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Abstract
In this paper we continue the stability analysis of the model for coinfection with
density dependent susceptible population introduced in Andersson et al. (Effect of
density dependence on coinfection dynamics. arXiv:2008.09987, 2020). We consider
the remaining parameter values left out fromAndersson et al. (Effect of density depen-
dence on coinfection dynamics. arXiv:2008.09987, 2020). We look for coexistence
equilibrium points, their stability and dependence on the carrying capacity K . Two
sets of parameter value are determined, each giving rise to different scenarios for the
equilibrium branch parametrized by K . In both scenarios the branch includes coexis-
tence points implying that both coinfection and single infection of both diseases can
exist together in a stable state. There are no simple explicit expression for these equi-
librium points and we will require a more delicate analysis of these points with a new
bifurcation technique adapted to such epidemic related problems. The first scenario is
described by the branch of stable equilibrium points which includes a continuum of
coexistence points starting at a bifurcation equilibrium point with zero single infection
strain #1 and finishing at another bifurcation point with zero single infection strain #2.
In the second scenario the branch also includes a section of coexistence equilibrium
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points with the same type of starting point but the branch stays inside the positive cone
after this. The coexistence equilibrium points are stable at the start of the section. It
stays stable as long as the product of K and the rate γ̄ of coinfection resulting from
two single infections is small but, after this it can reach a Hopf bifurcation and periodic
orbits will appear.

Keywords SIR model · Coinfection · Carrying capacity · Global stability

1 Introduction

In this paperwe continue on thework of [2]wherewe studied the equilibriumdynamics
for a continuous compartmental model of two infectious diseases with the ability to
co-infect individuals. In the model we assume that only the susceptibles can give
birth and that the reproductive rate depends on the density of the susceptibles. This
dependence is modelled with a parameter K > 0 which is the carrying capacity of the
population. Recall that by an (equilibrium) branch we understand any continuous in
K ≥ 0 family of equilibrium points of a dynamic system which are locally stable for
all but finitely many threshold values of K .

In [2] it was established that for a certain set of parameters (except of K ) there
exists such an equilibrium branch parameterized by K > 0. Furthermore, in all cases
considered in [2], such a branch can be expressed explicitly.

In this paper we will show that the same holds for the rest of the parametric choices.
The main difficulty compared to [2] is that for our parameters the equilibrium branch
consists of coexistence equilibriumwhere single infection of each disease and coinfec-
tion both occurs. There are no simple explicit expression for these equilibrium points
and we will require a more delicate analysis of these points with a new bifurcation
technique adapted to such epidemic related problems.

1.1 Themodel

As in [2], we assume that the single infection cannot be transmitted by the contact
with a coinfected person. This process gives rise to the model:

S′ =
(
r

(
1 − S

K

)
− α1 I1 − α2 I2 − α3 I12

)
S,

I ′
1 = (α1S − η1 I12 − γ1 I2 − μ1)I1,

I ′
2 = (α2S − η2 I12 − γ2 I1 − μ2)I2,

I ′
12 = (α3S + η1 I1 + η2 I2 − μ3)I12 + γ I1 I2,

R′ = ρ1 I1 + ρ2 I2 + ρ3 I12 − μ′
4R,

(1)

where we use the following notation:

• S represents the susceptible class,
• I1 and I2 are the infected classes from strain 1 and strain 2 respectively,
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• I12 represents the co-infected class,
• R represents the recovered class.

Following [1,3,11], we assume that the reproduction rate depends on the density
of population that allows us to obtain a limited population growth. We also consider
the recovery of each infected class [see the last equation in (1)]. The fundamental
parameters of the system are:

• r = b − d0 is the intrinsic rate of natural increase, where b is the birthrate and d0
is the death rate of S-class,

• K is the carrying capacity (see also the next section),
• ρi is the recovery rate from each infected class (i = 1, 2, 3),
• di is the death rate of each class, (i = 1, 2, 3, 4), where d3 and d4 correspond I12
and R respectively,

• μi = ρi + di , i = 1, 2, 3.
• α1, α2, α3 are the rates of transmission of strain 1, strain 2 and both strains (in the
case of coinfection),

• γi is the rate at which infected with one strain get infected with the other strain
and move to a coinfected class (i = 1, 2),

• ηi is the rate at which infected from one strain getting infection from a co-infected
class (i = 1, 2);

We only consider the case when the reproduction rate of susceptibles is not less
than their death rate since we know that the population will go extinct in that case.
The system is considered under the natural initial conditions S(0) > 0, I1(0) ≥ 0,
I2(0) ≥ 0, I12(0) ≥ 0 andwe denote the total population by N = S+ I1+ I2+ I12+R.

Since the variable R is not present in the first four equations, without loss of gen-
erality, we may consider only the first four equations of system (1). It is convenient to
introduce the notation

σi :=μi

αi
, 1 ≤ i ≤ 3. (2)

And similarly to the first part [2] we make the following assumption

σ1 < σ2 < σ3. (3)

We shall also assume that (1) satisfies the non-degenerate condition

Δα =
∣∣∣∣η1 α1
η2 α2

∣∣∣∣ = η1α2 − η2α1 �= 0. (4)

This condition have a natural biological explanation: the virus strains 1 and 2 have
different (co)infections rates. We use the notation

γ̄ = γ1 + γ2, γ = (γ1, γ2),
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and

A1 = α1α3

r
(σ3 − σ1), η

∗
1 := η1

A1

A2 = α2α3

r
(σ3 − σ2), η

∗
2 := η2

A2

A3 = α1α2

r
(σ2 − σ1), γ

∗ := γ1

A3
.

Notice that by (3) one has A1, A2, A3 > 0. We have

α2A1 = α3A3 + α1A2. (5)

The determinants Δα and Δμ = η1μ2 − η2μ1 are related to each other by

Δμ = η1r

α1
A3 + σ1Δα = η2r

α2
A3 + σ2Δα,

hence A3 > 0 implies

Δμ > σ1Δα Δμ > σ2Δα. (6)

This implies an inequality which will be useful in the further analysis:

σ2(Δα + γ2α3) < Δμ + γ2μ3. (7)

We shall also make use of the following relations:

η∗
1 − η∗

2 < η1
α2

α1A2
− η∗

2 = Δα

α1A2
. (8)

A consequence of (8) and (6) is that for η∗
1 > η∗

2 we have Δα, Δμ > 0. On the other
hand, one has

η∗
1 − η∗

2 = (Δασ3 − Δμ)α3

r A1A2
(9)

1.2 Themain result

It is elementary to see that except for the trivial equilibrium stateG1 = (0, 0, 0, 0) and
the disease free equilibrium G000 = (K , 0, 0, 0), there exist only 6 possible types of
equilibrium points G100, G010, G001, G101, G011, G111 determined by their non-zero
compartments (see Table 1 and Proposition 1 below for explicit representations). Here,
the equilibrium points G100, G010, G001 have two non-zero components and represent
points where only one of the diseases are present or where the diseases only exist
together as coinfection. At the points G101,G011 one of the diseases are only present
in coinfected individuals while the other disease also occurs as single infections. The
pointG111 is the coexistence equilibriumwere both types of single infection is present
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Table 1 The types of
equilibrium states of (1), where
� denotes a non-zero coordinate

Type S I1 I2 I12

G000 � 0 0 0

G100 � � 0 0

G010 � 0 � 0

G001 � 0 0 �

G101 � � 0 �

G011 � 0 � �

G111 � � � �

as well as coinfection. Our main results extends the results of [6] and [7] on the case of
small values of γi . More precisely, we have only four possible scenarios of developing
of a locally stable equilibrium point as a continuous function of increasing carrying
capacity K , see Theorem 1 below.

Theorem 1 Let all parameters αi , μi , ηi , γi of (1) be fixed with γ̄ sufficiently small.
Then one has exactly one locally stable nonnegative equilibrium point depending on
K > 0. Furthermore, changing the carrying capacity K from zero to infinity, the
type of this locally stable equilibrium point changes according to one of the following
alternative scenarios:

(i) G000 → G100;
(ii) G000 → G100 → G101 → G001;
(iii) G000 → G100 → G101 → G111 → G011 → G001;
(iv) G000 → G100 → G101 → G111.

The first two scenarios are considered in our paper [2]. In this paper we consider the
remained two scenarios, (iii) and (vi). These cases require amore nontrivial bifurcation
analysiswith application ofmethods similar to the principle of the exchange of stability
developed in [8], see also [2,9] for recent applications in population analysis. In our
context, this requires a delicate analysis of the inner equilibrium state G111, as well
as a new bifurcation technique.

2 Equilibrium points

We note that the last equation in (1) can be solved explicitly with respect to R:

R(t) = e−μ′
4t R(0) +

∫ t

0
eμ′

4(τ−t)(ρ1 I1 + ρ2 I2 + ρ3 I12)(τ )dτ

therefore it suffices to study the dynamics of the first four equations in (1). If I1, I2
and I12 have limits Î1, Î2 and Î12 respectively as t → ∞ then R will have the limit

R̂ = ρ1 Î1 + ρ2 Î2 + ρ3 Î12
μ4
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Let us turn to the first four equations in (1). The equilibrium points satisfy the
following system

(
b

(
1 − S

K

)
− α1 I1 − α2 I2 − α3 I12 − μ0

)
S = 0,

(α1S − η1 I12 − γ1 I2 − μ1)I1 = 0,

(α2S − η2 I12 − γ2 I1 − μ2)I2 = 0,

(α3S + η1 I1 + η2 I2 − μ3)I12 + γ I1 I2 = 0.

(10)

and in [2] we had the following proposition

Proposition 1 Except for the trivial equilibrium G1 = (0, 0, 0, 0) and the disease free
equilibrium G000 = (K , 0, 0, 0) there exist only the following equilibrium states:

G100 =
(

σ1,
r

Kα1
(K − σ1), 0, 0

)
,

G010 =
(

σ2, 0,
r

Kα2
(K − σ2), 0

)
,

G001 =
(

σ3, 0, 0,
r

Kα3
(K − σ3)

)
,

G101 =
(
S∗, α3

η1
(σ3 − S∗), 0, α1

η1
(S∗ − σ1)

)
, where S∗ = K

(
1 − 1

η∗
1

)
,

G011 =
(
S∗, 0, α3

η2
(σ3 − S∗), α2

η2
(S∗ − σ2)

)
, where S∗ = K

(
1 − 1

η∗
2

)
,

G111 = (S∗, I ∗
1 , I ∗

2 , I ∗
12).

