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A biased assimilation model on signed graphs

Lingfei Wang, Yiguang Hong, Guodong Shi, Claudio Altafini

Abstract— This work introduces antagonistic interactions
into the so-called biased assimilation model of opinion dynam-
ics, a nonlinear model expressing the bias of the agents towards
their own opinions. In this model, opinions exchanged in a
signed network are multiplied by a state dependent term having
the bias as exponent. For small values of the bias parameters,
while for structurally balanced networks polarization always
occurs, we show that for structurally unbalanced networks
also a state of indecision (corresponding to the centroid of the
opinion hypercube) is a local attractor. When instead the biases
are all large, the opinions usually polarize. In particular, for
large enough biases if all agents take the same initial stance (i.e.,
are all on the same side of the indecision state), then the opinions
polarize all to the same extreme value for both structurally
balanced network and structurally unbalanced network.

I. INTRODUCTION

Social opinion dynamics explores the formation of opin-
ions in communities of individuals interacting over a social
network, i.e., a network in which nodes represent individuals
and state variables associated to the nodes their opinions [1],
[2], [3], [4]. In one basic social opinion dynamics model,
called the DeGroot model, each node uses a convex combi-
nation of its neighbors’ states to update its own state, and
consensus among all these nodes is asymptotically reached
under some simple assumption [5]. Many variants of the
DeGroot model have been proposed recently, including some
that consider the special influence exerted by the nodes’
own opinions during the opinion evolution [6], [7], [8],
[10]. For example, in the Friedkin-Johnson model, each
node incorporates its initial condition in the terms of the
convex combination when updating the state [6]; in the
Hegselmann-Krause model, each node keeps a confidence
bound, and only interacts with the nodes that hold opinions
closer than that bound from its own opinion [7]; there are
also some computational models describing echo chambers,
i.e., how an individual’s opinion reinforces itself due to
repeated interactions with like-minded individuals [8], [9].
These models express, more or less, an important character
of opinion dynamics – bias.
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Biased assimilation is a common cognitive phenomenon
that exists widely in real life [11], [12], [13], [14]. It
characterizes the fact that people are more likely to accept
supportive opinions but scrutinize opposite ones more cau-
tiously. Biased assimilation has received some attention as a
topic of opinion dynamics in recent years [10], [22], [27].
In [10], the authors proposed a model which extends the
DeGroot update rule by multiplying the weighted sum of
the neighbors’ opinions with a own-state dependent factor.
The state dependent term is characterized by an exponent
called the bias: the greater the bias, the more importance an
individual gives to his/her opinion when updating it. This
model, denoted biased assimilation model in the following,
is investigated in [10], [22], [27], [28]. According to these
papers, the biased assimilation model generally produces
opinion polarization, i.e., the state vector asymptotically
converges to one vertex of the unit hypercube (the opinion
domain). An intermediate equilibrium point (the centroid of
the unit hypercube) which always exist in these models and
which can be considered as a “state of indecision” is in fact
unstable. In [28] it is shown that this intermediate equilibrium
can become locally stable for negative bias, but negative
bias is unrealistic because it means that each individual is
mistrusting his/her own opinion.

Another limitation of the biased assimilation model of [10]
is that it only considers cooperative interactions among the
individuals. However, interactions among individuals cannot
be always considered of cooperative nature, especially when
it comes to exchanging opinions. Non-cooperative (or an-
tagonistic) interactions are usually characterized as negative
edges on a network, which is then called a signed social
network [15], [16]. Several recent studies have investigated
social opinion dynamics over signed networks, showing how
the presence of antagonistic interactions can alter both a
consensus and a collective decision process, see [21], [18],
[19], [17], [20].

In this paper, we extend the model of [10] to negative
interactions, and study its behavior over signed networks.
Due to the high degree of non-linearity, a complete analysis
of the reformulated model is extremely hard. Nevertheless,
we are still able to characterize the most salient aspects of the
dynamics, and for general network topology. We prove that
if all the nodes are endowed with a small bias, the opinions
polarize to a vertex of the unit hypercube for structurally
balanced networks, while all the opinions converge to the
indecision state (centroid of the unit hypercube) for struc-
turally unbalanced networks. We also prove that if all nodes
have large biases and hold the same stance initially (i.e.,
the initial conditions are on the same side of the indecision



state), then all opinions polarize to the same side, regardless
of structural balance or unbalance. For all the asymptotic
results we give quantitative bounds that the individual bias
parameters of the agents must obey.

