
Artificial Intelligence 302 (2022) 103608
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A framework for analysing state-abstraction methods

Christer Bäckström ∗,1, Peter Jonsson ∗

Linköping University, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2020
Received in revised form 30 September 
2021
Accepted 6 October 2021
Available online 13 October 2021

Keywords:
Action planning
Combinatorial search
Heuristic search
Hierarchical abstraction
Refinement
State abstraction

Abstraction has been used in combinatorial search and action planning from the very 
beginning of AI. Many different methods and formalisms for state abstraction have been 
proposed in the literature, but they have been designed from various points of view and 
with varying purposes. Hence, these methods have been notoriously difficult to analyse 
and compare in a structured way. In order to improve upon this situation, we present a 
coherent and flexible framework for modelling abstraction (and abstraction-like) methods 
based on graph transformations. The usefulness of the framework is demonstrated by 
applying it to problems in both search and planning. We model six different abstraction 
methods from the planning literature and analyse their intrinsic properties. We show how 
to capture many search abstraction concepts (such as avoiding backtracking between levels) 
and how to put them into a broader context. We also use the framework to identify 
and investigate connections between refinement and heuristics—two concepts that have 
usually been considered as unrelated in the literature. This provides new insights into 
various topics, e.g. Valtorta’s theorem and spurious states. We finally extend the framework 
with composition of transformations to accommodate for abstraction hierarchies, and other 
multi-level concepts. We demonstrate the latter by modelling and analysing the merge-
and-shrink abstraction method.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The main idea behind abstraction in problem solving is the following: the original problem instance is transformed into 
a corresponding abstract instance, this abstract instance is solved and the abstract solution is then used to find a solu-
tion to the original instance. The use of abstraction is an old and widespread idea both in AI and in computer science 
in general. One of the most well-known examples is abstract interpretation of computer programs [21,22]. Abstraction is 
also used in many other areas, for instance, automated verification, constraint satisfaction, databases, knowledge represen-
tation, geographical information systems, planning, agent-based modelling, natural language processing, vision, networks 
and model-based diagnosis [80]. The literature is consequently vast and we refer the reader to the surveys by Giunchiglia 
et al. [38], Holte and Choueiry [57] or Zucker [93], and to the book by Saitta and Zucker [80] for a broader and more 
extensive treatment of the topic.

The focus of this article is on abstraction in action planning and combinatorial search within AI. Abstraction has a long 
history even if we restrict ourselves in this way; its use dates back to the Abstrips planner [78] and even to the first version 

* Corresponding authors.
E-mail addresses: christer.backstrom@liu.se (C. Bäckström), peter.jonsson@liu.se (P. Jonsson).

1 The work of C. Bäckström was partially supported by the Swedish Research Council (VR) under grant 621-2014-4086.
https://doi.org/10.1016/j.artint.2021.103608
0004-3702/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.artint.2021.103608
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103608&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:christer.backstrom@liu.se
mailto:peter.jonsson@liu.se
https://doi.org/10.1016/j.artint.2021.103608
http://creativecommons.org/licenses/by/4.0/


C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
of the General Problem Solver (GPS), which used abstraction in the means-ends analysis [74]. Holte and Choueiry [57]
say:

The earliest and most widespread and successful use of abstraction in AI is in planning and problem solving.

Although our presentation and results have a focus on this area, almost all of our basic theory and our results is generally 
applicable elsewhere, with or without modification. Hence, we will talk about transformations, rather than abstractions, in 
the technical part of this article in order to encompass also abstraction-like methods such as reformulation and approxima-
tion.

1.1. Abstraction in search and planning

Combinatorial search and action planning are essentially the same problem. Given a description of a state space and the 
possible transitions, we ask for a path (a plan) from some initial state to some goal state. However, contrary to the ordinary 
graph-searching problem, the graph is usually implicitly specified; the state space is induced by a number of variables, and 
can thus be of exponential size in the number of variables and their domains, and the transitions are induced by operators 
(or actions), that may each correspond to an exponential number of transitions. A search (or planning) instance is thus a 
compact graph representation in the sense of Galperin and Wigderson [35] or Balcázar [12]. Hence, ordinary shortest-path 
algorithms, like Dijkstra’s algorithm, are usually not good enough, so other techniques like abstraction and heuristic search 
are used to improve the efficiency by exploiting structure in the instance. In some cases, the state spaces are so large 
that disk-based search is necessary [69]. From a complexity point of view, planning is known to be PSPACE-complete both 
for variables with binary domains [17] and for variables with arbitrary finite domain [11]. Length-optimal planning is also 
known to be W[2]-complete under parameterised analysis, using plan length as parameter [8].