All needed information about equilibrium points G1 – G101 can be found in [2].
Here we consider only points G111 and G011. To highlight the dependence of the
equilibrium points on K we will write sometimes G j (K ).

2.1 Coexistence equilibria

The coordinates of coexistence equilibrium points satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
(
1 − S

K

) − α1 I1 − α2 I2 − α3 I12 = 0,

α1S − η1 I12 − γ1 I2 − μ1 = 0,

α2S − η2 I12 − γ2 I1 − μ2 = 0,

α3S + η1 I1 + η2 I2 − μ3 + γ I1 I2
I12

= 0

(11)
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Furthermore, as it is shown in [2], Sect. 3.2, the S coordinate of an inner equilibrium
point (coexistence equilibrium) satisfies P(S) = 0 where

P(S) := Pγ,K (S) :=

∣∣∣∣∣∣∣∣

μ1 μ2 μ3
r
K (S − K )S

α1 α2 α3
r
K (S − K )

0 γ1 η1 μ1 − α1S
γ2 0 η2 μ2 − α2S

∣∣∣∣∣∣∣∣
.

One can verify that

P(S) = p2S
2 + p1S + p0,

where

p0 = r(−A3Δμ − θ + γ1μ2A1 + γ2μ1A2),

p1 = r(A3Δα + θ

K
+ ρ − γ1α2A1 − γ2α1A2),

p2 = − r

K
ρ.

Here

ρ:=
∣∣∣∣∣∣
α1 α2 α3
0 γ1 η1
γ2 0 η2

∣∣∣∣∣∣ = γ1α1η2 + γ2α2η1 − γ1γ2α3,

θ :=
∣∣∣∣∣∣
μ1 μ2 μ3
0 γ1 η1
γ2 0 η2

∣∣∣∣∣∣ = γ1μ1η2 + γ2μ2η1 − γ1γ2μ3,

If the S component is known the other components can easily be founded from the
linear system of equations that results from the first three equations of (10).

Let us introduce the Jacobianmatrix of the right hand side of (1), with the redundant
last row removed, computed at an inner equilibrium point G111 = (S, I1, I2, I12):

J8 = diag(S, I1, I2, I12)B, B =

⎛
⎜⎜⎝

− r
K −α1 −α2 −α3

α1 0 −γ1 −η1
α2 −γ2 0 −η2
α3 η1 + γ r2 η2 + γ r1 −γ r1r2

⎞
⎟⎟⎠ ,

where

r1 = I1
I12

, r2 = I2
I12

. (12)
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Adding the first three rows of J8 to its last row one obtains applying systematically
(10) that

det B = det(J8)

SI1 I2 I12
= 1

I12

∣∣∣∣∣∣∣∣

r
K α1 α2 α3

−α1 0 γ1 η1
−α2 γ2 0 η2

r
K (2S − K ) μ1 μ2 μ3

∣∣∣∣∣∣∣∣

= 1

I12

∣∣∣∣∣∣∣∣

μ1 μ2 μ3
r
K (2S − K )

α1 α2 α3
r
K

0 γ1 η1 −α1
γ2 0 η2 −α2

∣∣∣∣∣∣∣∣
= 1

I12

∂P(S)

∂S
.

The last equality is verified directly by using the definition of P(S). This implies an
important property

det B = 1

I12

∂P(S)

∂S
. (13)

We assume that

∂Pγ,K (S)

∂S
> 0 for any coexistence equilibrium point. (14)

Remark 1 Inequality (14) together with (13) implies, in particular, that the Jacobian
matrix is invertible at every coexistence equilibrium and so there exists a curve G(K )

through this point, parameterized by K and consisting of equilibrium points satisfying
(14). Moreover (14) implies that the product of all eigenvalues of the Jacobian matrix
at a coexistence eq. point is positive which provides a necessary condition for local
stability of the corresponding equilibrium point. By Lemma 4 and (8) we have that
Δα > 0 if the condition (14) is valid and the set of coexistence equilibria is non empty.
Then since

∂P(S)

∂S
= α1α2(σ2 − σ1)Δα + O(γ̄ ),

inequality (14) is a priori true for small γ̄ .

Lemma 1 Let G(K ) = (S(K ), I1(K ), I2(K ), I12(K )) be a curve consisting of coex-
istence equilibrium points satisfying (14). Let also (K1, K2) be the maximal interval
of existence of such curve. Then

(i) ∂S
∂K < 0 and ∂ I12

∂K < 0 for K ∈ (K1, K2).
(ii) K1 ≥ σ1 and there exists a limit limK→K1 G(K ) which is an equilibrium point

with at least one zero component.
(iii) if K2 < ∞ then there exists a limit limK→K2 G(K ) which is an equilibrium point

with at least one zero component.
(iv) if K2 = ∞ then there is a limit limK→∞ G(K ) which is an equilibrium point of

the limit system.
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Proof Differentiating (11) with respect to K , we get

B

⎛
⎜⎜⎜⎜⎝

∂S
∂K
∂ I1
∂K
∂ I2
∂K
∂ I12
∂K

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

− r S
K 2

0
0
0

⎞
⎟⎟⎠ .

Therefore

∂S

∂K
= −(B−1)11

r S

K 2 = − r SI12

K 2 ∂P(S)
∂S

· (γ1γ2γ r1r2 + γ1η2(η1 + γ r2) + η1γ2(η2 + γ r1))

and

∂ I12
∂K

= −(B−1)41
r S

K 2 = − r SI12

K 2 ∂P(S)
∂S

· (α1γ2(η2 + γ r1) + γ1α2(η1 + γ r2) + γ1γ2α3).

which proves (i).
To prove (ii) we note first that the equilibrium point G000 is globally stable for

K ∈ (0, σ1) according to [2], Proposition 2, and therefore K1 ≥ σ1. Next, since S and
I12 components are monotone according to (i), and bounded there is a limit

S(1) = lim
K→K1

S(K ) and I (1)
12 = lim

K→K1
I12(K ).

The I1 and I2 components satisfying equations

γ1 I2 = α1S − η1 I12 − μ1,

γ2 I1 = α2S − η2 I12 − μ2,

which implies convergence of these components to I (1)
1 and I (1)

2 respectively as K →
K1. Clearly G(1) = (S(1), I (1)

1 , I (1)
2 , I (1)

12 ) is an equilibrium point which must be on
the boundary of the positive orthant, otherwise one can continue the branch G(K )

outside the maximal interval of existence. This argument proves (ii). Proof of (iii) and
(iv) are the same up to some small changes as the proof of (ii). 
�

To exclude from our analysis the equilibrium point G010 we will require in this text
that

γ ∗ < 1. (15)

Under this condition G010 is always unstable. Since we are interested only in locally
stable equilibrium point the point G010 will not appear in our forthcoming analysis.
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2.2 The equilibrium state G011

Let us consider the equilibrium pointG011. The components are given by Proposition 1
as

G011 = (S∗, 0, I ∗
2 , I ∗

12),

S∗ = K

(
1 − 1

η∗
2

)
,

I ∗
2 = α3

η2
(σ3 − S∗),

I ∗
12 = α2

η2
(S∗ − σ2).

This point has type G011 (i.e. three positive components) if and only if

σ2 < S∗ < σ3 and η∗
2 > 1,

where the first relation is equivalent to

σ2η
∗
2

η∗
2 − 1

< K <
σ3η

∗
2

η∗
2 − 1

. (16)

Similarly to above we find the Jacobian matrix evaluated at G011 as

J7 =

⎡
⎢⎢⎢⎢⎣

−r S∗
K −α1S∗ −α2S∗ −α3S∗

0 α1S∗ − η1 I ∗
12 − γ1 I ∗

2 − μ1 0 0

α2 I ∗
2 −γ2 I ∗

2 0 −η2 I ∗
2

α3 I ∗
12 η1 I ∗

12 + γ I ∗
2 η2 I ∗

12 0

⎤
⎥⎥⎥⎥⎦ .

where S, I2, I12 are given by Proposition 1. Since the submatrix

J̃ =
⎡
⎢⎣

−r S∗
K −α2S∗ −α3S∗

α2 I ∗
2 0 −η2 I ∗

2

α3 I ∗
12 η2 I ∗

12 0

⎤
⎥⎦ =

⎡
⎢⎣
S∗ 0 0

0 I ∗
2 0

0 0 I ∗
12

⎤
⎥⎦
⎡
⎢⎣

− r
K −α2 −α3

α2 0 −η2

α3 η2 0

⎤
⎥⎦ ,

is stable by Routh-Hurwitz criteria, we conclude that the matrix J7 is stable whenever

α1S
∗ − η1 I

∗
12 − γ1 I

∗
2 − μ1 < 0. (17)

Using Proposition 1, we can rewrite (17) as

S∗(Δα − γ1α3) > Δμ − γ1μ3. (18)
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If Δα − γ1α3 = 0 then the linear stability holds whenever Δμ − γ1μ3 < 0. For
Δα − γ1α3 �= 0, let us define

Ŝ2 = Δμ − γ1μ3

Δα − γ1α3
and K̂2 = Ŝ2

η∗
2

η∗
2 − 1

then (18) can be written

{
S∗ > Ŝ2 if Δα − γ1α3 > 0

S∗ < Ŝ2 if Δα − γ1α3 < 0

It can be verified also that

Ŝ2 − σ1 = r A1A3(η
∗
1 − γ ∗)

(Δα − γ1α3)α1

Ŝ2 − σ2 = r A2A3(η
∗
2 − γ ∗)

(Δα − γ1α3)α2

Ŝ2 − σ3 = r A1A2(η
∗
2 − η∗

1)

(Δα − γ1α3)α3
(19)

This readily yields the (local) stability criterion:

Proposition 2 The equilibrium point G011 is nonnegative and locally stable if and
only if η∗

2 > 1 and exactly one of the following conditions holds:

(i)
σ2η

∗
2

η∗
2−1 < K <

min(Ŝ2,σ3)η∗
2

η∗
2−1 when Δα − γ1α3 < 0 and η∗

2 < γ ∗,

(ii)
max(Ŝ2,σ2)η∗

2
η∗
2−1 < K <

σ3η2
η2−1 when Δα − γ1α3 > 0 and η∗

1 > η∗
2 ,

(iii) K subject to (16) when Δα − γ1α3 = 0 and Δμ − γ1μ3 < 0

By (19) we get that for small values of γ1 one has the following refinement of the
above proposition.