The rest of the paper is organized as follows: some
preliminary concepts and the model formulation are intro-
duced in Section II; the main results of asymptotic behavior
for different ranges of the bias parameter are discussed in
Section III; Section IV contains some of the proofs of our
main results (other proofs had to be omitted for lack of space
and will appear in an extended journal version of this paper).
Notations. The real number, integer and complex number
sets are denoted by R and Z, C, respectively. In general,
real numbers and imaginary numbers are both denoted by
lowercase letters x, y, a, b, . . . and lowercase Greek letters
α, β, . . . All vectors are real column vectors denoted by bold
lowercase letters x,y, z, . . . The i-th entry of a vector x is
denoted by [x]i. Matrices are denoted by upper case letters
such as A,B, P,Q . . . All matrices are real. The identity
matrix is denoted by I , with dimension depending on the
context. Given a matrix A, A> denotes its transpose and Ak

denotes the kth power of A when it is a square matrix. The
(i, j)-th entry of a matrix A is denoted by Aij or [A]ij ; if A
is symmetric, its largest (smallest) eigenvalue is denoted by
λmax(A) (λmin(A)). In the n-dimensional Euclidean space,
we use B(d) to denote the ball centered at the origin with
radius d. The n-order vector, matrix and tensor with all
entries being 0 or 1 are all written as 0 or 1. The modulus
of a complex number is denoted by | · |. The Euclidean norm
of a vector and 2-norm of a matrix are both denoted by ‖ ·‖.
For any x ∈ R, we write sgn(x) to denote the sign of x and
let sgn(0) = 0.

II. PROBLEM FORMULATION

A. Signed Social Networks

Consider a network with n nodes indexed in the set
V = {1, . . . , n}. The structure of the network is represented
as a directed graph G = (V,E), where an ordered pair
(j, i) ∈ E denotes a link from node j to node i over the
set V. Each link (j, i) in E is associated with a positive or
negative sign, defining G as a signed graph. The positive
and negative links are collected in the sets E+ and E−,
respectively. Then G+ = (V,E+) and G− = (V,E−) are,
respectively, the positive and negative subgraphs of G. In
this paper, we suppose (i, i) /∈ E− for all i ∈ V.

Assumption 1 (i) G is strongly connected;
(ii) G+,G− both contain at least one edge.

For a node i ∈ V, its positive neighbors are the nodes
in the set N+

i := {j : (j, i) ∈ E+} \ {i}. Similarly, the
negative neighbor set of the node i is denoted by N−i = {j :
(j, i) ∈ E−}. The set Ni = N+

i ∪N
−
i then contains all nodes

connecting to i over the graph G.
To each (j, i) ∈ E we associate a weight wij > 0. All

these weights generate a n-order nonnegative weight matrix
W , with Wij = wij if (j, i) ∈ E and Wij = 0 otherwise.

Define d+i :=
∑
j∈N+

i
Wij and d−i :=

∑
j∈N−

i
Wij as the

total link weight from the positive and negative neighbors
of node i, respectively. Let di := d+i + d−i be the total link
weight from all of i’s neighbors.

Definition 1 (Structural Balance) (i) A signed graph G
is called structurally balanced if there is a partition
of the node set into V = V1 ∪ V2 with V1 and V2

being nonempty and mutually disjoint, where any link
between the two node subsets V1 and V2 is negative,
and any link within each Vi is positive;

(ii) A network which is not structurally balanced is said to
be structurally unbalanced.

