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Abstract
A sharp pointwise differential inequality for vectorial second-order partial differential
operators, with Uhlenbeck structure, is offered. As a consequence, optimal second-
order regularity properties of solutions to nonlinear elliptic systems in domains in Rn

are derived. Both local and global estimates are established. Minimal assumptions
on the boundary of the domain are required for the latter. In the special case of the
p-Laplace system, our conclusions broaden the range of the admissible values of the
exponent p previously known.

Mathematics Subject Classification 35J25 · 35J60 · 35B65

Communicated by Y. Giga.

B Andrea Cianchi
andrea.cianchi@unifi.it

Anna Kh. Balci
akhripun@math.uni-bielefeld.de

Lars Diening
lars.diening@uni-bielefeld.de

Vladimir Maz’ya
vladimir.mazya@liu.se

1 Fakultät für Mathematik, University Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany

2 Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni
67/A, 50134 Firenze, Italy

3 Department of Mathematics, Linköping University, 581 83 Linköping, Sweden

4 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St, Moscow
117198, Russian Federation

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-021-02249-9&domain=pdf
http://orcid.org/0000-0002-1198-8718


A. K. Balci et al.

1 Introduction

A classical identity, which links the Laplacian �u of a vector-valued function u ∈
C3(�,RN ) to its Hessian ∇2u, tells us that

|�u|2 = div
(
(�u)T∇u − 1

2∇|∇u|2
)

+ |∇2u|2 in �, (1.1)

where � is an open set in R
n . Here, and in what follows, n ≥ 2, N ≥ 1, and the

gradient∇u of a function u : � → R
N is regarded as the matrix inRN×n whose rows

are the gradients in R
1×n of the components u1, . . . , uN of u. Moreover, the suffix

“T ” stands for transpose.
Identity (1.1) can be found as early as more than one century ago in [11] for n = 2

—see also [43,58]. It has applications, for instance, in the second-order L2-regularity
theory for solutions to the Poisson system for the Laplace operator

− �u = f in �, (1.2)

where f : � → R
N . Indeed, identity (1.1) enables one to bound the integral of |∇2u|2

over some set in � by the integral of |�u|2 over the same set, plus a boundary integral
involving the expression under the divergence operator. Of course, since the equations
in the linear system (1.2) are uncoupled, its theory is reduced to that of its single
equations.

The second-order regularity theory of nonlinear equations and systems is much less
developed, yet for the basic p-Laplace equation or system

− div(|∇u|p−2∇u) = f in �, (1.3)

where p > 1 and “div” denotes the RN -valued divergence operator. Standard results

concern weak differentiability properties of the expression |∇u| p−2
2 ∇u. They trace

back to [61] for p > 2, and to [1,22] for every p > 1. The case of a single equation
was earlier considered in [62]. Further developments are in [8,20,33].

As demonstrated by several more recent contributions, the regularity of solutions
to p-Laplacian type equations and systems is often most neatly described in terms
of the expression |∇u|p−2∇u appearing under the divergence operator in (1.3). This
surfaces, for instance, from BMO and Hölder bounds of [39], potential estimates
of [47], rearrangement inequalities of [28], pointwise oscillation estimates of [13],
regularity results up to the boundary of [14]. More results in this connection can be
found e.g. in [3,30,48].

Differentiability properties of |∇u|p−2∇u have customarily been detected under
strong regularity assumptions on the right-hand side f . This is the case of [50], where
local solutions are considered. High regularity of the right-hand side is also assumed
in [35], where results for boundary value problems can be found under smoothness
assumptions on ∂�. Both papers [35,50] deal with scalar problems, i.e. with the case
when N = 1. Fractional-order regularity of the gradient of solutions to quasilinear
equations of p-Laplacian type has been studied in [57], and in the more recent con-
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tributions [3,18,21,55,56]. The question of fractional-order regularity of the quantity
|∇u|p−2∇u, when N = 1 and the right-hand side of Eq. (1.3) is in divergence form,
is addressed in [5], where, in particular, sharp results are obtained for n = 2.

Optimal second-order L2-estimates for solutions to a class of problems, including
(1.3) for every p > 1, in the scalar case, have recently been established in [31]. Loosely
speaking, these estimates tell us that |∇u|p−2∇u ∈ W 1,2 if and only if f ∈ L2. Such a
property is shown to hold both locally, and, under minimal regularity assumptions on
the boundary, also globally. Parallel results are derived in [32] for vectorial problems,
namely for N ≥ 2, but for the restricted range of powers p > 3

2 . The results of
[31,32] rely upon the idea that, in the nonlinear case, the role of the pointwise identity
(1.1) can be performed by a pointwise inequality. The latter amounts to a bound from
below for the square of the right-hand side of (1.3) by the square of the derivatives of
|∇u|p−2∇u, plus an expression in divergence form. The restriction for the admissible
values of p in the vectorial case stems from this pointwise inequality.

In the present paper we offer an enhanced pointwise inequality in the same spirit,
with best possible constant, for a class of nonlinear differential operators of the form
−div(a(|∇u|)∇u). The relevant inequality holds under general assumptions on the
function a, which also allow growths that are not necessarily of power type. Impor-
tantly, our inequality improves the available results even in the case when the operator
is the p-Laplacian, namely when a(t) = t p−2. In particular, for this special choice, it
entails the existence of a constant c > 0 such that

∣∣div(|∇u|p−2∇u)
∣∣2

≥ div
[
|∇u|2(p−2)

(
(�u)T∇u − 1

2∇|∇u|2
)]

+ c |∇u|2(p−2)|∇2u|2 (1.4)

in {∇u �= 0} if and only either N = 1 and p > 1, or N ≥ 2 and p > 2(2 − √
2) ≈

1.1715.
The differential inequality to be presented, in its general version, is the crucial point

of departure in our proof of the local and global W 1,2-regularity for the expression
a(|∇u|)∇u for systems of the form

− div(a(|∇u|)∇u) = f in �. (1.5)

Regularity issues for equations and systems driven by non standard nonlinearities,
encompassing (1.5), are nowadays the subject of a rich literature. A non exhaustive
sample of contributions along this direction of research includes [2,4,6,7,16,19,23,26,
27,36,39,40,44,45,49,51,60].

Let us incidentally note that system (1.5) is the Euler equation of the functional

J (u) =
∫

�

B(|∇u|) − f · u dx . (1.6)

Here, the dot “ · ” stands for scalar product, and B : [0,∞) → [0,∞) is the function
defined as

B(t) =
∫ t

0
b(s) ds for t ≥ 0, (1.7)
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where the function b : [0,∞) → [0,∞) is given by

b(t) = a(t)t for t > 0, (1.8)

and b(0) = 0.
Under the assumptions to be imposed on a, the function B and the functional J

turn out to be strictly convex. In particular, if a(t) = t p−2, then B(t) = 1
p t

p, and J
agrees with the usual energy functional associated with the p-Laplace system (1.3).

We shall focus on the case when N ≥ 2, the case of equations being already
fully covered by the results of [31]. In particular, our regularity results apply to the
p-Laplacian system (1.3) for every

p > 2(2 − √
2) ≈ 1.1715. (1.9)

Hence, we extend the range of the admissible exponents p known until now, which
was limited to p > 3

2 .
In the light of the pointwise inequality (1.4), the lower bound (1.9) for p is optimal

for our approach to the second-order regularity of solutions to the p-Laplace system
(1.3). The question of whether such a restriction is really indispensable for this regu-
larity, or it can be dropped as in the case when N = 1, where every p > 1 is admitted,
is an open challenging problem.

2 Main results

The statement of the general differential inequality requires a few notations. Given a
positive function a ∈ C1((0,∞)), we define the indices

ia = inf
t>0

ta′(t)
a(t)

and sa = sup
t>0

ta′(t)
a(t)

, (2.1)

where a′ stands for the derivative of a. Plainly, if a(t) = t p−2, then ia = sa = p − 2.
Moreover, we denote, for N ≥ 1, the continuously increasing function κN :

[1,∞) → R as

κ1(p) =
{

(p − 1)2 if p ∈ [1, 2)
1 if p ∈ [2,∞),

(2.2)

if N = 1, and

κN (p) =

⎧⎪⎨
⎪⎩

1 − 1
8 (4 − p)2 if p ∈ [1, 4

3 )

(p − 1)2 if p ∈ [ 43 , 2)
1 if p ∈ [2,∞),

(2.3)

if N ≥ 2.

Theorem 2.1 (General pointwise inequality). Let n ≥ 2 and N ≥ 1. Let � be an open
set in Rn and let u ∈ C3(�,RN ).
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(i) [Nonsingular case] Assume that the function a ∈ C0([0,∞)) is such that:

a(t) > 0 for t > 0, (2.4)

ia ≥ −1, (2.5)

and
b ∈ C1([0,∞)), (2.6)

where b is the function defined by (1.8). Then

∣∣div(a(|∇u|)∇u
)∣∣2

≥ div
[
a(|∇u|)2

(
(�u)T∇u − 1

2∇|∇u|2
)]

+ κN (ia + 2)a(|∇u|)2|∇2u|2 (2.7)

in�, where κN is defined as in (2.2)–(2.3). Moreover, the constant κN (ia +2) is sharp.
(ii) [General case] If a is just defined in (0,∞), a ∈ C1((0,∞)), and conditions

(2.4) and (2.5) are fulfilled, then inequality (2.7) continues to hold in the set {∇u �= 0}.
Remark 2.2 Observe that the assumption (2.6) need not be fulfilled by the functions a
appearing in the elliptic systems (1.5) to be considered. Such an assumpton fails, for
instance, when a(t) = t p−2 with 1 < p < 2. This calls for a regularization argument
for a in our applications of inequality (2.7) to the solutions to the systems in question.
The solutions to the regularized systems will also enjoy the smoothness properties
required on the function u in Part (i) of Theorem 2.1. On the other hand, the functions
a in the original systems do satisfy the conditions required in Part (ii) of Theorem 2.1
for the validity of inequality (2.7) outside the set {∇u = 0} of critical points of the
function u.

In the special case when a(t) = t p−2, Theorem 2.1 yields the following inequality
for the p-Laplace operator we alluded to in Sect. 1.

Corollary 2.3 (Pointwise inequality for the p-Laplacian). Let n ≥ 2 and N ≥ 1. Let
� be an open set in Rn and let u ∈ C3(�,RN ). Assume that p ≥ 1. Then

∣∣div(|∇u|p−2∇u)
∣∣2

≥ div
[
|∇u|2(p−2)

(
(�u)T∇u − 1

2∇|∇u|2
)]

+ κN (p)|∇u|2(p−2)|∇2u|2 (2.8)

in {∇u �= 0}. Moreover, the constant κN (p) is sharp.

Notice that, if N = 1, then

κ1(p) > 0 if p > 1, (2.9)

whereas, if N ≥ 2,
κN (p) > 0 if p > 2(2 − √

2). (2.10)
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The gap between (2.9) and (2.10) is responsible for the different implications of
inequality (2.7) in view of second-order L2-estimates for solutions to

− div(a(|∇u|)∇u) = f in �, (2.11)

according to whether N = 1 or N ≥ 2. Indeed, inequality (2.7) is of use for this
purpose only if κN (ia + 2) > 0.

Since we are concerned with L2-estimates, the datum f in (2.11) is assumed to be
merely square integrable. Solutions in a suitably generalized sense have thus to be
considered. For instance, the existence of standard weak solutions to the p-Laplace
system (1.3) is only guaranteed if p ≥ 2n

n+2 . In the scalar case, various definitions
of solutions—entropy solutions, renormalized solutions, SOLA—that allow for right-
hand sides that are just integrable functions, or even finite measures, are available in
the literature, and turn out to be a posteriori equivalent. Note that these solutions need
not be even weakly differentiable. The case of systems is more delicate and has been
less investigated. A notion of solution, which is well tailored for our purposes and will
be adopted, is patterned on the approach of [41]. Loosely speaking, the solutions in
question are only approximately differentiable, and are pointwise limits of solutions
to approximating problems with smooth right-hand sides.

The outline of the derivation of the second-order L2-bounds for these solutions to
system (2.11) via Theorem 2.1 is analogous to the one of [31]. However, new technical
obstacles have to be faced, due to the non-polynomial growth of the coefficient a in
the differential operator. In particular, an L1-estimate, of independent interest, for the
expression a(|∇u|)∇u for merely integrable data f is established. Such an estimate is
already available in the literature for equations, but seems to be new for systems, and
its proof requires an ad hoc Sobolev type inequality in Orlicz spaces.

Our local estimate for system (2.11) reads as follows. In the statement, BR and B2R
denote concentric balls, with radius R and 2R, respectively.

Theorem 2.4 (Local estimates). Let � be an open set in R
n, with n ≥ 2, and let

N ≥ 2. Assume that the function a : (0,∞) → (0,∞) is continuously differentiable,
and satisfies

ia > 2(1 − √
2) , (2.12)

and
sa < ∞ . (2.13)

Let f ∈ L2
loc(�,RN ) and let u be an approximable local solution to system (2.11).

Then
a(|∇u|)∇u ∈ W 1,2

loc (�,RN×n), (2.14)

and there exists a constant C = C(n, N , ia, sa) such that

R−1
∥∥a(|∇u|)∇u

∥∥
L2(BR ,RN×n)

+ ∥∥∇(a(|∇u|)∇u
)∥∥

L2(BR ,RN×n×n)

≤ C
(

‖f‖L2(B2R ,RN ) + R− n
2−1‖a(|∇u|)∇u‖L1(B2R ,RN×n)

)
(2.15)

for any ball B2R ⊂⊂ �.
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Remark 2.5 In particular, if � = R
n and, for instance, a(|∇u|)∇u ∈ L1(Rn,RN×n),

then passing to the limit in inequality (2.15) as R → ∞ tells us that

∥∥∇(a(|∇u|)∇u
)∥∥

L2(Rn ,RN×n×n)
≤ C‖f‖L2(Rn ,RN ). (2.16)

Wenext dealwith global estimates for solutions to system (2.11), subject toDirichlet
homogeneous boundary conditions. Namely, we consider solutions to problems of the
form {

−div(a(|∇u|)∇u) = f in �

u = 0 on ∂� .
(2.17)

As shown by classical counterexamples, yet in the linear case, global estimates
involving second-order derivatives of solutions can only hold under suitable regu-
larity assumptions on ∂�. Specifically, information on the (weak) curvatures of ∂�

is relevant in this connection. Convexity of the domain �, which results in a posi-
tive semidefinite second fundamental form of ∂�, is well known to ensure bounds in
W 2,2(�,RN×n) for the solution u to the homogeneous Dirichlet problem associated
with the linear system (1.2) in terms of the L2(�,RN ) norm of f – see [43]. The
following result provides us with an analogue for problem (2.17), for the same class
of nonlinearities a as in Theorem 2.4.