Corollary 1 Let η∗
2 > 1 and

0 ≤ γ ∗ < η∗
2 . (20)

Then the equilibrium point G011 is nonnegative and linearly stable if and only if

(i) η∗
1 > η∗

2 > 1 and
Ŝ2η∗

2
η∗
2−1 < K <

σ3η
∗
2

η∗
2−1 ,

or
(ii) K subject to (16), Δα − γ1α3 = 0 and Δμ − γ1μ3 < 0.

Therefore the bifurcation point K̂2 appears here only in the case (i).
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Proof By the made assumption, the case (i) in Proposition 2 is impossible. So it is
sufficient to prove (i). It is thus required that η∗

1 > η∗
2 > 1. If η∗

1 > η∗
2 > 1 then

Δα − γ1α3 = η∗
1 A1α2 − η∗

2 A2α1 − γ ∗A3α3

> η∗
1(A1α2 − A2α1 − A3α3) = 0

where we used equation (5) in the last equality. Furthermore, since (20) and Δα −
γ1α3 > 0 holds for this case we also obtain from (19) that Ŝ2 − σ2 > 0, therefore
max(Ŝ2, σ2) = Ŝ2, and we arrive at the desired conclusion. 
�

In what follows we will assume that

γ ∗ < 1 and γ1 < α−1
3 Δα. (21)

We note that the first inequality guarantees (20) since the equilibrium pointG011 exists
only if η∗

2 > 1.

3 Branches of coexisting equilibria

3.1 Bifurcation of G101

From [2] we know that the equilibrium point G101 with the only zero component I2
has the form

G101 =
(
S∗, α3

η1
(σ3 − S∗), 0, α1

η1
(S∗ − σ1)

)
(22)

where

S∗ = K

(
1 − 1

η∗
1

)
.

We also know that it has positive components (except I2) when η∗
1 > 1 and

σ1 < S∗ < σ3 or equivalently
σ1η

∗
1

η∗
1 − 1

< K <
σ3η

∗
1

η∗
1 − 1

The bifurcation point (the point where the Jacobian is zero) corresponds to

K = K̂1 = Δμ + μ3γ2

Δα + α3γ2

η∗
1

η∗
1 − 1

and S∗ = Ŝ1 = Δμ + μ3γ2

Δα + α3μ2
. (23)

and is denoted Ĝ101 = G(K̂1).
Stability analysis of G101 is given in the next proposition.
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Proposition 3 The equilibrium point G101 is nonnegative if η∗
1 > 1 and it is stable if

the following conditions hold:

σ1η
∗
1

η∗
1 − 1

< K <
Qη∗

1

η∗
1 − 1

where

Q =
{

σ3 if η∗
2 > η∗

1;
Ŝ1 if η∗

2 < η∗
1 .

The case η∗
2 > η∗

1 (when we have no bifurcation) is considered in our paper [2]. Here
we will assume that

η∗
1 > η∗

2 . (24)

By (8) the last inequality implies that

Δα > (η∗
1 − η∗

2)A2α1 > 0.

By using (6), one verifies straightforward that

σ2 <
Δμ

Δα

< Ŝ1 < σ3.

Notice a useful identity [the last equality is by (9)]

Ŝ1 − Ŝ2 = α3γ̄ (σ3Δα − Δμ)

(Δα − γ1α3)(Δα + γ2α3)

= γ̄ r A1A2(η
∗
1 − η∗

2)

(Δα − γ1α3)(Δα + γ2α3)
. (25)

As a result of Corollary 1 and Proposition 3 we get that Ŝ1, Ŝ2 only exist as parts of
equilibrium points when Δα − γ1α3 > 0 and η∗

1 > η∗
2 > 1. In this case we see from

(25) that Ŝ1 > Ŝ2.
We will now prove the following lemma.

Lemma 2 Let (24) be valid and ∂P
∂S |S=Ŝ1

> 0. Then there exists a smooth branch of

equilibrium points G111(K ) = (S, I1, I2, I12)(K ) defined for small |K − K̂1| with
the asymptotics
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S(K ) = Ŝ1 + O(K − K̂1)

I1(K ) = α3

η1
(σ3 − Ŝ1) + O(K − K̂1)

I2(K ) = η1r(Δμ + γ2μ3)I12(K̂1)

∂P(S)
∂S |K=K̂1

K̂ 2
1

(K − K̂1) + O((K − K̂1)
2)

I12(K ) = α1

η1
(Ŝ1 − σ) + O(K − K̂1). (26)

Furthermore this equilibrium point is locally stable for K̂1 < K ≤ K̂1 + ε, where ε

is a small positive number. Moreover all equilibrium points in a small neighborhood
of G101(K̂1) are exhausted by two branches G101(K ) and G111(K ).

Remark 2 The constant ε does not depend on γi but it does depend on αi , μi and ηi .

Proof In order to use results of Appendix B we write system (10) in the following
form

F(x; s) = 0,

x4 f (x
′) = 0, (27)

where

x = (x ′, x4) = (x1, x2, x3, x4) = (S, I1, I12, I2),

where s = K − K̂1,

F(x, s) =
⎛
⎜⎝
(

r
K (K − x1) − α1x2 − α2x4 − α3x3

)
x1

(α1x1 − η1x3 − γ1x4 − μ1)x2
(α3x1 + η1x2 + η2x4 − μ3)x3 + γ̄ x2x4

⎞
⎟⎠ ,

and

f (x ′) = α2x1 − η2x3 − γ2x2 − μ2.

By the definition of the bifurcation point (23) and (22), we have that

x∗ =
(
Ŝ1,

α3

η1
(σ3 − Ŝ1),

α1

η1
(Ŝ1 − σ1)

)

solves the equation F(x∗, 0; 0) = 0 and f (x∗) = 0. Futhermore, the vector

ξ(s) = x∗ + s
(
1 − 1

η∗
1

)(
1,

−α3

η1
,
α1

η1

)
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solves F(ξ(s), 0; s) = 0. The matrix A = (∂x j Fk(x
∗, 0, 0))1≤ j,k≤3 is explicitly given

by

A = diag(x∗
1 , x

∗
2 , x

∗
3 ) Â, Â =

⎛
⎝− r

K̂2
−α1 −α3

α1 0 −η1
α3 η1 0

⎞
⎠ .

Using the Routh–Hurwitz stability criterion we can deduce that A(x∗, 0) is stable and
invertible. Since

∇x ′ f (x∗) = (α2,−γ2, η2), ∂x4F(x∗, 0; 0) = (−α2x
∗
1 ,−γ1x

∗
2 , η2x

∗
3 + γ̄ x∗

2 )
T ,

we get

Θ = ∇x ′ f · A−1∂x4F |x=(x∗,0),s=0 = (α2,−γ2, η2) Â
−1(−α2,−γ1, η2 + γ̄ x∗

2/x
∗
3 )

T .

Let us evaluate Θ and check that Θ �= 0. First we observe the equality

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ B(y∗, K1)

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−α2

Â −γ1
η2 + γ̄ x∗

2/x∗
3

α2 −γ2 η2 0

⎞
⎟⎟⎠

(28)

By (13)

det(left-hand side of (28)) = 1

I12

∂P(S)

∂S

∣∣∣
S=S1

. (29)

Let us show that

det(right-hand side of (28)) = Θ det Â . (30)

For this purpose consider the equation

(
Â (−α2,−γ1, η2 + γ̄ x∗

2/x
∗
3 )

T

(α2,−γ2, η2) 0

)(
X
x

)
=
(
0̄
1

)
(31)

where X ∈ R
3, x ∈ R and 0̄ = (0, 0, 0)T . We denote by B̂ the matrix in the left-hand

side of (31) and using the expression for the matrix inverse, we get

x = det( Â)

det(B̂)
. (32)
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Solving (31) as a linear system by finding first X and then x from the last equation,
we obtain−Θx = 1. The last relation together with (32) gives (30). Now the relations
(29) and (30) imply

Θ = −
∂P(S)
∂(S)

∣∣
S=Ŝ1

det( Â)I12
,

which along with

det( Â(K̂1)) = 1

Ŝ1 I ∗
1 I

∗
12

∣∣∣∣∣∣
− r

K̂
Ŝ1 −α1 Ŝ1 −α3 Ŝ1

α1 I ∗
1 0 −η1 I ∗

1
α3 I ∗

12 η1 I ∗
12 0

∣∣∣∣∣∣ = − r

K̂1
η21

gives

Θ = K̂1

∂P(S)
∂(S)

∣∣
S=Ŝ1

rη21 I12
> 0.

Next, since f (x∗, 0; 0) = 0, we have

f (ξ(s), 0; s) = s

η1

(
1 − 1

η∗
1

)(
Δα + γ2α3

)
.

Now applying (72) in the appendix we get

x4 = 1

η1

(
1 − 1

η∗
1

)(
Δα + γ2α3

) 1

Θ
s + O(s2),

which is equivalent to (26).
To prove local stability let us consider the matrix

B =
(
A ∂xn F(x∗, 0; 0)
0 0

)
.