B. The Opinion Dynamics Model

Time is slotted at t = 0, 1, . . . Each node i holds a
opinion xi(t) ∈ [0, 1] at time t and interacts with its
neighbors at each time to update its opinion. Define s+i (t) :=∑
j∈N+

i
Wijxj(t), resp. s−i (t) :=

∑
j∈N−

i
Wij(1 − xj(t)),

as the weighted sum of the opinions of the positive, resp.
negative, neighbors of i. Let si(t) := s+i (t) + s−i (t). The
opinion dynamics of xi(t) is described by

xi(t+ 1) =
Wiixi(t) + xi(t)

bisi(t)

Wii + xi(t)bisi(t) + (1− xi(t))bi (di − si(t))
,

(1)
where bi ≥ 0 represents the (individual) bias of agent i.
xi(t)

bi can be viewed as an additional factor by which node
i weights xj(t) or 1−xj(t), where j is one of i’s neighbors.
When bi = 0 for all i ∈ V, under the transformation zi(t) =
xi(t) − 1

2 , i ∈ V, (1) will be identical to the discrete-time
model of [21], in which all opinions range from − 1

2 to 1
2 .

The model (1) is a simple extension of the biased assimi-
lation model proposed in [10], with the addition of negative
interactions. It can be also considered a generalization of
the model of [21]. In the original model of [21], all agents
update their own opinions to the weighted average of their
neighbors’ opinions over signed networks. At every updating
step of (1), each node i weights the weighted average
of its neighbors’ opinions by the state-dependent factor
xi(t)

bi , and the opinion centroid is 1
2 . Moreover, a larger

bi corresponds to a more biased agent i.
The novel feature of (1) is that for any network G the

indecision state (i.e., the opinion centroid) can become an
attractor for suitable values of the biases. Such a feature can
occur for the model [10] only for very special topologies
(two-island networks, see [10]). It can occur also in the
model [27], [28], but at the cost of letting the agent have
a negative bias, which is a not very realistic assumption, as
it implies that an agent is mistrusting his/her own opinion.

C. Problems of interests

As mentioned above, our model (1) is a combination of
two existing models. On one hand, biased assimilation has
been shown in the literature to cause opinion polarization.
The underlying networks are mostly assumed to be some spe-
cial graphs such as the two-island network, the star network,



and so on. On the other hand, the model of [21] can generate
bipartite consensus or convergence to the origin, respectively
for structurally balanced network and structurally unbalanced
network [21]. A natural problem that comes for our model
is then the following: When the bias and the negative inter-
actions coexist, will polarization occur for general network
topology? If so, what kind of polarization? How will bias and
negative interactions influence the evolution of opinions? For
the sake of accuracy, we give our definition of polarization
first.

Definition 2 (Unilateral/Bipartite Polarization) (i)
For opinion dynamics with xi(t) ∈ [0, 1] for all
i ∈ V, we say unilateral polarization occurs if
limt→∞ xi(t) = 0, i ∈ V or limt→∞ xi(t) = 1, i ∈ V.

(ii) For opinion dynamics with xi(t) ∈ [0, 1] for all i ∈
V, we say bipartite polarization occurs if there exists
nonempty, mutually disjointed V1,V2 such that V =
V1 ∪V2 and the following equations hold

lim
t→∞

xi(t) = 0, i ∈ V1; lim
t→∞

xi(t) = 1, i ∈ V2.

Note that Definition 2 is different from the definition of
polarization in [10]. See also [28], where a similar definition
of polarization is discussed in detail.

III. MAIN RESULTS

In this section we present our main results. Before showing
the results, we introduce some definitions and one more
assumption.

Define WG as the normalized matrix of W , i.e., [WG]ij :=
Wij

Wii+di
for all i, j ∈ V. Let σij be the sign of link (j, i) ∈

E, and σij = 0 if (j, i) /∈ E. Construct the signed weight
matrix SG corresponding to G as [SG]ij := σij [WG]ij for
all i, j ∈ V. We also define the transformed opinion vector
z(t) = (z1(t), . . . , zn(t))

> as zi(t) := xi(t)− 1
2 and

m(t) := max
j∈V
{|zj(t)|}

for all i ∈ V, t ≥ 0. These notations will be used throughout
the paper.

