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Abstract.The fields of human genetics and genomics
have generated considerable knowledge about the
mechanistic basis of many diseases. Genomic
approaches to diagnosis, prognostication, preven-
tion and treatment – genomic-driven precision
medicine (GDPM) – may help optimize medical
practice. Here, we provide a comprehensive review
of GDPM of complex diseases across major medical
specialties. We focus on technological readiness:
how rapidly a test can be implemented into health
care. Although these areas of medicine are diverse,
key similarities exist across almost all areas. Many
medical areas have, within their standards of care,

at least one GDPM test for a genetic variant of
strong effect that aids the identification/diagnosis
of a more homogeneous subset within a larger
disease group or identifies a subset with different
therapeutic requirements. However, for almost all
complex diseases, the majority of patients do not
carry established single-gene mutations with large
effects. Thus, research is underway that seeks to
determine the polygenic basis of many complex
diseases. Nevertheless, most complex diseases are
caused by the interplay of genetic, behavioural and
environmental risk factors, which will likely neces-
sitate models for prediction and diagnosis that
incorporate genetic and non-genetic data.

Keywords: complex disease, genomics, precision
diagnostics, precision medicine, precision preven-
tion, precision treatment.
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Introduction

The resolution, throughput and cost of genome
sequencing are such that we can routinely apply
these technologies at scale. This presents unprece-
dented opportunities for medical practice and
studies of disease aetiology.

The application of genomics to the field of
medicine to improve diagnosis, prevention, treat-
ment and prognosis – genomic-driven precision
medicine (GDPM) – has been widely discussed [1–
6] and is becoming standard of care, particularly
for cancer, rare diseases and adverse drug reac-
tions. Table 1 defines key terms in GDPM and
related resources.

The foundations of GDPM date back more than half
a century to programmes screening newborns for
phenylketonuria, which have since been extended
to include many rare single-gene disorders. In the
past two decades, genetic testing has become
increasingly widespread in patients with a familial
predisposition to certain diseases. For example,
mutations in BRCA1 or BRCA2 indicate a high risk
for breast and ovarian cancer and a mutation in
HTT causes Huntington’s disease. Focus is now
being placed on expanding GDPM beyond cancers

and rare diseases to common diseases of complex
aetiology [7].

Here, we discuss GDPM for complex diseases with
emphasis on evaluating the clinical and technical
readiness of a potential test that might benefit
individuals with a complex disease. While geno-
mics is likely to play a key role in future medicine,
it is expected to do so in concert with demographic
and standard clinical data (e.g. age, sex, past
medical history, current health status, family his-
tory, non-genetic biomarkers and environmental
exposures). As an example, the ‘Stockholm 3’
model successfully identifies males with high
prostate-specific antigen levels as unlikely to
develop an aggressive form of prostate cancer [8].
The model combines a polygenic risk score (PRS),
plasma protein biomarkers and clinical data. Nev-
ertheless, it is likely that genetic data are not useful
or necessary for all types of precision medicine.
Particularly, disease monitoring will probably
instead rely on repeated assessments of other
omics technologies.

This review summarizes the views of clinicians and
scientists who specialize in GDPM of complex
diseases within the framework of Genomic Medi-
cine Sweden (GMS). The review focuses on the
quality and clinical utility of available empirical
data [9], with a particular focus on the degree of
technological readiness [10]. We also consider how
benefits, risks and acceptance by patients and
clinicians can be appropriately evaluated, with a
view to facilitate the translation of GDPM for
complex diseases into clinical practice. Because
GDPM may be useful across many medical spe-
cialties, we explored the basis of a generalizable
framework for evaluating, testing and implement-
ing GDPM for complex diseases in health care.

Complex diseases and genetic architecture

Common complex diseases include amongst others
allergies, cardiovascular disease, type 1 and 2
diabetes mellitus, inflammatory bowel disease
(IBD), Parkinson’s disease, stroke, schizophrenia,
rheumatoid arthritis, multiple sclerosis and non-
syndromic cancers. Although the global prevalence
of these diseases varies, they typically have 1–20%
lifetime prevalence (by contrast, single-
gene/monogenic diseases generally occur in the
prevalence range 0.0001–0.05%). Most complex
diseases are considered ‘non-communicable’ and
account for approximately 70% of all deaths

Table 1 Key concepts and learning resources

Term Background

GDPM (genome-driven

precision medicine)

References [1–6]

Genetic conditions https://ghr.nlm.nih.gov/

condition

GWAS (genomic-wide

association study)

References [74,75]

Human genetics NLM Genetics Reference

(https://ghr.nlm.nih.gov )

Preparing healthcare

providers for genomic

medicine

http://www.

pathologylearning.org/

trig/resources

PRS (polygenic risk score) References [7,17,76]

Rare genetic conditions https://www.rarechromo.org

WES/WGS (whole

exome/genome

sequencing)

References [77–81]
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worldwide and cause significant morbidity, thus
account for the majority of healthcare costs [11].