Theorem 2.6 (Global estimates in convex domains) Let � be any bounded convex
open set in R

n, with n ≥ 2, and let N ≥ 2. Assume that the function a : (0,∞) →
(0,∞) is continuously differentiable and fulfills conditions (2.12) and (2.13). Let
f ∈ L2(�,RN ) and let u be an approximable solution to the Dirichlet problem
(2.17). Then

a(|∇u|)∇u ∈ W 1,2(�,RN×n), (2.18)

and
C1‖f‖L2(�,RN ) ≤ ‖a(|∇u|)∇u‖W 1,2(�,RN×n) ≤ C2‖f‖L2(�,RN ) (2.19)

for some positive constants C1 = C1(n, N , ia, sa) and C2 = C2(N , ia, sa,�).

The global assumption on the signature of the second fundamental form of ∂�

entailed by the convexity of � can be replaced by local conditions on the relevant
fundamental form. This is the subject of Theorem 2.7.

The finest assumption on ∂�, that we are able to allow for, amounts to a decay
estimate of the integral of its weak curvatures over subsets of ∂� whose diameter
approaches zero, in terms of their capacity. Specifically, suppose that � is a bounded
Lipschitz domain such that ∂� ∈ W 2,1. This means that the domain � is locally the
subgraph of a Lipschitz continuous function of (n − 1) variables, which is also twice
weakly differentiable. Denote by B the weak second fundamental form on ∂�, by |B|
its norm, and set

K�(r) = sup
E⊂∂�∩Br (x)

x∈∂�

∫
E |B|dHn−1

capB1(x)(E)
for r ∈ (0, 1) . (2.20)
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Here, Br (x) stands for the ball centered at x , with radius r , the notation capB1(x)(E)

is adopted for the capacity of the set E relative to the ball B1(x), and Hn−1 is the
(n − 1)-dimensional Hausdorff measure. The decay we hinted to above consists in a
smallness condition on the limit at as r → 0+ of the function K�(r). The smallness
depends on � through its diameter d� and its Lipschitz characteristic L�. The latter
quantity is defined as themaximum among the Lipschitz constants of the functions that
locally describe the intersection of ∂� with balls centered on ∂�, and the reciprocals
of their radii. Here, and in similar occurrences in what follows, the dependence of a
constant on d� and L� is understood just via an upper bound for them.

Theorem 2.7 also provides us with an ensuing alternate assumption on ∂�, which
only depends on integrability properties of the weak curvatures of ∂�. Precisely, it
requires the membership of |B| in a suitable function space X(∂�) over ∂� defined
in terms of weak type norms, and a smallness condition on the decay of these norms
of |B| over balls centered on ∂�. This membership will be denoted by ∂� ∈ W 2X .
The relevant weak space is defined as

X(∂�) =
{
Ln−1,∞(∂�) if n ≥ 3,

L1,∞ log L(∂�) if n = 2.
(2.21)

Here, Ln−1,∞(∂�) denotes the weak-Ln−1(∂�) space, and L1,∞ log L(∂�) denotes
the weak-L log L(∂�) space (also called Marcinkiewicz spaces), with respect to the
(n − 1)-dimensional Hausdorff measure.

Theorem 2.7 (Global estimates under minimal boundary regularity). Let � be a
bounded Lipschitz domain inRn, n ≥ 2, such that ∂� ∈ W 2,1, and let N ≥ 2. Assume
that the function a : (0,∞) → (0,∞) is continuously differentiable and fulfills con-
ditions (2.12) and (2.13). Let f ∈ L2(�,RN ) and let u be an approximable solution to
the Dirichlet problem (2.17). Then there exists a constant c = c(n, N , ia, sa, L�, d�)

such that, if
lim

r→0+ K�(r) < c, (2.22)

then a(|∇u|)∇u ∈ W 1,2(�,RN×n), and inequality (2.19) holds.
In particular, if ∂� ∈ W 2X, where X(∂�) is the space defined by (2.21), then there

exists a constant c = c(n, N , ia, sa, L�, d�) such that, if

lim
r→0+

(
sup
x∈∂�

‖B‖X(∂�∩Br (x))

)
< c , (2.23)

then a(|∇u|)∇u ∈ W 1,2(�,RN×n), and inequality (2.19) holds.

Remark 2.8 We emphasize that the assumptions on ∂� in Theorem 2.7 are essentially
sharp. For instance, the mere finiteness of the limit in (2.22) is not sufficient for
the conclusion to hold. As shown in [53,54], there exists a one-parameter family of
domains � such that K�(r) < ∞ for r ∈ (0, 1) and the solution to the homogeneous
Dirichlet problem for (1.2), with a smooth right-hand side f , belongs toW 2,2(�,RN )
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only for those values of the parameter which make the limit in (2.22) smaller than a
critical (explicit) value.

A similar phenomenon occurs in connection with assumption (2.23). An example
from [46] applies to demonstrate its optimality yet for the scalar p-Laplace equation.
Actually, open sets � ⊂ R

3, with ∂� ∈ W 2L2,∞, are displayed where the solution u
to the homogeneous Dirichlet problem for (1.3), with N = 1, p ∈ ( 32 , 2] and a smooth
right-hand side f , is such that |∇u|p−2∇u /∈ W 1,2(�,Rn). This lack of regularity is
due to the fact that the limit in (2.23), though finite, is not small enough. Similarly,
if n = 2 there exist open sets �, with ∂� ∈ W 2L1,∞ log L , for which the limit in
(2.23) exceeds some threshold, and where the solution to the homogeneous Dirichlet
problem for (1.2), with a smooth right-hand side, does not belong to W 2,2(�)—see
[53].

Remark 2.9 The one-parameter family of domains � mentioned in the first part of
Remark 2.8 with regard to condition (2.22) is such that ∂� /∈ W 2Ln−1,∞ if n ≥ 3.
Hence, assumption (2.23) is not fulfilled even for those values of the parameter which
render (2.22) true. This shows that the latter assumption is indeed weaker than (2.23).

Remark 2.10 Condition (2.23) certainly holds if n ≥ 3 and ∂� ∈ W 2,n−1, and if
n = 2 and ∂� ∈ W 2L log L (and hence, if ∂� ∈ W 2,q for some q > 1). This is due
to the fact that, under these assumptions, the limit in (2.23) vanishes. In particular,
assumption (2.23) is satisfied if ∂� ∈ C2.

3 The pointwise inequality

This section is devoted to the proof of Theorem 2.1, which is split in several lemmas.
The point of departure is a pointwise identity, of possible independent use, stated in
Lemma 3.1.

Given a positive function a ∈ C1(0,∞), we define the function Qa : [0,∞) → R

as

Qa(t) = ta′(t)
a(t)

for t > 0. (3.1)

Hence,
ia = inf

t>0
Qa(t) and sa = sup

t>0
Qa(t), (3.2)

where ia and sa are the indices given by (2.1).

Lemma 3.1 Let n, N , � and u be as in Theorem 2.1.
(i) Assume that the function a ∈ C0([0,∞)) and satisfies conditions (2.4)–(2.6).

Then
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∣∣div(a(|∇u|)∇u)
∣∣2 = div

[
a(|∇u|)2

(
(�u)T∇u − 1

2∇|∇u|2
)]

+ a(|∇u|)2
[
|∇2u|2 + 2Qa(|∇u|)|∇|∇u||2

+ Qa(|∇u|)2
∣∣∣∣

∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2]

in �, (3.3)

where the last two addends in square brackets on the right-hand side of equation (3.3)
have to interpreted as 0 if ∇u = 0.

(ii) If a is just defined in (0,∞), a ∈ C1((0,∞)), and conditions (2.4) and (2.5)
are fulfilled, then equation (3.3) continues to hold in the set {∇u �= 0}.

The next corollary follows from Lemma 3.1. applied with a(t) = t p−2.

Corollary 3.2 Let n, N , � and u be as in Theorem 2.1. Assume that p ≥ 1. Then

∣∣div(|∇u|p−2∇u)
∣∣2 = div

[
|∇u|2(p−2)

(
(�u)T∇u − 1

2∇|∇u|2
)]

+ |∇u|2(p−2)
[
|∇2u|2 + 2(p − 2)|∇|∇u||2

+ (p − 2)2
∣∣∣∣

∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2]

(3.4)

in {∇u �= 0}.
Proof of Lemma 3.1 Part (i). The following chain can be deduced via straightforward
computations:

∣∣div(a(|∇u|)∇u
)∣∣2

= ∣∣a(|∇u|)�u + a′(|∇u|)∇u(∇|∇u|)T ∣∣2
= a(|∇u|)2(|�u|2 − |∇2u|2)+ a(|∇u|)2|∇2u|2+

+ a′(|∇u|)2|∇u(∇|∇u|)T ∣∣2 + 2a(|∇u|)a′(|∇u|)�u · ∇u(∇|∇u|)T

= a(|∇u|)2
(
div((�u)T∇u) − 1

2div(∇|∇u|2)
)

+ a(|∇u|)2|∇2u|2+
+ a′(|∇u|)2∣∣∇u(∇|∇u|)T ∣∣2 + 2a(|∇u|)a′(|∇u|)�u · ∇u(∇|∇u|)T . (3.5)

Notice that equation (3.5) also holds at the points where |∇u| = 0, provided that the
terms involving the factor a′(|∇u|) are intepreted as 0. This is due to the fact that all
the terms in question also contain the factor ∇u and, by assumption (2.6),

lim
t→0+ a′(t)t = 0.

123



A pointwise differential inequality and second-order regularity...

Moreover,

a(|∇u|)2div((�u)T∇u)

= div
(
a(|∇u|)2(�u)T∇u

)− 2a(|∇u|)a′(|∇u|)�u · ∇u(∇|∇u|)T , (3.6)

and

1
2a(|∇u|)2div(∇|∇u|2) = 1

2div
(
a(|∇u|)2 ∇|∇u|2)− 2a(|∇u|)a′(|∇u|)|∇u||∇|∇u||2.

(3.7)

From equations (3.5)–(3.7) one deduces that

∣∣div(a(|∇u|)∇u)
∣∣2 = div

(
a(|∇u|)2(�u)T∇u

)− 1
2div
(
a(|∇u|)2 ∇|∇u|2)

+ a(|∇u|)2|∇2u|2 + a′(|∇u|)2∣∣∇u(∇|∇u|)T ∣∣2
+ 2a(|∇u|)a′(|∇u|)|∇u||∇|∇u||2. (3.8)

If ∇u = 0, then the last two addends on the right-hand side of Eq. (3.8) vanish.
Hence, Eq. (3.3) follows. Assume next that ∇u �= 0. Then, from Eq. (3.8) we obtain
that

∣∣div(a(|∇u|)∇u)
∣∣2 = div

(
a(|∇u|)2(�u)T∇u

)− 1
2div
(
a(|∇u|)2 ∇|∇u|2)

+ a(|∇u|)2
[
|∇2u|2 +

(
a′(|∇u|)|∇u|

a(|∇u|)
)2∣∣∣∣

∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2

+ 2
a′(|∇u|)|∇u|

a(|∇u|) |∇|∇u||2
]
.

The proof of Eq. (3.3) is complete.
Part (ii). The conclusion follows from the above computations, on disregarding the

comments on the points where ∇u = 0. ��
Having identity (3.3) at our disposal, the point is now to derive a sharp lower bound

for the second addend on its right-hand side. This will be accomplished via Lemma 3.6
below. Its proof requires a delicate analysis of the quadratic form, depending on the
entries of the Hessian matrix ∇2u, which appears in square brackets in the expression
to be bounded. This analysis relies upon some critical linear-algebraic steps that are
presented in the next three lemmas.

In what follows, Rn×n
sym denotes the space of symmetric matrices in R

n×n . The dot
“ · ” is employed to denote scalar product of vectors or matrices, and the symbol “⊗”
for tensor product of vectors. Also, I stands for the identity matrix in R

n×n .

Lemma 3.3 Let ω ∈ R
n be such that |ω| = 1. Then

|Hω|2 − 1
2 |ω · Hω|2 − 1

2 |H |2 = − 1
2 |Hω⊥|2 (3.9)

for every H ∈ R
n×n
sym , where Hω⊥ = (I − ω ⊗ ω)H(I − ω ⊗ ω).
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Proof Let {e1, . . . , en} denote the canonical basis in R
n and let {θ1, . . . , θn} be an

orthonormal basis of Rn such that θ1 = ω. Let Q ∈ R
n×n be the matrix whose

columns are θ1, . . . , θn . Hence, ω = Qe1. Next, let R = QT HQ. Clearly, R ∈ R
n×n
sym .

Denote by ri j the entries of R. Computations show that

|Hω|2 − 1
2 |ω · Hω|2 − 1

2 |H |2 = |Re1|2 − 1
2 |e1 · Re1|2 − 1

2 |R|2

=
n∑

i=1

|ri1|2 − 1
2 |r11|2 − 1

2

n∑
i, j=1

|ri j |2

= 1
2

n∑
j=1

|r1 j |2 + 1
2

n∑
i=1

|ri1|2 − 1
2 |r11|2 − 1

2

n∑
i, j=1

|ri j |2

= − 1
2

∑
i, j≥2

|ri j |2

= − 1
2 |(I − e1 ⊗ e1)R(I − e1 ⊗ e1)|2

= − 1
2 |(I − ω ⊗ ω)H(I − ω ⊗ ω)|2.

