Test 2

0.005
0.008

0.011
0.014

0.017
0.02

0.023
0.026

0.029
0.032

0.035

C
r

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

W
h

e
e

l 
R

a
d

iu
s
 [

m
]

MEP during test 2

7.912

6.442

5.017

3.632

2.284

1.05

7.091

5.639

4.229

2.856

1.606

1.021

7.773

6.292

4.855

3.456

2.238

1.479

1.318

6.976

5.51

4.086

2.882

2.105

1.351

1.8

7.691

6.197

4.744

3.539

2.743

1.968

1.528

2.278

6.915

5.434

4.208

3.393

2.6

1.84

1.99

2.791

7.666

6.154

4.892

4.057

3.244

2.454

1.937

2.455

3.464

6.906

5.59

4.735

3.902

3.093

2.379

2.153

2.922

4.134

7.692

6.305

5.427

4.575

3.746

2.939

2.465

2.601

3.573

4.795

7.039

6.136

5.262

4.412

3.586

2.906

2.551

3.048

4.228

5.45

7.795

6.862

5.966

5.095

4.248

3.425

2.983

2.757

3.642

4.875

6.097

15.92

14.23

12.58

10.98

9.424

15.03

13.35

11.72

10.13

8.59

14.16

12.49

10.87

9.302

13.3

11.65

10.05

8.487

12.47

10.83

9.235

11.64

10.02

8.44

10.84

9.223

10.04

8.451

9.27 8.513

2

4

6

8

10

12

14

Figure C.11: Sensitivity with multiple parameters for test 2 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.12: Sensitivity with multiple parameters for test 2 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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C.2.2 Test 3
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Figure C.13: Sensitivity with multiple parameters for test 3 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.14: Sensitivity with multiple parameters for test 3 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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C.2.3 Test 4
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Figure C.15: Sensitivity with multiple parameters for test 4 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.16: Sensitivity with multiple parameters for test 4 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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C.2.4 Test 5
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Figure C.17: Sensitivity with multiple parameters for test 5 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.18: Sensitivity with multiple parameters for test 5 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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C.2.5 Test 6
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Figure C.19: Sensitivity with multiple parameters for test 6 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.20: Sensitivity with multiple parameters for test 6 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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C.2.6 Test 7
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Figure C.21: Sensitivity with multiple parameters for test 7 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.22: Sensitivity with multiple parameters for test 7 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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C.2.7 Test 8
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Figure C.23: Sensitivity with multiple parameters for test 8 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.24: Sensitivity with multiple parameters for test 8 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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C.2.8 Test 9
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Figure C.25: Sensitivity with multiple parameters for test 9 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.26: Sensitivity with multiple parameters for test 9 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.



98 C Sensitivity with multiple parameters

C.2.9 Test 10

0.005
0.008

0.011
0.014

0.017
0.02

0.023
0.026

0.029
0.032

0.035

C
r

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

W
h

e
e

l 
R

a
d

iu
s
 [

m
]

MEP during test 10

5.635

4.068

2.546

1.151

1.153

2.14

3.41

4.675

5.122

3.565

2.052

0.7898

1.201

2.44

3.752

5.043

4.62

3.072

1.568

0.6

1.468

2.816

4.138

5.426

5.713

4.128

2.59

1.177

0.6642

1.857

3.208

4.526

5.222

3.652

2.225

0.8966

0.9657

2.257

3.613

4.939

4.764

3.312

1.913

0.8127

1.352

2.681

4.036

5.354

4.431

3.005

1.651

1

1.765

3.104

4.452

5.763

4.14

2.732

1.597

1.244

2.174

3.521

4.863

3.861

2.496

1.664

1.536

2.582

3.935

5.271

3.588

2.415

1.824

1.893

2.992

4.344

5.673

3.376

2.4

2.046

2.277

3.398

4.747

7.248

5.925

7.156

6.725

6.303

7.531

6.214

6.68

7.909

5.817

7.078

8.309

6.23

7.487

8.711

6.638

7.889

9.107

7.042

8.287

9.501

6.17

7.443

8.682

9.89

6.571

7.838

9.071

10.27

6.967

8.226

9.453

10.65

6.069

7.356

8.608

9.828

11.02 1

2

3

4

5

6

7

8

9

10

11

Figure C.27: Sensitivity with multiple parameters for test 10 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.28: Sensitivity with multiple parameters for test 10 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.



C.2 Multiple forgetting factors 99

C.2.10 Test 11

0.005
0.008

0.011
0.014

0.017
0.02

0.023
0.026

0.029
0.032

0.035

C
r

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

W
h

e
e

l 
R

a
d

iu
s
 [

m
]

MEP during test 11

10.38

8.891

7.443

6.034

11.06

9.536

8.051

6.607

5.201

3.834

10.29

8.76

7.277

5.835

4.432

3.068

2.29

11.15

9.575

8.048

6.565

5.124

3.722

2.359

1.648

1.373

10.5

8.928

7.398

5.913

4.47

3.068

1.707

1.107

1.47

2.579

9.921

8.341

6.807

5.318

3.872

2.473

1.17

1.247

2.119

3.172

4.386

7.811

6.271

4.778

3.336

2.004

1.186

1.827

2.747

3.727

4.936

6.119

5.791

4.304

2.935

1.91

1.587

2.409

3.331

4.264

5.445

6.63

7.782

3.956

2.803

2.064

2.107

2.947

3.872

4.793

5.914

7.102

8.259

9.385

2.804

2.471

2.593

3.444

4.372

5.286

6.344

7.538

8.699

9.828

10.93

2.912

3.04

3.899

4.832

5.742

6.756

7.938

9.103

10.24

11.34

22.07

20.25

18.48

16.77

15.1

13.48

11.91

19.4

17.63

15.92

14.25

12.63

16.86

15.14

13.47

11.86

14.44

12.77

12.13

12.41 2

4

6

8

10

12

14

16

18

20

22

Figure C.29: Sensitivity with multiple parameters for test 11 with multiple
forgetting factors λ1 = 0.999, λ2 = 0.99.
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Figure C.30: Sensitivity with multiple parameters for test 11 with multiple
forgetting factors λ1 = 1, λ2 = 0.99.
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