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Abstract
In this paper we develop a compartmental model of SIR type (the abbreviation refers to
the number of Susceptible, Infected and Recovered people) that models the population
dynamics of two diseases that can coinfect. We discuss how the underlying dynamics
depends on the carrying capacity K : from a simple dynamics to a more complex. This
can also help in understanding the appearance of more complicated dynamics, for
example, chaos and periodic oscillations, for large values of K . It is also presented
that pathogens can invade in population and their invasion depends on the carrying
capacity K which shows that the progression of disease in population depends on
carrying capacity. More specifically, we establish all possible scenarios (the so-called
transition diagrams) describing an evolution of an (always unique) locally stable equi-
librium state (with only non-negative compartments) for fixed fundamental parameters
(density independent transmission and vital rates) as a function of the carrying capac-
ity K . An important implication of our results is the following important observation.
Note that one can regard the value of K as the natural ‘size’ (the capacity) of a habitat.
From this point of view, an isolation of individuals (the strategy which showed its
efficiency for COVID-19 in various countries) into smaller resp. larger groups can be
modelled by smaller resp. bigger values of K . Then we conclude that the infection
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dynamics becomes more complex for larger groups, as it fairly maybe expected for
values of the reproduction number R0 ≈ 1. We show even more, that for the values
R0 > 1 there are several (in fact four different) distinguished scenarios where the
infection complexity (the number of nonzero infected classes) arises with growing K .
Our approach is based on a bifurcation analysis which allows to generalize consid-
erably the previous Lotka-Volterra model considered previously in Ghersheen et al.
(Math Meth Appl Sci 42(8), 2019).

Keywords SIR model · Coinfection · Carrying capacity · Global stability

1 Introduction

Two or more pathogens circulating in the same population of hosts can interact in var-
ious ways. One disease can, for instance, impart cross-immunity to the other, meaning
that an individual infected with the first disease becomes partially or fully immune
to infection with the second [7,18]. One disease can also mediate the progression of
another disease in a population.

Therefore it is important to understand the dynamics of coexistent pathogens. In
epidemiology the interaction of strains of the same pathogen, such as influenza or
interacting diseases such as HIV/AIDS and hepatitis is very common and involves
many complexities. The central problem in studying such systems is the explosive
growth in the number of state variables of the system with the linear increase in the
number of strains or pathogens [13]. Mostly these strains or pathogens are interacting
in a way which has limited the analytical progress in understanding the dynamics for
such systems. In this regard, it is a challenge to understand the dynamics and evolution
of pathogens in populations. The complexity of multiple strain models allows a great
variability in modelling strategies. Recently, attention has focused on understanding
the mechanisms that lead to coexistence, competitive exclusion and co-evolution of
pathogen strains in infectious diseases which is important from the management of
disease perspective.

Several studies exist on the coinfection with specific diseases. There is also an
active research [7,14,16,17,19] which has addressed this issue in general. In [6], a
mathematical model has been studied and it showed that for strains with differing
degree of infectivity, all strains will get extinct except those that have the highest basic
reproduction number. Allen et al in [1] showed coexistence only occur when the basic
reproduction number is large enough for persistence of strains. They numerically
illustrate the existence of globally stable coexistence equilibrium point. In another
study,Allen et al [2], studied anSImodel of coinfectionwith application on hanta virus.
They assumed a logistic growth with carrying capacity and horizontal transmission of
both viruses and yet only vertical transmission of virus 2. The condition of coexistence
of two strain is described.

In [4], a SIR model with vertical and horizontal transmission and a different popu-
lation dynamics with limited immunity is considered. It is shown that the competitive
exclusion canoccurwhich is independent of basic reproductionnumber but a threshold.
The existence and stability of endemic equilibrium is also shown. Since coinfection
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involves many complexities, many studies are only restricted to numerical simulations
to understand the dynamics.

Nevertheless, mathematical modelling is one of the effective tool to understand
the dynamics of biological system. But the major challenge is to balance between
the practicality and mathematical solvability of the model. The cost of realisticity in
mathematical modelling is the diminution of mathematical machinery.

The way to deal with this challenge is to divide the model into different sub mod-
els. The differences between the models is due to different biological assumptions.
There are two major advantages with this approach. First is the understanding of the
system completely under certain assumptions. It can help to apply it to some real-life
situations, since the controlling strategies for a diseases sometimes transforms the
original system to a more simple one. In those cases the complete information about
such simplified system is needed to deal with that type of unexpected situation from
management prospective. The second is, by relaxing assumptions, one can understand
the role of each new parameter and its effects on the dynamics of epidemic.

One of the important characteristics, to understand the coinfection dynamics is
transmission mechanism. In paper [12] we have developed a SIR model to understand
the dynamics of coinfection. Limited transmission is considered and the competitive
exclusion principle is observed. The transition dynamics is also observed when the
equilibrium points exist in the form of branches for each set of parameters. The com-
plete dynamics of the system for all set of parameters is described by using linear
complementarity problem. It appeared that there always exist an equilibrium point
which is globally stable. It is showed that the dynamics of the system changes when
carrying capacity changes. There are certain assumptions on the transmission of coin-
fection in that model. It is assumed that the coinfection can only occur as a result
of contact between coinfected class and susceptible class, coinfected class and single
infected classes. Interaction between two single infected classes is not considered.
Also the simultaneous transmission of two pathogens from coinfected individual to
susceptible individual is assumed.