Since the matrix A is stable the matrix B has three eigenvalues with negative real parts
and one eigenvalue equals zero. The eigenvalues of the Jacobian matrix

J (s) =
( ∇x ′F(x̂(s); s) ∂xn F(x̂(s); s)

∇x ′(xn f (x ′))|x=x̂(s) f (x̂ ′)

)

are small perturbation of the eigenvalue of B = J (s). Therefore three of them have
negative real part for small s and the last one λ(x̂(s)) is perturbation of zero eigenvalue
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of B, and it has the following asymptotics (see relation (73) in the Appendix)

λ(x̂(s)) = − d

ds
f (ξ(s), 0; s)|s=0s + O(s2)

= − s

η1

(
1 − 1

η∗
1

)(
Δα + γ2α3

)
+ O(s2)

and hence it is negative for small positive s. This proves the local stability of the
coexistence equilibrium point. 
�

3.2 Bifurcation of G011

We will assume in this section that

η∗
1 > η∗

2 > 1 (33)

From [2] we know that the equilibrium point G011 with only zero component I1 has
the form

G011 =
(
S∗, 0, α3

η2
(σ3 − S∗), α2

η2
(S∗ − σ2)

)
(34)

where S∗ = K (1 − 1
η∗
2
). We also know that it has positive components (except I1)

when η∗
2 > 1 and

σ2 < S∗ < σ3 or equivalently
σ2η

∗
2

η∗
2 − 1

< K <
σ3η

∗
2

η∗
2 − 1

As in Sect. 3.1 we obtain

Δα > 0

The bifurcation point (the point where the Jacobian is zero) corresponds to

K = K̂2 = Δμ − γ1μ3

Δα − γ1α3

η∗
2

η∗
2 − 1

and S∗ = Ŝ2 = Δμ − γ1μ3

Δα − γ1α3
(35)

and is denoted Ĝ011 = G011(K̂2).
For γ ∗

1 < η∗
2 we have that Ŝ2 > σ2 and that G011 is stable for K in the interval

Ŝ2η∗
2

η∗
2 − 1

< K <
σ3η

∗
2

η∗
2 − 1

We will now prove the following lemma
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Lemma 3 Let (33) be valid and ∂P
∂S

∣∣
S=Ŝ2

> 0. Then there exists a smooth branch of

equilibrium points G111 = (S, I1, I2, I12)(K ) defined for small |K − K̂2| with the
asymptotics

S(K ) = Ŝ2 + O(K − K̂2)

I1(K ) = −η2r(Δμ − γ1μ3)I12
∂P(S)

∂S K̂ 2
2

(K − K̂2) + O((K − K̂2)
2)

I2(K ) = α3

η2
(σ3 − Ŝ2) + O(K − K̂2)

I12(K ) = α1

η2
(Ŝ2 − σ2) + O(K − K̂2). (36)

These equilibrium points are locally stable for K̂2 − ε ≤ K < K̂2, where ε is a
small positive number. Moreover all equilibrium points in a small neighborhood of
G011(K̂2) are exhausted by two branches G011(K ) and G111(K ).

Remark 3 The constant ε does not depend on γ but it does depend on α, μ and η.

Proof We write system (10) in the form

F(x; s)
f (x ′) = 0,

where

x = (x ′, x4) = (x1, x2, x3, x4) = (S, I2, I12, I1)

where s = K − K̂2,

F(x, s) =
⎛
⎜⎝
(

r
K (K − x1) − α1x4 − α2x2 − α3x3

)
x1

(α2x1 − η2x3 − γ2x4 − μ2)x2
(α3x1 + η1x4 + η2x2 − μ3)x3 + γ̄ x4x2

⎞
⎟⎠

and

f (x ′) = α1x1 − η1x3 − γ1x2 − μ1

By the definition of the bifurcation point (35) and (34), we have that

x∗ =
(
Ŝ2,

α3

η2
(σ3 − Ŝ2),

α12

η2
(Ŝ2 − σ2)

)

solves the equation F(x∗, 0; 0) = 0 and f (x∗) = 0. Furthermore, the vector

ξ(s) = x∗ + s

(
1 − 1

η∗
2

)(
1,

−α3

η2
,
α2

η2

)
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solves the equation F(ξ(s), 0, s) = 0. The matrix A = (∂x j Fk(x
∗, 0, 0))3j,k=1 is

evaluated as

A = diag(x∗
1 , x

∗
2 , x

∗
3 ) Â, Â =

⎛
⎝− r

K −α" −α3
α2 0 −η2
α3 η2 0

⎞
⎠

with the help of Routh–Hurwitz stability criterion we can deduce that A is stable and
invertible. Since

∇x ′ f (x∗) = (α1, γ1, η1), ∂x4F(x∗, 0, ; 0) = (−α1x
∗
1 ,−γ2x

∗
2 , η1x3 + γ̄ x2)

T

we get

Θ = ∇x ′ f · A−1∂x4F
∣∣
x=(x∗,0) = (α1, γ1, η1) Â

−1(−α1x
∗
1 ,−γ2x

∗
2 , η1x3 + γ̄ x2)

T

Let us evaluate Θ and check that Θ �= 0. First we observe the equality

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ B(y∗, K̂2)

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−α1

Â −γ2
η1 + γ̄ x∗

2/x∗
3

α1 −γ1 η1 0

⎞
⎟⎟⎠

(37)

In the same way as in Sect. 3.1 we get

Θ = K̂2

∂P(S)
∂S

∣∣
S=Ŝ2

det( Â)I12

which along with

det( Â(K̂2)) =
∣∣∣∣∣∣
− r

K̂2
−α2 −α3

α2 0 −η2
α3 η2 0

∣∣∣∣∣∣ = −η22
r

K̂2

Next, since f (x∗, 0; 0) = 0, we have

f (ξ(s), 0; s) = s

η2

(
1 − 1

η∗
2

)(
Δα − γ1α3

)
.

Now applying (72) we get

x4 = 1

η2

(
1 − 1

η∗
2

)(
Δα − γ1α3

) 1

Θ
s + O(s2),
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which is equivalent to (36). To prove local stability let us consider the matrix

B =
(
A ∂xn F(x∗, 0; 0)
0 0

)
.

Since the matrix A is stable the matrix B has three eigenvalues with negative real part
and one eigenvalue zero. The eigenvalues of the Jacobian matrix

J (s) =
( ∇x ′F(x̂(s); s) ∂xn F(x̂(s); s)

∇x ′(xn f (x ′))|x=x̂(s) f (x̂ ′)

)

are small perturbation of the eigenvalue of B = J (s). Therefore three of them have
negative real part for small s and the last one λ(x̂(s)), which is a perturbation of the
zero eigenvalue of B, has the following asymptotics (see (73) in Appendix B)

λ(x̂(s)) = − d

ds
f (ξ(s), 0; s)|s=0s + O(s2) = − s

η2

(
1 − 1

η∗
2

)(
Δα − γ1α3

)
+ O(s2)

and hence it is negative for small positive s. This proves the local stability of the
coexistence equilibrium point. 
�

3.3 Equilibrium transition for coexistence equilibrium points

Lemma 4 Let the assumption (14) be valid. If there exists a coexistence equilibrium
point then

(i)

η∗
1 > η∗

2 and η∗
1 > 1

and this point lies on the branch of coexistence eq. points which starts at K = K̂1
at the bifurcation point Ĝ6. Moreover

(ii) if additionally η∗
1 > η∗

2 > 1 then the above branch is finished at K = K̂2 at the

point Ĝ7.
(iii) If η∗

1 > 1 > η∗
2 then the above branch can be continued up to K = ∞.

Proof Let us assume that there is a coexistence eq. pointG∗
8 for K = K ∗. Let (K1, K2)

be the maximal existence interval for existence of the branch G111(K ) of coexistence
equilibrium points containing K ∗ and G111(K ∗) = G∗

8. According to Lemma 1 there
exists a limitG∗ = limK→K1 G111(K ) and this limit is an equilibriumwith at least one
zero component. According Lemma 2 in [2] the only possible scenarios are either that
G∗ = G101 and α2S∗ −η2 I12 −γ2 I1 −μ2 = 0 or that G∗ = G011 and α1S−η1 I12 −
γ1 I2 −μ1 = 0. This happens only if G∗ = Ĝ101 or G∗ = Ĝ011. The case G∗ = G010
is disregarded due to assumption (15). According to (25) with its associated comment
we have that Ŝ1 > Ŝ2 and η∗

1 > η∗
2. Since Ŝ1 > S2 and ∂S

∂K < 0 according to Lemma 1

deduce that G∗ = Ĝ101. From existence of Ĝ101 it follows that η∗
1 > 1 and we obtain

(i).



Effect of density dependence on coinfection dynamics… Page 21 of 40   169 

If K̂2 is finite then there is a limit of G111(K ) as K → K̂2 and this limit lies on
the boundary. Simple modification of the above arguments shows that this limit is Ĝ7
which gives (ii).

In the case (iii) there are no Ĝ6 or Ĝ7 and hence the branch can be continued for
all K > K̂1. 
�

When considering coexistence equilibrium points we assume that:

Assumption 2 • If η∗
1 > η∗

2 and η∗
1 > 1 then ∂S P(Ŝ1) > 0 when K = K̂1;

• If η∗
1 > η∗

2 > 1 then additionally to (i) it is supposed that ∂S P(Ŝ2) > 0 when
K = K̂2.

Lemma 5 (i) Let η∗
1 > η∗

2 > 1 and ∂S P(Ŝi ) > 0 when K = K̂i , i = 1, 2. Then there
is a branch of coexistence equilibrium points starting at Ĝ6, K = K̂1, and ending
at Ĝ7, K = K̂2. All possible coexistence equilibrium points lies on this branch.

(ii) Let η∗
1 > 1 > η∗

2 and ∂S P(Ŝ1) > 0when K = K̂1. There is a branch of coexistence

equilibrium points starting at Ĝ6, K = K̂1, and defined for all K > K̂1. All
possible coexistence equilibrium points lies on this branch.

Proof (i) By Lemma 3 there is a branch of coexistence equilibrium points ending at
Ĝ7, K = K̂2 and defined for small K̂2 − K > 0. By Lemma 4 it can be continued
to the interval (K̂1, K̂2) and the limit when K → K̂1 is equal to Ĝ6. If we take
any coexistence equilibrium then by Lemma 4 it must lie on an equilibrium curve
starting at Ĝ6. Then by uniqueness in Lemma 2 this curve must coincide with the
coexistence equilibrium branch constructed in the beginning.