For nearly all complex diseases, genetic risk is
probabilistic and not deterministic (the latter being
true for diseases caused by highly penetrant muta-
tions). The risk of disease in monozygotic siblings of
patients with many complex diseases is <50%,
whereas in monogenic diseases such as Hunting-
ton’s, a monozygotic co-twin of an index case will
almost always be affected [12]. This introduces
complexity, as the degree of risk is more difficult to
assess than the clear-cut presence or absence of a
known pathological variant. The potential advan-
tage is that increased genetic risk of a complex
disease may provide opportunities for prevention or
early detection and management, as variants in
nuclear DNA remain stable across the lifecourse.

The term genetic architecture refers to the number,
type and frequency of genetic variants (in cases
and non-cases), as well as the risk they confer
[13,14]. In monogenic disease, the genetic archi-
tecture is often very simple. In complex diseases
such as Alzheimer’s disease, the architecture is
multifaceted with early-onset forms caused by rare
mutations (APP, PSEN1 and PSEN2) and late-onset
forms caused by a combination of high-risk com-
mon variants (APOE), multiple low-risk common
variants and other non-genetic exposures (e.g. age,
sex, behaviour and environmental factors) [15].

Most germline DNA genetic tests used in clinical
medicine are deterministic and are almost exclu-
sively used to diagnose relatively rare conditions.
By contrast, the use of genetic tests for more
common complex diseases has shown great poten-
tial in some research settings but is yet to translate
from research to clinical practice. A common way to
characterize genetic risk for complex diseases is
through PRSs [16]. A PRS is the sum of multiple
(sometimes thousands of) genetic variants that
individually confer small effects. Recent studies
show that high PRSs convey large and potentially
clinically relevant risks in adulthood for diseases
such as cardiovascular disease and type 2 diabetes
mellitus [17] or early disease onset, increased
damage accrual and decreased survival in systemic
lupus erythematosus [18].

GDPM in clinical context

Contemporary medicine is founded on empirical
evidence, often from clinical trials that are

considered generalizable to much larger patient
populations. This assumes that the population
average is sufficient to guide decision making for
the individual patient. By contrast, GDPM often
focuses on population subgroups with similar clin-
ical or biological characteristics, thereby improving
the ‘precision’ of the evidence. Although reducing
error (i.e. increasing precision) in clinical decision
making is a key objective of GDPM, it is also impor-
tant to evaluate whether the specific GDPM recom-
mendation is as (or more) cost-effective, safe,
tolerable, accessible and acceptable as its contem-
porarymedicine counterpart.

Diagnostics

As most complex diseases are heterogeneous in
aetiology,geneticsmayaiddiagnosticsbyidentifying
subgroups/subtypeswithinaconventional complex
disease diagnosis that are distinguishedbydifferent
aetiologies or risk trajectories, thus benefiting from
targeted treatment. An example is ischaemic stroke
with different aetiological subtypes (large vessel
occlusion, small vessel occlusion, cardioembolic
stroke or arterial dissections) each of which may
have different genetic architectures requiring differ-
ent targeted therapy and clinical follow-up. GDPM
might also help identify rare conditions that are
hidden within a complex disease diagnosis. For
instance, approximately 3%of patientswith chronic
obstructive pulmonary disease (COPD)have alpha1-
antitrypsin (AAT) deficiency [19]. AAT deficiency is
most commonly caused by homozygosity for the
SERPINA1∗Z allele and is strongly associated with
COPDaswellashepaticcirrhosisandhepatocellular
carcinoma [20]. If detected early, specific clinical
surveillance and treatments are recommended.