In this paper we develop a density dependent SIR model for coinfection which is
a relevant extension of the model presented in [12] to understand the role of each
new transmission parameter in the dynamics. Our aim here is to investigate how the
dynamics changes due to a certain parameter, which in our case is the carrying capacity
K , from a simple dynamics to a more complicated. This can help in understanding
the appearance of more complicated dynamics for example chaos etc. Contrary to
[12], we could no more make use of the linear complementarity problem due to some
additional termwhich appeared by relaxing the assumption of interaction between two
single infected classes.We instead used a technique based on bifurcation analysis. The
density dependent population growth is also considered. It is presented that pathogens
can invade in population and how their invasion depends on the carrying capacity K .
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Fig. 1 Flow diagram for two strains coinfection model. The expression next to the arrows indicates the
relative flow out of the respective compartment

2 Model formulation and themain result

2.1 Themodel

The present model is displayed in Fig. 1. More precisely, we assume that the single
infection cannot be transmitted by the contact with a coinfected person. According to
Fig. 1, this process gives rise to the system of ODEs:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′ = (r(1 − S
K ) − α1 I1 − α2 I2 − α3 I12)S,

I ′
1 = (α1S − η1 I12 − γ1 I2 − μ1)I1,
I ′
2 = (α2S − η2 I12 − γ2 I1 − μ2)I2,
I ′
12 = (α3S + η1 I1 + η2 I2 − μ3)I12 + γ I1 I2,
R′ = ρ1 I1 + ρ2 I2 + ρ3 I12 − d4R,

(1)

where we use the following notation:

• S represents the susceptible class,
• I1 and I2 are the infected classes from strain 1 and strain 2 respectively,
• I12 represents the co-infected class,
• R represents the recovered class.

Following [2,6,20], we assume a limited population growth by making the per capita
reproduction rate depend on the density of population. The recovery of each infected
class is presented by the last equation in (1). The fundamental parameters of the system
are:
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• r = b − d0 is the intrinsic rate of natural increase, where b is the birthrate and d0
is the death rate of S-class,

• K is the carrying capacity (see also the next section),
• ρi is the recovery rate from each infected class (i = 1, 2, 3),
• di is the death rate of each class, (i = 1, 2, 3, 4), where d3 and d4 correspond I12
and R respectively,

• μi = ρi + di , i = 1, 2, 3.
• α1, α2, α3 are the rates of transmission of strain 1, strain 2 and both strains (in the
case of coinfection),

• γi is the rate at which infected with one strain get infected with the other strain
and move to a coinfected class (i = 1, 2),

• γ̄ = γ1 + γ2,
• ηi is the rate at which infected from one strain getting infection from a co-infected
class (i = 1, 2);

Summing up all equations in (1) we have

N ′ = r(1 − S
K )S − d1 I1 − d2 I2 − d3 I12 − d4R (2)

where N = S + I1 + I2 + I12 + R is the total population.
We only need to consider the first four equations of (1) since R appears only in

the last equation, hence it does not affect the disease dynamics. Rewrite the reduced
system as

⎧
⎪⎪⎨

⎪⎪⎩

S′ = (r(1 − S
K ) − α1 I1 − α2 I2 − α3 I12)S

I ′
1 = (α1S − η1 I12 − γ1 I2 − μ1)I1
I ′
2 = (α2S − η2 I12 − γ2 I1 − μ2)I2
I ′
12 = (α3S + η1 I1 + η2 I2 − μ3)I12 + γ I1 I2

(3)

Furthermore,weonly consider the casewhen the reproduction rate of the susceptible
class is not less than their death rate, i.e.

r > 0 ⇔ b > d0.

Indeed, it is easy to see that the population will go extinct otherwise. The reduced
system is considered under the natural initial conditions

S(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0, I12(0) ≥ 0. (4)

Then it easily follows that any integral curve of (1) with (4) is well-defined and staying
in the non negative cone for all t ≥ 0.
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2.2 Reproduction rates

It is convenient to introduce the notation

σi := μi

αi
, 1 ≤ i ≤ 3.

We shall always assume that the strains 1 and 2 are different, i.e. σ1 �= σ2. Then by
change of the indices (if needed) we may assume that

σ1 < σ2.

Under this assumption, I1 is the primary disease, by which we mean that it is the
disease most inclined to spread through a naive population.

Furthermore, let us first assume that the populations of the susceptible class and only
one infected class are non-zero. Let us suppose that only Ii (for some fixed i ∈ {1, 2})
is non-zero. Then (3) reduces to

{
S′ = (r(1 − S

K ) − αi Ii )S
I ′
i = αi (S − σi )Ii

(5)

It is easy to see that there always exist two equilibrium points: the trivial equilibrium
E1 = (0, 0) and the disease-free equilibrium E2 = (K , 0). If K > σi then also exists
(in the positive cone) the coexistence equilibrium E3 = (σi ,

r
αi

(1 − σi
K )). Next, an

elementary analysis shows that the following is true.

Proposition 1 The trivial equilibrium state E1 is always unstable. For any positive
K �= σi there exists a unique locally stable equilibrium point E(K ):

• if 0 < K < σi then E(K ) = E2;
• if K > σi then E(K ) = E3.

The reproduction number

R0(Ii ) := K

σi
(6)

can be used as a threshold. In other words, the transition, with increasing K , from the
disease-free equilibrium state to the disease equilibrium (the coexistence equilibrium
point) occurs exactly when the reproduction number R0(Ii ) of the corresponding
infected class Ii exceeds 1. We illustrate the transition by the diagram

E2 → E3.

The latter also clarifies themeaning of the parameterσi as the critical carrying capacity.
Note that a more aggressive virus I has a greater value of R0(I ). For a fixed value of
the carrying capacity K this implies that a more aggressive virus I has a smaller value
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of σ (which, for example, means smaller recovery rate ρ or greater rate of transmission
α).