Hence, Eq. (3.9) follows. ��
Given a vector ω ∈ R

n , define the set

E(ω) = {Hω : H ∈ R
n×n
sym , |H | ≤ 1

}
.

It is easily verified that E(ω) is a convex set in R
n for every ω ∈ R

n . Lemma 3.4
below tells us that, in fact, E(ω) is an ellipsoid, centered at 0 (which reduces to {0} if
ω = 0). This assertion will be verified by showing that, for each ω ∈ R

n , there exists
a positive definite matrix W ∈ R

n×n
sym such that E(ω) agrees with the ellipsoid

F(W ) = {x ∈ R
n : x · W−1x ≤ 1

}
, (3.10)

where W−1 stands for the inverse of W . This is the content of Lemma 3.4 below. In
its proof, we shall make use of the alternative representation

F(W ) = {x ∈ R
n : y · x ≤ √y · Wy for every y ∈ R

n}, (3.11)

which follows, for instance, via a maximization argument for the ratio of the two sides
of the inequality in (3.11) for each given x ∈ R

n .
Also, observe that, as a consequence of Eq. (3.11),

|x | = x · x̂ ≤ √
x̂ · Wx̂ for every x ∈ F(W ) \ {0}. (3.12)

Here, and in what follows, we adopt the notation

x̂ = x

|x | for x ∈ R
n \ {0}.
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Lemma 3.4 Given ω ∈ R
n, let W (ω) ∈ R

n×n
sym be defined as

W (ω) = 1
2

(|ω|2 I + ω ⊗ ω
)
. (3.13)

Then W (ω) is positive definite, and

E(ω) = F(W (ω)). (3.14)

In particular,

Hω ∈ |H | F(W (ω)
)

for every ω ∈ R
n and H ∈ R

n×n
sym . (3.15)

Proof Equation (3.14) trivially holds if ω = 0. Thus, by a scaling argument, it suffices
to consider the case when |ω| = 1. We begin showing that E(ω) ⊂ F(W (ω)). One
can verify that, since |ω| = 1,

W (ω)−1 = 2I − ω ⊗ ω. (3.16)

Let H ∈ R
n×n
sym be such that |H | ≤ 1. Owing to equation (3.16) and to Lemma 3.3,

Hω · W (ω)−1Hω = 2|Hω|2 − ∣∣ω · Hω
∣∣2 ≤ |H |2 ≤ 1. (3.17)

This shows that Hω ∈ F(W (ω)). The inclusion E(ω) ⊂ F(W (ω)) is thus established.
Let us next prove that F(W (ω)) ⊂ E(ω). Let x ∈ F(W (ω)). We have to detect a
matrix H ∈ R

n×n
sym such that |H | ≤ 1 and x = Hω. To this purpose, consider the

decomposition x = tω + sω⊥, for suitable s, t ∈ R, where ω⊥ ⊥ ω and |ω⊥| = 1.
Since x ∈ F(W (ω)), one has that x · W (ω)−1x ≤ 1. Furthermore,

x · W (ω)−1x = (tω+sω⊥) · (2I − ω ⊗ ω)(tω+sω⊥)=2(t2 + s2) − t2 = t2 + 2s2.

Hence, t2 + 2s2 ≤ 1. We claim that the matrix H , defined as

H = t ω ⊗ ω + s (ω⊥ ⊗ ω + ω ⊗ ω⊥),

has the desired properties. Indeed, H ∈ R
n×n
sym ,

|H |2 = tr(HT H) = t2 + 2s2 ≤ 1,

Hω = tω + sω⊥ = x .

This proves that x ∈ E(ω). The inclusion F(W (ω)) ⊂ E(ω) hence follows. ��
In view of the statement of the next lemma, we introduce the following notation. Given
N vectors ωα ∈ R

n and N matrices Hα ∈ R
n×n
sym , with α = 1, . . . N , we set
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J =
∣∣∣∣

N∑
α=1

Hαωα

∣∣∣∣
2

, J0 =
N∑

α=1

∣∣∣∣ωα ·
N∑

β=1

Hβωβ

∣∣∣∣
2

, J1 =
N∑

α=1

|Hα|2. (3.18)

Lemma 3.5 Let N ≥ 2, 0 ≤ δ ≤ 1
2 and δ + σ ≥ 1. Assume that the vectors ωα ∈ R

n

and the matrices Hα ∈ R
n×n
sym , with α = 1, . . . N, satisfy the following constraints:

N∑
α=1

|ωα|2 ≤ 1, (3.19)

N∑
α=1

|Hα|2 ≤ 1. (3.20)

Then

J − δ J0 − σ J1 ≤
{
0 if δ ∈ [0, 1

3 ],
max
{
0, (δ+1)2

8δ − σ
}

if δ ∈ ( 13 ,
1
2 ].

(3.21)

Proof Given δ and σ as in the statement, set

Dδ,σ = J − δ J0 − σ J1.

The quantities J0, J and J1 are 1-homogeneous with respect to the quantity∑N
j=1 |Hj |2. Moreover, inequality (3.21) trivially holds if the latter quantity vanishes.

Thereby, it suffices to prove this inequality under the assumption that
∑N

j=1 |Hj |2 = 1,
namely that

J1 = 1. (3.22)

On setting ζ =∑N
α=1 H

αωα , one has that

J = |ζ |2 and J0 =
N∑

α=1

|ωα · ζ |2.

Therefore,

J0 ≤ |ζ |2
N∑

α=1

|ωα|2 ≤ |ζ |2 = J . (3.23)

Owing to Lemma 3.4,

Hαωα ∈ |Hα|F(Wα)

for α = 1, . . . , N , where Wα = |ωα|2 12 (Id + ω̂α ⊗ ω̂α). Thus, by equations (3.15)
and (3.12),
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Hαωα · ζ̂ ≤ |Hα|
√

ζ̂ · Wαζ̂ = |Hα||ωα|
√

1
2 + 1

2 |ω̂α · ζ̂ |2 (3.24)

for α = 1, . . . , N . Since

ζ = (ζ · ζ̂ )̂ζ =
N∑

α=1

(Hαωα · ζ̂ )̂ζ ,

equation (3.24) implies that

|ζ | ≤
N∑

α=1

∣∣Hαωα · ζ̂
∣∣ ≤

N∑
α=1

|Hα||ωα|
√

1
2 + 1

2 |ω̂α · ζ̂ |2.

Hence,

|ζ |2 ≤ 1
2

( N∑
α=1

|Hα||ωα|
√

1
2 + 1

2 |ω̂α · ζ̂ |2
)2

. (3.25)

On setting Ĵ0 =∑N
α=1 |ωα · ζ̂ |2, we obtain that

Ĵ0 =
N∑

α=1

|ωα|2|ω̂α · ζ̂ |2 and J0 = |ζ |2 Ĵ0.

Note that Ĵ0 ≤ 1, inasmuch as J0 ≤ J = |ζ |2. Moreover, by equation (3.22),

Dδ,σ = J − δ J0 − σ = |ζ |2(1 − δ Ĵ0
)− σ. (3.26)

From inequalities (3.25) and (3.26) we deduce that

Dδ,σ ≤ 1
2

( N∑
α=1

|Hα||ωα|
√

1
2 + 1

2 |ω̂α · ζ̂ |2
)2(

1 − δ

N∑
α=1

|ωα|2|ω̂α · ζ̂ |2
)

− σ.

(3.27)

Next, define the function with g : [0, 1]N × [0, 1]N × [0, 1]N → R as

g(h, s, t) = 1
2

( N∑
α=1

hαtα
√
1 + s2α

)2(
1 − δ

( N∑
α=1

t2αs
2
α

))
− σ

for (h, s, t) ∈ [0, 1]N × [0, 1]N × [0, 1]N ,

(3.28)

where h = (h1, . . . , hN ), s = (s1, . . . , sN ) and t = (t1, . . . , tN ). Inequality (3.27)
then takes the form

Dδ,σ ≤ g((|H1|, . . . , |HN |), (|ω1|, . . . , |ωN |), (|ω̂1 · ζ̂ |, . . . , |ω̂N · ζ̂ |)).
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Our purpose is now to maximize the function g under the constraints

N∑
α=1

t2α ≤ 1,
N∑

α=1

h2α = 1. (3.29)

We claim that the maximum of g can only be attained if
∑N

α=1 t
2
α = 1. To verify this

claim, it suffices to show that

g(h, s, τ t) ≤ g(h, s, t)

for every (h, s, t) ∈ [0, 1]N × [0, 1]N × [0, 1]N and τ ∈ [0, 1]. (3.30)

Plainly,

g(h, s, τ t) = 1
2τ

2
( N∑

α=1

hαtα
√
1 + s2α

)2(
1 − τ 2δ

( N∑
α=1

t2αs
2
α

))
− σ

for (h, s, t) ∈ [0, 1]N × [0, 1]N × [0, 1]N and τ ∈ [0, 1]. Note that

0 ≤ δ
( N∑

α=1

t2αs
2
α

)
≤ δ
( N∑

α=1

t2α
)

= δ ≤ 1
2 . (3.31)

Thus, for each fixed (h, s, t) ∈ [0, 1]n × [0, 1]n × [0, 1]n , we have that

g(h, s, τ t) = c1τ(1 − c2τ) − β for τ ∈ [0, 1], (3.32)

for suitable constants c1 ≥ 0 and 0 ≤ c2 ≤ 1
2 , depending on (h, s, t). Since the

polynomial on the right-hand side of Eq. (3.32) is increasing for τ ∈ [0, 1], inequality
(3.30) follows. As a consequence, constraints (3.29) can be equivalently replaced by

N∑
α=1

t2α = 1 and
N∑

α=1

h2α = 1. (3.33)

Let us maximize the function g(h, s, t) with respect to h, under the constraint∑N
α=1 h

2
α = 1. Let (h1, . . . , hN ) be any point where the maximum is attained. Then,

there exists a Langrange multiplier λ ∈ R such that

tα
√
1 + s2α

( N∑
γ=1

hγ tγ
√
1 + s2γ

)(
1 − δ

( N∑
γ=1

t2γ s
2
γ

))
= 2λhα for α = 1, . . . , N .

(3.34)
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Multiplying through equation (3.34) by hβ , and then subtracting equation (3.34), with
α replaced by β and multiplied by hα , yield

( N∑
γ=1

hγ tγ
√
1 + s2γ

)(
1 − δ

( n∑
γ=1

t2γ s
2
γ

))(
hβ tα
√
1 + s2α − hαtβ

√
1 + s2β

)
= 0

(3.35)

for α, β = 1, . . . , N . Owing to equation (3.31), we have that
(
1− δ

(∑n
γ=1 t

2
γ s

2
γ

)) ≥
1
2 . Next, if

∑N
γ=1 hγ tγ

√
1 + s2γ = 0, then h1t1 = · · · = hN tN = 0, whence

Dδ,σ = −σ ≤ 0, and inequality (3.21) holds trivially. Therefore, we may assume

that
∑N

γ=1 hγ tγ
√
1 + s2γ > 0 in what follows. Under this assumption, equation (3.35)

tells us that

hβ tα
√
1 + s2α = hαtβ

√
1 + s2β (3.36)

for α, β = 1, . . . , N . Combining equations (3.33) and (3.36) yields

t2α(1 + s2α) = t2α(1 + s2α)

N∑
β=1

h2β = h2α

N∑
β=1

t2β(1 + s2β) = h2α

(
1 +

N∑
β=1

t2βs
2
β

)

(3.37)

for α = 1, . . . , N . Hence,

hαtα
√
1 + s2α = h2α

√√√√1 +
N∑

β=1

t2βs
2
β (3.38)

for α = 1, . . . , N . From equations (3.28), (3.38) and (3.33) we deduce that

g(h, s, t) ≤ 1
2

⎛
⎝

N∑
α=1

h2α

√√√√1 +
N∑

β=1

t2βs
2
β

⎞
⎠

2 (
1 − δ

( N∑
α=1

t2αs
2
α

))
− σ

= 1
2

(
1 +

N∑
β=1

t2βs
2
β

)(
1 − δ

( N∑
α=1

t2αs
2
α

))
− σ = ψ

( N∑
α=1

t2αs
2
α

)
,

where ψ : [0, 1] → R is the function defined as

ψ(r) = 1
2 (1 + r)

(
1 − δr

)− σ for r ∈ R.

Set ρ =∑N
j=α t

2
αs

2
α , and notice that ρ ∈ [0, 1], since 0 ≤ ∑N

α=1 t
2
αs

2
α ≤ ∑N

α=1 t
2
α =

1. Thereby, the maximum of the function g on [0, 1]N × [0, 1]N × [0, 1]N under
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constraints (3.33) agrees with the maximum of the function ψ on [0, 1]. It is easily
verified that, if δ ∈ [0, 1

3 ], thenmaxr∈[0,1] ψ(r) = ψ(1). Hence, sincewe are assuming
that δ + σ ≥ 1,

Dδ,σ ≤ ψ(1) = 1 − δ − σ ≤ 0.

On the other hand, if δ ∈ ( 13 ,
1
2 ], then maxr∈[0,1] ψ(r) = ψ( 1−δ

2δ ). Therefore,

Dδ,σ ≤ ψ
(1 − δ

2δ

)
= (δ + 1)2

8δ
− σ.

The proof of inequality (3.21) is complete. ��
Lemma 3.6 Let n, N , � and u be as in Theorem 2.1. Given p ≥ 1, let κN (p) be the
constant defined by (2.2)–(2.3). Then

|∇2u|2 + 2(p − 2)
∣∣∇|∇u|∣∣2 + (p − 2)2

∣∣∣∣
∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2

≥ κN (p)|∇2u|2 (3.39)

in {∇u �= 0}. Moreover, the constant κN (p) is sharp in (3.39).