Prevention

Ideally, diseases should be prevented rather than
treated. The phenylketonuria example mentioned
above is one of the first examples of severe disease
(albeit a monogenic disorder not a complex one).
Although the disease itself is not preventable, the
severe consequence of phenylketonuria (e.g. cog-
nitive developmental impairments) can, through
early detection and consequent adherence to a
phenylalanine-free diet, be prevented. Other well-
known examples are familiar hypercholes-
terolemia, which can be identified and treated to
prevent coronary events [21], and BRCA1-2 genetic
tests in breast cancer [22]. The clinical (or public
health) use of GDPM in preventing common,
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complex diseases is, however, yet to be explored for
most medical areas (Table 2).

Treatment

GDPM may aid in selecting an optimal treatment
for a specific patient. Patients can show substan-
tial differences in treatment response for many
common diseases. This is a major challenge in
clinical medicine, and there is a wide gap between
the need to match treatments to specific patients
and available tools to predict clinical response or
risk for adverse drug reactions. One of the first
examples of GDPM is tyrosine kinase inhibitors
that are beneficial in chronic myeloid leukaemia
patients with a typical chromosomal translocation
[23]. GDPM can also be used to predict effect
(positive or adverse) of common drugs. A certain
drug or dose may be harmful due to individual
variation in for example pharmacokinetics, which
was the traditional focus of pharmacogenetics. The
Clinical Pharmacogenetics Implementation Con-
sortium (CPIC) was initiated to facilitate the use
of pharmacogenetics by reviewing all evidence and
producing guidelines to improve choice of drugs or
dosing within diverse areas, and cover for example
psychoactive, antithrombotic, gastrointestinal,
anti-inflammatory and cholesterol-reducing drugs
[24]. CPIC also has guidelines for immune-
mediated risk of serious adverse reactions to
certain drugs. For instance, individuals carrying a
HLA-B variant (HLA-B*15:02, common in those of
East Asian ancestry) should avoid the anticonvul-
sant carbamazepine due to high risk of Stevens–
Johnson syndrome or toxic epidermal necrolysis
[25,26]. Additionally, multiple ‘biologics’ (biophar-
maceuticals) have emerged as effective therapies
for a range of inflammatory diseases (e.g. rheuma-
toid arthritis, inflammatory bowel disease, multiple
sclerosis and asthma). Some are extremely expen-
sive and others have rare but devastating adverse
drug reactions. Hence, there is an urgent need for
predictive biomarkers to guide appropriate treat-
ment selection and to minimize harm.

Prognosis

Genes that influence disease prognosis may be
different from those affecting disease risk. From a
clinical point of view, assessing the likelihood of an
exacerbation, flare-up or general deterioration is of
utmost importance in order to tailor treatment and
follow-up regimens. Recent evidence suggests that
genetics may aid in identifying patients at risk of a

more severe disease (e.g. SLE [18]) or prognosis in
ageing patients (e.g. with a minor stroke [27]).
Using transcriptomics data, a newly developed PCR
test for IBD prognosis (PredictSURE IBDTM) is now
prospectively examined in a large intervention trial
[28] (Table 2).

Field review

Table 2 shows a summary of narrative reviews
described in more detail in Supplemental Text S1.
These reviews focus on technological readiness (i.e.
how rapidly a test can be implemented into health
care) of GDPM across many of the most burden-
some contemporary complex, chronic diseases
(cancer not included with the exception of breast
cancer, as an example). The levels of technological
readiness are as follows: none/poor=absence of
data or proof (e.g. a plausible but untested idea) or
investigational (a few supportive studies exist or
are ongoing, but the data are insufficient to war-
rant confident conclusions), good=sufficient evi-
dence to support an adequately powered clinical
evaluation (the data strongly support the clinical
utility of a test), moderate=clinical use has started
but is not fully implemented and excellent=a GDPM
test is in clinical use in multiple countries.

The review shows that fields like cardiology (par-
ticularly diagnosis of cardiomyopathies and diag-
nosis and prevention of aortic disease),
endocrinology (particularly subclassification of
type 2 diabetes), obstetrics and gynaecology (pre-
diction of foetal and maternal morbidity) and
psychiatry (diagnosis of autism and intellectual
disability) have a high degree of technological
readiness, whereas in many complex diseases,
GDPM has little or no proven technological readi-
ness regarding diagnostics, prevention, therapeu-
tics or prognostics. As examples, the following
section describes ongoing GDPM work in two
specific disease areas in more detail: cardiology
and endocrinology.

