The Peptide for Life Initiative: a call for action to provide equal access to the use of natriuretic peptides in the diagnosis of acute heart failure across Europe

The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-179961

N.B.: When citing this work, cite the original publication.

Original publication available at:
https://doi.org/10.1002/ejhf.2293

Copyright: Oxford University Press
http://www.oxfordjournals.org/
The “Peptide for Life” Initiative:
A Call for Action to Provide Equal Access for the Use of Natriuretic Peptides in the Diagnosis of Acute Heart Failure across Europe

Antoni Bayes-Genis1,2, James L Januzzi3,4,5, A Mark Richards6,7, Henrike Arfsten8, Rudolf A de Boer9, Michele Emdin10,11, Arantxa Gonzalez2,12, Tiny Jaarsma13, Pardeep S Jhund14, Christian Mueller15, Julio Núñez2,16, Patrick Rossignol17, Ivan Milinkovic18, Giuseppe MC Rosano19, Andrew Coats20,21, Petar Seferovic18,22

From:
1Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; 2CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; 3Massachusetts General Hospital, Boston, MA, USA. 4Harvard Medical School, Boston, MA, USA. 5Baim Institute for Clinical Research, Boston, MA, USA. 6Cardiac Department, National University Hospital, Cardiovascular Research Institute, National University Heart Centre, National University Health System, Singapore. 7Christchurch Heart Institute, University of Otago, NZ. 8Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria. 9University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands. 10Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy. 11Fondazione Toscana Gabriele Monasterio, Pisa, Italy. 12Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and Navarra Institute for Health Research (IdiSNA) Pamplona, CIBERCV, Spain. 13Division of Nursing Sciences and Reproductive Health, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden. 14BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom. 15Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland. 16Servicio de Cardiologia, Hospital Clinico Universitario. INCLIVA. Universitat de Valencia. Valencia-Spain. 17Université de Lorraine, Centre d'Investigation Clinique Plurithématique 1433, Inserm U1116, CHRU de Nancy, F-CRIN INI-CRCT Network, Nancy, France. 18Faculty of Medicine, University of Belgrade, Belgrade, Serbia. 19University and IRCCS San Raffaele Roma.
20Monash University, Melbourne, Australia. 21University of Warwick, Coventry, UK. 22Serbian Academy of Sciences and Arts, Belgrade, Serbia.

Funding: None.

Word count (without references): 1497

Corresponding Author:
Antoni Bayes-Genis, MD, PhD, FESC, FHFA.
Head, Heart Institute. Hospital Universitari Germans Trias i Pujol.
Carretera de Canyet s/n 08916. Badalona (Barcelona), Spain.
E-mail: abayesgenis@gmail.com.
The Breathing Not Properly (BNP) study, published in 2002, kick-started the use of natriuretic peptides (NPs) as companion biomarkers for the diagnosis of heart failure (HF)(1). More than just a clinical trial with positive results, it revolutionized a whole field and introduced biomarkers and the molecular phenotyping of the heart to algorithms in use for HF diagnosis and management. Ever since, the use of biomarkers to predict the onset of future HF, identify its presence when fully developed, and risk-stratify affected patients has gathered much attention and inspired a tsunami of studies. Indeed, the introduction of objective, non-invasive, biologically meaningful biomarkers to clinical assessment has considerably changed the way HF is diagnosed and monitored (2).

The setting of acute heart failure (AHF) diagnosis is where the evidence for the use of NPs is most robust. Twenty years after the BNP study using B-type natriuretic peptide (BNP), with similar evidence reported for amino-terminal BNP (NTproBNP), NPs have a central position in international guidelines for the diagnosis of AHF, and have thus been incorporated into the biomarker portfolios of a growing number of hospitals across Europe and the rest of the world.