(ii) In this case there is no bifurcation point Ĝ7 and the proof repeats with some
simplifications the proof of (i).


�

4 Stability of coexistence equilibrium points

4.1 Auxiliary assertion

Let Q and q be two positive constants. We introduce the set of Y = (Y1,Y2,Y3,Y4)

Y = {Y : Yk ≤ Q min(Y1,Y4) ≥ q,Y2 + Y3 ≥ q, min(Y2,Y3) ≥ 0}.

Consider the matrix depending on the parameters Y and K :

M = M(Y , K ) = diag(Y1,Y2,Y3,Y4)M, M =

⎛
⎜⎜⎝

− r
K −α1 −α2 −α3

α1 0 0 −η1
α2 0 0 −η2
α3 η1 η2 0

⎞
⎟⎟⎠ .

Let also λk = λk(Y , K ), k = 1, 2, 3, 4, be their eigenvalues numerated according to
the order |λ1| ≥ |λ2| ≥ |λ3| ≥ |λ4|.
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In the next lemma we give some more information about the first three eigenvalues.

Lemma 6 Let 0 < K1 < K2. Then

Ξ = max
j=1,2,3

max
Y∈Y

max
K1≤K≤K2


λ j (Y , K ) < 0. (38)

Proof First assume that all components of Y are non-zero. Let λ ∈ C be an eigenvalue
of M, i.e.

MX = λX , X = (X1, X2, X3, X4)
T ∈ C

4, X �= 0. (39)

This implies


(MX , D−1X) = − r

K
|X1|2 = 
λ(D−1X , X),

where D = diag(Y1,Y2,Y3,Y4) and (·, ·) is the inner product in C4. Therefore


λ = − r

K

|X1|2
(D−1X , X)

.

This gives 
λ ≤ 0. Assume now that λ = iτ , τ ∈ R, which implies X1 = 0. Then
(39) implies

α1X2 + α2X3 + α3X4 = 0

−η1Y2X4 = λX2, −η2Y3X4 = λX3

Y4(η1X2 + η2X3) = λX4. (40)

If λ = 0 then X4 = 0 and from the first and last equations in (40) we get that
X2 = X3 = 0. If X4 = 0 and λ �= 0 then from the middle equations in (40) we obtain
X2 = X3 = 0. Consider the case when λ �= 0 and X4 �= 0. Expressing X2 and X3
through X4 from the middle equations in (40) and putting them in the first equation,
we get

X4

(
− α1η1Y2 + α2η2Y3

λ
+ α3

)
= 0,

which implies X4 = 0. Thus we have shown that there are no eigenvalues of M on
the imaginary line, i.e. 
λ j < 0, j = 1, 2, 3, 4, provided all Y j ar positive.

Next consider the case Y2 = 0. Then one eigenvalue ofM is zero and the remaining
three can be found from the eigenvalue problem

diag(Y1,Y3,Y4)

⎛
⎝− r

K −α2 −α3
α2 0 −η2
α3 η2 0

⎞
⎠ (X1, X3, X4)

T = λ(X1, X3, X4)
T . (41)
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Similar to the eigenvalue problem (39) one can show that 
λ < 0 for (41).
The argument in the case Y3 = 0 is the same as in the case Y2 = 0. Thus we have

shown that for all (Y , K ) ∈ Y , 
λ j (Y , K ) < 0, j = 1, 2, 3. Since the eigenvalues
continuously depend on (Y , K ) and the set Y is compact, we arrive at (38). 
�

4.2 Local stability in the case�∗
1 > �∗

2 > 1

Themain stability result for the equilibrium points branch in Lemma 6 is the following

Proposition 4 Let η∗
1 > η∗

2 > 1 and G111(K ), K̂1 ≤ K ≤ K̂2 be the branch
constructed in Lemma 5 (i). Then there exists a constant δ depending only on α j ,
j = 1, 2, 3, and η1, η2 such that if γ̄ ≤ δ then all points on this branch for
K̂1 < K < K̂2 are locally stable.

Proof Consider equilibrium points G111(K ) = (S(K ), I1(K ), I2(K ), I12(K )), K ∈
[K̂1, K̂2]. By Corollary 2 of [2] and Lemma 5 all of the components are non-negative
and bounded by a certain constant independent of K and γ1, γ2. Solving for S and
I12 in the second and third of (11) gives

S(K ) = Δμ

Δα

+ O(γ̄ ), I12(K ) = α1α2(σ2 − σ1)

Δα

+ O(γ̄ ). (42)

Furthermore, from the last equation in (11) we get

η1 I1 + η2 I2 = α3(σ3 − S) − γ̄
I1 I2
I12

which implies due to (42)

η1 I1 + η2 I2 = r A1A2(η
∗
1 − η∗

2)

α3Δα

+ O(γ̄ ).

We will keep the notation Y for our case (Y = (S, I1, I2, I12)), where

q = 1

2
min

(
Δμ

Δα

,
α1α2(σ2 − σ1)

Δα

,
1

min(η1, η2)

r A1A2(η
∗
1 − η∗

2)

α3Δα

)
,

Q = max
(
σ3,

r

σ1

)
,

and γ̄ is kept sufficiently small. Then we can use Lemma 6, where K j = K̂ j , j = 1, 2.
We introduce two subsets ofY×[K̂1, K̂2]. The first one Ŷ1 consists of all (Y ; K ) ∈

Y × [K̂1, K̂2] such that 
λ1 ≥ Ξ/2, where Ξ is the constant from Lemma 6 (in our
case it depends only on α j , j = 1, 2, 3, and η1, η2. The second set Ŷ2 consists of all
(Y ; K ) ∈ Y × [K̂1, K̂2] such that 
λ1 ≤ Ξ/2. Introduce the contours

Γ1 = {λ ∈ C : 
λ = Ξ/4, |�λ| ≤ C, λ − Ξ/4 = Ceiϕ, ϕ ∈ (π/2, 3π/2)}
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and

Γ2 = {λ ∈ C : 
λ = 3Ξ/4, |�λ| ≤ C, λ − 3Ξ/4 = Ceiϕ, ϕ ∈ (π/2, 3π/2)},

where C is sufficiently large. Put

ak = max
Ŷk

max
λ∈Γk

||(M − λ)−1||, k = 1, 2.

By Lemma 6 there are at least 3 eigenvalues of M with 
λ ≤ Ξ Consider two
cases (i) the remaining eigenvalue satisfies 
λ < 5

8Ξ or (i i) it satisfies 
λ ≥ 5
8Ξ .

Since the norm of the matrix

N = diag(S, I1, I2, I12)

⎛
⎜⎜⎝
0 0 0 0
0 0 −γ1 0
0 −γ2 0 0
0 γ̄ r2 γ̄ r1 −γ̄ r1r2

⎞
⎟⎟⎠

is estimated by C1γ̄ with C1 independent on γ and K we conclude that by Rouche’s
theorem the number of eigenvalues inside Γ2 of the matrix M and M + N is the
same for small γ̄ in the case (i). Similarly we have that in the case (i i) the number of
eigenvalues ofM andM + N is the same inside the contour Γ1 for small γ̄ and this
number is equal to 4.

This implies that for small γ̄ there are at least three eigenvalues of the Jacobian
matrix J8 with negative real part on the branch G111(K ). Since

det J8(G111(K )) > 0 for K ∈ (K̂1, K̂2)

we conclude that all eigenvalues of J8(G111(K )) must have negative real part. This
proves the proposition. 
�

4.3 Instability for large K

In this section we assume that

η∗
1 > 1 > η∗

2 . (43)

According to Lemma 5 there exists a branch G111(K ), K ∈ [K̂1,∞), of coexistence
equilibrium points starting from G111(K̂1) = Ĝ6. For K = ∞ and γ = 0 the interior
point has the coordinates

G111(∞)|γ=0 = (S∗, I ∗
1 , I ∗

2 , I ∗
12) =

(Δμ

Δα

,
r

Δα

(A2 − η2),
r

Δα

(η1 − A1),
r

Δα

A3

)
.

All eigenvalues of the corresponding Jacobian matrix lie on the imaginary axis.
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For K = ∞ and small γ > 0 the interior point has the coordinates G∞(γ ) =
G∞(0)+O(|γ |),whereγ = (γ1, γ2).Our goal is to analyze the location of eigenvalues
of the Jacobian matrix when γ is small.

The characteristic polynomial of the Jacobian matrix of the interior point is (up to
a positive factor)

1

SI1 I2 I12
det(J8 − λI ) = p(λ):=

∣∣∣∣∣∣∣∣∣

− λ
S −α1 −α2 −α3

α1 − λ
I1

−γ1 −η1

α2 −γ2 − λ
I2

−η2

α3 η1 + γ̄ r2 η2 + γ̄ r1 −γ̄ r1r2 − λ
I12

∣∣∣∣∣∣∣∣∣
where ri are defined in (12). It is clear that the polynomial p is monic. The necessary
condition for stability of the polynomial p is the positivity of all its coefficients. Let
us evaluate the coefficient p1 of the λ term and show that it can be negative for certain
choice of parameters (we note that for γ = 0 this coefficient is zero). This will imply
that some of all eigenvalues must have positive real part. We have

p1 = −
⎛
⎝ 1

S

∣∣∣∣∣∣
0 −γ1 −η1

−γ2 0 −η2
η1 + γ̄ r2 η2 + γ̄ r1 −γ̄ r1r2

∣∣∣∣∣∣ +
1

I1

∣∣∣∣∣∣
0 −α2 −α3
α2 0 −η2
α3 η2 + γ̄ r1 −γ̄ r1r2

∣∣∣∣∣∣

+ 1

I2

∣∣∣∣∣∣
0 −α1 −α3
α1 0 −η1
α3 η1 + γ̄ r2 −γ̄ r1r2

∣∣∣∣∣∣ +
1

I12

∣∣∣∣∣∣
0 −α1 −α2
α1 0 −γ1
α2 −γ2 0

∣∣∣∣∣∣
⎞
⎠

= γ̄

(
−η1η2

S
+ r1α2(α3 + α2r2)

I1
+ α1r2(α1r1 + α3)

I2
− α1α2

I12

)
+ O(γ̄ 2)

= γ̄

(
−η1η2

S
+ α2(α3 + α2r2) + α1(α1r1 + α3) − α1α2

I12

)
+ O(γ̄ 2)

Plugging in the values of S, I12, r1, r2, for K = ∞ and γ = 0 we continue the
above equalities

p1 = γ̄ Δα

(
−η1η2

Δμ

+ (α2 + α1)α3 − α1α2

r A3
+ α2

2(η1 − A1) + α2
1(A2 − η2)

r A2
3

)
+ O(γ 2)

= γ̄ Δα

(
−η1η2

Δμ

+ α2
2η1 − α2

1η2

r A2
3

+ (α2 + α1)α3 − α1α2

r A3
+ α2

1 A2 − α2
2 A1

r A2
3

)
+ O(γ 2)

with

b − μ0 = 1

μi = 1

α1 = 10, α2 = 9.9, α3 = 1,
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(2) and (4) is satisfied and we get

A1 = 9

A2 = 0.1

A3 = 8.9.