Cardiology examples

Coronary artery disease (CAD, also known as
‘coronary heart disease’) is a leading and increas-
ing cause of death worldwide. CAD is a complex
disease influenced by multiple genetic, behavioural
and environmental factors. Large genome-wide
association studies (GWAS) have identified over
150 loci associated with CAD [29,30]. Although
these loci each convey small effects, the
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development of PRSs has helped identify patient
subgroups at relatively high risk of disease. For
example, Khera et al. [17] reported that individuals
with a very high CAD PRS had risks similar to
monogenetic mutations. The authors also showed
that CAD PRSs convey a greater predictive value
than any conventional CAD risk factor (smoking,
diabetes, obesity, hypertension, high cholesterol
levels and family history), and added independent
information to models that included conventional
risk factors [31]. The PRS for CAD has since been
validated in independent cohorts [32]. From a
clinical perspective, this suggests that PRSs may
be a useful tool for risk prediction in GDPM.
However, most PRS was derived in European
ancestry populations, potentially limiting the
extent to which they can be generalized to other
ethnic groups [33], and it remains unclear whether
PRSs are useful when seeking to determine treat-
ment responses. Thus, further work is needed to
refine the predictive ability of PRS, particularly in
the context of different treatments, and to improve
the generalizability to other populations if this type
of GDPM is to become clinically useful.

Genetics research has helped pinpoint genes that
are important in CAD pathophysiology and identify
novel therapeutic targets. Some specific, high-
impact genes were identified in studies of familiar
hyperlipidaemia and subsequent risk of CAD.
These include genes such as LDLR, PCSK9, APOB,
LDLRAP1 and ABCG8 [34–38]. For example, inac-
tivating mutations in PCSK9 cause a reduction in
LDL cholesterol and decreased risk of CAD [39],
and monoclonal antibodies to PCSK9 lower LDL
levels dramatically and reduce risk for major
cardiovascular events [40]. Therapies that target
PCSK9 are now introduced in clinical practice
guidelines.

Heart failure (HF) is a leading cause of hospitaliza-
tion and death worldwide. HF results from many
pathophysiological processes that adversely influ-
ence myocardial structure and function including
CAD, hypertension and toxic agents such as alco-
hol. However, HF can also occur in the absence of
any such process (idiopathic cardiomyopathy). A
heritable contribution to HF is well established
[41,42], and genetic testing is routinely performed
for several familial forms of cardiomyopathy,
mainly to reduce the need for targeted surveillance
in families with hypertrophic and arrhythmogenic
forms [43]. The recent recognition that protein-
truncating variants in the titin gene (TTN) greatly

increase risk of dilated cardiomyopathy may lead
to wider implementation of genetic testing in HF,
but further studies are needed to evaluate the
clinical value of genetic information more precisely
[44]. Results from GWAS for HF show a polygenic
architecture [45], but testing for such variants has
no clinical role today even though it may provide
information on genetic modification for familial
forms of HF, or add prognostic information that
can guide treatment and clinical monitoring. A
particularly important application for GDPM in HF
may be a pharmacogenetic assessment to guide the
increasingly complex therapeutic armamentarium
for this condition (studies evaluating these
approaches are currently in early stages).

The field of cardiology includes multiple other
diseases with genetic architectures dominated by
rare protein-changing variants of strong, clinically
impactful, effects. For these conditions, genome
sequencing is widely used in cardiology for diag-
nosis and treatment guidance for many cardiac
diseases with autosomal-dominant heritability pat-
terns, such as aortic disease, familial hypercholes-
terolemia and arrhythmia syndromes.

Endocrinology examples

Diabetes mellitus (DM) can manifest for a variety of
reasons, and our understanding of its causal
molecular and contextual factors is incomplete.
The simplicity with which DM is diagnosed belies
its highly complex nature and impedes its preven-
tion and treatment. Type 1 DM accounts for ~10%
of cases, type 2 DM accounts for ~90% [46], and
~1% of DM occurs in other contexts including
gestational DM [47], rare monogenic forms of DM
(e.g. mutations in the insulin gene), DM resulting
from another disease processes (e.g. cystic fibrosis
or pancreatitis) and drug-induced DM (e.g. gluco-
corticoid treatment) [46]. At present, GDPM is only
applied to rare forms of DM (e.g. ‘maturity onset
DM of the young’), where genome sequencing
allows precise molecular diagnoses and targeted
therapeutics.