Proof Case N = 1. Inequality (3.39) trivially holds if p ≥ 2. Let us focus on the case
when 1 ≤ p < 2. Notice that, on setting

ω = (∇u)T

|∇u| ∈ R
n and H = ∇2u ∈ R

n×n
sym

at any point in {∇u �= 0}, we have that

|Hω|2 = ∣∣∇|∇u|∣∣2, |ω · Hω|2 =
∣∣∣∣

∇u

|∇u| (∇|∇u|)T
∣∣∣∣
2

, |H |2 = |∇2u|2.

Therefore, by equation (3.9),

∣∣∇|∇u|∣∣2 ≤ 1
2

∣∣∣∣
∇u

|∇u| (∇|∇u|)T
∣∣∣∣
2

+ 1
2 |∇2u|2.

Consequently, the following chain holds:

|∇2u|2 + 2(p − 2)
∣∣∇|∇u|∣∣2 + (p − 2)2

∣∣∣∣
∇u

|∇u| (∇|∇u|)T
∣∣∣∣
2

≥ (1 + (p − 2)
)|∇2u|2 + ((p − 2) + (p − 2)2

)∣∣∣∣
∇u

|∇u| (∇|∇u|)T
∣∣∣∣
2

≥ (p − 1)|∇2u|2 + (p − 1)(p − 2)

∣∣∣∣
∇u

|∇u| (∇|∇u|)T
∣∣∣∣
2
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≥ ((p − 1) + (p − 1)(p − 2)
)|∇2u|2

= (p − 1)2|∇2u|2.

Hence, inequality (3.39) follows.
As far as the sharpness of the constant is concerned, if p ≥ 2, consider the function

u : Rn \ {0} → R given by

u(x) = |x | for x ∈ R
n \ {0}.

Since ∇|∇u| = 0, equality holds in (3.39) for every x ∈ R
n \ {0}. On the other hand,

if p ∈ [1, 2), consider the function u : Rn → R defined as

u(x) = 1
2 x

2
1 for x ∈ R

n .

One has that

|∇2u|2 = ∣∣∇|∇u|∣∣2 =
∣∣∣∣

∇u

|∇u| (∇|∇u|)T
∣∣∣∣
2

= 1 in R
n .

Hence, equality holds in (3.39) for every x ∈ R
n \ {0}.

Case N ≥ 2. It suffices to prove that inequality (3.39) holds at every point x ∈ {∇u �=
0} under the assumption that |∇2u(x)| equals either 0 or 1. Indeed, if |∇2u(x)| �= 0 at
some point x , then the function given by u = u

|∇2u(x)| fulfills |∇2u(x)| = 1. Hence,
inequality (3.39) for u at the point x follows from the same inequality applied to u.

If p ≥ 2, inequality (3.39) holds trivially. Thus, we may focus on the case when
p ∈ [1, 2). In this case, we make use of Lemma 3.5. Define

ωα = ∇uα

|∇u| ∈ R
n and Hα = ∇2uα ∈ R

n×n
sym

for α = 1, . . . , N , at any point in {∇u �= 0}. In particular, assumptions (3.19) and
(3.20) are satisfied with this choice. Computations show that

J = ∣∣∇|∇u|∣∣2, J0 =
∣∣∣∣

∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2

, J1 = |∇2u|2, (3.40)

where J , J0 and J1 are defined as in (3.18).
Next, let δ = 2−p

2 . Notice that δ ∈ [0, 1
2 ], and that δ ∈ (0, 1

3 ] if and only if

p ∈ [ 43 , 2). We next choose σ = p
2 if p ∈ [ 43 , 2), and σ = (δ+1)2

8δ = 1
16

(4−p)2

2−p

if p ∈ [1, 4
3 ). Observe that δ + σ = 1 in the former case, and δ + σ > 1 in the

latter. Thus, the assumptions on δ and σ of Theorem 3.5 are fulfilled. Furthermore, by
our choice of σ , the maximum on right-hand side of inequality (3.21) equals 0 when
δ > 1

3 , namely when p ∈ [1, 4
3 ). From inequality (3.21) we infer that

J ≤ 2−p
2 J0 + σ J1.
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This inequality is equivalent to

J1 + 2(p − 2)J + (p − 2)2 J0 ≥ (1 − σ2(2 − p))J1.

Since 1 − σ2(2 − p) = κN (p), inequality (3.39) follows.
In order to prove the sharpness of the constant κN (p), let us distinguish the cases

when p ≥ 2, p ∈ [ 43 , 2) and p ∈ [1, 4
3 ).

If p ≥ 2, consider the function u : Rn \ {0} → R
N given by

u(x) = (|x |, 0, . . . , 0) for x ∈ R
n \ {0}.

Since ∇|∇u| = 0, equality holds in (3.39) for every x ∈ R
n \ {0}.

If p ∈ [ 43 , 2), consider the function u : Rn → R
N defined as

u(x) = ( 12 x
2
1 , 0, . . . , 0) for x ∈ R

n .

One has that

|∇2u|2 = ∣∣∇|∇u|∣∣2 =
∣∣∣∣

∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2

= 1 in R
n .

Thus, equality holds in (3.39) for every x ∈ R
n \ {0}.

If p ∈ [1, 4
3 ), set r0 = p

2(2−p) .
Let e1, e2 denote the first two vectors of the canonical base of Rn . Define

t1 = √
r0, ω1 = t1e1,

t2 = √1 − r0, ω2 = t2e2,

h1 =
√

2r0
1 + r0

, H1 = h1e1 ⊗ e1,

h2 =
√
1 − r0
1 + r0

, H2 = h2
1√
2

(
e1 ⊗ e2 + e2 ⊗ e1

)
,

and ω3 = · · · = ωN = 0, H3 = · · · = HN = 0. Then

N∑
α=1

|ωα|2 = |ω1|2 + |ω2|2 = 1. (3.41)

Moreover,

J1 =
N∑

α=1

|Hα|2 = |H1|2 + |H2|2 = 1, (3.42)
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J =
∣∣∣∣

N∑
α=1

Hαωα

∣∣∣∣
2

= |H1ω1 + H2ω2|2 =
∣∣∣∣
(
h1t1 + 1√

2
h2t2
)
e1

∣∣∣∣
2

=
∣∣∣∣
√
1 + r0

2
e1

∣∣∣∣
2

= 1 + r0
2

, (3.43)

J0 =
N∑

α=1

| ωα · (H1ω1 + H2ω2)|2 = ∣∣ω1 · (H1ω1 + H2ω2)
∣∣2 = r0(1 + r0)

2
.

(3.44)

Now, let u : Rn → R
N be a polynomial of degree two such that ∇uα(0)T = ωα and

∇2uα = Hα for α = 1, . . . N . Formulas (3.40), combined with (3.42)–(3.44), tell us
that

|∇2u|2 + 2(p − 2)
∣∣∇|∇u|∣∣2 + (p − 2)2

∣∣∣∣
∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2

= 1 − 1
8 (4 − p)2 = κN (p)|∇2u|2 at 0.

Hence, equality holds in (3.39) for x = 0. ��

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1 By Lemma 3.6, applied with p = Qa(|∇u|)+ 2, and the mono-
tonicity of the function κN one has that

a(|∇u|)2
[
|∇2u|2 + 2Qa(|∇u|)|∇|∇u||2 + Qa(|∇u|)2

∣∣∣∣
∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2]

≥ κN
(
Qa(|∇u|) + 2

)
a(|∇u|)2|∇2u|2

≥ κN
(
ia + 2

)
a(|∇u|)2|∇2u|2 in {∇u �= 0}. (3.45)

Thus, under the assumptions of Part (ii), inequality (2.7) holds at every point in the
set {∇u �= 0}, owing to equation (3.3) and inequality (3.45).

On the other hand, if the stronger assumptions of Part (i) are in force, then equation
(3.3) also holds at every point in the set {∇u = 0}, provided that the expression

2Qa(|∇u|)|∇|∇u||2 + Qa(|∇u|)2
∣∣∣∣

∇u
|∇u| (∇|∇u|)T

∣∣∣∣
2

is interpreted as 0. Hence, inequality (2.7) holds in {∇u = 0} as well, inasmuch as
κN
(
ia + 2

) ≤ 1.
In order to verify the optimality of the constant κN (ia + 2) in inequality (2.7), pick

a function u and a point x0 from the proof of Lemma 3.6 such that ∇u(x0) �= 0 and
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equality holds in inequality (3.39), with u = u and p = ia+2, at the point x0. Namely,

|∇2u(x0)|2 + 2ia
∣∣∇|∇u|(x0)

∣∣2 + i2a

∣∣∣∣
∇u(x0)

|∇u(x0)| (∇|∇u|(x0))T
∣∣∣∣
2

= κN (ia + 2)|∇2u(x0)|2. (3.46)

By the definition of the index ia , given ε > 0 there exists t0 ∈ (0,∞) such that

ia ≤ Qa(t0) ≤ ia + ε. (3.47)

Define, the function u = t0u|∇u(x0)| , so that |∇u(0)| = t0. From identity (3.3), equation
(3.46) and inequality (3.47) we obtain that

∣∣div(a(|∇u|)∇u)
∣∣2 − div

[
a(|∇u|)2

(
(�u)T∇u − 1

2∇|∇u|2
)]

a(|∇u|)2|∇2u|2
∣∣∣∣
x=x0

=
|∇2u(x0)|2 + 2Qa(t0)|∇|∇u|(x0)|2 + Qa(t0)2

∣∣∣ ∇u(x0)|∇u(x0)| (∇|∇u|(x0))T
∣∣∣
2

|∇2u(x0)|2

=
|∇2u(x0)|2 + 2Qa(t0)|∇|∇u|(x0)|2 + Qa(t0)2

∣∣∣ ∇u(x0)|∇u(x0)| (∇|∇u|(x0))T
∣∣∣
2

|∇2u(x0)|2

≤
|∇2u(x0)|2+2(ia+ε)|∇|∇u|(x0)|2+(i2a+2ε|ia |+ε2))

∣∣∣ ∇u(x0)|∇u(x0)| (∇|∇u|(x0))T
∣∣∣
2

|∇2u(x0)|2

= kN (ia + 2) +
2ε|∇|∇u|(x0)|2 + (2ε|ia | + ε2))

∣∣∣ ∇u(x0)|∇u(x0)| (∇|∇u|(x0))T
∣∣∣
2

|∇2u(x0)|2
(3.48)

Hence, the optimality of the constant κN (ia + 2) in inequality (2.7) follows, owing to
the arbitrariness of ε. ��

4 Function spaces

An appropriate functional framework for the analysis of solutions to systems of the
general form (1.5) is provided by the Orlicz-Sobolev spaces associatedwith the energy
integral appearing in the functional (1.6). They consist in a generalization of the
classical Sobolev spaces,where the role of powers in the definitionof the norm is played
by more general Young functions. Section 4.1 is devoted to some basic definitions
and properties of Young functions and of Orlicz-Sobolev spaces. A Poincaré type
inequality for functions in these spaces, of use for our purposes, is established as well.
In Section 4.2we collect specific properties of theYoung function (and of perturbations
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of its) entering the definition of the peculiar Orlicz–Sobolev ambient space associated
with system (2.11).

4.1 Young functions and Orlicz–Sobolev spaces

AYoung function A : [0,∞) → [0,∞] is a convex function such that A(0) = 0. The
Young conjugate of a Young function A is the Young function Ã defined as

Ã(t) = sup{st − A(s) : s ≥ 0} for t ≥ 0.

A Young function (and, more generally, an increasing function) A is said to belong to
the class �2, or to satisfy the �2-condition, if there exists a constant c > 1 such that

A(2t) ≤ cA(t) for t > 0. (4.1)

Let i A and sA be the indices associated with a continuously differentiable function A
as in (2.1), with a replaced by A. Namely

i A = inf
t>0

t A′(t)
A(t)

and sA = sup
t>0

t A′(t)
A(t)

. (4.2)

One has that A ∈ �2 if and only if sA < ∞. The constant c in inequality (4.1) depends
on sa . Also, Ã ∈ �2 if and only if i A > 1.

The Orlicz space L A(�) is the Banach function space of those real-valued measur-
able functions u : � :→ R whose Luxemburg norm

‖u‖L A(�) = inf

{
λ > 0 :

∫

�

A

( |u|
λ

)
dx ≤ 1

}

is finite. The Orlicz space LA(�,RN ) of RN -valued functions, and the Orlicz spaces
L A(�,RN×n) and L A(�,RN×n×n) of RN×n-valued and RN×n×n-valued functions,
respectively, are defined analogously.

The Orlicz-Sobolev space W 1,A(�) is the Banach space

W 1,A(�) = {u ∈ LA(�) : u is weakly differentiable in � and ∇u ∈ L A(�,Rn)} ,

(4.3)
and is equipped with the norm

‖u‖W 1,A(�) = ‖u‖L A(�) + ‖∇u‖L A(�,Rn).

The space W 1,A
loc (�) is defined accordingly. By W 1,A

0 (�) we denote the subspace of
W 1,A(�) of those functions in W 1,A(�) whose extension by 0 outside � is weakly
differentiable in the whole of Rn . The notation (W 1,A

0 (�))′ stands for the dual of

W 1,A
0 (�). If � has finite Lebesgue measure |�|, then the functional ‖∇u‖L A(�,Rn)

defines a norm in W 1,A
0 (�) equivalent to ‖u‖W 1,A(�).

123



A. K. Balci et al.

The spaceC∞
0 (�) is dense inW 1,A

0 (�) if A ∈ �2. Moreover,W 1,A
0 (�) is reflexive

if both A ∈ �2 and Ã ∈ �2, and hence if i A > 1 and sA < ∞.
The Orlicz-Sobolev space W 1,A(�,RN ) of R

N -valued functions, its variants
W 1,A

loc (�,RN ) and W 1,A
0 (�,RN ), and the space (W 1,A

0 (�,RN ))′ are defined analo-
gously.

If |�| < ∞ and the Young function A ∈ �2, then the Poincaré type inequality

∫

�

A(|u|) dx ≤ c
∫

�

A(|∇u|) dx (4.4)

holds for some constant c = c(n, |�|, sa) and for every function u ∈ W 1,A
0 (�).