A directed path is a concatenation of directed links of E:
P = {(vi1 , vi2), . . . , (vip−1

, vip)} ⊂ E. The length of P is
p−1. A directed cycle of G is a directed path with the same
beginning and ending node, i.e., vi1 = vip . A graph is said
to be aperiodic if there is no integer k > 1 that divides the
length of every cycle of the graph.

Assumption 2 G is aperiodic.

Assumption 2 is easy to satisfy. For example, once there
exists a node i ∈ V with a self arc, i.e., Wii > 0, G is then
aperiodic if Assumption 1 is also satisfied.

Under Assumption 1 and 2, the normalized weight matrix
WG becomes a primitive matrix, defined as a square
nonnegative matrix some power of which is positive [26],
where nonnegative (positive) means that all entries of the
matrix is nonnegative (positive). It is known from [25]

that WG has a simple nonzero eigenvalue with maximum
modulus, and the corresponding left (right) eigenvector is
positive. Specifically, the only eigenvalue with maximum
modulus of WG is 1. Denote the left eigenvector of WG

corresponding to eigenvalue 1 by v = (v1, . . . , vn)
> such

that
∑n
j=1 vj = 1.

The following proposition is a corollary of Theorem 1 in
[22].

Proposition 1 Let Assumption 1 hold. Suppose G is struc-
turally balanced under the partition V = V1 ∪ V2. If
xi(0) <

1
2 for all i ∈ V1 and xi(0) >

1
2 for all i ∈ V2,

then for (1), it holds for all bi > 0 that

lim
t→∞

xi(t) = 0,∀i ∈ V1; lim
t→∞

xj(t) = 1,∀j ∈ V2,

i.e., bipartite polarization occurs. Moreover, the convergence
rate is exponential.

With Assumption 1, 2 holding and with G being struc-
turally balanced under the partition V = V1∪V2, we denote
fG(v) :=

∑
j∈V1

vjzj(0)−
∑
j∈V2

vjzj(0). By Theorem 2
in [24] and Theorem 1 in [23], it holds

lim
t→∞

[StGz(0)]i = sgn(
3

2
− k)fG(v), i ∈ Vk

for k = 1, 2. We then let t̂ be the smallest positive integer
satisfying

sgn(
3

2
− k)fG(v) · [S t̂Gz(0)]i > 0, i ∈ Vk, k = 1, 2

if fG(v) 6= 0. Given t̂, let δ̂, δ̂1, δ̂2 be some positive numbers
satisfying

δ̂ =
3

2
δ̂1 + δ̂2 < min{1

2
−m(0),min

i∈V
{|[S t̂Gz(0)]i|/2}}.

Moreover, denote

µ̂ := max

{
ln

(
1
2 +m(0) + δ̂
1
2 −m(0)− δ̂

)
, 2m(0) + 2δ̂

}
. (2)

Theorem 1 Let Assumption 1, 2 hold. Suppose G is struc-
turally balanced under the partition V = V1 ∪V2. Suppose
fG(v) 6= 0. Let xi(0) ∈ (0, 1) for all i ∈ V. For (1), there
exists a threshold

b̂ = min

{
δ̂1

µ̂t̂
,

ln(1− δ̂2
2t̂
)

ln( 12 −m(0)− δ̂)

}
< 1

such that if 0 < bi < b̂ for all i ∈ V, bipartite polarization
takes place in the sense that

lim
t→∞

xi(t) =
1 + sgn(fG(v))

2
, i ∈ V1;

lim
t→∞

xi(t) =
1− sgn(fG(v))

2
, i ∈ V2.

According to the proof of Theorem 1 given in the next
section, we know that for any initial state inside the opinion
domain, the opinion evolution can be divided into two stages.
In the first stage, the negative interactions drive the opinions



grouped by V1,V2 towards two opposite sides of 1
2 . In the

second stage, under the effect of the bias, the two groups
of opinions converge to 0, 1 respectively. This can also be
illustrated by the following example.

Fig. 1. Phase portraits for Example 1, with bi = 0.1 for all i ∈ V.