It is natural to assume that the reproduction number of coinfection must be less
than that of virus 1 and 2 respectively [15]. Due to this fact, it is natural to assume the
following:

σ1 < σ2 < σ3. (7)

2.3 Some important notation

In order to keep expressions short we will use the following notations

�α =
∣
∣
∣
∣
η1 α1
η2 α2

∣
∣
∣
∣ = η1α2 − η2α1 (8)

and

�μ =
∣
∣
∣
∣
η1 μ1
η2 μ2

∣
∣
∣
∣ = η1μ2 − η2μ1. (9)

We shall assume that the parameters of (3) satisfy the following non-degenerate con-
dition:

�α �= 0. (10)

This condition has a natural biological explanation: the virus strains 1 and 2 have
different (co)infections rates. Let us define

A1 = α1α3

r
(σ3 − σ1), η∗

1 := η1

A1
(11)

A2 = α2α3

r
(σ3 − σ2), η∗

2 := η2

A2
(12)

A3 = α1α2

r
(σ2 − σ1), γ ∗ := γ1

A3
. (13)

By (7) A1, A2, A3 > 0. We also have

α2A1 = α3A3 + α1A2 (14)

and

�μ = η1r

α1
A3 + σ1�α = η2r

α2
A3 + σ2�α, (15)

hence A3 > 0 implies

�μ > σ1�α �μ > σ2�α. (16)
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This implies an inequality which will be useful in the further analysis:

σ2(�α + γ2α3) < �μ + γ2μ3. (17)

We shall further make use of the following relations:

η1A2 − η2A1 < η1
α2

α1
A1 − η2A1 = �α

A1

α1
. (18)

On the other hand, one has

η∗
2 − η∗

1 = (�μ − �ασ3)α3

A1A2r
(19)

Remark 1 The parameters η∗
i can be thought of as the normalized co-infection rates.

They play a distinguished role in the analysis of the thresholds given below.

2.4 The carrying capacity

The concise meaning of the parameter K becomes clear if we consider the limit case
of (3) when the virus infection is absent, i.e. I1 = I2 = I12 = 0. Then (1) reduces to
the system

S′ = r

(

1 − S

K

)

S (20)

R′ = −μ′
4R, (21)

where the first Eq. (20) is the famous logistic (Verhulst) equation, r is the intrinsic
rate of natural increase and K is the carrying capacity of the system. The carrying
capacity K is one of the most fundamental parameters in population dynamics and
it usually expresses the upper limit on the size of hypothetical populations, thereby
enhancingmathematical stability. In basic ecology one defines carrying capacity as the
equilibrium population size. Indeed, coming back to (3), we can see that K coincides
with the healthy population size for the disease-free equilibrium. Mathematically this
means that for any positive initial data, the corresponding solution of (20) converges
to K as t → ∞. Furthermore, the equilibrium state G000 := (K , 0, 0, 0) is the only
possible equilibrium point of (3) with all Ii = 0.
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2.5 Themain result

Equilibrium points of (3) are determined by the system

(

r

(

1 − S

K

)

− α1 I1 − α2 I2 − α3 I12

)

S = 0,

(α1S − η1 I12 − γ1 I2 − μ1)I1 = 0,

(α2S − η2 I12 − γ2 I1 − μ2)I2 = 0,

(α3S + η1 I1 + η2 I2 − μ3)I12 + γ I1 I2 = 0.

(22)

It is elementary to see (see also Proposition 3 below for more explicit representations)
that except for the trivial equilibrium point

O = (0, 0, 0, 0)

and the disease-free equilibrium

G000 = (K , 0, 0, 0),

there exist only 6 possible equilibrium points. The indices i, j, k ∈ {0, 1}, in the
notation Gi, j,k are boolean variables that indicates if the corresponding disease com-
partment is nonzerp or not.

• three semi-trivial equilibriaG100,G010,G001 with only one nonzero infected class,
i.e. Ii �= 0 for some i ;

• two coinfected semi-trivial equilibria G101,G011 with I12 �= 0 but I1 I2 = 0;
• the coexistence equilibrium G111 with SI1 I2 I12 �= 0.

Our main result extends the results obtained in [12] on the case of arbitrary values
of γi . More precisely, we will prove that we have the following possible scenarios for
developing of an equilibrium point as a continuous function of increasing carrying
capacity K :

Theorem 1 Let us assume that

0 < η∗
1 < max{1, η∗

2}. (23)

Then there is exactly one locally stable nonnegative equilibrium point. Furthermore,
changing the carrying capacity K , the type of this locally stable equilibrium point
may be exactly one of the following alternative cases:

(i) for η∗
1 < 1 one has G000 → G100. More precisely,

• if 0 < K < σ1 then G000 is locally stable;
• if K > σ1 then G100 is locally stable.

(ii) for 1 < η∗
1 < η∗

2 one has G000 → G100 → G101 → G001. More precisely,

• if 0 < K < σ1 then G000 is locally stable;
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• if σ1 < K < K1 then G100 is locally stable;
• if K1 < K < K2 the point G101 is locally stable;
• if K > K3 then the point G001 is locally stable

where

K1 = σ1η
∗
1

η∗
1 − 1

, K2 = σ3

σ1
K1.

Remark 2 We consider the remaining case

η∗
1 > min{1, η∗

2}

in the forthcoming paper [3]. This requires a delicate bifurcation analysis with appli-
cation of methods similar to the principle of the exchange of stability developed in
[8]; see also [9] and [5] for recent applications in population analysis. We will show
that in the remained cases one has the following two transition diagrams:

(iii) G000 → G100 → G101 → G111 → G011 → G001;
(iv) G000 → G100 → G101 → G111.

Furthermore, G111 may loose stability for large K and small γi in the latter case.

Remark 3 In particular, the above result implies that there are only three possible
‘final destination’ equilibrium states, namely G100,G001 and G111. These are thus the
possible scenarios for high density populations where the disease can spread easily
due to crowdedness.

3 Basic properties of equilibrium points

First we discuss some general results and equilibrium point analysis for (1).

3.1 A priori bounds

In this section we discuss only stable equilibrium points with nonnegative coordinates.
We denote

Y = (S, I1, I2, I12).

In what follows, by an equilibrium point we always mean an equilibrium Y of (3) with
nonnegative coordinates, Y = (S, I1, I2, I12) ≥ 0.

In the next sections we identify all equilibria of the system (3) and determine their
local stability properties. First, let us remark some useful relations which hold for any
nonnegative equilibrium point of (3).
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Lemma 1 Let Y = (S, I1, I2, I12) �= (0, 0, 0, 0) be a nontrivial equilibrium point of
(3) with nonnegative coordinates. Then

0 < S ≤ K , (24)

and the right equality holds if and only if I1 = I2 = I12 = 0, i.e. precisely when

Y = G000 := (K , 0, 0, 0).