Inequality (4.4) follows, for instance, from [59, Lemma 3].
In order to bound lower-order terms appearing in our global estimate, we also need a

stronger, yet non-optimal, Sobolev-Poincaré type inequality for functions inW 1,A
0 (�)

with an Orlicz target space smaller than LA(�). This is the subject of Theorem 4.1
below, which generalizes a version of the relevant inequality with optimal Orlicz target
space from [26] (see also [25] for an equivalent form).

Assume that the Young function A and the number σ > 1 satisfy the conditions

∫

0

(
t

A(t)

) 1
σ−1

dt < ∞ (4.5)

and ∫ ∞ ( t

A(t)

) 1
σ−1

dt = ∞. (4.6)

Then, we define the function Hσ : [0,∞) → [0,∞) as

Hσ (s) =
(∫ s

0

(
t

A(t)

) 1
σ−1

dt

) 1
σ ′

for s ≥ 0, (4.7)

and the Young function Aσ as

Aσ (t) = A(H−1
σ (t)) for t ≥ 0. (4.8)

Theorem 4.1 Let � be an open set in R
n with |�| < ∞. Assume that the Young

function A and the number σ ≥ n fulfill conditions (4.5) and (4.6). Then there exists
a constant c = c(n, σ ) such that

∫

�

Aσ

( |u(x)|
c|�| 1n − 1

σ

( ∫
�
A(|∇u|)dy)1/σ

)
dx ≤

∫

�

A(|∇u|)dx (4.9)

for every u ∈ W 1,A
0 (�).
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Proof By the Pólya-Szegö principle on the decrease of the functional on the right-
hand side of inequality (4.9) under symmetric decreasing rearrangement of functions
u ∈ W 1,A

0 (�) (see [15]), it suffices to prove inequality (4.9) in the casewhen� is a ball
and the trial functions u are nonnegative and radially decreasing. As a consequence,
this inequality will follow if we show that

∫ |�|

0
Aσ

( ∫ |�|
s ϕ(r)r− 1

n′ dr

c|�| 1n − 1
σ

( ∫ |�|
0 A(ϕ(r))dr

)1/σ
)
ds ≤

∫ |�|

0
A(ϕ(s)) ds (4.10)

for a suitable constant c as in the statement and for every measurable function ϕ :
(0, |�|) → [0,∞). Let S be the linear operator defined as

Sϕ(s) =
∫ |�|

s
ϕ(r)r− 1

n′ dr for s ∈ (0, |�|), (4.11)

for every measurable function ϕ : (0, |�|) → R that makes the integral on the right-
hand side converge. One has that

‖Sϕ‖Lσ ′
(0,|�|) =

(∫ |�|

0
|Sϕ(s)|σ ′

ds

) 1
σ ′

≤
(∫ |�|

0
s− σ ′

n′
(∫ |�|

s
|ϕ(r)| dr

)σ ′

ds

) 1
σ ′

≤ ‖ϕ‖L1(0,|�|)
(∫ |�|

0
s− σ ′

n′ ds

) 1
σ ′

= c|�| 1n − 1
σ ‖ϕ‖L1(0,|�|) (4.12)

for a suitable constant c = c(n, σ ) and for every ϕ ∈ L1(0, |�|). Also, by the Hardy-
Littlewood inequality for rearrangements,

‖Sϕ‖L∞(0,|�|) ≤
∫ |�|

0
|ϕ(r)|r− 1

n′ dr ≤
∫ |�|

0
ϕ∗(r)r− 1

n′ dr

≤ |�| 1n − 1
σ

∫ |�|

0
ϕ∗(r)r− 1

σ ′ dr = |�| 1n − 1
σ ‖ϕ‖Lσ,1(0,|�|) (4.13)

for every ϕ ∈ Lσ,1(0, |�|). Here, ϕ∗ denotes the decreasing rearrangement of ϕ, and
Lσ,1(0, |�|) is the Lorentz space whose norm is defined by the last integral in equation
(4.13). Owing to equations (4.12) and (4.13), the interpolation theorem established in
[26, Theorem 4] can be applied to deduce inequality (4.10). ��

The next lemma tells us that the assumptions of Theorem 4.1 are certainly fulfilled
if A satisfies the �2-condition, provided that σ is sufficiently large.

Lemma 4.2 Let A be a continuously differentiable Young function satisfying the �2-
condition and let σ > sA. Then conditions (4.5) and (4.6) are fulfilled.

Proof Owing to the definition of sa , one verifies via differentiation that the function
A(t)
t sA is non-increasing. Thus,

A(t) ≥ A(1)t sA if t ∈ (0, 1], (4.14)

123



A. K. Balci et al.

and
A(t) ≤ A(1)t sA if t ∈ [1,∞). (4.15)

Equations (4.5) and (4.6) follow from (4.14) and (4.15), respectively. ��

4.2 Young functions built upon the function a

Given a continuously differentiable function a : (0,∞) → (0,∞) such that ia ≥ −1,
let b and B the functions defined by (1.8) and (1.7). Our assumption on ia ensures that
b is a non-decreasing function, and hence B is a Young function.

One has that
ib = ia + 1 and sb = sa + 1. (4.16)

Also
iB ≥ ib + 1 and sB ≤ sb + 1. (4.17)

Thus, if sa < ∞, then the functions b and B satisfy the �2-conditon, and if ia > −1,
then the function B̃ satisfies the �2-conditon.

Hence, if sa < ∞, then for every λ > 1 there exists a constant c = c(λ, sa) > 1
such that

b(λt) ≤ cb(t) for t ≥ 0, (4.18)

and
B(λt) ≤ cB(t) for t ≥ 0. (4.19)

Moreover,

tb′(t) ≤ (sa + 1)b(t) for t > 0, (4.20)

and

B(t) ≤ tb(t) ≤ (sa + 2)B(t) for t > 0. (4.21)

Since B̃(b(t)) ≤ B(2t) for t ≥ 0, there exists a constant c = c(sa) such that

B̃(b(t)) ≤ cB(t) for t ≥ 0. (4.22)

Finally, if ia > −1 and sa < ∞, then

a(1)min{t ia , t sa } ≤ a(t) ≤ a(1)max{t ia , t sa } for t > 0. (4.23)

If the function a is as above and ε > 0,we define the function aε : [0,∞) → (0,∞)

as
aε(t) = a(

√
t2 + ε2) for t ≥ 0. (4.24)

The functions bε and Bε are defined as in (1.8) and (1.7), with a replaced by aε.
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Lemma 4.3 Assume that the function a : (0,∞) → (0,∞) is continuously differen-
tiable in (0,∞) and that ia > −1 and sa < ∞. Let ε > 0 and let aε be the function
defined by (4.24). Then

iaε ≥ min{ia, 0} and saε ≤ max{sa, 0} , (4.25)

where iaε and saε are defined as in (2.1), with a replaced by aε.
Let b, B, bε and Bε be the functions defined above. Then there exist constants

c1, c2, c3, depending only on sa, such that

c1B(t) − c2B(ε) ≤ aε(t)t
2 ≤ c3(B(t) + B(ε)) for t ≥ 0. (4.26)

Moreover, there exists a constant c = c(sa) such that

Bε(t) ≤ c(B(t) + B(ε)) for t ≥ 0, (4.27)

and
B̃(bε(t)) ≤ c(B(t) + B(ε)) for t ≥ 0. (4.28)

Proof Property (4.25) can be verified by straightforward computations. Consider equa-
tion (4.26). One has that

aε(t)t
2 ≤ a(t + ε)t2 ≤ (sa + 2)B(t + ε) ≤ (sa + 2)(B(2t) + B(2ε))

≤ c(B(t) + B(ε)) for t ≥ 0, (4.29)

for some constant c = c(sa), where the second inequality holds by (4.21) and the last
one by (4.1). This proves the second inequality in (4.26). As for the first one, observe
that

B(t) ≤ B(t + ε) ≤ B(2t) + B(2ε) ≤ cB(t) + cB(ε) for t ≥ 0, (4.30)

for some constant c = c(sa), where we have made use of inequality (4.1) again. Now,

B(t) =
∫ t

0
a(τ )τ dτ ≤

∫ t

0
a(τ + ε)(τ + ε) dτ ≤

∫ t

0
a(2
√

τ 2 + ε2)2
√

τ 2 + ε2 dτ

≤ c
∫ t

0
a(
√

τ 2 + ε2)
√

τ 2 + ε2 dτ ≤ c t a(
√
t2 + ε2)

√
t2 + ε2

= c aε(t)t
√
t2 + ε2 for t ≥ 0, (4.31)

for some constant c = c(sa), where the third inequality is due to (4.18). On the other
hand,

aε(t)t
√
t2 + ε2 ≤ √

2aε(t)t
2 if t ≥ ε, (4.32)
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and

aε(t)t
√
t2 + ε2 ≤ √

2aε(ε)ε
2 = √

2a(
√
2ε)ε2 ≤ cB(ε) if 0 ≤ t ≤ ε, (4.33)

for some constant c = c(sa), where the last inequality holds thanks to (4.21). Com-
bining inequalities (4.31)–(4.33) yields

B(t) ≤ caε(t)t
2 + cB(ε) for t ≥ 0,

for some constant c = c(sa). Hence, the first inequality in (4.26) follows.
Inequality (4.27) holds because of the first inequality in (4.21), applied with B

replaced by Bε, and of the second inequality in (4.26).
Inequality (4.28) is a consequence of the following chain:

B̃(bε(t)) = B̃(a(
√
t2 + ε2)t) ≤ B̃(b(

√
t2 + ε2))

≤ B̃(b(t + ε)) ≤ cB(t + ε) ≤ c′(B(t) + B(ε)) for t ≥ 0, (4.34)

for some constants c and c′ depending on sa . Notice, that we havemade use of property
(4.22) in last but one inequality, and of property (4.1) in the last inequality. ��
Lemma 4.4 Assume that the function a : (0,∞) → (0,∞) is continuously differen-
tiable in (0,∞) and that ia > −1 and sa < ∞. Let ε > 0 and let aε be the function
defined by (4.24). Let M > 0. Then there exists a constant c = c(ia, sa, ε, M) such
that

|P − Q| ≤ c|aε(P)P − aε(Q)Q| (4.35)

for every P, Q ∈ R
N×n such that |P| ≤ M and |Q| ≤ M.

Proof Our assumptions on a legitimate an application of [38, Lemma 21], whence we
deduce that there exists a positive constant c = c(iaε , saε ) such that

c
[
aε(|P|+|Q|)+a′

ε(|P|+|Q|)(|P|+|Q|)]|P−Q|2 ≤ (aε(|P|)P−aε(|Q|)Q)·(P−Q)

(4.36)
for every P, Q ∈ R

N×n . Via inequalities (4.36) and (4.25) we deduce that

c(1 + min{ia, 0})aε(|P| + |Q|)|P − Q| ≤ |aε(|P|)P − aε(|Q|)Q| (4.37)

for every P, Q ∈ R
N×n . Inequality (4.4) hence follows, since

aε(|P| + |Q|) ≥ min
{
a(t) : ε ≤ t ≤

√
2M2 + ε2

}
> 0

if |P| ≤ M and |Q| ≤ M , and (1 + min{ia, 0}) > 0. ��
One more function associated with a function a as above and to a number ε > 0 will
be needed in our proofs. The function in question is denoted by Vε : RN×n → R

N×n

and is defined as
Vε(P) = √aε(|P|)P for P ∈ R

N×n . (4.38)
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Lemma 4.5 Assume that the function a : (0,∞) → (0,∞) is continuously differen-
tiable and such that ia > −1 and sa < ∞. Let ε > 0 and let aε be the function defined
by (4.24). Then

aε(|P|)P → a(|P|)P as ε → 0+, (4.39)

uniformly for P in any compact subset of RN×n.
Moreover,

(aε(|P|)P−aε(|Q|)Q) ·(P−Q) ≈ ∣∣Vε(P)−Vε(Q)
∣∣2 for P, Q ∈ R

N×n, (4.40)

where the relation≈means that the two sides are bounded by each other, up to positive
multiplicative constants depending only on ia and sa.

Proof Fix any 0 < � < L and assume that ε ∈ [0, 1]. Since a ∈ C1(0,∞), if
� ≤ |P| ≤ L then

|aε(|P|)P − a(|P|)P| ≤ |P||aε(|P|) − a(|P|)| (4.41)

≤ max
t∈[�,√L2+1]

|a′(t)|(
√

|P|2 + ε2 − |P|) ≤ max
t∈[�,√L2+1]

|a′(t)|ε.

Moreover, if |P| ≤ 1, then, by the second inequality in (4.23) applied with a replaced
by aε and by the first inequality in (4.25),

|aε(|P|)P| ≤ aε(1)|P|1+min{ia ,0} ≤ max
t∈[1,√2]

|a(t)||P|1+min{ia ,0}. (4.42)

Now, let L > 0. Fix any σ > 0. By inequality (4.42), there exists � > 0 such that

|aε(|P|)P − a(|P|)P| ≤ |aε(|P|)P| + |a(|P|)P| ≤ σ (4.43)

for every ε ∈ [0, 1], provided that |P| < �. On the other hand, inequality (4.41)
ensures that there exists ε0 ∈ (0, 1) such that

|aε(|P|)P − a(|P|)P| < σ (4.44)

if � ≤ |P| ≤ L . From inequalities (4.43) and (4.44) we deduce that, if 0 ≤ ε < ε0,
then

|aε(|P|)P − a(|P|)P| < σ if |P| ≤ L. (4.45)

This shows that the limit (4.39) holds unifromly for |P| ≤ L .
As far as Eq. (4.40) is concerned, it follows from [37, Lemma 41] that, since we

are assuming that iaε > −1 and saε < ∞, the ratio of the two sides of this equation is
bounded from below and from above by positive constants depending only on a lower
bound for iaε and an upper bound for saε . Owing to inequalities (4.25), we have that
iaε ≥ min{ia, 0} > 0 and saε ≤ max{sa, 0} < ∞ for every ε > 0. This implies that
Eq. (4.40) actually holds up to equivalence constants depending only on ia and sa . ��
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5 Second-order regularity: local solutions

The definiton of generalized local solution to the system

− div(a(|∇u|)∇u) = f in � (5.1)

that will be adopted is inspired by the results of [41], and involves the notion of
approximate differentiability. Recall that a measurable function u : � → R

N is said
to be approximately differentiable at x ∈ � if there exists a matrix ap∇u(x) ∈ R

N×n

such that, for every ε > 0,

lim
r→0+

∣∣{y ∈ Br (x) : 1
r |u(y) − u(x) − ap∇u(x)(y − x)| > ε}∣∣

rn
= 0.