Type 2 DM is diagnosed when all other known
explanations for hyperglycaemia have been
excluded. Its subsequent composite nature partly
explains why prevention and treatment often fail –
even the most impactful lifestyle and drug inter-
ventions (metformin) only delay DM onset by a few
years on average [48]. Consequently, researchers
have tried to refine the diagnosis of DM, for
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example by reclassification based on combinations
of clinical and/or genetic data. A machine-learning
algorithm identified five DM subgroups defined by
aetiological features (e.g. insulin resistance, insu-
lin secretory deficiencies and other DM features)
[49]. Other groups have defined probabilistic sub-
groups based on genetic data mapped to aetiolog-
ical processes fundamental to DM [50,51].
Although clustering methods are highly informa-
tive from an aetiological perspective, none of the
currently identified subgroups is able to compete
with conventional analysis methods for predicting
DM or its complications [52]. Nevertheless, more
powerful data and analytical approaches could
substantially improve subclassification of DM.
Indeed, current major initiatives focus on charac-
terizing human biological variation at multiple
levels (e.g. transcripts, microRNAs, epigenetic
marks, proteins, metabolites) and link these to
the glycaemic deteriorations that precede DM and
lead to complications [53].

Osteoporosis and related fractures are a major
public health concern and result in a huge eco-
nomic burden on healthcare systems. It is a
complex disease influenced by multiple genetic,
behavioural and environmental factors. Low bone
marrow density (BMD) is the most important
causal risk factor for fractures [54]. Fracture risk
prediction subsequently combines clinical risk
factors with analyses of bone mineral density
(BMD) using dual-energy absorptiometry imaging.
A large GWAS identified over 500 loci affecting
BMD, explaining approximately 20% of its variance
[55]. Genetic studies of many types of fractures
identified 15 loci, all known BMD loci [54]. Future
GWAS need to evaluate fractures categorized by
bone site, and GWAS for other, non-BMD-related
determinants of fracture risk (e.g. muscle strength,
risk of falls) may identify additional genetic deter-
minants useful for fracture prediction.

Several PRSs for BMD are available. A recent BMD
PRS explained ~20% of variance [55,56], and a
machine-learning algorithm developed a BMD PRS
that explained ~23% of the observed variance [57].
These PRSs might identify a subset of high-risk
individuals who might particularly benefit from
osteoporosis treatment (for prevention or therapy),
and their clinical utility is currently being evalu-
ated. Although community-based fracture risk
screening (clinical risk factors and a direct mea-
sure of BMD) can already reduce the rates of hip
fractures in elderly women [58], the efficiency and

accuracy of these screening programmes might be
improved by adding a BMD PRS [57].

GDPM is already implemented for diagnosing rare
but severe monogenic forms of paediatric osteo-
porosis due to osteogenesis imperfecta. Approxi-
mately 85% of these cases are caused by mutations
in COL1A1 or COL1A2 [59]. Formerly, most clini-
cians screened for COL1A1 and COL1A2, but
increasingly whole-genome sequencing (WGS) or
targeted gene panels are used [59]. WGS of unique
families with a clinically significant fracture history
has identified novel forms of monogenic osteoporo-
sis (e.g. autosomal-dominant osteoporosis caused
by WNT1 mutations [60]).

Data analysis approaches for complex multidimensional data in
GDPM

A major challenge for the implementation of GDPM
is that for most patients, complex diseases result
from the interplay of hundreds or thousands of
gene variants, behavioural and environmental fac-
tors13,161. Indeed, patients with the same diagnosis
may differ in risk factors and aetiology. In some
respects, health care today is informed by fairly
sparse data: diagnostics often rely on a limited
number of laboratory and clinical variables deter-
mined at only a few measurement occasions.
However, digital and genomic medicine promises
to deliver far richer temporal data, mapping more
of the complexity of common diseases and thereby
allowing for diagnostics and therapeutics of poten-
tially much higher efficacy. It is also possible that
theoretical and computational advances will pro-
vide solutions to organize and analyse the data for
clinical purposes [61].

As an example, network principles have great
potential to describe and analyse a wide range of
complex systems. For instance, protein–protein
interaction networks or modules of co-expressed
genes can be used as an organizing framework onto
which disease-associated gene variants can be
mapped [62]. These empirically defined networks
and their structure can help us find central disease
mechanisms, which can be exploited to find
biomarkers and drug targets.