We can now choose η1 and η2 such that η1∗ > 1 > η∗
2 and η∗

1, η
∗
2 ≈ 1. For these

values Lemma 4 tells us that there exists a coexistence equilibrium branch defined for
infinitely large K . On the other hand the coefficient of the λ1 term is approximately

SI1 I2 I12γΔα

(
−10 ∗ 9.9

0.1
+ 19.9 − 9.9

0.1
+ 0

)
= SI1 I2 I12γΔα(−890) < 0

and so when K is sufficiently large and γ is sufficiently small this equilibrium branch
is unstable.

4.4 Hopf bifurcation

In this sectionwe assume that (43) is satisfied. Thus there exists a branch of coexistence
equilibrium points G111(K ) defined for K > K̂1. We assume also that the parameters
α1, α2, α3 and η1, η2 are chosen such that the stability is lost when K γ̄ is large. Since
the point G111(K ) is stable when K is close to K̂1 there exists a point K = Kc where
the local stability of G111 is lost. Since the trace of the Jacobian matrix is always
negative the eigenvalues can only reach the imaginary axis in pairs. If we assume
that the derivative of their real part at K = Kc is positive then there is a simple Hopf
bifurcation so for K close to Kc there are periodic oscillations, see [9].We alsomention
that the loss of stability by the positive equilibrium when the carrying capacity of the
resource is increased is a well-established ecological phenomenon called the paradox
of enrichment dating back to the works of Rosenzweig [10]. We discuss this in more
details in a forthcoming work.

4.5 Local stability in the case�∗
1 > 1 > �∗

2

Theorem 2 Let η∗
1 > 1 > η∗

2 and let G111(K ), K ∈ (K̂1,∞) be the branch of equi-

librium points starting at Ĝ6. There exists a constant ω > 0 depending on α1, α2, α3
and η1, η2 such that if K γ̄ ≤ ω for K ∈ (K̂1,∞), then the inner equilibrium points
G111(K ) are locally stable.

Proof In what follows in the proof we will denote by c and C , possibly with indexes,
various positive constants depending on α1, α2, α3 and η1, η2. The Jacobian matrix
is equal to J8(K ) = D(A + K + Γ ), where D = diag(S, I1, I2, I12),
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K =

⎛
⎜⎜⎝

− r
K 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −γ̄ r1r2

⎞
⎟⎟⎠ , A=

⎛
⎜⎜⎝

0 −α1 −α2 −α3
α1 0 0 −η1
α2 0 0 −η2
α3 η1 η2 0

⎞
⎟⎟⎠ ,

Γ =

⎛
⎜⎜⎝
0 0 0 0
0 0 −γ1 0
0 −γ2 0 0
0 γ̄ r2 γ̄ r1 0

⎞
⎟⎟⎠

Consider the eigenvalue problem

D(A + K + Γ )u = λu. (44)

If γ = 0 then the eigenvalue of this problem lie in the half-plane 
λ < 0. If we show
that the are no eigenvalues of (44) with λ = iτ , τ ∈ R, for all γ and K satisfying
K γ̄ ≤ ω then by continuity argument for eigenvalues we obtain the required result.
Therefore let us assume that one of eigenvalues has the form λ = iτ, τ ∈ R and that
no eigenvalue has positive real part. We will now show that the problem (44) has only
the trivial solution. For large K and small γ (say K ≥ K∗ and γ̄ ≤ γ̄∗) we have

G111(K ) =
(Δμ

Δα

,
r

Δα

(A2 − η2),
r

Δα

(η1 − A1),
r

Δα

A3

)
+ O(γ̄ + K−1). (45)

Therefore

c ≤ S ≤ C, c ≤ I1 ≤ C, c ≤ I2 ≤ C, c ≤ I12 ≤ C, (46)

whereC and c are positive constants depending on α and η. Furthermore, the Jacobian
matrix at the point (45) is

D

⎛
⎜⎜⎝

0 −α1 −α2 −α3
α1 0 0 −η1
α2 0 0 −η2
α3 η1 η2 0

⎞
⎟⎟⎠ + O(γ̄ + K−1)

and therefore,

det J8(K ) = SI1 I2 I12Δ
2
α + O(γ̄ + K−1).

Thus we may assume that det J8(K ) ≥ c1 > 0. This fact together with (46) gives

0 < c2 ≤ |λ j (K )| ≤ c3, j = 1, 2, 3, 4, K ≥ K∗ γ̄ ≤ γ̄∗,

where λ j (K ), j = 1, 2, 3, 4, are eigenvalues of J8(K ).
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Assume that λ = iτ, c2 ≤ τ ≤ c3 is an eigenvalue to J8. We will now show that
this leads to a contradiction. Multiplying both sides of (44) by D−1ū and taking the
real part and using that 
(Au, u) = 0 we get = 
((K + Γ )u, u) = 0 or

− r

K
|u1|2 −γ̄ r1r2|u4|2 − γ1
(u3ū2) − γ2
(u2ū3)

+γ̄
{(r2u2 + r1u3)ū4} = 0 (47)

Let us derive some relations between u1, u2, u3 and u4. From the first three equations
in (44) we obtain

S
(
− r

K
u1 − α1u2 − α2u3 − α3u4

)
= iτu1

I1(α1u1 − γ1u3 − η1u4) = iτu2
I2(α2u1 − γ2u2 − η2u4) = iτu3 (48)

We rewrite the last two equations as

iτu2 + γ1 I1u3 = α1 I1u1 − η1 I1u4
iτu3 + γ2 I2u2 = α2 I2u1 − η2 I2u4

and solving them we obtain

u2 = (−iτα1 I1 + α2γ1 I1 I2)u1 − (η2γ1 I1 I2 − iτη1 I1)u4
τ 2 + γ1γ2 I1 I2

(49)

u3 = (α1γ2 I1 I2 − iτα2 I2)u1 − (η1γ2 I1 I2 − iτη2 I2)u4
τ 2 + γ1γ2 I1 I2

. (50)

Inserting these relations in (48) we get

u1

(
iτ

S
+ r

K
+ α1

−iτα1 I1 + α2γ1 I1 I2
τ 2 + γ1γ2 I1 I2

+ α2
α1γ2 I1 I2 − iτα2 I2

τ 2 + γ1γ2 I1 I2

)

= u4

(
−α3 + α1

−iτη1 I1 + η2γ1 I1 I2
τ 2 + γ1γ2 I1 I2

+ α2
η1γ2 I1 I2 − iτη2 I2

τ 2 + γ1γ2 I1 I2

)

This leads to

|u4| ≤ C3|u1| (51)

The relations (49) and (50) together with (51) gives

|u2|, |u3| ≤ C4|u1|

Now (47) implies that

− r

K
|u1|2 + C1γ̄ |u1|2 = 0.
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This is impossible if C1 is sufficiently small. Thus the local stability of G111(K ),
K ≥ K∗, is proved.

The local stability of G111(K ) for K ∈ (K̂1, K∗] is proved in the same manner as
in the proof of Proposition 4. 
�

5 Equilibrium transition with increasing K

In this sectionwefinalize our results in two theorems describing the equilibriumbranch
for the sets of parameter η∗

1 > η∗
2 > 1 and η∗

1 > 1 > η∗
2.

5.1 Equilibrium transition when�∗
1 > �∗

2 > 1

In this section we will prove that there exist an equilibrium branch G000 → G100 →
G101 → G111 → G011 → G001 in the case η∗

1 > η∗
2 > 1. By Corollary 5 in [2] we

know that for these parameters there is an equilibrium branch

G000 → G100 → G101 → . . .

Furthermore from Sect. 3.1 we know the this branch continues onto G111 at K = K1.
From Sects. 2.2 and 3.2 in this paper as well as Theorem 1 from [2], we get that there
exist an equilibrium branch

. . . → G111 → G011 → G001.

One could suspect that these two equilibrium branches are the two parts of a complete
equilibrium branch. We shall now prove that indeed that is the case.