If u is approximately differentiable at every point in�, then the function ap∇u : � →
R

N×n is measurable.
Assume that a is as in Theorem 2.4 and let f ∈ Lq

loc(�,RN ) for some q ≥ 1. An
approximately differentiable function u : � → R

N is called a local approximable
solution to system (5.1) if a(|ap∇u|)|ap∇u| ∈ L1

loc(�), and there exist a sequence
{fk} ⊂ C∞(�,RN ), with fk → f in Lq

loc(�,RN ), and a corresponding sequence of
local weak solutions {uk} to the systems

− div(a(|∇uk |)∇uk) = fk in �, (5.2)

such that
uk → u and ∇uk → ap∇u a.e. in �, (5.3)

and

lim
k→∞

∫

�′
a(|∇uk |)|∇uk | dx =

∫

�′
a(|ap∇u|)|ap∇u| dx (5.4)

for every open set �′ ⊂⊂ �. In what follows, we shall denote ap∇u simply by ∇u.
Weak solutions to system (5.1) are defined in a standard way if f ∈ L1

loc(�,RN ) ∩
(W 1,B

0 (�,RN ))′, where B is the Young function defined via (1.7). Namely, a function

u ∈ W 1,B
loc (�,RN ) is called a local weak solution to this system if

∫

�′
a(|∇u|)∇u · ∇ϕ dx =

∫

�′
f · ϕ dx (5.5)

for every open set �′ ⊂⊂ �, and every function ϕ ∈ W 1,B
0 (�′,RN ).

Inequality (2.7) enters the proof of Theorem 2.4 through Lemma 5.1 below. The
latter will be applied to solutions to systems which approximate system (2.11), and
involve regularized differential operators and smooth right-hand sides. Lemma 5.1
can be deduced from Theorem 2.1 and inequality (2.10), along the same lines as in
the proof of [32, Theorem 3.1, Inequality (3.4)]. The details are omitted, for brevity.
We seize this opportunity to point out an incorrect dependence on the radius R of the
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constants in that inequality, due to a flaw in the scaling argument in the derivation of
[32, Inequality (3.43)].

Lemma 5.1 Let n ≥ 2, N ≥ 2, and let � be an open set in R
n. Assume that the

function a ∈ C1([0,∞)) satisfies conditions (2.4)–(2.6). Then there exists a constant
C = C(n, N , ia, sa), such that

R−1
∥∥a(|∇u|)∇u

∥∥
L2(BR ,RN×n)

+ ∥∥∇(a(|∇u|)∇u
)∥∥

L2(BR ,RN×n×n)

≤ C
(
‖div(a(|∇u|)∇u)‖L2(B2R ,RN ) + R− n

2−1‖a(|∇u|)∇u‖L1(B2R ,RN×n)

)

(5.6)

for every function u ∈ C3(�,RN ) and any ball B2R ⊂⊂ �.

Proof of Theorem 2.4 Let us temporarily assume that

f ∈ C∞(�,RN ) , (5.7)

and that u is a local weak solution to system (5.1). Observe that, thanks to equations
(2.12) and (4.25),

iaε > 2(1 − √
2) . (5.8)

Let B2R ⊂⊂ � and, given ε ∈ (0, 1), let uε ∈ u + W 1,B
0 (B2R,RN ) be the weak

solution to the Dirichlet problem

{
−div(aε(|∇uε|)∇uε) = f in B2R

uε = u on ∂B2R .
(5.9)

We claim that

uε ∈ C∞(B2R,RN ). (5.10)

Actually, as a consequence of [39, Corollary 5.5], ∇uε ∈ L∞
loc(B2R,RN×n) and there

exists a constant C , independent of ε, such that

‖∇uε‖L∞(BR ,RN×n) ≤ C . (5.11)

The same result also tells us that aε(|∇uε|)∇uε ∈ Cα
loc(B2R,RN×n) for some α ∈

(0, 1). Therefore, by inequality (4.35), we have that ∇uε ∈ Cα
loc(B2R,RN×n) as well.

Hence, aε(|∇uε|) ∈ C1,α
loc (B2R), and by the Schauder theory for linear elliptic systems,

uε ∈ C2,α
loc (B2R,RN ). An iteration argument relying upon the Schauder theory again

yields property (5.10).
We claim that
∫

B2R
B(|∇uε|) dx ≤ C

(∫

B2R
B̃(|f |) dx +

∫

B2R
B(|∇u|) dx + B(ε)

)
(5.12)
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for some constant C = C(n, N , sa, R) and for ε ∈ (0, 1). Indeed, choosing uε − u ∈
W 1,B

0 (B2R,RN ) as a test function in the weak formulation of problem (5.9) results in

∫

B2R
aε(|∇uε|)∇uε · (∇uε − ∇u) dx =

∫

B2R
f · (uε − u) dx . (5.13)

The Poincaré inequality (4.4) implies that

∫

B2R
B(|uε − u|) dx ≤ C

∫

B2R
B(|∇uε − ∇u|) dx (5.14)

for some constant C = C(n, sa, R).
Fix δ ∈ (0, 1). From equation (5.13), the first inequality in (4.26), and inequalities

(5.14) , (4.22) and (4.27) one obtains that

c1

∫

B2R
B(|∇uε|) dx

≤
∫

B2R
|f ||uε − u| dx + C

∫

B2R
aε(|∇uε|)|∇uε||∇u| dx + CRnB(ε)

≤ C1

∫

B2R
B̃(|f |) dx + δ

∫

B2R
B(|uε − u|) dx

+ δ

∫

B2R
B̃ε(aε(|∇uε|)|∇uε|) dx + C1

∫

B2R
Bε(|∇u|) dx + CRnB(ε)

≤ C1

∫

B2R
B̃(|f |) dx + δC2

∫

B2R
B(|∇uε|) dx + C3

∫

B2R
B(|∇u|) dx

+ δC4

∫

B2R
Bε(|∇uε|) dx + C1

∫

B2R
Bε(|∇u|) dx + CRnB(ε)

≤ C1

∫

B2R
B̃(|f |) dx + δC5

∫

B2R
B(|∇uε|) dx + C6

∫

B2R
B(|∇u|) dx + CRnB(ε)

(5.15)

for suitable constants C2, C4 and C5 depending on n, N , sa, R, and constants C1, C3
and C6 depending also on δ. Inequality (5.12) follows from (5.15), on choosing δ

small enough.
Coupling inequality (5.12) with the Poincaré inequality (4.4) tells us that the family

{uε} is bounded in W 1,B(B2R,RN ). Since under assumptions (2.12) and (2.13) the
latter space is reflexive, there exist a sequence {εk} and a function v ∈ W 1,B(B2R,RN )

such that εk → 0+ and

uεk⇀v in W 1,B(B2R,RN ). (5.16)
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Choosing the test function uεk − u for system (2.11), and subtracting the resultant
equation from (5.13) enables us to deduce that, given any δ > 0,

∫

B2R

(
aεk (|∇uεk |)∇uεk − aεk (|∇u|)∇u

) · (∇uεk − ∇u) dx

=
∫

B2R

(
a(|∇u|)∇u − aεk (|∇u|)∇u

) · (∇uεk − ∇u) dx

≤ δ

∫

B2R
B(|∇uεk |) + B(|∇u|) dx + C

∫

B2R
B̃
(|a(|∇u|)∇u − aεk (|∇u|)∇u|)dx

(5.17)

for some constant C = C(δ, sa). Owing to equation (4.40), there exists a constant
c = c(ia, sa) such that

∫

B2R
|Vεk (∇uεk ) − V (∇u)|2 dx ≤ 2

∫

B2R
|Vεk (∇uεk ) − Vεk (∇u)|2 dx

+ 2
∫

B2R
|Vεk (∇u) − V (∇u)|2 dx

≤ c
∫

B2R

(
aεk (|∇uεk |)∇uεk − aεk (|∇u|)∇u

) · (∇uεk − ∇u) dx

+ 2
∫

B2R
|Vεk (∇u) − V (∇u)|2 dx . (5.18)

Combining Eqs. (5.18), (5.17) and (5.12) yields

∫

B2R
|Vεk (∇uεk ) − V (∇u)|2 dx ≤ δc

(∫

B2R
B̃(|f |) dx +

∫

B2R
B(|∇u|) dx + B(ε)

)

+ c
∫

B2R
B̃
(|a(|∇u|)∇u − aεk (|∇u|)∇u|)dx

+ 2
∫

B2R
|Vεk (∇u) − V (∇u)|2 dx (5.19)

for some constant c = c(n, N , R, ia, sa). Inequalities (4.22) and (4.28) entail that

B̃
(|a(|∇u|)∇u − aεk (|∇u|)∇u|) ≤ c(B(|∇u|) + B(εk)) a.e. in B2R, (5.20)

for some constant c = c(sa). Furthermore, from inequality (4.26) one infers that

|Vεk (∇u)|2 ≤ c(B(|∇u|) + B(εk)) a.e. in B2R, (5.21)

for some constant c = c(sa). Thanks to inequalities (5.20) and (5.21), and to property
(4.39), the last two integrals on the right-hand side of inequality (5.19) tend to 0
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as k → ∞, via the dominated convergence theorem. Owing to the same theorem,
equation (5.19) implies that

lim
k→∞

∫

B2R
|Vεk (∇uεk ) − V (∇u)|2 dx ≤ δc (5.22)

for every δ ∈ (0, 1). Thereby,

Vεk (∇uεk ) → V (∇u) in L2(B2R,RN×n), (5.23)

and, on passing to a subsequence, still indexed by k,

Vεk (∇uεk ) → V (∇u) a.e. in B2R . (5.24)

An analogous argument as in [40, Lemma 4.8] shows that the function (ε, P) �→
V−1

ε (P) is continuous. Thus, one can deduce from equation (5.24) that

∇uεk → ∇u a.e. in B2R . (5.25)

Hence, Eq. (5.16) implies that v = u and

uεk⇀u in W 1,B(B2R,RN ). (5.26)

Inequalities (4.26) and (5.12), and the monotonicity of the function bεk , yield

∫

B2R
aεk (|∇uεk |)|∇uεk | dx ≤

∫

{|∇uεk |≤1}∩B2R
aεk (|∇uεk |)|∇uεk | dx

+
∫

B2R
aεk (|∇uεk |)|∇uεk |2 dx

≤ cRnbεk (1) + c
∫

B2R
B(∇uεk ) dx + cRn B(εk) ≤ C

(5.27)

for some constants c and C independent of k.
Thanks to assumption (5.8) and to property (4.25), Lemma 5.1 can be applied with

a replaced by aεk . The use of inequality (5.6) of this lemma for the function uεk , and
the equation in (5.9), ensure that

R−1
∥∥a(|∇uεk |)∇uεk

∥∥
L2(BR ,RN×n)

+ ∥∥∇(a(|∇uεk |)∇uεk

)∥∥
L2(BR ,RN×n×n)

≤ C
(
‖f‖L2(B2R ,RN ) + R− n

2−1‖a(|∇uεk |)∇uεk‖L1(B2R ,RN×n)

)
(5.28)

for some constant C = C(n, N , ia, sa). Owing to inequalities (5.27) and (5.28), the
sequence {aεk (|∇uεk |)∇uεk } is bounded in W 1,2(BR,RN×n). Thus, there exists a
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function U ∈ W 1,2(BR,RN×n), and a subsequence of {εk}, still indexed by k, such
that

aεk (|∇uεk |)∇uεk → U in L2(BR,RN×n)

and aεk (|∇uεk |)∇uεk⇀U in W 1,2(BR,RN×n). (5.29)

Combining property (4.39) with Eqs. (5.11), (5.25) and (5.29) yields

a(|∇u|)∇u = U ∈ W 1,2(BR,RN×n). (5.30)

On passing to the limit as k → ∞, from equations (5.28), (5.29) and (5.30) we infer
that

R−1
∥∥a(|∇u|)∇u

∥∥
L2(BR ,RN×n)

+ ∥∥∇(a(|∇u|)∇u
)∥∥

L2(BR ,RN×n×n)

≤ C
(
‖f‖L2(B2R ,RN ) + R− n

2−1‖a(|∇u|)∇u‖L1(B2R ,RN×n)

)
. (5.31)

It remains to remove assumption (5.7). Suppose that f ∈ L2
loc(�,RN ). Let u be an

approximable local solution to equation (2.11), and let fk and uk be as in the definition
of this kind of solution. Applying inequality (5.31) to the function uk tells us that
a(|∇uk |)∇uk ∈ W 1,2(BR,RN×n), and

R−1
∥∥a(|∇uk |)∇uk

∥∥
L2(BR ,RN×n)

+ ∥∥∇(a(|∇uk |)∇uk
)∥∥

L2(BR ,RN×n×n)

≤ C
(
‖fk‖L2(B2R ,RN ) + R− n

2−1‖a(|∇uk |)∇uk‖L1(B2R ,RN×n)

)
(5.32)

for some constant C independent of k. Hence, by equation (5.4), the sequence
{a(|∇uk |)∇uk} is bounded in W 1,2(BR,RN×n). Thereby, there exist a subsequence,
still indexed by k, and a function U ∈ W 1,2(BR,RN×n), such that

a(|∇uk |)∇uk → U in L2(BR,RN×n)

and a(|∇uk |)∇uk⇀U in W 1,2(BR,RN×n). (5.33)

By Assumption (5.3), we have that ∇uk → ∇u a.e. in �. Hence, thanks to properties
(5.33),

a(|∇u|)∇u = U ∈ W 1,2(BR,RN×n) . (5.34)

Inequality (2.15) follows on passing to the limit as k → ∞ in (5.32), via (5.4), (5.33)
and (5.34). ��
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6 Second-order regularity: Dirichlet problems

Generalized solutions, in the approximable sense, to the Dirichlet problem

{
−div(a(|∇u|)∇u) = f in �

u = 0 on ∂� ,
(6.1)

are defined in analogy with the local solutions introduced in Sect. 5.
Assume that a is as in Theorems 2.6 and 2.7 and let f ∈ Lq(�,RN ) for some q ≥ 1.

