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Abstract. We reconsider the theory for three-wave interactions in cold plasmas. In
particular, we demonstrate that previously overlooked formulations of the general
theory are highly useful when deriving concrete expressions for specific cases. We
also point out that many previous results deduced directly from the basic plasma
equations contain inappropriate approximations leading to unphysical results. Fi-
nally, generalizations to more elaborate plasma models containing, for example,
kinetic effects are given.

1. Introduction
Three-wave interactions are fundamental in nonlinear plasma science (e.g. Sagdeev
and Galeev 1964; Sjölund and Stenflo 1967; Tsytovich 1970; Davidson 1972;
Weiland and Wilhelmsson 1976; Shukla 1999; Stenflo and Shukla 2007). The coup-
ling coefficients are in general derived by means of straightforward calculations.
However, it has then turned out that there are many ways to end up with erroneous
results. For example, in the calculation process it is tempting to neglect some
of the smallest nonlinear terms from the outset. However, the larger nonlinear
terms often cancel each other and the neglected terms are therefore important in
many situations. Thus, there are numerous previous papers that contain incorrect
final results. Instead of restarting our calculations from the basic nonlinear plasma
equations we therefore stress in the present paper an alternative method to deduce
the desired coupling coefficients for specific cases. Accordingly, we start directly
from the general, although somewhat formal, results for the coupling coefficients,
which we then evaluate in the appropriate limits. To illustrate our approach here
we are going to consider a very simple specific example of the resonant interaction
of three waves in a cold magnetized plasma. However, despite its simplicity, it is
rather tricky to handle the algebra correctly. That is probably the reason why the
explicit results presented here cannot be found in the previous literature.

2. General results for a cold plasma
In order to demonstrate the usefulness of our approach we shall, for simplicity,
consider the resonant interaction between three waves with frequencies ωj (j =
1, 2, 3) and wavevectors kj , with ω3 = ω1 + ω2 and k3 = k1 + k2 , in a cold
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multi-component magnetized plasma. Using (3a,b) and (4a,b) in Stenflo and Brodin
(2006) and considering wave 3 as the pump wave we then write the growth rate γ
of the excited waves 1 and 2 as

γ2 =
M1M2 |CE3z |2

[∂D(ω1 ,k1)/∂ω1 ][∂D(ω2 ,k2)/∂ω2 ]
(1)
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Here E3z denotes the electric field component along the external magnetic field
B0 = B0 ẑ. Furthermore, q is the particle charge,m the mass, c the velocity of light,
ωp the plasma frequency, ωc the gyrofrequency, and k2 = k2

⊥ + k2
z . The sum sign

stands for summation over all particle species. All the three waves satisfy of course
the dispersion relation D(ωj ,kj ) = 0.

3. A specific example
In order to demonstrate the usefulness of the general formula, we now focus on the
interaction between one electromagnetic wave propagating parallel to the external
magnetic field and two electrostatic waves (with kc� ω). For the latter waves the
expression (5) simplifies to (e.g. Stenflo 1973)

K =
[
k⊥ − i

ωc
ω
ẑ× k

]
ω2

ω2 − ω2
c

+ kz ẑ, (6)
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in which case the dispersion function is Des(ω,k) = (k4c4/ω4)ε(ω,k), where

ε(ω,k) = 1 − k2
⊥

k2

∑ ω2
p

(ω2 − ω2
c )

− k2
z

k2

∑ ω2
p

ω2 . (7)

When the electromagnetic wave is the pump wave, we note that the use of E3z in
(1) as the pump amplitude is not appropriate, as E3z → 0 in the limit of parallel
propagation. This is, however, easily dealt with by taking the limit k⊥ → 0, in which
case K for that wave can be related to the perpendicular electric field amplitude
E⊥ through

K = −(x̂+ iŷ)
kzωE⊥

(ω + ωc)Ez
, (8)

where we have chosen the right-hand polarization and k⊥ = kx x̂, for definiteness.
The corresponding dispersion function is thusD‖(ω,k) = −(1−
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The expression for CE3z then reduces to (introducing k⊥ = |k1,2x |)
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In (10) we have used the fact that the ion mass is much larger than the electron
mass, and dropped the sum sign as well as the index e on q, m, ωp and ωc.
Next we consider the case when all wave frequencies are much smaller than the

electron cyclotron frequency, to reduce (10) to
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From the expression (1) we then obtain the squared growth rate

γ2
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where the dispersion functions for the electrostatic waves are given by (7).
The growth rate if one of the electrostatic waves is the pump wave can be found

quite similarly. Our result is
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where (ω2 ,k2) now represents the electromagnetic wave. If, for example, the electro-
static waves are lower hybrid waves with kz �k⊥ and ω � |ωc| (Kumar and Tripathi
2008) we have ε(ω1 ,k1) = 1 + (ω2

p/ω2
c ) − (k2

1zω
2
p/k2

1ω2
1 ) − (ω2

pi/ω2
1 ) where ωpi is the

ion plasma frequency. Furthermore, if the second decay wave is a whistler wave we
can reduce (13) by inserting DT (ω2 ,k2) = (ω4

p/ω2
2ω2

c ) − (k4
2 c4/ω4

2 ) to obtain our
final result. The squared growth rate (20) in the paper by Kumar and Tripathi
(2008) is, however, not positive in all parameter ranges and a detailed comparison
is therefore of no interest.
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Finally, when thermal effects are important, kinetic theory leads to a replacement
of the growth rate according to

γ2 =
ω1ω2 |V |2
W1W2

, (14)

where the wave energiesW1,2 are given byW = ε0E∗ · (1/ω)∂(ω2ε)E, ε is the usual
textbook dielectric tensor, and the expression for V can be found in Stenflo (1994)
or Stenflo and Brodin (2006).

4. Discussion
Here we have considered two somewhat different basic decay processes, leading
to the two formulas (12) and (13). Inspecting these two growth rate expressions,
we clearly see that the sign of γ2

em is determined only by ∂ε/∂ω1 and ∂ε/∂ω2 (the
values of which in this simple case with no equilibrium drift velocities are both
positive). A similar relation holds for γ2

es. This shows that if the waves 1 and 2 are
both positive energy waves, the squared growth rate is always positive. However,
in numerous previous papers (e.g. Laham et al. 2000; Panwar and Sharma 2007;
Kumar and Tripathi 2008) this is not the case. This means that some inappropriate
approximations have been adopted in all such previous papers.
Let us also stress that the squared coupling coefficient is a key ingredient in the

final expression for the pump-wave-enhanced fluctuation spectrum (Stenflo 2004).
The calculations above are thus highly relevant when stimulated electromagnetic
emissions in the ionospheric plasma are to be analyzed.
Finally, it should be mentioned that the present formulas can be extended to also

cover plasmas where relativistic effects are modifying the electron mass (e.g. Stenflo
1971; Shukla et al. 1986; Brodin 1999; Lazar and Merches 2003) or to plasmas
with slightly non-uniform equilibrium densities (e.g. Stenflo and Shukla 1992). The
amended squared coupling coefficients will then still be positive. This holds also
for the limiting case of a Hall-magnetohydrodynamic plasma (Brodin and Stenflo
1990).

5. Conclusion
Inspecting for example the expression (14) it is obvious that the squared growth
rate is always positive if the frequencies as well as the energies of the decay waves are
positive. It is thus advisable to start the analysis for a particular wave interaction
process from (14), or more simply from the expression (1) if the plasma is cold, if the
algebra for the considered specific case is expected to be complicated and/or lengthy.
Otherwise one can end up with unphysical results where, for example, the squared
growth rate can change sign for certain values of the background parameters ωp
and ωc.
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