Given the wealth of evidence, and the consensus in the HF community, one would assume that the use of NPs is widespread and that testing capacity is omnipresent. The Heart Failure Association (HFA) of the European Society of Cardiology (ESC) recently published the first edition of the HFA Atlas. It provides a contemporary description of HF epidemiology, resources, and management, and of the activities of the National Heart Failure Societies (NHFS) in ESC member countries, which comprise a total population of over 800 million people (3). The HFA Atlas identified a median of 3.58 hospitals offering NP measurement in the emergency department per million people. Remarkably however, none of the ESC countries
reported access to NP testing in all its emergency departments. The highest numbers were reported in Germany (with 19.82 hospitals with NPs used in emergency departments per million people), Central Europe, and Scandinavia. The countries with lower use of NPs in emergency departments per million people were Kyrgyzstan and North Macedonia with none, followed by the Russian Federation (with 0.02 hospitals using NPs in emergency departments per million people), with similarly low numbers in other countries from the former Soviet Union and Southeast Europe (Figure 1).

In this viewpoint article, the biomarkers working group of the HFA discusses the scientific evidence that supports the use of NPs to diagnose AHF in the emergency department, followed by the recommendations of international guidelines, and conclude with a call for action to increase awareness to promote equal access to NP analysis in HF diagnosis across Europe.

What does the science say?

BNP production in normal healthy individuals is minimal, with a level of about ≤ 10 pg/mL. In conditions of myocardial stretch, the induction of the BNP gene results in the production and secretion of prohormone proBNP$_{1-108}$. This is cleaved into the biologically active BNP$_{1-32}$ (usually referred to as BNP) and the biologically inert but biochemically more stable NTproBNP$_{1-76}$ (usually referred to as NT-proBNP). Both fragments and the precursor, proBNP$_{1-108}$, are detected in the circulation (4). The majority of studies regarding the use of B-type class peptides have focused on the measurement of either BNP or NTproBNP.

The study led by Maisel et al. (1) measured BNP levels in 1586 patients presenting to the emergency department with acute dyspnoea. Investigators found that patients with clinically diagnosed AHF had higher BNP levels compared with those
without AHF (mean 675 vs. 110 pg/mL, \(P < 0.001 \)). BNP was the best single predictor of a final diagnosis of AHF compared with individual history, physical examination, chest x-ray, and laboratory findings. The area under the curve (AUC) for BNP in receiver operating characteristic curve testing was 0.91 for the diagnosis of AHF. A cut-off BNP value of 100 pg/mL had a sensitivity of 90% and a specificity of 76%. BNP was more accurate (83%) than either the National Health and Nutrition Examination Survey (NHANES) criteria (67%) or the Framingham criteria (73%), two established sets of criteria for HF diagnosis. Importantly, the best method of AHF diagnosis combined BNP and clinical findings.

NTproBNP is cleared via different mechanisms and has a longer half-life than BNP (70 minutes vs. 20 minutes), but it is equivalent for the diagnostic evaluation of patients with suspected AHF, and likely more accurate in patients treated with neprilysin inhibitors (i.e. sacubitril/valsartan). The use of NTproBNP in the diagnosis of AHF was first demonstrated by Richards et al. (5), and soon confirmed by Bayes-Genis (6) and Januzzi (7). Subsequently, the International Collaborative of NTproBNP (ICON) study (8) examined optimal applications of NTproBNP in 1256 acutely dyspnoeic patients. Patients with AHF had considerably higher NTproBNP concentrations compared with those without AHF (mean 4639 vs. 108 pg/mL, \(P < 0.001 \)), and symptom severity correlated with NTproBNP concentrations (\(P = 0.008 \)). Optimal negative and positive predictive values were obtained by use of an age-independent rule-out cut-off at 300 pg/mL and three age-stratified rule-in cut-off points (NTproBNP \(\geq 450 \) pg/mL for age <50 years, \(\geq 900 \) pg/mL for age 50-75 years, and \(\geq 1800 \) pg/mL for age >75 years.). These cut-offs remain equally useful in AHF across the full spectrum of left ventricular ejection fraction. More recently, the ICON RELOADED (ICON: Re-evaluation of Acute Diagnostic Cut-Offs in the Emergency
Department) (9) and BASEL-V (10) studies validated the age-specific NTproBNP cut-offs in contemporary cohorts. They found that the NTproBNP-supported strategy led to 14.5% fewer initial hospitalizations, 16.0% fewer admissions to cardiology, 12.5% fewer admissions to intensive care units, 3.2% fewer ED readmissions, and 21.6% fewer hospital readmissions (11)(Figure 2).