Theorem 3 Let (14), (21) and Assumption 2 hold and let η∗
1 > η∗

2 > 1. Then there
exists a unique branch of equilibrium points G∗(K ) parameterised by K ∈ (0,∞):

(a) For 0 < K ≤ σ1 the point G∗(K ) is of type G000

(b) For σ1 < K ≤ σ1η
∗
1

η∗
1−1 the point G∗(K ) is of type G100;

(c) For
σ1η

∗
1

η∗
1−1 < K ≤ Ŝ1η∗

1
η∗
1−1 the point G∗(K ) is of type G101;

(d) For
Ŝ1η∗

1
η∗
1−1 < K <

Ŝ2η∗
2

η∗
2−1 the point G∗(K ) is of type G111;

(e) For
Ŝ2η∗

2
η∗
2−1 ≤ K <

σ3η
∗
2

η∗
2−1 the point G∗(K ) is of type G011;

(f) For K ≥ σ3η
∗
2

η∗
2−1 the point G∗(K ) is of type G001.

we display this schematically as (see Fig. 1)

G000 → G100 → G101 → G111 → G011 → G001. (52)

The point G∗(K ) is locally stable whenever it is not a coexistence point. It is also
locally stable near the end on the interval K̂1 < K < K̂2 and it is locally stable on
the whole interval if γ̄ is small
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K

S∗

G000 G100 G101 G111 G011 G001

|
σ1

|
σ1η∗

1
η∗
1−1

|
S1η∗

1
η∗
1−1

|
S2η∗

2
η∗
2−1

|
σ3η∗

2
η∗
2−1

σ1−

σ2−

S1−
S2−

σ3−

Fig. 1 This graphs gives the idea of how the S∗ component of the equilibrium branch changes with K and
shows the type of the equilibrium point. The function S∗(K ) is a piecewise linear function except in the

interval
S1η

∗
1

η∗
1−1

< K <
S1η

∗
2

η∗
2−1

where it is strictly decreasing. Note that the order of the elements on both axis

is correct

Proof This theorem follow from Lemma 4 and Proposition 4 in Sect. 4.2 
�

5.2 Equilibrium transition when�∗
1 > 1 > �∗

2

In this section we will prove that there exist an equilibrium branch Ĝ000 → Ĝ100 →
Ĝ101 → Ĝ111 in the case η∗

1 > 1 > η∗
2. By Corollary 5 in [2] we know that for these

parameters there is an equilibrium branch

Ĝ000 → Ĝ100 → Ĝ101 → . . .

Furthermore from Sect. 3.1 we know the this branch continues onto G111 at K = K̂1.
We are left to prove that this equilibrium does persists.

Theorem 4 Let (14), (21) and Assumption 2 hold and let η∗
1 > 1 > η∗

2 . Then there
exists a unique branch of equilibrium points G∗(K ) parameterised by K ∈ (0,∞):

(a) For 0 < K ≤ σ1 the point G∗(K ) is of type G000

(b) For σ1 < K ≤ σ1η
∗
1

η∗
1−1 the point G∗(K ) is of type G100

(c) For
σ1η

∗
1

η∗
1−1 < K ≤ Ŝ1η∗

1
η∗
1−1 the point G∗(K ) is of type G101;

(d) For K >
Ŝ1η∗

1
η∗
1−1 the point G∗(K ) is of type G111;

We display this schematically as (see Fig. 2)

Ĝ000 → Ĝ100 → Ĝ101 → Ĝ111. (53)
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K

S∗

G000 G100 G101

|
σ1

|
σ1η∗

1
η∗
1−1

|
S1η∗

1
η∗
1−1

σ1−

σ2−

S1−
S2−

σ3−

Fig. 2 This graphs gives the idea of how the S∗ component of the equilibrium branch changes with K and
shows the type of the equilibrium point. The function S∗(K ) is a piecewise linear function except when

K >
S1η

∗
1

η∗
1−1

where it is strictly decreasing and converging to a value between Ŝ1 and Ŝ2. Note that the order

of the elements on both axis is correct

The point G∗(K ) is locally stable whenever it is not a coexistence point. It is also
locally stable near the left end on the interval K̂1 < K < ∞ and it is locally stable if
Kγ is small.

Proof This theorem follow from Lemma 4 and Theorem 2 in Sect. 4.5. 
�

6 Some concluding remarks

Below we briefly comment on our results from the biological point of view. We start
from K = 0 and reason how the dynamics changes as K increases. For small carrying
capacity K the susceptible population will be kept so low that the likelihood of an
infected individual spreading its disease will be too low (below 50% ) for any disease
to spread. As K increases the stable susceptible population increase.

When the stable susceptible population reaches σ1, any increase in S∗ due to
increased K will result in the disease 1 with highest transmission rate to be able
to spread. But it can only spread until the susceptible population is equal to σ1. So
from now on S∗ = σ1 and an increases in K gives an increase of I ∗

1 . Disease 2,
with lower transmission rates then disease 1, can not spread since it is outcompeted
by disease 1.

The disease 2 can however spread through the population of infected with disease

1. Under the condition
σ1η

∗
1

η∗
1−1 < K <

min(σ2,Ŝ1)η∗
1

η∗
1−1 the sum of susceptibles and infected

of disease 1 will be so high that disease 2 can spread. However disease 2 will only
occur as a coinfection in the stable state. This is a result of the fact that we assume
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that coinfected individuals can only spread both disease simultaneously. The single
infections of disease 2 are either outcompeted by disease 1 or they become part of the
coinfected compartment. For these K the compartment of single infected of disease
1 will decrease with K . This does however not mean that disease 1 becomes less
prevalent, only that it occurs more as a coinfection. The susceptibles increase for these
K . This is a consequence of the assumption of the coinfection being less transmissible
then single infection. When the coinfection rises the average transmission rate of the
diseases decrease allowing the susceptible population to increase.

For the parameters dealt with in this paper (η∗
1 > 1) it will happen that as the average

transmission rate of the disease decrease eventually single infection of disease 2 will
bemore transmissible then disease 1 and the coinfection andwill thus be able to spread
as a single infection giving rise to a stable coexistence point. From there either the
equilibrium point stays as a coexistence point for all large K or the single infections
starts to only occur in coinfections, with disease 1 being the first to stop occurring
as a single infection. The susceptible population can only increase to σ3 at which
point any increase in susceptibles would even be absorbed be the least transmittable
compartment (coinfection). The sick population can by assumption not reproduce and
so it must also have an upper bound. If this upper bound is large compared to σ3 wewill
have a situation where a large proportion of the population is sick making coinfection
far more likely to occur then single infections resulting in the diseases only occuring
as coinfection. while the overall sick population can increase indefinitely. So when K
is large enough the number of sick individuals will be far more then the susceptibles
making coinfections far more likely to occur then single infection leading to a stable
state of coinfection with no single infections.
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A Implicit function theorem

Let

F : Rn × R
m → R

n

be a C2 mapping. Let us consider the equation

F(x, y) = 0. (54)

We assume that

F(0, 0) = 0 and that the matrix A := DxF(0, 0) is invertible.

Our aim is to find a solution to (54) x = x(y) such that x(0) = 0 and estimate the
region where such solution exists. We fix positive numbers a and b and put

Λ = Λa,b = {(x, y) : |x | ≤ a, |y| ≤ b}.

Let also

Ba = {x : |x | ≤ a}.

We introduce the quantities

M = max
Λ

||Dx DxF(x, y)||, M1 = max
Λ

||DyDxF(x, y)||.

Here the above norms are understood in the following sense

||Dx DxF(x, y)|| = max|ζ |,|ξ |=1

∣∣∣∣∣∣
n∑

i, j=1

∂xi ∂x jF(x, y)ζiξ j

∣∣∣∣∣∣
Here | · | is the usual euclidian norm. We also introduce

L = max
Λ

||DyF(x, y)||,

where

||DyF(x, y)|| = max|ξ |=1
|DyF(x, y)ξ |.

The following result is a well known implicit function theorem. We supply it with
a short proof since we want to include in the formulation a quantitative information
about the solution.



  169 Page 34 of 40 J. Andersson et al.

Theorem 5 If the constants a and b satisfies

||A−1||(Ma + M1b) ≤ q and ||A−1||
(
Ma + M1b + L

b

a

)
≤ 1, (55)

where q < 1 and ||A−1|| is the usual operator-norm of A−1. Then there exists a
C2-function x = x(y) defined for |y| ≤ b which delivers all solutions to (54) from Λ.

Proof We write (54) as a fixed point problem

x = F(x, y), where F(x, y) = A−1(Ax − F(x, y)
)
. (56)

Let us check that F maps Ba into itself and that it is a contraction operator there.
To show the first property we note that

F(x, y) =
∫ 1

0

d

dt
F(t x, t y)dt =

∫ 1

0

n∑
i=1

∂xiF(t x, t y)xi +
m∑

k=1

∂ykF(t x, t y)ykdt .

Therefore

F(x, y) = A−1
∫ 1

0

( n∑
i=1

(∂xiF(0, 0) − ∂xiF(t x, t y))xi −
m∑

k=1

∂ykF(t x, t y)yk

)
dt .

Since

∂xiF(0, 0) − ∂xiF(t x, t y) = −
∫ 1

0

d

dτ
(∂xiF)(τ t x, τ t y)dτ

= −
∫ 1

0

( n∑
j=1

∂x j ∂xiF(τ t x, τ t y)t x j +
m∑

k=1

∂yk∂xiF(τ t x, τ t y)yk

)
dτ,

we get

|F(x, y)| ≤ |A−1
∫ 1

0

∫ 1

0

n∑
i=1

(
−

n∑
j=1

∂x j ∂xiF(τ t x, τ y)t x j

+
m∑

k=1

∂yk∂xiF(τ t x, τ y)yk

)
xidτdt

+
∣∣∣
∫ 1

0

m∑
k=1

∂yk F(t x, t y)ykdt
∣∣∣ ≤ ||A−1||

(
Ma + M1b + L

b

a

)
|a| < a,

which guarantees that F maps Ba on to itself.
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For checking the contraction property we write

|F(x1, y) − F(x2, y)|
= |A−1(A(x1 − x2) −

∫ 1

0

d

dt
F((x2 + t(x1 − x2), y)dt |

≤ ||A−1|| ·
∣∣∣
∫ 1

0

n∑
i=1

∂xiF(0, 0) − ∂xiF(x2 + t(x1 − x2), y))(x1 − x2)i dt
∣∣∣

≤ ||A−1||
∫ 1

0

(∑
i, j

|∂x j ∂xiF(τ (x2 + t(x1 − x2), τ y)t x j (x1 − x2)i |

+|
∑
i,k

∂yk∂xiF(τ (x2 + t(x1 − x2), τ y)yk(x1 − x2)i |
)
dτ)dt ≤ q|x1 − x2|,

so F is a contraction and by the Banach fixed point theorem we can conclude that
there exists a unique c1-function x = x(y) defined for |y| ≤ b. Since F ∈ C2 the
same is true for x(y). 
�

In the next assertion we present estimates of the derivatives of the solution x(y).