An approximately differentiable function u : � → R
N is called an approximable

solution to the Dirichlet problem (6.1) if there exists a sequence {fk} ⊂ C∞
0 (�,RN )

such that fk → f in Lq(�,RN ), and the sequence {uk} of weak solutions to the
Dirichlet problems {

−div(a(|∇uk |)∇uk) = fk in �

uk = 0 on ∂�
(6.2)

satisfies
uk → u and ∇uk → ap∇u a.e. in �. (6.3)

As above, in what follows ap∇u will simply be denoted by ∇u.
Recall that, under the assumption that f ∈ L1(�,RN )∩(W 1,B

0 (�,RN ))′, a function
u ∈ W 1,B

0 (�,RN ) is called a weak solution to the Dirichlet problem (6.1) if

∫

�

a(|∇u|)∇u · ∇ϕ dx =
∫

�

f · ϕ dx (6.4)

for everyϕ ∈ W 1,B
0 (�,RN ). A uniqueweak solution to problem (6.1) existswhenever

|�| < ∞.
The notion of approximable solution to the Dirichlet problem (6.1) introduced

above is closely related to those appearing in [9,12,34] in the case of equations of
p-Laplacian type. The existence of approximable solutions to the Dirichlet problem
(6.1), in the case of equations and with f ∈ L1(�), was proved in [29]. Systems
of p-Laplacian type were treated in [41,42], whereas the existence of approximable
solutions for systems with a more general growth as in (6.1) has very recently been
established in [24]. In the latter paper, data f in L1(�,RN ), and even in the space
of finite Radon measures, are considered. In the definition of approximable solution
adopted in [24] the approximate gradient ap∇u is replaced by an alternate notion
of generalized gradient, which involves truncations of vector-valued functions. The
results of the present paper also apply to those solutions, provided that the gradient
is interpreted accordingly. Besides other ingredients, the result of [24] relies upon
the use of arguments from the proof of Proposition 6.2 below, which appeared in a
preliminary version of the present paper.

Before accomplishing the proof of our global estimates, we recall the notions of
capacity and of Marcinkiewicz spaces that enter conditions (2.22) and (2.23), respec-
tively, in the statement of Theorem 2.7.
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The capacity cap�(E) of a set E ⊂ � relative to � is defined as

cap�(E) = inf

{∫

�

|∇v|2 dx : v ∈ C0,1
0 (�), v ≥ 1 on E

}
. (6.5)

Here, C0,1
0 (�) denotes the space of Lipschitz continuous, compactly supported func-

tions in �.
The Marcinkiewicz space Lq,∞(∂�) is the Banach function space endowed with

the norm defined as

‖ψ‖Lq,∞(∂�) = sup
s∈(0,Hn−1(∂�))

s
1
q ψ∗∗(s) (6.6)

for a measurable function ψ on ∂�. Here, ψ∗∗(s) = 1
s ∫s0 ψ∗(r) dr for s > 0,

where ψ∗ denotes the decreasing rearrangement of ψ . The Marcinkiewicz space
L1,∞ log L(∂�) is equipped with the norm given by

‖ψ‖L1,∞ log L(∂�) = sup
s∈(0,Hn−1(∂�))

s log
(
1 + C

s

)
ψ∗∗(s), (6.7)

for any constant C > Hn−1(∂�). Different constants C result in equivalent norms in
(6.7).

Lemma 6.1 is related to Theorems 2.6 and 2.7 in the same way that Lemma 5.1 is
related to Theorem 2.4. Lemma 6.1 follows from Theorem 2.1 and inequality (2.10),
via the same proof of [31, Theorem 3.1, Part (ii)].

Lemma 6.1 Let n ≥ 2, N ≥ 2, and let � be a bounded open set in Rn with ∂� ∈ C2.
Let K� be the function defined by (2.20). Assume that a is a function as in Theorem
2.1, Part (i), which also fulfills conditions (2.12) and (2.13). There exists a constant
c = c(n, N , ia, sa, L�, d�) such that, if

K�(r) ≤ K(r) for r ∈ (0, 1), (6.8)

for some function K : (0, 1) → [0,∞) satisfying

lim
r→0+ K(r) < c , (6.9)

then

‖a(|∇u|)∇u‖W 1,2(�,RN×n) ≤ C
(‖div(a(|∇u|)∇u)‖L2(�,RN ) + ‖a(|∇u|)∇u‖L1(�,RN×n)

)
(6.10)

for some constant C = C(n, N , ia, sa, L�, d�,K), and for every function u ∈
C3(�,RN ) ∩ C2(�,RN ) such that

u = 0 on ∂�. (6.11)
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In particular, if � is convex, then inequality (6.10) holds whatever K� is, and the
constant C in (6.10) only depends on n, N , ia, sa, L�, d�.

The following gradient bound for solutions to the Dirichlet problem (6.1) is needed
to deal with lower-order terms appearing in our global estimates.

Proposition 6.2 Assume that n ≥ 2, N ≥ 2. Let� be an open set inRn such that |�| <

∞. Assume that the function a : [0,∞) → [0,∞) is continuously differentiable in
(0,∞) and fulfills conditions (2.12) and (2.13). Let f ∈ L1(�,RN )∩(W 1,B

0 (�,RN ))′
and let u be the weak solution to the Dirichlet problem (6.1). Then there exists a
constant C = C(n, N , ia, sa, |�|) such that

‖a(|∇u|)∇u‖L1(�,RN×n) ≤ C‖f‖L1(�,RN ). (6.12)

The same conclusion holds if f ∈ L1(�,RN ) and u is an approximable solution to
the Dirichlet problem (6.1).

Proof Assume that f ∈ L1(�,RN )∩ (W 1,B
0 (�,RN ))′ and that u is the weak solution

to the Dirichlet problem (6.1). Given t > 0, let Tt (u) : � → R
N be the function

defined by

Tt (u) =
⎧⎨
⎩
u in {|u| ≤ t}
t
u
|u| in {|u| > t}. (6.13)

Then Tt (u) ∈ W 1,B
0 (�,RN ), and

∇Tt (u) =
⎧⎨
⎩

∇u a.e. in {|u| ≤ t}
t

|u|
(
I − u

|u| ⊗ u
|u|
)
∇u a.e. in {|u| > t} (6.14)

Observe that
a(|P|)P · (I − ω ⊗ ω)P ≥ 0

for every matrix P ∈ R
N×n and any vector ω ∈ R

N such that |ω| ≤ 1. Thus, on
making use of Tt (u) as a test function ϕ in equation (6.4), one deduces that

∫

{|u|≤t}
a(|∇u|)|∇u|2 dx ≤

∫

�

a(|∇u|)∇u · ∇Tt (u) dx =
∫

�

f · Tt (u) dx

=
∫

{|u|≤t}
f · u dx +

∫

{|u>t}
f · t u

|u| dx ≤ t‖f‖L1(�,RN ).

(6.15)

Hence, by the first inequality in (4.21),

∫

{|u|≤t}
B(|∇u|) dx ≤ t‖f‖L1(�,RN ). (6.16)
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On the other hand, the chain rule for vector-valued functions ensures that the function
|u| ∈ W 1,B

0 (�), and |∇u| ≥ |∇|u|| a.e. in �. Inequality (6.16) thus implies that

∫

{|u|<t}
B(|∇|u||) dx ≤ t‖f‖L1(�,RN ) for t > 0. (6.17)

The standard chain rule for Sobolev functions entails that Tt (|u|) ∈ W 1,B(�). Let
σ > max{sa + 2, n}. Hence, σ > max{sB, n}, inasmuch as iB ≤ ib + 1 = ia + 2.
Owing to Lemma 4.2, the assumptions of Theorem 4.1 are fulfilled, with A replaced
by B and with this choice of σ . An application of the Orlicz-Sobolev inequality (4.9)
to the function Tt (|u|) tells us that

∫

�

Bσ

( |Tt (|u|)|
C
( ∫

�
B(|∇Tt (|u|)|)dy)1/σ

)
dx ≤

∫

�

B(|∇(Tt (|u|))|)dx, (6.18)

where C = c|�| 1n − 1
σ . Here, Bσ denotes the function defined as in (4.7)–(4.8), with A

replaced by B. One has that

∫

�

B(|∇Tt (|u|)|)dx =
∫

{|u|<t}
B(|∇|u||)dx for t > 0, (6.19)

|Tt (|u|)| = t in {|u| ≥ t}, (6.20)

and
{|Tt (|u|)| ≥ t} = {|u| ≥ t} for t > 0. (6.21)

Thus,

|{|u| ≥ t}|Bσ

(
t

C(
∫
{|u|<t} B(|∇|u||)dy) 1

σ

)

≤
∫

{|u|≥t}
Bσ

( |Tt (|u|)|
C
( ∫

{|u|<t} B(|∇|u||)dy)1/σ
)
dx

≤
∫

{|u|<t}
B(|∇|u||)dx (6.22)

for t > 0. Hence, by inequality (6.17),

|{|u| ≥ t}|Bσ

(
t

C(t‖f‖L1(�,RN ))
1
σ

)
≤ t‖f‖L1(�,RN ) for t > 0. (6.23)
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From inequality (6.16) we deduce that

|{B(|∇u|) > s, |u| ≤ t}| ≤ 1

s

∫

{B(|∇u|)>s,|u|≤t}
B(|∇u|) dx

≤ t‖f‖L1(�,RN )

s
for t > 0 and s > 0. (6.24)

Coupling inequalities (6.24) and (6.23) yields

|{B(|∇u|) > s}| ≤ |{|u| > t}| + |{B(|∇u|) > s, |u| ≤ t}|
≤ t‖f‖L1(�,RN )

Bσ (Ct
1
σ ′ /(t‖f‖L1(�,RN ))

1
σ )

+ t‖f‖L1(�,RN )

s

for t > 0 and s > 0. (6.25)

The choice t = ( 1C ‖f‖1/σ
L1(�,RN )

B−1
σ (s)

)σ ′
in inequality (6.25) results in

|{B(|∇u|) > s}| ≤
2‖f‖σ ′

L1(�,RN )

Cσ ′
B−1

σ (s)σ
′

s
for s > 0. (6.26)

Next, set s = B(b−1(τ )) in (6.26) and make use of (4.8) to obtain that

|{b(|∇u|) > τ }| ≤
2‖f‖σ ′

L1(�,RN )

Cσ ′
Hσ (b−1(τ ))σ

′

B(b−1(τ ))
for τ > 0, (6.27)

where Hσ is defined as in (4.7), with A replaced by B. Thanks to inequality (6.27),

∫

�

b(|∇u|) dx =
∫ ∞

0
|{b(|∇u|) > τ }| dτ

≤ λb(|�|) + 2C−σ ′ ‖f‖σ ′
L1(�,RN )

∫ ∞

λ

Hσ (b−1(τ ))σ
′

B(b−1(τ ))
dτ (6.28)

for λ > 0. Owing to inequalities (4.20) and (4.21), and to Fubinis’s theorem, the
following chain holds:

∫ ∞

λ

Hσ (b−1(τ ))σ
′

B(b−1(τ ))
dτ ≤

∫ ∞

b−1(λ)

Hσ (s)σ
′

sB(s)
b(s)ds

=
∫ ∞

b−1(λ)

b(s)

sB(s)

∫ s

0

(
t

B(t)

) 1
σ−1

dt ds

≤ (sa + 2)
∫ ∞

b−1(λ)

1

s2

∫ s

0

(
t

B(t)

) 1
σ−1

dt ds
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= (sa+2)

(∫ b−1(λ)

0

(
t

B(t)

) 1
σ−1
∫ ∞

b−1(λ)

ds

s2
dt+
∫ ∞

b−1(λ)

(
t

B(t)

) 1
σ−1
∫ ∞

t

ds

s2
dt

)

= (sa + 2)

(
1

b−1(λ)

∫ b−1(λ)

0

(
t

B(t)

) 1
σ−1

dt +
∫ ∞

b−1(λ)

(
t

B(t)

) 1
σ−1 dt

t

)

≤ (sa + 2)σ
′
(

1

b−1(λ)

∫ b−1(λ)

0

(
1

b(t)

) 1
σ−1

dt +
∫ ∞

b−1(λ)

(
1

b(t)

) 1
σ−1 dt

t

)

(6.29)

for λ > 0. The function t sa+1+ε

b(t) is increasing for every ε > 0. Hence, if 0 < ε <

σ − sa − 2, then

1

b−1(λ)

∫ b−1(λ)

0

(
1

b(t)

) 1
σ−1

dt = 1

b−1(λ)

∫ b−1(λ)

0

(
t sa+1+ε

b(t)

) 1
σ−1

t−
sa+1+ε

σ−1 dt

≤ 1

b−1(λ)

(
b−1(λ)sa+1+ε

λ

) 1
σ−1
∫ b−1(λ)

0
t−

sa+1+ε
σ−1 dt

= σ − 1

σ − sa − 2 − ε
λ− 1

σ−1 for λ > 0. (6.30)

On the other hand, if 0 < ε < ia + 1, then the function tε
b(t) is decreasing. Hence,

∫ ∞

b−1(λ)

(
1

b(t)

) 1
σ−1 dt

t
=
∫ ∞

b−1(λ)

(
tε

b(t)

) 1
σ−1

t−
ε

σ−1−1 dt

≤
(
b−1(λ)ε

λ

) 1
σ−1
∫ ∞

b−1(λ)

t−
ε

σ−1−1 dt

= σ − 1

ε
λ− 1

σ−1 for λ > 0. (6.31)

Inequalities (6.29)–(6.31) entail that there exists a constant c = c(σ, ia, sa) such that

∫ ∞

λ

Hσ (b−1(τ ))σ
′

B(b−1(τ ))
dτ ≤ cλ− 1

σ−1 for λ > 0. (6.32)

Inequality (6.12) follows from (6.28) and (6.32), with the choice λ = ‖f‖L1(�,RN ).
The assertion about the case when f ∈ L1(�,RN ) and u is an approximable

solution to the Dirichlet problem (6.1) follows on applying inequality (6.12) with f
and u replaced by the functions fk and uk appearing in the definition of approximable
solutions, and passing to the limit as k → ∞ in the resultant inequality. Fatou’s lemma
plays a role here. ��

A last preliminary result, proved in [32, Lemma 5.2], is needed in an approximation
argument for the domain � in our proof of Theorem 2.7.
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Lemma 6.3 Let � be a bounded Lipschitz domain in Rn, n ≥ 2 such that ∂� ∈ W 2,1.
Assume that the function K�(r), defined as in (2.20), is finite-valued for r ∈ (0, 1).
Then there exist positive constants r0 and C, depending on n, d� and L�, and a
sequence of bounded open sets {�m}, such that ∂�m ∈ C∞,� ⊂ �m, limm→∞ |�m \
�| = 0, the Hausdorff distance between �m and � tends to 0 as m → ∞,

L�m ≤ C, d�m ≤ C (6.33)

and
K�m (r) ≤ CK�(r) (6.34)

for r ∈ (0, r0) and m ∈ N.