Furthermore,

σ1 ≤ S ≤ min{K , σ3}, (25)

unless Y = G000.

Proof Let S = 0. Then we have from the second equation of (22) that (η1 I12 +γ1 I2 +
μ1)I1 = 0, where the nonnegativity assumption gives η1 I12 + γ1 I2 + μ1 ≥ μ1 > 0,
hence I1 = 0. For the same reason, I2 = 0, thus the last equation in (22) yields
μ3 I12 = 0, hence I12 = 0 too. This proves that Y = (0, 0, 0, 0), hence implying the
left inequality in (24).

Now assume that Y = (S, I1, I2, I12) �= (0, 0, 0, 0) is an equilibrium point. Since
S �= 0, we have from the first equation of (22) that

α1 I1 + α2 I2 + α3 I12 = r(K − S)

K
. (26)

In particular, the nonnegativity of the left hand side in the latter identity implies that
K − S ≥ 0, i.e. proving the right inequality in (24). On the other hand, summing up
the equations in (22) we obtain

μ1 I1 + μ2 I2 + μ3 I12 = r(K − S)S

K
. (27)

Assuming that S �= K and dividing (27) by (26) we get

S = μ1 I1 + μ2 I2 + μ3 I12
α1 I1 + α2 I2 + α3 I12

which readily yields (25). �

This implies, in particular

Corollary 1 For any equilibrium point Y �= (0, 0, 0, 0) and Y �= G000 there holds
K ≥ σ1.

Notice that for G000, all Ii = 0, otherwise we have
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Corollary 2 If an equilibrium point Y is distinct from G000 := (K , 0, 0, 0) then (26)
implies the following a priori bound on the I -coordinates:

σ1 ≤ S ≤ σ3, 0 ≤ Ii ≤ r

αi
, i = 1, 2, 3, (28)

where r is the intrinsic rate of natural increase. In other words, any equilibrium point
distinct from G000 lies inside a block with sides depending only on the fundamental
constants.

The trivial equilibrium point O = (0, 0, 0, 0) is the equilibrium of no disease
or susceptible and the standard (local asymptotic) stability treatment shows that this
point is always unstable. The first nontrivial equilibrium point G000 is the disease-free
equilibrium, i.e

G000 = (K , 0, 0, 0)

and it always exist (for any admissible values of the fundamental parameters). The
argument of [12] is also applicable in the present case because the stability analysis
forG000 does not involve γi , so it is literally equivalent to that given in [12]. Repeating
this argument (see section 8 in [12]) readily yields the following criterium.

Proposition 2 The following three conditions are equivalent:

(a) the disease-free equilibrium point G000 is locally stable;
(b) the disease-free equilibrium point G000 is globally (asymptotically) stable;
(c) 0 < K < σ1.

Remark 4 The latter proposition is completely consistentwith the dichotomyof the R0-
number (the reproduction number, sometimes called basic reproductive ratio). Recall
that in epidemiology, the basic reproduction number of an infection is the expected
number of cases directly generated by one case in a population where all individuals
are susceptible to infection. In our case, using the formal definition (see for example
[10]), one has

R0 = max

{
K

σi
: 1 ≤ i ≤ 3

}

= K

σ1
,

using the fact that the first strain is the most inclined to spread.
In this notation, R0 < 1 corresponds exactly to the scenario when the infection

will die out in the long run (i.e. the only asymptotically stable equilibrium state is the
disease-free equilibrium point G000), while R0 > 1 means the infection will be able
to spread in a population. Therefore, in what follows, we shall focus on the nontrivial
case R0 > 1 with different scenario admitting the equilibrium states with some of
I1, I2, I12 nonzero.
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3.2 Explicit representations of equilibrium points

Coming back to (22), note that the Bezout theorem yields (in generic setting) that
a quadratic system with four equations and four independent variables has 24 = 16
distinct solutions (counting the identically zero solution (0, 0, 0, 0)). In fact, in our case
we have only one-half of the relevant (the Bezout number) solutions. More precisely,
we have

Proposition 3 Except for the trivial equilibrium O = (0, 0, 0, 0) and the disease-free
equilibrium G000 = (K , 0, 0, 0) there exist only the following equilibrium states:

G100 = (σ1, I1, 0, 0) , I1 = r

α1

(
1 − σ1

K

)
, (29)

G010 = (σ2, 0, I2, 0), I2 := r

α2

(
1 − σ2

K

)
, (30)

G001 = (σ3, 0, 0, I12) I12 = r

α2

(
1 − σ3

K

)
, (31)

G101 = (S, I1, 0, I12), S = σ1K

K1
, I1 = μ3

η1

(

1 − K

K2

)

, I12 = μ1

η1

(
K

K1
− 1

)

,

(32)

G011 = (S, 0, I2, I12), S = σ1K

K3
, I2 = μ3

η2

(

1 − K

K4

)

, I12 = μ2

η2

(
K

K3
− 1

)

,

(33)

G111 = (S, I1, I2, I12), (34)

where

K3 = σ2η
∗
2

η∗
2 − 1

, K4 = σ3

σ2
K3.

and there may exist at most two distinct points of type G111.

Proof Let Y = (S, I1, I2, I12) �= O,G000 be an equilibrium point. Then by Lemma 1
S > 0 and by the assumption some of coordinates I1, I2, I12 must be distinct from
zero. First assume that I12 = 0. Then the last equation in (22) implies I1 I2 = 0. By the
made assumption this implies that exactly one of I1 and I2 is nonzero while another
vanishes. This yields G100 and G010 in (29) and (41), respectively. Now, let I12 �= 0
but I1 I2 = 0. Then the last equation in (22) implies α3S + η1 I1 + η2 I2 − μ3 = 0.
An elementary analysis reveals exactly three possible points G001,G101 and G011 in
(31)–(33). Finally, consider the case when all coordinates of Y are distinct from zero.
Since Y is distinct from O and G000, it must satisfy (26), (27). Also, since I1, I2 �= 0,
we obtain from the second and the third equations (22) the following system:

μ1 I1 + μ2 I2 + μ3 I12 = r

K
(K − S)S,

α1 I1 + α2 I2 + α3 I12 = r

K
(K − S),
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α1S − γ1 I2 − η1 I12 − μ1 = 0,

α2S − γ2 I1 − η2 I12 − μ2 = 0.