What do the guidelines and the Universal Definition of HF say?

NP testing aids in the diagnosis of AHF, and the use of these biomarkers is now embedded as a class I, level of evidence A, recommendation in ESC and American College of Cardiology/American Heart Association (ACC/AHA) clinical practice guidelines. A Class IA indication is the highest recommendation in international guidelines.

The 2016 guidelines on HF from the ESC (12) state the following: ‘Upon presentation to the emergency department or coronary care unit, a plasma NP level should be measured in all patients with acute dyspnoea and suspected AHF to help in the differentiation of AHF from non-cardiac causes of acute dyspnoea. NPs have high sensitivity, and normal levels in patients with suspected AHF makes the diagnosis unlikely’.

The 2017 focused update of the 2013 guidelines of the ACC/AHA (13) states the following: ‘In emergency settings, NP biomarker levels usually have higher sensitivity than specificity and may be more useful for ruling out than ruling in HF. Although lower values of NP biomarkers exclude the presence of HF, and higher values have reasonably high positive predictive value to diagnose HF, clinicians should be aware that elevated plasma levels for both NPs have been associated with a wide variety of cardiac and noncardiac causes’.
The recent publication of the universal definition of HF proposes the incorporation of an objective measurement (elevated NP levels and/or imaging or haemodynamic derangements) in addition to the symptoms in the HF definition for making the diagnosis of HF more accessible to non-specialists and more reliable and consistent between observers, hospitals, and health care systems (14).

A Call for Action

ESC member countries differ in their organization, delivery, and funding of health care, all of which ultimately lead to the uneven use of NP in the emergency department. With ample and consistent scientific evidence, and the highest recommendation by clinical guidelines, it is time to build strategies to help identify specific barriers to guideline implementation and to define actions to ensure that the majority of patients with acute dyspnoea have access to NP measurement in the emergency department. A timely and accurate diagnosis is crucial to enable early initiation of key lifesaving therapies. NPs should allow clinicians to choose the best diagnostic and treatment strategy more rapidly and to triage patients more confidently.

We present two additional pieces of evidence to support such a call for action initiative. First, the majority of patients are initially diagnosed with HF in the emergency department. An audit of the National Health Service in England showed that 80% of people diagnosed with HF receive the diagnosis following an acute hospital admission, despite half of them having had HF symptoms for up to 5 years before admission (15). Second, the use of NPs has favourable effects not only on health outcomes, but also on costs. Contemporary data show that the use of NTproBNP decreases average inpatient management costs by 10.3% and reduces the total length of stay in the emergency department and hospital (11)(Figure 2).
It is the right time for HFA to launch the “Peptide for Life” initiative (Figure 3) coordinated by the ESC, the HFA, and the NHFS, focused on countries where NP use in the emergency department is currently negligible.
Disclosures: Dr Bayes-Genis reports grants and personal fees from AstraZeneca, Abbott, Vifor, Boehringer-Ingelheim, Novartis, Roche Diagnostics and Critical Diagnostics. The UMCG, which employs Dr. De Boer has received research grants and/or fees from AstraZeneca, Abbott, Boehringer Ingelheim, Cardior Pharmaceuticals Gmbh, Ionis Pharmaceuticals, Inc., Novo Nordisk, and Roche. Dr. de Boer received speaker fees from Abbott, AstraZeneca, Bayer, Novartis, and Roche.