Example 1 Let V = {1, 2, 3}. Consider a structurally bal-
anced complete graph with self-arcs, whose corresponding
signed weight matrix is

SG =

 1
3 − 1

3 − 1
3

− 1
3

1
3

1
3

− 1
3

1
3

1
3

 .

Let bi = 0.1 for all i ∈ V. The phase portraits of the
system (1) is shown in Fig 1. We see that for almost all
the initial states, the trajectory of (1) gets close to the line
x2 = x3 = 1−x1, and then converges to (0, 1, 1) or (1, 0, 0).
This confirms Theorem 1 and the statements above. �

We now consider structurally unbalanced networks with
small bias. Denote ρmax(SG) (ρmin(SG)) the maximum
(minimum) square root of the eigenvalues of S>GSG. When G
is structurally unbalanced, by the Gershgorin circle theorem
and the proof of Theorem 1 in [23], all eigenvalues of SG

have magnitudes less than 1. Therefore, the infinite sum∑∞
r=0(S

r
G)
>SrG is well defined. Let p0 be some number

larger than ‖
∑∞
r=0(S

r
G)
>SrG‖. Denote d̃ :=

√
3

20p0
. By

Theorem 2 in [21], we have limt→∞ StGz(t) = 0. There
exists t̃ such that S t̃Gz(0) ∈ B( d̃2 ). Suppose m(0) < 1

2 . Given
t̃, let δ̃, δ̃1, δ̃2 be some positive numbers satisfying

δ̃ =
3

2
δ̃1 + δ̃2 < min{1

2
−m(0),

d̃

2
}.

Moreover, denote

µ̃ := max

{
ln

(
1
2 +m(0) + δ̃
1
2 −m(0)− δ̃

)
, 2m(0) + 2δ̃

}
. (3)

1 2 25

26 27 50

Fig. 2. The structurally unbalanced graph used in Example 2. Solid line
represents positive edge, while dashed line represents negative edge.

Theorem 2 Let Assumption 1 hold. Suppose G is struc-
turally unbalanced. If xi(0) ∈ (0, 1) for all i ∈ V, then
for (1), there exists a shreshold

b̃ = min

{
1

25
√
np20ρmax(SG)2 + n

,
δ̃1

µ̃t̃
,

ln(1− δ̂2
2t̂
)

ln( 12 −m(0)− δ̂))

}
,

such that with 0 < bi < b̃ for all i ∈ V, there holds
limt→∞ xi(t) =

1
2 for all i ∈ V.

The proof is omitted for lack of space. Also in this case,
the process of convergence can be divided into two stages.
In the first stage, the influence of structural unbalance
overwhelms that of the bias and drives the state trajectories
towards a neighborhood of the indecision state, where the
influence of the bias is weakened even more by the opinions
themselves. All the opinions then converge to the indecision
state exponentially fast.

Fig. 3. Simulation for Example 2, with bi = 0.001 for all i ∈ V.

Example 2 Let V = {1, . . . , 50}. Consider a group of
undirected signed graphs {Gk = (V,Ek)|k = 1, . . . , 12}
with Ek = {(i, i mod 25 + 1)|i = 1, . . . , 25} ∪ {(i, i
mod 25 + 26)|i = 25, . . . , 50} ∪ {(i, i+ 25)|i = 1, . . . , 25}
and E−k = {(i, i + 25)|i = 1, . . . , k}, where the symbol
mod is the operator of taking remainder. The network
topology of each Gk is shown as Fig. 2. For every edge of
these graphs, the associated weight is 1

3 . Let bi = 0.001 for
all i ∈ V. Let the initial state be xi(0) = 0.2+ 0.016(i− 1)
for i = 1, . . . , 25 and xi(0) = 0.4 + 0.016(i − 26) for
i = 26, . . . , 50. Define the log-distance between x(t) and
the opinion centroid as d(t) = ln(

∑50
i=1(xi(t) −

1
2 )

2). For
each k = 1, . . . , 12, we start from the same initial state
and plot d(t) as a function of time t in Fig. 3. All the



trajectories are shown to converge to 1
2 , as predicted by

Theorem 2. We also see that the convergence process can be
divided in two stages as described above. The convergence
rate of the second stage is increasing with the graph label.
In fact, by construction, the graphs Gk are characterized
by λmax(Gk) > λmax(Gj) for k < j, j, k = 1, . . . , 12.
According to [19], 1 − λmax(Gk) represents the “disorder”
induced by the negative edges (i.e., the “distance to structural
balance”) in the graph Gk. Therefore, Fig. 3 indicates that a
larger disorder of the underlying network generates a larger
convergence rate towards the indecision state in the second
stage.