Rewriting these four equations in the matrix form as follows

⎛

⎜
⎜
⎝

μ1 μ2 μ3
r
K (S − K )S

α1 α2 α3
r
K (S − K )

0 γ1 η1 μ1 − α1S
γ2 0 η2 μ2 − α2S

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

I1
I2
I12
1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ (35)

we conclude that (I1, I2, I12, 1)T is a 0-eigenvector of the matrix in the left hand side
of (35), thus, the first coordinate S satisfies the determinant equation

P(S) := p2S
2 + p1S + p0 = 0,

where

P(S) :=

∣
∣
∣
∣
∣
∣
∣
∣

μ1 μ2 μ3
r
K (S − K )S

α1 α2 α3
r
K (S − K )

0 γ1 η1 μ1 − α1S
γ2 0 η2 μ2 − α2S

∣
∣
∣
∣
∣
∣
∣
∣

(36)

and

p0 =

∣
∣
∣
∣
∣
∣
∣
∣

μ1 μ2 μ3 0
α1 α2 α3 μ0 − b
0 γ1 η1 μ1
γ2 0 η2 μ2

∣
∣
∣
∣
∣
∣
∣
∣

, p1 =

∣
∣
∣
∣
∣
∣
∣
∣

μ1 μ2 μ3 μ0 − b
α1 α2 α3

r
K

0 γ1 η1 −α1
γ2 0 η2 −α2

∣
∣
∣
∣
∣
∣
∣
∣

,

p2 =

∣
∣
∣
∣
∣
∣
∣
∣

μ1 μ2 μ3
r
K

α1 α2 α3 0
0 γ1 η1 0
γ2 0 η2 0

∣
∣
∣
∣
∣
∣
∣
∣

In particular, it follows that P(S) is a quadratic polynomial in S, therefore there may
be at most two distinct inner points of type G111. The condition P(S) = 0 is sufficient
if γ1, γ2 < �α

α3
. �


It follows from Proposition 3 that all the boundary (edge) stationary points are
uniquely determined and can be found by explicit formulas. The existence and unique-
ness of coexistence (inner) points of type G111 is more involved (in contrast with the
Lotka-Volterra case γ̄ = 0) and depends on the value of γ̄ .

We study the existence and the local stability of inner points by a bifurcation
approach in the forthcoming paper [3]. Notice also that in the particular case γi = 0,
the characteristic polynomial (36) becomes a linear function expressed explicitly by

P(S)|γ1=γ2=0 = α1α2(σ1 − σ2)(�μ − S�α)
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where we used the notation in (15). This considerably simplifies the analysis, see [12].

Lemma 2 The following holds:

(i) For each G j , j = 1, 2, 3, 5, there exists ε > 0 (depending on the fundamental
parameters αi , μi , ηi and γi ) such that ‖G j − G111‖ ≥ ε.

(ii) Let G010 be given by (30) and δ := α1S∗ − γ1 I ∗
2 − μ1 > 0 (or equivalently

γ ∗ < K/(K − σ2)). Then there exists ε(δ) > 0 such that ‖G010 − G111‖ ≥ ε(δ).
(iii) Let G101 be given by (32) and δ := α2S∗ − η2 I12 − γ2 I ∗

1 − μ2 �= 0. Then there
exists ε(δ) > 0 such that ‖G101 − G111‖ ≥ ε(δ).

(iv) Let G011 be given by (34) and δ := α1S∗ − η1 I12 − γ1 I ∗
1 − μ1 �= 0. Then there

exists ε(δ) > 0 such that ‖G011 − G111‖ ≥ ε(δ).

Proof (i) We prove the assertion for j = 5 since the other cases are considered in a
similar way. The second and the third equations in (22) near the point G001 have the
form

(α1K − μ1 + O(ε))I1 = 0, (α2K − μ2 + O(ε))I2 = 0, (37)

where ε = ‖G001 − G111‖. By the assumption (7), one of the numbers α1K − μ1,
α2K −μ2 does not vanish and so the corresponding coefficient in (37) does not vanish
for small ε, which implies (i) for G001. Proofs of (ii)–(iv) use the same argument.

�


3.3 Equilibrium branches

It turns out that the most natural way to study equilibrium points is to consider their
dependence on the carrying capacity K . We know by Proposition 2 that the disease-
free equilibrium point G000 is the only stable equilibrium point for 0 ≤ K < σ1. In
this sectionwe consider each equilibrium state separately and study their local stability
for K ≥ σ1. We study first the local stability of each point individually and in the next
sections consider the dependence on K .

Our main goal is to describe all possible continuous scenarios of how the locally
stable equilibrium states of (3) depends on K provided that all other fundamental
parameters αi , μi , b, γi remain fixed. To this end, we introduce the following concept.

Definition 1 By an equilibrium branch we mean any continuous in K ≥ 0 family of
equilibrium points of (3) which are locally stable for all but finitely many threshold
values of K .