Our focus is on state abstraction, which is one of the most widespread and important forms of abstraction in planning 
and search.2 In general terms, we start with an original instance to solve, the ground instance, and create a corresponding 
abstract instance by abstracting the state space. The idea is to first solve this abstract instance and then exploit the abstract 
solution to solve the ground instance more efficiently.

Two methods dominate for exploiting state abstractions: abstraction refinement and abstraction-based heuristics. Both ap-
proaches will be briefly discussed below. In both cases, it is also common to build hierarchies of abstractions and solve 
the problems top down, starting on the most abstract level; a method which dates back to Sacerdoti [78]. There are good 
reasons to consider hierarchical abstractions: Korf [68] showed that hierarchical abstraction can reduce the search space ex-
ponentially under ideal assumptions about the relationships between the abstraction layers. The abstraction refinement and 
abstraction heuristic approaches are usually considered as quite different and unrelated. That is a very superficial analysis, 
though: both approaches are firmly based on properties of the solutions in the abstract space, so some connections are 
bound to exist. Yet, the literature is almost void of attempts to investigate these connections; a notable exception can be 
found in a paper by Holte et al. [60].

1.1.1. Abstraction refinement
In abstraction refinement we first solve the abstract version of the instance, and then refine this into a solution for 

the original ground instance. One way to do this, that has been common in planning (cf. the articles by Knoblock [65]
and Bacchus and Yang [3]), is to map the actions of the abstract plan into a corresponding sequence of ground actions. 
This is usually not a valid plan for the ground instance, but it can be used as a ‘skeleton plan’ where we can insert more 
actions until we get a correct plan for the ground instance. We refer to this method as label refinement. Another way, 
which has been common in search (cf. [59] and [91]), is to instead map the sequence of states along the abstract solution 
back to a corresponding sequence of ground states. Then we use these ground states as subgoals, thus turning the original 
problem into a sequence of subproblems which we solve directly in the ground instance. We refer to this method as state 
refinement.

In order for abstraction to be useful, the abstract instance must be easier to solve and the total time spent should be 
less than without using abstraction. This is a reasonable requirement, yet it has turned out very difficult to guarantee. Ab-
straction refinement can give huge savings in solution time under ideal circumstances, both for label refinement [64] and 
for state refinement [59]. However, even if we find an abstract solution, there is in general no guarantee that it can be 
refined into a ground solution even when one exists. It may be necessary to give up refining it, backtrack to the abstract 
instance and look for another abstract solution that we can try to refine instead. In unfortunate cases, this process of repeat-
edly backtracking to higher levels may take much more time than solving the original instance directly. This phenomenon 
is known as the problem of backtracking between levels. It has been a very active research area within planning and vari-
ous methods have been proposed to remedy the situation. Partial solutions that have been presented include the ordered 
monotonicity criterion [66], the downward refinement property (DRP) [3], and the simulation-based approach by Bundy 

2 The other major abstraction method is Hierarchical Task Networks (HTN), which originates from the Noah [79] and Nonlin [89] planners. It is based on 
a hierarchy of methods that can be refined by predefined expansion patterns, and it is fundamentally different from state abstraction.
2



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
et al. [16]. However, ordered monotonicity is not sufficient to prevent heavy backtracking between levels [86], and even 
when properties like the DRP guarantee that no such backtracking is needed, the abstraction hierarchy might still force the 
generation of exponentially suboptimal ground solutions in the worst case [5].

1.1.2. Abstraction-based heuristics
Historically, abstraction refinement was the dominating abstraction method in planning, but it has been largely replaced 

by abstraction heuristics. The heuristic search approach has proven very successful both in planning and in search, and 
a large number of well-performing domain-independent heuristics have been invented (see the paper by Helmert and 
Domshlak [47] for a comprehensive survey and comparison). In abstraction heuristics, the abstract solution is not used 
directly, but the length (or cost) of it is used as a heuristic value to estimate the length (or cost) of an optimal solution in 
the ground instance. The abstract solutions are thus only used indirectly to guide a heuristic search algorithm. This method 
dates back to Gaschnig [36] and to Guida and Somalvico [43].

Also the abstraction heuristics method suffers from problems. It was proven by Valtorta [90] that this method cannot 
improve upon heuristic search directly in the ground state space if the abstraction is an embedding, which was common 
at the time. However, Holte et al. [61] showed that it is possible to get around Valtorta’s theorem if the abstraction is a 
homomorphism, which is the most common type today. Homomorphisms and embeddings are particular types of structure-
preserving maps and their formal definitions can be found in Section 3.2. In analogy to the DRP, Zilles and Holte [92] defined 
the downward path preserving (DPP) criterion, which guarantees that there are no spurious states, i.e. states that are reachable 
in the abstract state space but that have no corresponding reachable states in the ground state space. This is important for 
heuristics since spurious states can result in overly optimistic estimates [45].