Proof of Theorem 2.7 It suffices to prove Part (i). Part (ii) will then follow, since, by
[32, Lemmas 3.5 and 3.7],

K�(r) ≤ C sup
x∈∂�

‖B‖X(∂�∩Br (x)) for r ∈ (0, r0), (6.35)

for suitable constants r0 and C depending on n, L� and d�.
We split the proof in three separate steps, where approximation arguments for the

differential operator, the domain and the datum on the right-hand side of the system,
respectively, are provided.

Step 1. Assume that the additional conditions

f ∈ C∞
0 (�,RN ) , (6.36)

and
∂� ∈ C∞ (6.37)

are in force. Given ε ∈ (0, 1), we denote by uε the weak solution to the system

{
−div(aε(|∇uε|)∇uε) = f in �

uε = 0 on ∂� ,
(6.38)

where aε is the function defined by (4.24). An application of [30, Theorem 2.1] tells
us that

‖∇uε‖L∞(�,RN×n) ≤ C (6.39)

for some constant C independent of ε. Let us notice that the statement of [30, Theo-
rem 2.1] yields inequality (6.39) under the assumption that the function aε be either
increasing or decreasing; such an additional assumption can however be dropped via
a slight variant in the proof. Inequality (6.39) implies that, for each ε ∈ (0, 1),

c1 ≤ aε(|∇uε|) ≤ c2 in � (6.40)
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for suitable positive constants c1 and c2.
A classical result by Elcrat and Meyers [10, Theorem 8.2] enables us to deduce,

via properties (6.36), (6.37) and (6.40), that uε ∈ W 2,2(�,RN ). Consequently,
uε ∈ W 1,2

0 (�,Rn) ∩ W 1,∞(�,RN ) ∩ W 2,2(�,RN ). One can then find a sequence
{uε,k}k∈N ⊂ C∞(�,RN ) ∩ C2(�,RN ) such that uε,k = 0 on ∂� for k ∈ N, and

uε,k → uε in W 1,2
0 (�,RN ), uε,k → uε in W 2,2(�,RN ),

∇uε,k → ∇uε a.e. in �, (6.41)

as k → ∞ — see e.g. [17, Chapter 2, Corollary 3]. One also has that

‖∇uε,k‖L∞(�,RN×n) ≤ C‖∇uε‖L∞(�,RN×n) (6.42)

for some constantC independent of k, and, by the chain rule for vector-valued Sobolev
functions [52, Theorem2.1], |∇|∇uε,k || ≤ |∇2uε,k | a.e. in�.Moreover, [30, Equation
(6.12)] tells us that

−div(aε(|∇uε,k |)∇uε,k) → f in L2(�,RN ), (6.43)

as k → ∞. Assumption (2.22) enables us to apply inequality (6.10), with a replaced
by aε and u replaced by uε,k , to deduce that

‖aε(|∇uε,k |)∇uε,k‖W 1,2(�,RN×n)

≤ C
(
‖div(aε(|∇uε,k |)∇uε,k)‖L2(�,RN ) + ‖aε(|∇uε,k |)∇uε,k‖L1(�,RN×n)

)

(6.44)

for k ∈ N, and for some constant C = C(n, N , ia, sa, L�, d�,K�). Notice that
this constant actually depends on the function aε only through ia and sa , and it is
hence independent of ε, owing to (4.25). Equations (6.42)–(6.44) ensure that the
sequence {aε(|∇uε,k |)∇uε,k} is bounded in W 1,2(�,RN×n). Therefore, there exist a
subsequence of {uε,k}, still denoted by {uε,k}, and a function Uε ∈ W 1,2(�,RN×n)

such that

aε(|∇uε,k |)∇uε,k → Uε in L2(�,RN×n),

aε(|∇uε,k |)∇uε,k⇀Uε in W 1,2(�,RN×n). (6.45)

Equation (6.41) entails that ∇uε,k → ∇uε a.e. in �. As a consequence,

aε(|∇uε,k |)∇uε,k → aε(|∇uε|)∇uε a.e. in �, (6.46)

as k → ∞. From equations (6.46) and (6.45) one infers that

aε(|∇uε|)∇uε = Uε ∈ W 1,2(�,RN×n) . (6.47)
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Furthermore, passing to the limit as k → ∞ in (6.44) yields

‖aε(|∇uε|)∇uε‖W 1,2(�,RN×n) ≤ C
(‖f‖L2(�,RN ) + ‖aε(|∇uε|)∇uε‖L1(�,RN×n)

)
.

(6.48)

Here, Eqs. (6.45) and (6.47) have been exploited to pass to the limit on the left-hand
side, and equations (6.42) and (6.43) on the right-hand side. Combining Eqs. (6.48)
and (6.39) tells us that

‖aε(|∇uε|)∇uε‖W 1,2(�,RN×n) ≤ C (6.49)

for some constant C , independent of ε. By the last inequality, the family of functions
{aε(|∇uε|)∇uε} is uniformly bounded in W 1,2(�,RN×n) for ε ∈ (0, 1). Therefore,
there exist a sequence {εm} converging to 0 and a function U ∈ W 1,2(�,RN×n) such
that

aεm (|∇uεm |)∇uεm → U in L2(�,RN×n),

aεm (|∇uεm |)∇uεm⇀U in W 1,2(�,RN×n). (6.50)

An argument parallel to that of the proof of (5.25) yields

∇uεm → ∇u a.e. in �. (6.51)

We omit the details, for brevity. Let us just point out that, in this argument, one has to
make use of the inequality

∫

�

B(|∇uεm |) dx ≤ C

(∫

�

B̃(|f |) dx + B(εm)

)
, (6.52)

instead of (5.12). Inequality (6.52) easily follows on choosing uεm as a test function
in the definition of weak solution to problem (6.38), with ε = εm . Coupling equations
(6.50) and (6.51) implies that

a(|∇u|)∇u = U ∈ W 1,2(�,RN×n) . (6.53)

On the other hand, on exploiting Eqs. (6.51) and (6.39), the dominated convergence
theorem for Lebesgue integrals and inequality (6.12) (applied with a and u replaced
by aεm and uεm ), one can deduce that

lim
m→∞ ‖aεm (|∇uεm |)∇uεm‖L1(�,RN×n) = ‖a(|∇u|)∇u‖L1(�,RN×n) ≤ C‖f‖L2(�,RN )

(6.54)

for some constant C = C(n, N , ia, sa, |�|). Combining Eqs. (6.48), (6.50), (6.53)
and (6.54) yields

‖a(|∇u|)∇u‖W 1,2(�,RN×n) ≤ C‖f‖L2(�,RN ) (6.55)
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for some constant C = C(n, N , ia, sa, L�, d�,K�).

Step 2. Assume now that the temporary condition (6.36) is still in force, but � is
just as in the statement. Let {�m} be a sequence of open sets approximating � in the
sense of Lemma 6.3. For eachm ∈ N, denote by um the weak solution to the Dirichlet
problem {

−div(a(|∇um |)∇um) = f in �m

um = 0 on ∂�m ,
(6.56)

where f is continued by 0 outside �. Owing to our assumptions on �m , inequality
(6.55) holds for um . Thereby, there exists a constantC(n, N , ia, sa, L�, d�,K�) such
that

‖a(|∇um |)∇um‖W 1,2(�,RN×n) ≤ ‖a(|∇um |)∇um‖W 1,2(�m ,RN×n)

≤ C‖f‖L2(�m ,RN ) = C‖f‖L2(�,RN ). (6.57)

Observe that the dependence of the constant C on the specified quantities, and, in
particular, its independence of m, is due to properties (6.33) and (6.34).
Thanks to (6.57), the sequence {a(|∇um |)∇um} is bounded in W 1,2(�,RN×n),
and hence there exists a subsequence, still denoted by {um} and a function U ∈
W 1,2(�,RN×n), such that

a(|∇um |)∇um → U in L2(�,RN×n),

a(|∇um |)∇um⇀U in W 1,2(�,RN×n). (6.58)

We now notice that there exists α ∈ (0, 1), independent of m, such that um ∈
C1,α
loc (�,RN ), and for every open set �′ ⊂⊂ � with a smooth boundary

‖um‖C1,α(�′,RN ) ≤ C, (6.59)

for some constant C , independent of m. To verify this assertion, one can make use
of [39, Corollary 5.5] and of inequality (4.35) to deduce that, for each open set �′ as
above, there exists a constant C , independent of m, such that

‖∇um‖Cα(�′,RN×n) ≤ C . (6.60)

Since the function f satisfies assumption (6.36), a basic energy estimate for weak
solutions tells us that

∫

�m

B(|∇um |) dx ≤ C (6.61)

for some constantC independent ofm. Thus, as a consequence of the Poincaré inequal-
ity (4.4),

∫

�m

B(|um |) dx ≤ C , (6.62)
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where the constantC is independent ofm, for |�m | is uniformly bounded. Inequalities
(6.60) and (6.62), via a Sobolev type inequality, tell us that

‖um‖L∞(�′,RN ) ≤ C (6.63)

for some constant C independent of m. Inequality (6.59) follows from (6.60) and
(6.63).

On passing, if necessary, to another subsequence, we deduce from inequality (6.59)
that there exists a function v ∈ C1(�,RN ) such that

um → v and ∇um → ∇v in �, (6.64)

pointwise. Hence,
a(|∇um |)∇um → a(|∇v|)∇v in �. (6.65)

Owing to equations (6.65) and (6.58),

a(|∇v|)∇v = U ∈ W 1,2(�,RN×n) . (6.66)

Next, we pick a test function ϕ ∈ C∞
0 (�,RN ) (continued by 0 outside �) in the

definition of weak solution to problem (6.56). Passing to the limit as m → ∞ in the
resulting equation yields, via (6.58) and (6.66),

∫

�

a(|∇v|)∇v · ∇ϕ dx =
∫

�

f · ϕ dx . (6.67)

Inequality (6.61) tells us that
∫
�
B(|∇um |) dx ≤ C for someconstantC independent of

m. Therefore, this inequality is still true if um is replaced with v. Consequently, thanks
to inequality (4.22),

∫
�
B̃(a(|∇v|)|∇v|) dx < ∞. Thus, since under our assumptions

on a the space C∞
0 (�,RN ) is dense inW 1,B

0 (�,RN ), equation (6.67) holds for every

function ϕ ∈ W 1,B
0 (�,RN ) as well. Hence, v is a weak solution to the Dirichlet

problem (2.17), and, inasmuch as such a solution is unique, v = u. Moreover, by
equations (6.57) and (6.58), there exists a constant C = C(n, N , ia, sa, L�, d�,K�)

such that
‖a(|∇u|)∇u‖W 1,2(�,RN×n) ≤ C‖f‖L2(�,RN ). (6.68)

Step 3. Finally, assume that both � and f are as in the statement.
The definition of approximable solution entails that there exists a sequence {fk} ⊂

C∞
0 (�,RN ), such that fk → f in L2(�,RN ) and the sequence of weak solutions

{uk} ⊂ W 1,B
0 (�,RN ) to problems (6.2), fulfills uk → u and ∇uk → ∇u a.e. in �.

An application of inequality (6.68) with u and f replaced by uk and fk , tells us that
a(|∇uk |)∇uk ∈ W 1,2(�,RN×n), and

‖a(|∇uk |)∇uk‖W 1,2(�,RN×n) ≤ C1‖fk‖L2(�,RN ) ≤ C2‖f‖L2(�,RN ) (6.69)
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for some constants C1 and C2, depending on N , ia , sa and �. Therefore, the sequence
{a(|∇uk |)∇uk} is bounded in W 1,2(�,RN×n), whence there exists a subsequence,
still indexed by k, and a function U ∈ W 1,2(�,RN×n) such that

a(|∇uk |)∇uk → U in L2(�,RN×n), a(|∇uk |)∇uk⇀U in W 1,2(�,RN×n).

(6.70)
Inasmuch as ∇uk → ∇u a.e. in �, one hence deduces that a(|∇u|)∇u = U ∈
W 1,2(�,RN×n). Thereby, the second inequality in (2.19) follows from equations
(6.69) and (6.70). The first inequality in (2.19) holds trivially. The proof is complete.

��

Proof of Theorem 2.6 Theproof parallels that of Theorem2.7.However, Step 2 requires
a variant. The sequence {�m} of bounded sets, with smooth boundaries, coming into
play in this step has to be chosen in such a way that they are convex and approximate�

from outside with respect to the Hausdorff distance. Inequalities (6.33) automatically
hold in this case. Moreover, inequality (6.34) is not needed, inasmuch as the constant
C in (6.10) does not depend on the function K� if � is convex. ��
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