Remark 5 We need to distinguish the threshold values of K in the above definition
because, formally, the local stability (i.e. that the real parts of all the systems charac-
teristic roots are negative) fails when an equilibrium point changes its type. On the
other hand, a branchmay be stable in the Lyapunoff sense even for the threshold values
of K . Indeed, the latter holds at least for γ = 0, see [12].
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4 The equilibrium stateG100: Proof of (i)

Note that the next three boundary equilibriums G100,G010 and G001 have a constant
S-coordinate (independent on K ). The first of these is the equilibrium point G100
with the presence of only the first strain. Its explicit expression with the nonnegativity
condition are given by (29). Remark that when K = σ1, the globally stable equilibrium
point G000 bifurcates into G100 = (σ1, I ∗

1 , 0, 0):

G100 = G000 when I ∗
1 = 0 ⇔ K = σ1

Using (29), we find the corresponding Jacobian matrix evaluated at G100:

J100 =

⎡

⎢
⎢
⎢
⎣

− rσ1
K −α1σ1 −α2σ1 −α3σ1

α1 I ∗
1 0 −γ1 I ∗

1 −η1 I ∗
1

0 0 −α2(σ2 − σ1) − γ2 I ∗
1 0

0 0 γ I ∗
1 −α3(σ3 − σ1) + η1 I ∗

1

⎤

⎥
⎥
⎥
⎦

,

Notice that, J100 has a block structure. The left upper 2× 2-block is obviously stable.
Therefore J100 is stable if and only if the right lower block is so. By virtue of−α2(σ2−
σ1) − γ2 I ∗

1 < 0 this is equivalent to

− α3(σ3 − σ1) + η1 I
∗
1 < 0, (38)

or, equivalently, using the expression I ∗
1 = r

Kα1
(K − σ1) and (11) we obtain

η∗
1 <

K

K − σ1
. (39)

After some obvious manipulations we arrive at

Proposition 4 The equilibrium point G100 is stable nonnegative if and only if

⎧
⎨

⎩

K > σ1 if η∗
1 ≤ 1

σ1 < K < K1 if η∗
1 > 1.

(40)

Notice that the point G100 remains nonnegative and locally stable for any K > σ1
provided η∗

1 ≤ 1. This provides us with the first (simplest) example of a branch. More
precisely, we have

Corollary 3 (Branch (i)) Let η∗
1 ≤ 1. Then

(a) for 0 < K < σ1 the point G000 is locally (in fact, globally) stable;
(b) for K = σ1 the point G000 coincides with G100;
(c) for K > σ1 the point G100 is locally stable.
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We display this schematically as

G000 → G100.

The latter corollary implies (i) in Theorem 1.

5 Proof of (ii)

Corollary 3 completely describes all possible scenarios for 0 ≤ K < ∞ when η∗
1 ≤

1. In what follows, we shall always assume that η∗
1 > 1. Then Proposition 4 tells

us that G100 remains locally stable for any σ1 < K < K1. If we want to find a
continuous equilibrium branch, we need to check which of the remained candidates
G010,G001,G101,G011,G111 becomes equal to G100 for the right critical value K =
K1.

An easy inspection shows that for a generic choice of the fundamental parameters
there is only one possible candidate, namelyG101. Thus, to construct the only possible
scenario for a continuous equilibrium branch is when G100 bifurcates into G101. In
the next section we give stability analysis of G010 and G001, and then continue with
G101 and construction of equilibrium branches.

5.1 The equilibrium state G010

The equilibrium point G010 expresses the presence of only the second strain, see (30).
It is nonnegative if and only if

K > σ2. (41)

Note that if G010 is nonnegative then by virtue of (41) and (7), G100 is nonnegative
too. The Jacobian matrix computed at G010 is

J010 =

⎡

⎢
⎢
⎣

−r σ2
K −α1σ2 −α2σ2 −α3σ2

0 α1(σ2 − σ1) − γ1 I ∗
2 0 0

α2 I ∗
2 −γ2 I ∗

2 0 −η2 I ∗
2

0 γ I ∗
2 0 −α3(σ3 − σ2) + η2 I ∗

2

⎤

⎥
⎥
⎦ (42)

Note that, interchanging rows and columns of the matrix (42) only change the sign of
the determinant of this matrix. Therefore, after an obvious rearrangement, the eigen-
values of J010 solves the following equation:

∣
∣
∣
∣
∣
∣
∣
∣

−r σ2
K − λ −α2σ2 −α1σ2 −α3σ2

α2 I ∗
2 −λ −γ2 I ∗

2 −η2 I ∗
2

0 0 α1(σ2 − σ1) − γ1 I ∗
2 − λ 0

0 0 γ I ∗
2 −α3(σ3 − σ2) + η2 I ∗

2 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

(43)
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Again, one easily verifies that the left upper 2 × 2-block is stable, while the stability
of the right down (lower-diagonal) block is equivalent to the negativity of the diagonal
elements, i.e. to the inequalities

{
α1(σ2 − σ1) − γ1 I ∗

2 < 0,

−α3(σ3 − σ2) + η2 I ∗
2 < 0.

Thus the stability of G010 is equivalent to the inequalities

{
K

(
1 − 1

γ ∗
)

> σ2

K < K3,
(44)

where γ ∗ := γ1
A3
. In summary, we have

Proposition 5 The equilibrium point G010 is stable and nonnegative iff

• K3 < K <
σ2γ

∗
γ ∗−1 when γ ∗ > 1 and η∗

2 > 1, or

• K >
σ2γ

∗
γ ∗−1 when γ ∗ > 1 and η∗

2 < 1.

Remark 6 In this paper, we are primarily interested in the case of ‘small’ values of
γi . On the other hand, the latter proposition shows that G010 may be stable only if
γ1 > A3, therefore this equilibrium is not stable for small values of γ1 and will be
eliminated from the subsequent analysis.

Corollary 4 The equilibrium point G010 is locally unstable if 0 ≤ γ ∗
1 < 1.

5.2 The equilibrium state G001

An equilibrium point in the presence of coinfection is given by (31).

Proposition 6 The equilibrium point G001 is stable and nonnegative iff

η := min{η∗
1, η

∗
2} > 1 and K >

σ3η

η − 1
. (45)

Furthermore, if the point G001 is nonnegative and locally stable for a certain K0 > 0
then it will be so for any K ≥ K0 (provided that other parameters are fixed).

Proof By (31), I ∗
12 = r

Kα3
(K − σ3), hence the positivity of I ∗

12 is equivalent to

K > σ3.