While abstraction-based heuristics is still an active research area (cf. the papers by Geißer et al. [37], Pommerening 
et al. [77], and Steinmetz and Torralba [87]), it may seem as if refinement has come out of fashion in planning. There are, 
however, some recent examples of reviving this method. For instance, Seipp and Helmert [83] consider plan refinement 
using cartesian abstraction functions and Saribatur et al. [81] suggest encoding planning instances as instances of Answer 
set programming and then use abstraction refinement on the latter. Refinement has also continued to be used in other 
related areas such as path planning [88] and model checking [19]. Since action planning and path planning must often 
be performed together in robotics, it may be interesting to consider refinement methods also for action planning in this 
context. There are also many relationships between action planning and model checking [30] and refinement methods have 
been very successful in the latter case. Hoffmann et al. [54] suggested that refinement is appropriate for proving that there 
is no solution, while heuristic search is better for finding solutions. This could explain why model checking focuses on re-
finement, while planning focuses on heuristic search. However, there is a recent trend in planning to consider also instances 
that may not have a solution [9,13,32,52], which can be expected to lead to a renewed interest in refinement. Furthermore, 
even though heuristic search is usually not considered good for proving unsolvability, Hoffmann et al. [52] demonstrate that 
the merge-and-shrink heuristic [49] may sometimes be successfully applied also to this problem, which begs for a better 
understanding of the relationships between refinement and heuristics. In addition, a number of new refinement methods 
for action planning have recently appeared in the literature [42,50,82]. A better understanding of the existing refinement 
methods is needed to put these newer methods into a historical context. While the literature on abstraction heuristics is 
fairly coherent, the literature on refinement is not very consistent; most methods are defined within a particular planning 
language or make very strong assumptions about the abstractions used. It is thus difficult to compare these different meth-
ods with each other, or with the abstraction heuristics approach. The work we present in this article aims at providing 
a formal framework that enables making such comparisons in a more straightforward and transparent way, as described 
next.

1.2. Our contribution

The purpose of this article is to present and demonstrate a novel theoretical framework for modelling and analysing 
abstraction and abstraction-like methods in planning and search in a more systematic and formal way than previously 
possible. This is an important research topic still today, despite the long history of using abstraction:

Although abstraction and hierarchical planning seem central to controlling complexity in real life, several authors argue 
that it has not been used as extensively as it could have been. The reason might lie in the fact that there is still much 
work to be done in order to better understand all the different ways of doing optimal abstraction planning.

[Saitta and Zucker [80, p. 56]]

We want to stress that we do not attempt to create yet another grand theory of abstraction (like the approaches by 
Giunchiglia and Walsh [39] or Nayak and Levy [73]). Our goal is more pragmatic and somewhat similar in methodology 
to the theory of reformulation for reasoning about physical systems by Choueiry et al. [18]. We define a framework that 
is powerful enough to model many, but not all, state-abstraction methods that appear in the literature, with the primary 
purpose of analysing and comparing them in a transparent way. That is, we aim at a balance between modelling generality 
and sufficient concreteness for proving results.
3



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
The following are the main contributions of this article.

1. In Sec. 2, we define a theoretical framework based on labelled state-transition graphs (STG) and a concept of transformation
between such graphs. Then a transformation instance consists of
(a) two such graphs G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉, where the vertex set Si is the state space and the set Ei of 

labelled arcs is the set of possible transitions, and
(b) a transformation 〈 f , R〉 from G1 to G2, where f is a function and R is a relation.
The function f maps states in S1 to subsets of S2 such that it partitions S2. This is in contrast to the usual approach 
where f maps states to states (such as the approaches by Holte et al. [59] or Helmert et al. [48]). The relation R relates 
the labels of the two graphs, thus providing a way to couple subsets of transitions in the two graphs to each other. In 
the case of planning, the labels are typically actions so R specifies the connection between ground and abstract actions.

2. We define a limited number of properties that such graph transformations can have. In Sec. 3, we first present a few 
very simple properties that are powerful in combination; for instance, they are sufficient to capture concepts such as 
embeddings, retractions and homomorphisms, but they can also have more powerful implications. The second group 
of properties are defined in Sec. 4 and they capture different refinement concepts, mainly corresponding to different 
amounts of backtracking between levels. That is, instead of prescribing a specific method for avoiding, or minimising, 
such backtracking, we define declarative conditions on transformations. Many of the results we prove concern relation-
ships between such properties.