We already know that bilateral polarization occurs for
structurally balanced networks and convergence to the opin-
ion centroid occurs for structurally unbalanced networks
when the biases are all small. Next we show that when all
biases are large and all the initial opinions are on the same
side of 1

2 , unilateral polarization always occurs. Denote

m∗(t) := min{max
i∈V
{xi(t)}, 1−min

i∈V
{xi(t)}}. (4)

Theorem 3 Let Assumption 1 hold. Assume that each agent
has at least one positive neighbor. For (1), if all xi(0)− 1

2 , i ∈
V have the same sign, there exists a threshold

b∗ = max
i∈V
{ ln(2di)− ln(d+i m

∗(0))

ln(1−m∗(0))− ln(m∗(0))
} > 1,

such that if bi > b∗ for all i ∈ V, unilateral polarization
takes place in sense that

lim
t→∞

xi(t) =
1 + sgn(xi(t)− 1

2 )

2
, i ∈ V. (5)

The convergence rate is exponential.

IV. ANALYSIS

In this section, we give the proof of Theorem 1. The proof
of Theorems 2 and 3 is omitted due to the limitation of space.
Without loss of generality, we let Wii+di = 1 for all i ∈ V.

Denote u+i (t) :=
∑
j∈N+

i
Wijzj(t), u

−
i (t) :=∑

j∈N−
i
Wijzj(t) and ui(t) := u+i (t) − u−i (t). Denote

li(t) :=Wii+( 12 + zi(t))
bi(di2 +ui(t))+ ( 12 − zi(t))

bi(di2 −
ui(t)). The update of zi(t) reads as

zi(t+ 1) =
( 12 + zi(t))

bi(di2 + ui(t))

li(t)
− 1

2

=
Wiizi(t)

li(t)
+

( 12 + zi(t))
bi(di2 + ui(t))

2li(t)

−
( 12 − zi(t))

bi(di2 − ui(t))
2li(t)

− (Wiizi(t) + ui(t))li(t)

li(t)

+Wiizi(t) + ui(t) :=Wiizi(t) + ui(t) + gi(t)
(6)

Rearranging the form of gi(t) with Wii + di = 1, we get

gi(t) =
(di2 + ui(t))(

di
2 − ui(t))

li(t)
[(
1

2
+ zi(t))

bi − (
1

2
− zi(t))bi ]

+
Wiidi

4 −Wiiui(t)zi(t)

li(t)
[(
1

2
+ zi(t))

bi − (
1

2
− zi(t))bi ]

+
Wiiui(t)−Wiidizi(t)

2li(t)
[(
1

2
+ zi(t))

bi + (
1

2
− zi(t))bi − 2]

(7)
Denote g(t) := (g1(t), . . . , gn(t))

>. Rewrite the iteration of
zi(t) for i ∈ V in compact form as

z(t+ 1) = SGz(t) + g(t). (8)

Proof of Theorem 1. We only consider the case that
fG(v) < 0, and the proof for fG(v) > 0 is similar.

Suppose bi < b̂ < 1 for all i ∈ V. Consider t steps of
iterations

z(t) = StGz(0) +

t−1∑
r=0

St−1−rG g(r). (9)

We estimate the second part on the right-hand side of (9).
By construction, there holds

∑
j∈Ni

|Aij | = 1. Let δ̂(t) :=
maxi∈V{|gi(t)|} be the ∞-norm of g(t). We then have
|[St−1−rG g(r)]i| ≤ δ̂(r) for all i ∈ V and r = 0, 1, . . . .