Next, the Jacobian matrix evaluated at G001 is

J001 =

⎡

⎢
⎢
⎣

−r σ3
K −α1σ3 −α2σ3 −α3σ3

0 α1(σ3 − σ1) − η1 I ∗
12 0 0

0 0 α2(σ3 − σ2) − η2 I ∗
12 0

α3 I ∗
12 η1 I ∗

12 η2 I ∗
12 0

⎤

⎥
⎥
⎦ , (46)
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The matrix has a block structure where the block

[−r σ3
K −α3σ3

α3 I ∗
12 0

]

is obviously stable, therefore the stability of J001 is equivalent to the negativity of two
diagonal elements:

α1(σ3 − σ1) − η1 I
∗
12 < 0,

α2(σ3 − σ2) − η2 I
∗
12 < 0.

First notice that stability of G001 implies immediately that I ∗
12 > 0. Also, taking into

account that I ∗
12 = r

Kα3
(K −σ3), the stability of G001 is equivalent to the inequalities

σ3 < K

(

1 − min

{
1

η∗
1
,

1

η∗
2

})

= K

(

1 − 1

η

)

.

In summary, we have (31). Finally, the last statement of the proposition follows imme-
diately from the increasing (with respect to K ) character of the second inequality in
(45). �


Remark 7 We emphasize that the stability of the equilibrium states G000,G100,G010
and G001 does not involve the interference parameters γ1, γ2.

5.3 The equilibrium state G101

Analysis of the remaining three equilibrium points G101,G011 and G111 is more
delicate and now also involves the coinfection constants γ1, γ2. Let us consider the
boundary equilibrium point

G101 =
(

σ1K

K1
,

μ3

η1

(

1 − K

K2

)

, 0,
μ1

η1

(
K

K1
− 1

))

,

see (32). First notice that the coordinates of G101 are nonnegative if and only if the
two conditions hold: K1 > 0 (which is equivalent to η∗

1 > 1) and also

σ1 < S∗ < σ3.

We see that G101 is nonnegative if and only if

K1 < K < K2, η∗
1 > 1. (47)

(Note that the bilateral inequality is inconsistent with (45)).
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Now let us study the local stability of G101. Using (32), the Jacobian matrix for
G101 is found as

J101 =

⎡

⎢
⎢
⎣

−r S∗
K −α1S∗ −α2S∗ −α3Sj

α1 I ∗
1 0 −γ1 I ∗

1 −η1 I ∗
1

0 0 α2S∗ − η2 I ∗
12 − γ2 I ∗

1 − μ2 0
α3 I ∗

12 η1 I ∗
12 η2 I ∗

12 + γ I ∗
1 0

⎤

⎥
⎥
⎦ .

with S∗, I ∗
1 , I ∗

12 given by (32). Using the block structure of J101, we obtain that G101
is locally stable if and only if

• there holds

α2S
∗ − η2 I

∗
12 − γ2 I

∗
1 − μ2 < 0 (48)

• and the matrix below is stable:

J̃ =
⎡

⎣
−r S∗

K −α1S∗ −α3S∗
α1 I ∗

1 0 −η1 I ∗
1

α3 I ∗
12 η1 I ∗

12 0

⎤

⎦ =
⎡

⎣
S∗ 0 0
0 I ∗

1 0
0 0 I ∗

12

⎤

⎦

⎡

⎣
− r

K −α1 −α3
α1 0 −η1
α3 η1 0

⎤

⎦ .

(49)

The stability of J̃ is equivalent to the stability of the last matrix factor in (49). An
easy application of the Routh-Hurwitz criteria [11] confirms that J̃ is always stable.
Hence, the stability of G101 is equivalent to the condition (48). Using (32), we can
rewrite it as follows:

S∗(�α + γ2α3) < �μ + γ2μ3 (50)

see (8) and (9). Let us define

Ŝ1 := �μ + μ3γ2

�α + α3γ2
(51)

We have by using (11)–(12)

Ŝ1 − σ1 = η1α1α2(σ2 − σ2) + γ2α1α3(σ3 − σ1)

α1(�α + α3γ2)

= r(η1A3 + γ2A1)

α1(�α + α3γ2)
, (52)

Ŝ1 − σ2 = η2α1α2(σ2 − σ1) + γ2α2α3(σ3 − σ2)

α2(�α + α3γ2)

= r(η2A3 + γ2A2)

α1(�α + α3γ2)
, (53)

Ŝ1 − σ3 = η2α1α3(σ3 − σ1) − η1α2α3(σ2 − σ3)

α3(�α + α3γ2)
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= A1A2r(η∗
2 − η∗

1)

α3(�α + α3γ2)
, (54)

Consider first the case�α +α3γ2 = 0. Then by (17) it follows that�μ +γ2μ3 > 0
therefore (50) holds automatically true in this case, and G101 is locally stable.

Next consider the case�α +α3γ2 < 0. Then it follows from (50) thatG101 is stable
whenever S∗ > Ŝ1. On the other hand, (52) implies in this case Ŝ1 < σ1, therefore
using (25) we see that

S∗ > σ1 > Ŝ1 (55)

whenever S∗ is nonnegative. Therefore in this case G101 is locally stable whenever
(47) are fulfilled. Note also that under the made assumption �α + α3γ2 < 0 one
necessarily has η∗

2 > η∗
1. Indeed, if η∗

2 ≤ η∗
1 then (18) implies �α > 0, therefore

�α + α3γ2 > 0, a contradiction.
Finally, assume that

�α + α3γ2 > 0 (56)

Then by (50) the point G101 is locally stable if and only if S∗ < Ŝ1, i.e.

K <
Ŝ1

1 − 1
η∗
1

. (57)

Under assumption (56), (52) implies Ŝ1 > σ1. On the other hand, we have

Ŝ1 ≥ σ3 if η∗
2 ≥ η∗

1 and Ŝ1 < σ3 if η∗
2 < η∗

1 .