Dr Jhund’s employer the University of Glasgow has been remunerated by Novartis, Novo Nordisk and AstraZeneca for his work on clinical trials and he has received speakers fees and/or advisory board fees from Novartis, AstraZeneca, Boehringer Ingelheim and grants from Boehringer Ingelheim. Patrick Rossignol reports consulting for Bayer, G3P, Idorsia, and KBP; honoraria from Ablative Solutions, AstraZeneca, Bayer, Boehringer-Ingelheim, Corvidia, CVRx, Fresenius, Grunenthal, Novartis, Novo Nordisk, Relypsa Inc., a Vifor Pharma Group Company, Sanofi, Sequana Medical, Servier, Stealth Peptides, and Vifor Fresenius Medical Care Renal Pharma; Cofounder: CardioRenal.

...
References

Heart. 2018 Apr;104(7):600-605. doi: 10.1136/heartjnl-2017-312183. Epub
2017 Oct 5. PMID: 28982720.
Figure Legends

Figure 1: Hospitals with availability of natriuretic peptides (BNP or NTproBNP) in the emergency department per million people (taken from Ref #3). Data not available: Belgium, Bulgaria, Czech republic, Italy, Latvia, Poland, Portugal, Republic of Georgia, Spain, Turkey, United Kingdom. No resources: Kyrgyzstan, North Macedonia.

Figure 2: Incorporation of natriuretic peptides in the diagnosis of acute breathlessness results in clinical and economic benefit.

Figure 3: “Peptide for Life” Initiative Logo.
Figure 1

<table>
<thead>
<tr>
<th>Country</th>
<th>BNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian Federation</td>
<td>0.02</td>
</tr>
<tr>
<td>Ukraine</td>
<td>0.13</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>0.30</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>0.44</td>
</tr>
<tr>
<td>Republic of Moldova</td>
<td>1.13</td>
</tr>
<tr>
<td>Belarus</td>
<td>1.27</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>1.50</td>
</tr>
<tr>
<td>Hungary</td>
<td>1.64</td>
</tr>
<tr>
<td>Serbia</td>
<td>1.72</td>
</tr>
<tr>
<td>Israel</td>
<td>2.25</td>
</tr>
<tr>
<td>Lebanon</td>
<td>2.63</td>
</tr>
<tr>
<td>Romania</td>
<td>2.90</td>
</tr>
<tr>
<td>Cyprus</td>
<td>3.39</td>
</tr>
<tr>
<td>Lithuania</td>
<td>3.58</td>
</tr>
<tr>
<td>Greece</td>
<td>3.82</td>
</tr>
<tr>
<td>Ireland</td>
<td>4.42</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5.17</td>
</tr>
<tr>
<td>Denmark</td>
<td>5.38</td>
</tr>
<tr>
<td>Slovenia</td>
<td>6.29</td>
</tr>
<tr>
<td>Sweden</td>
<td>7.25</td>
</tr>
<tr>
<td>Croatia</td>
<td>7.34</td>
</tr>
<tr>
<td>Austria</td>
<td>9.72</td>
</tr>
<tr>
<td>Norway</td>
<td>9.97</td>
</tr>
<tr>
<td>Iceland</td>
<td>11.31</td>
</tr>
<tr>
<td>Switzerland</td>
<td>11.83</td>
</tr>
<tr>
<td>Finland</td>
<td>12.69</td>
</tr>
<tr>
<td>Estonia</td>
<td>13.63</td>
</tr>
<tr>
<td>Slovakia</td>
<td>13.79</td>
</tr>
<tr>
<td>Germany</td>
<td>19.82</td>
</tr>
</tbody>
</table>

Hospitals with BNP in ER, per million people
Figure 2

Breathlessness + Natriuretic Peptides: BNP, NTproBNP = ↓ Hospitalizations
↓ Admissions to Cardiology
↓ Admissions to ICU
↓ Total length of stay
↓ ED readmissions
↓ Hospital readmissions
↓ Inpatient management costs