Hence,

|[
t−1∑
r=0

St−1−rG g(r)]i| ≤
t−1∑
r=0

δ̂(r), i ∈ V. (10)

It is easy to verify that zi(t) ∈ (− 1
2 ,

1
2 ) and ui(t) ∈ (− 1

2 ,
1
2 )

for all i ∈ V and t ≥ 0, which indicates that

0 < (
1

2
+zi(t))(

di
2
+ui(t))+(

1

2
−zi(t))(

di
2
−ui(t)) < li(t)

holds for all bi ∈ (0, 1). Thus,

(di2 + ui(t))(
di
2 − ui(t))

li(t)
<

(di2 + ui(t))(
di
2 − ui(t))

( 12 + zi(t))(
di
2 + ui(t)) + ( 12 − zi(t))(

di
2 − ui(t))

.

(11)
The right hand side is less than 1 no matter if ui(t)

di
≤ −zi(t)

or ui(t)
di

> −zi(t). Recalling the definition of gi(t) and
zi(t), ui(t) ∈ (− 1

2 ,
1
2 ), di ∈ (0, 1], we have

|gi(t)| <
3

2
|(1
2
+ zi(t))

bi − (
1

2
− zi(t))bi |

+
1

2
|(1
2
+ zi(t))

bi + (
1

2
− zi(t))bi − 2|

≤ 3

2
[(
1

2
+m(t))b̂ − (

1

2
−m(t))b̂]

+
1

2
[2− (

1

2
+m(t))b̂ − (

1

2
−m(t))b̂] := f(m(t), b̂).

(12)
By the arbitrariness of i,

δ̂(t) < f(m(t), b̂), t ≥ 0. (13)



With the definition of b̂, we claim that the following equa-
tions are satisfied:

(
1

2
+m(0) + δ̂)b̂ − (

1

2
−m(0)− δ̂)b̂ < δ̂1

t̂
, (14a)

2− (
1

2
+m(t) + δ̂)b̂ − (

1

2
−m(t)− δ̂)b̂ < δ̂2

t̂
. (14b)

In fact, by analyzing the monotonicity, we obtain

(
1

2
+m(0) + δ̂)b − (

1

2
−m(0)− δ̂)b ≤ µ̂b, b ∈ (0, 1),

where µ̂ is defined by (2). Therefore, b̂ < δ̂1
µ̂t̂

is sufficient to
make (14a) hold. On the other hand, to make (14b) hold, we
only need 2( 12 −m(t) − δ̂)b̂ > 2 − δ̂2

t̂
, which is equivalent

to

b̂ < ln(1− δ̂2

2t̂
)/ ln(

1

2
−m(0)− δ̂)).

By the definition of b̂, we know that (14) holds. Combining
(9), (10), (13) and by induction, we obtain δ̂(t) ≤ δ̂

t̂
and

m(t) ≤ m(0) + t
t̂
δ̂ for all 0 ≤ t ≤ t̂. Consequently, there

holds

|[
t̂−1∑
r=0

S t̂−1−rG g(r)]i| ≤
t̂−1∑
r=0

δ̂(r) ≤ δ̂

for all i ∈ V. Combining (9) with the definition of δ̂, t̂,
we have zi(t̂) ≤ [St̂

Gz(0)]i
2 < 0 for i ∈ V1 and zi(t̂) ≥

[St̂
Gz(0)]i

2 > 0 for i ∈ V2. This also means that xi(t̂) < 1
2 for

all i ∈ V1, and xi(t̂) > 1
2 for all i ∈ V2. Then Proposition

1 can be applied, generating the desired conclusion. �

V. CONCLUSION

In this paper, we have extended the biased assimilation
model to antagonistic interactions and analyzed its asymp-
totic behavior for different ranges of the bias parameter
over the resulting signed networks. We have shown that
structurally balance plays a key role of the asymptotic
behavior for small bias, i.e., bipartite polarization occurs
for structurally balanced networks while convergence to the
indecision state occurs for structurally unbalanced networks.
We have also shown that for large bias, unilateral polarization
always occurs if all the initial opinions are on the same side
of the indecision state.
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