On the other hand, in the latter case, the inequality η∗
2 ≥ η∗

1 by virtue of (18) that in
fact�α > 0, therefore (56) holds automatically true in this case. Combining (57) with
the nonnegativity condition (47), and summarizing the above observations we arrive
at

Proposition 7 The equilibrium point G101 is nonnegative stable iff η∗
1 > 1 and the

following conditions hold:

K1 < K <
Q

σ1
K1 (58)

where

Q =
{

σ3 if η∗
2 ≥ η∗

1;
Ŝ1 if η∗

2 < η∗
1 .

(59)

Now we are ready to describe the equilibrium branch for η∗
1 > 1.
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Corollary 5 Let η∗
1 > 1. Then

(a) for 0 < K < σ1 the point G000 is locally (in fact, globally) stable;
(b) for K = σ1 the point G000 coincides with G100;
(c) for σ1 < K < K1 the point G100 is locally stable;
(d) for K = K1 the point G100 coincides with G101;
(e) for K1 < K <

Q
σ1
K1 the point G101 is locally stable, where Q is defined by (59).

We display this schematically as

G000 → G100 → G101 → . . . (60)

Proof Thefirst three items are obtained by combiningProposition 4withProposition 2.
Note that the upper bound in (c) here is smaller than that in (c) in Corollary 3. When

K = K1 = σ1η
∗
1

η∗
1−1 , it follows that the I12-coordinate of G101 vanishes (see (32)), i.e.

G101 = G100, which proves (d). Next, Proposition 7 yields (e). �


With Corollaries 3 and 5 in hand, it is natural to ask: What happens with an equi-
librium branch when η∗

1 > 1 and K > K1?
So far,we see that any continuous equilibriumbranch develops uniquely determined

accordingly (60). But at G101 the situation becomes more complicated: this point may
a priori bifurcate into different points.

In this paper we only consider the particular case (ii), i.e. when 1 < η∗
1 < η∗

2. This
yields by (59) that Q = σ3, hence (58) implies that G101 is locally stable for

K1 < K < K2.

The upper critical value K2 substituted in (32) implies that I ∗
1 = 0, hence G101

naturally bifurcates into G001. It is easy to see that the corresponding I ∗
12 for G001 and

G101 coincide when K = K2 holds. This observation combined with Proposition 6
implies that in this case for any K > K2 the point G001 will be locally stable, hence
we arrive at

Corollary 6 (Branch (ii)) Let η∗
2 ≥ η∗

1 > 1 hold. Then

(a) for 0 < K < σ1 the point G000 is locally (in fact, globally) stable;
(b) for K = σ1 the point G000 coincides with G100;
(c) for σ1 < K < K1 the point G100 is locally stable;
(d) for K = K1 the point G100 coincides with G101;
(e) for K1 < K < K2 the point G101 is locally stable;
(f) for K = K2 the point G101 coincides with G001;
(g) for K > K2 the point G001 is locally stable.

We display this schematically as

G000 → G100 → G101 → G001 (61)
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5.4 Bifurcation of G101

Thus, one remains to study the case when

η∗
2 < η∗

1, η∗
1 > 1 (62)

hold. Notice that in fact by virtue of (18) the latter inequality implies

�α > 0. (63)

We know by (e) in Corollary 5 that G101 is locally stable for

K1 < K <
Ŝ1η∗

1

η∗
1 − 1

.

Substituting the corresponding critical value K = K0 such that

K0 = Ŝ1η∗
1

η∗
1 − 1

= �μ + μ3γ2

�α + α3γ2
· η∗

1

η∗
1 − 1

in (32) reveals that the coordinates G101 do not vanish, i.e. G101 does not change
its type. Instead it losts its local stability because the determinant of J101 vanishes
at this moment. To continue the equilibrium branch (60) beyond G101 we need to
find an appropriate candidate for a stable point. By the continuity argument (because
G101 keeps all coordinates nonzero for K = K0), the only possible candidate for
a continuous equilibrium branch is a point of type G111. Since we do not have any
explicit expression of G111, the analysis in this case is more complicated and involves
a certain bifurcation technique which we develop in a forthcoming paper [3].

6 Concluding remarks

It is natural, from a biological point of view, to relax the constancy condition on the
transmission rates αi and assume that in general they may depend on the carrying
capacity. Indeed, a larger carrying capacity can be due to a larger living area for a
population in contrast to increased amount of resources in a given area. This would
would make a population of given size more sparse. This increased sparseness would
make it harder for the strains to spread. With this in mind, one natural assumption is
the following relation:

αi (K ) = ai
K

. (64)

This implies for the other fundamental constants

σi = μi

ai
K =: si K ,
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and

Ai = Bi
K

, where B1 = a1a3(s3 − s1)

r
etc.

The main consequence of (64) is that the coordinates of a stable equilibrium point is
no longer bounded and develop as K increases. For example, under assumption (64)
one has from (25) merely

s1K ≤ S ≤ K min{1, s3}.

This, in particular implies that already the first bifurcation S2 → S3 is completely
different. Indeed, it follows from Proposition 2 thatG000 becomes stable for all K > 0
provided s1 ≥ 1. In the nontrivial case s1 < 1, G000 is never stable. In general,
Proposition 4 and Corollary 6 instead imply

Corollary 7 We have the following stability analysis:

(i) If s1 ≥ 1 then G000 is stable for all K > 0;
(ii) If s1 < 1 and 0 < η∗

1 ≤ 1
1−s1

then G100 stable for all K > 0;

Let now s1 < 1, η∗
2 > η∗

1 > 1
1−s1

hold. Then

(iii) if s3 ≥ 1 or s3 < 1 and η∗
1 < 1

1−s3
then G101 stable for all K > 0;

(iv) if s3 < 1 and η∗
1 > 1

1−s3
then G001 stable for all K > 0.

Thus, we have a complete description in the cases η∗
1 ≤ 1 and η∗

2 ≥ η∗
1 > 1. The

remained case η∗
1 ≥ max{1, η∗

2} will be considered in [3].
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