Theorem 6 The matrix DxF(x, y) is invertible for all (x, y) ∈ Λ and

|DxF(x, y)−1| ≤ ||A−1||
1 − q

. (57)

Furthermore

|Dyx(y)| ≤ ||A−1||L
1 − q

, (58)

and

||DyDyx || ≤ ||A−1||
1 − q

(
M

||A−1||2L2

(1 − q)2
+ 2N

||A−1||L
1 − q

+ M2

)
, (59)

where

N = max
Λ

||DyDx F(x, y)||, M2 = max
Λ

||DyDyF(x, y)||.

Proof With B = DxF(x, y) we have B−1 = A−1(I + (B − A)A−1)−1), which gives
(57) because

||A−1||||B − A|| ≤ ||A−1||(Ma + M2b) ≤ q.

Since

Fxk x
k
yi + Fyi = 0, (60)
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we arrive at (58) by using (57) and definition of L .
Derivating once again (60) with respect to y we obtain with Einsteins summation

index

∂2

∂ yi∂ y j
F = Fxk xl x

k
yi x

l
y j + Fyi xl x

l
y j + Fxp y j x

p
yi + Fxp x

p
yi y j + Fyi y j = 0.

Solving for xyi y j we get

xyi y j = −(Fx )
−1(Fxkxl x

k
yi x

l
y j + Fyi xl x

l
y j + Fxp y j x

p
yi + Fyi y j ).

Using the definitions of norms we obtain (59). 
�
Corollary 2 Let Λb = {(x, y) : |x | ≤ √

b, |y| ≤ b} and let

M̂ =
∑

1≤|α|+k≤2

max
Λb

||Dα
x D

β
yF(x, y)||. (61)

If

||A−1||M̂(
√
b + b) ≤ cn,m, (62)

where cn,m is a positive constant depending only on n and m, then there exists a
C2-function x = x(y) defined for |y| ≤ b and such that |x | ≤ √

b, which delivers
all solution to (54) from Λb. Moreover, the matrix Dx F(x, y) is invertible for all
(x, y) ∈ Λ and

|Dx F(x, y)−1| ≤ C ||A−1||,
|Dyx(y)| ≤ C ||A−1||M̂,

||DyDyx(y)|| ≤ CM̂||A−1||(1 + M̂||A−1|| + M̂2||A−1||2),

where C depends only on n and m.

B Bifurcation from a degenerate bifurcation point

The results of the following section can not be considered as new. They can be deduced
from the classical results from [4,5], see also [8] for more complete a presentation and
related references. Here we give another direct presentation which is more suitable
for application to models appearing in biological applications. First, systems here are
finite dimensional and have a special structure, which essentially simplifies the proofs.
Second, the bifurcation parameter is fixed from the beginning and we are interesting
in bifurcation with respect to this parameter. Therefore we present here proofs which
are more adapted to our situation.



Effect of density dependence on coinfection dynamics… Page 37 of 40   169 

B.1 Interior equilibrium point

Let x ′ = (x1, . . . , xn−1) and x = (x ′, xn). Consider the problem

F(x; s) = 0, x ∈ R
n, s ∈ R, (63)

where F = (F1, . . . ,Fn)
T . We put F(x; s) = (F1, . . . ,Fn−1)

T and assume that
Fn(x; s) = f (x; s)xn , where (F1, . . . ,Fn−1) and f are real valued function of class
C2 with respect to all variables. Then the problem (63) can be written as

F(x; s) = 0, (64)

xn f (x; s) = 0. (65)

It is assumed that there exists x∗ ∈ R
n−1 such that

F(x∗, 0; 0) = 0

and that the (n − 1) × (n − 1)-matrix

A = {Akj }n−1
k, j=1 = {∂x jFk(x

∗, 0; 0)}n−1
j,k=1 (66)

is invertible. This implies, in particular, that the equation

F(ξ, 0; s) = 0 (67)

has a solution ξ(s) ∈ C2([−b, b]) such that ξ(0) = x∗. Here b is a positive number
satisfying (62), where M̂ is given by (61) with F replaced by F .

This is a single solution to (67) in Λb according to Corollary 2. Moreover this
solution is of the class C2 and estimates of the derivatives are presented in the same
corollary. One can easily verify that x̌(s) = (ξ(s), 0) solves system (64), (65) for
s ∈ [−b, b].

We assume that f (x∗, 0; 0) = 0 and our goal is to construct a solution to Eqs. (64),
(65) different from x̌(s). This will be achieved if we solve the problem

F(x; s) = 0, (68)

f (x; s) = 0. (69)

instead of (64), (65). We denote the Jacobian matrix of the right-hand side at the point
(x∗, 0; 0) by A. Direct calculations show that

A =
[

A ∂xn F(x∗, 0; 0)
∇x ′ f (x∗, 0; 0) ∂xn f (x

∗, 0; 0)
]

.

To find the inverse of the matrix consider the equation

A(X ′, Xn)
T = (Y ′,Yn).
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Then

ΘXn = ∇x ′ f · A−1Y ′ − Yn and X ′ = A−1(Y ′ − ∂xn F Xn), (70)

where and in what follows we assume that

Θ:=∇x ′ f A−1∂xn F(x∗, 0; 0) − ∂xn f (x
∗, 0; 0) �= 0.

So the matrix A is invertible if A is invertible and Θ �= 0. From (70) it follows the
estimates

|Xn| ≤ ||A−1||
|Θ| |∇x ′ f | |Y ′| + 1

|Θ| |Yn|

and

|X ′| ≤ ||A−1|| (|Y ′| + |∂xn F | |Xn|) ≤ ||A−1||
(
1 + ||A−1|| |∂xn F | ||∇x ′ f ||

|Θ|
)

|Y ′|

+||A−1|| |∂xn F |
|Θ| Yn .

Therefore

||A−1|| ≤ C
(
||A−1|| + 1

|Θ|
(
1 + |∂xn F | ||A−1||)(1 + |∇x ′ f | ||A−1||)),

where C is a positive constant depending only on n.
Let us introduce the quantity

M̂ =
∑

1≤|α|+k≤2

max
Λb

(||Dα
x ∂ks F(x; s)|| + |Dα

x ∂ks f (x; s)|),

Then according to Corollary 2 there exists a solution x̂(s) = (x̂ ′(s), x̂n(s)) to (64)–
(65) belonging to C2([−b, b]) such that x̂(0) = (x∗, 0). Here b is a positive number
satisfying (62), where M̂ is replaced by M̂.

Let us evaluate the derivative dx̂(s)
ds . Differentiating (68) and setting s = 0, we have

A
d

ds
x̂ ′(0) + ∂xn F(x∗, 0; 0) d

ds
x̂n(0) + ∂s F(x∗, 0; 0) = 0.

Differentiating F(ξ(s), 0; s) = 0with respect to s we get ∂s F(x∗, 0; 0) = −A d
ds ξ(0).

Therefore

A
d

ds
(x ′ − ξ)(0) + ∂xn F(x∗, 0; 0) d

ds
x̂n(0) = 0. (71)
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Writing Eq. (69) as f (x̂(s); s) − f (x̌(s); s) + f (x̌(s); s) = 0 and differentiating it at
s = 0, we get

∇x ′ f (x∗, 0; 0) d

ds
(x̂ ′ − ξ)(0) + ∂xn f (x

∗, 0; 0) d

ds
x̂n(0) + d

ds
f (x̌; s)

∣∣∣
s=0

= 0.

Therefore

x̂n(s) =
d
ds f (ξ(s), 0; s)|s=0

Θ
s + O(s2), (72)

where O(s2) is estimated by Cs2, where C depends only on n, ||A−1|| and M̂. Other
components are not important for us in this paper so we write only that

x̂ ′(s) = y∗ + O(|s|)

with similar comment on O(s) as above. From (71) we can derive a similar formula
for the derivative

d

ds
x̂ ′(s) = d

ds
ξ(0) − A−1∂xn F(x∗, 0; 0) d

ds
x̂n(0) + O(|s|).

B.2 On smallest eigenvalue of the Jacobian

The Jacobian matrix for system (64), (65) is

J = J (x; s) =
[
∂x ′F(x; s) ∂xn F(x; s)
∂x ′(xn f ) ∂xn (xn f )

]
.

The Jacobian matrix

J (x∗, 0; 0) =
[
A ∂xn F
0 0

]
at (x; s) = (x∗, 0; 0)

has a simple eigenvalue 0. Let us denote the perturbation of this eigenvalue at the point
(x; s) by λ = λ(x; s). The smallest eigenvalue of J (x̌(s); s) is

λ(x̌(s); s) = f (x̌(s); s) = d

ds
f (ξ(s), 0; s)|s=0s + O(s2). (73)

Our aim is to find smallest eigenvalue of J (x̂(s); s) corresponding to the solution
x̂(s). The eigenvalue equation for the Jacobian at the point x̂(s) is

A
[
X ′
Xn

]
= λ

[
X ′
Xn

]
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Without lost of generality we can put Xn = 1. Solving this system with respect to X ′
and putting the result in the last equation, we get

−xn∇x ′ f ·
(
Dx ′F + xn∂x ′G(x̂; s) − λ

)−1
∂xn (F) + ∂xn (xn f ) = λ.

Which implies λ(s) = −x̂(s)Θ + O(s2) or, using (72), we get

λ(x̂(s); s) = − d

ds
f (ξ(s), 0; s)|s=0s + O(s2). (74)

Comparing (73) and (74), we see that the first derivative of smallest eigenvalue corre-
sponding to solutions x̌ and x̂ has opposite sign.

Remark 4 If we assume that the function s → f (ξ(s), 0; s) is strongly mono-
tone on the interval [−b, b] then all solution to (64), (65) in the set |s| ≤ b,
|x ′ − x∗|2 + x2n ≤ b are exhausted by x̌(s) and x̂(s), where b corresponds to
μ:=max(||A−1||M̂, ||A−1||M̂) in (62).Moreover derivatives of first and secondorder
of this solutions are estimated by constant depending on μ and n only.
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