Another layer of complexity is that the effects of
disease-associated genes vary across multiple cell
types. Transcriptome-wide analyses of single cells
are emerging as a method to address this problem.
For example, single-cell RNA sequencing has been
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proposed to have implications for personalized
medicine in serious diseases with costly treatments
[63]. Indeed, for these complex data, network
principles have been shown to be applicable to
prioritize biomarkers and drug targets [64]. Also,
clinical variables, such as symptoms and environ-
mental or social factors, may have important
clinical implications. One study suggested that
these variables can be integrated into complex
biological models using network tools [65] [3,66–
68].

There are countless other analytical approaches
beyond network analyses relevant to GDPM,
amongst which artificial intelligence (AI) is gaining
considerable traction. As applied to GDPM, AI
refers to a broad domain of computational methods
that can be used to facilitate clinical decision
making and improve the efficiency of screening
protocols. AI is intended to mimic human patterns
of inference, yet to do so more quickly, at lower cost
and on a larger scale than can be achieved using
conventional approaches. Machine learning (ML) is
a subset of AI that seeks to answer specific
questions often with iterative optimization algo-
rithms, typically focused on reducing error and/
or enhancing likelihood. AI includes a range of
algorithmic domains in addition to ML (e.g. rules
engines, expert systems and knowledge graphs).
Deep learning (DL) is a subset of ML using deep ar-
tificial neural networks and deep reinforce-
ment learning; DL algorithms are typically more
computationally intensive than other ML algo-
rithms and focus explicitly on improving computa-
tional accuracy. Regardless of the type of AI
deployed, the quality of the results scales with the
amount and quality of input data. To date, the
most clinically relevant applications of AI have
focused less on genetic data, and more on digital
images and broad panels of biomarkers, the latter
of which sometimes include genetic information.
For example, AI has proven effective in undertaking
rapid and high-throughput image evaluations to
detect anomalies such as skin [69] and breast [70]
malignancies, as well as optimizing scanning pro-
tocols to save time and reduce patients’ radiation
exposure. More broadly, AI has been used in
decision support systems for health care providers,
for example by helping predict the onset of septic
shock in intensive care patients [71]. AI is also
showing promise for the prediction of early disease
onset, for example by determining the probability
of developing islet autoantibodies in type 1 DM
[72], and for prognostication in those already

diagnosed with disease, such as in the develop-
ment of psychosis in patients with other high-risk
psychiatric conditions [73].

Conclusions

Many medical areas have at least one GDPM test
for a genetic variant of strong effect that is part of
standard of care. This varies greatly across dis-
eases, with GDPM in oncology, cardiology,
endocrinology and prenatal/neonatal testing (ob-
stetrics and paediatrics) notably advanced in this
regard. The results of such tests provide clinical
guidance in that they allow identification/diagno-
sis of a more homogeneous subset within a larger
disease group. Alternatively, they can identify a
subset of patients with different therapeutic needs
and flag medicines that may offer substantial
benefit or that should be avoided owing to high
probability of adverse events. Some of these GDPM
tests have strong supporting evidence but are not
yet standard of care, often because the process of
clinical implementation is yet to be defined (in-
cluding infrastructure, education and point-of-
care applications).

For almost all of these complex diseases, many
patients do not carry known genetic variants of
strong effect. However, intensive efforts to uncover
their genetic basis have yielded promising and
empirically supported GDPM test designs. Many
are based on the clinical use of PRS. Because these
diseases are caused by combinations of genetic
and non-genetic exposures, GDPM models that
combine clinical data, PRS, biomarkers (including
large-scale omics data) and exposure information
are likely to improve risk prediction or aid treat-
ment decisions (e.g. the ‘Stockholm 3’ prostate
cancer algorithm [8]). However, even when the
efficacy of GDPM is proven, it will be necessary to
evaluate cost-effectiveness, safety, tolerability,
accessibility and acceptability relative to current
medicines for the respective clinical question.
Moreover, because the vast majority of human
genetics research has been undertaken in people of
European ancestry, studies of other ethnic groups
are should be prioritized in the future, particularly
where the discovery of rare variants is of interest.
These evaluations will help ensure that GDPM aid
to decrease health disparities, rather than increase
them, which might happen if GDPM is inaccessible
or poorly designed for those most in need. Ensur-
ing all relevant stakeholders (e.g. patient represen-
tatives, caregivers, regulators, funders, pharma,
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biotech, policymakers and health economists) are
part of the process of developing and implementing
GDPM will be critical to its success.
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