3. We demonstrate the power of this framework for analysing refinement by formally modelling six different abstraction 
and abstraction-like methods from the planning literature as transformations in a systematic way. This results in a 
transparency that allows for an easy and straightforward comparison of the methods, which would otherwise hardly be 
possible due to the very different formalisms and assumptions used for defining the methods. In particular, our choice 
of definition for the function f allows both for modelling certain abstraction methods that cannot be modelled in the 
usual way (e.g. the direct landmark-based surrogate method [27]) as well as modelling some abstractions in a way that 
is better than or complementary to the usual way (e.g. Abstrips abstraction [78]). For all six methods, we derive exactly 
which properties these methods have, thus enabling an entirely new type of formal comparison of abstraction methods, 
based on comparing their transformation properties. For instance, this reveals that variable projection and variable-
domain abstraction are essentially equivalent from this perspective, while all other methods deviate from these two in 
different ways. This is done in three steps: In Sec. 5, we recall the SAS+ planning language and show how it defines 
implicit STGs. In Sec. 6, we show that the six different abstraction methods mentioned above can be modelled in SAS+
in a coherent way in our framework. Finally, in Sec. 7, we analyse the transformation properties of these abstractions 
and compare them based on which properties they have.

4. In Sec. 8, we extend our framework to handle also abstraction heuristics by additionally defining admissibility as a 
formal property (a heuristic is admissible if it never overestimates the true cost, which is important for most heuristic 
search algorithms since it allows for finding optimal/cheapest solutions). This enables an analysis of the relationships 
between abstraction refinement and abstraction heuristics in a formal way, not dependent on any particular abstraction 
method or formalism. The outcome is that admissibility implies a property that guarantees a strong form of refinement 
completeness. Otherwise the findings are mostly negative, but the proofs give valuable hints at why there are no more 
such strong relationships between heuristics and refinement in general, thus suggesting some future directions.

5. In order to take also abstraction hierarchies into account, we define composition of transformations in Sec. 9. We also 
define a transitivity concept, a property X is transitive if whenever two transformations both have property X, then also 
their composition has property X. Transitivity is important when forming abstraction hierarchies, since we want a desir-
able property to hold for the whole hierarchy, not just between some layers. We show that all important properties, and 
almost all of the abstraction methods in (3) above, are transitive. We also demonstrate the usefulness of transformation 
composition by modelling and analysing the merge-and-shrink heuristic [49], which requires composing mixed types of 
transformations.

The paper ends with a discussion of further usage and potential extensions in Sec. 10. Many concepts will be introduced 
during the course of the article and we have compiled a list of them in Appendix A (Table A.2) for easy access.

We finally want to point out that our purpose is not to invent new abstraction methods but to enable formal analyses 
and comparisons of various methods—both existing methods and methods yet to be invented. That said, we hope that an 
increased understanding of state abstraction will inspire to the invention of new and better methods, not only in planning 
and search.

Parts of the content of this article have appeared in preliminary form in two conference paper [6,7]. This version is 
substantially extended and it contains, in particular, full proofs of the main results. The content of Section 9 does not 
appear in any of the two conference papers.

2. STGs and STG transformations

In this section, we introduce our framework for studying abstractions. Before we begin, we first recall some notation 
and terminology. Let S be a finite set. Then |S| denotes the cardinality of S and 2S denotes the powerset of S . Let C be a 
4



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
collection of subsets of S , i.e. C ⊆ 2S . Then C covers S if 
⋃

X∈C X = S . A partition of a set S is a set P of non-empty subsets 
of S such that (1) P covers S and (2) for all X, Y ∈ P , if X �= Y , then X ∩ Y = ∅. The elements of P are called parts. Let 
f : S → T be a function, then the range of f is Rng( f ) = { f (x) | x ∈ S}.

Definition 1. A state-transition graph (STG) over a set L of labels is a tuple G = 〈S, E〉 where the state space S is a finite set 
of vertices called states and E ⊆ S × S × L is a finite set of labelled arcs.

We will usually not specify the set of labels explicitly, but let it be implicitly defined as L(G) = L(E) = {� | 〈s, t, �〉 ∈ E}. 
Note that the definition allows more than one arc between two states as long as the arcs have different labels or different 
direction. Also note that loops, i.e. arcs of the type 〈s, s, �〉, are allowed. The labels provide a means to identify a subset 
of the arcs by assigning the same label to these arcs. This is useful, for instance, in planning where a single action may 
induce many arcs in an STG. If all arcs have the same label, then the STG collapses to an ordinary directed graph, and we 
will consider an unlabelled directed graph as equivalent to an STG with a single (often unspecified) label on all arcs. Our 
focus will be on general properties of STGs, but it is also common in the literature to study specific cases 〈S, E, I, G〉, where 
I ∈ S is a specific initial state and G ⊆ S is a set of goal states, sometimes known as a transition system. Our approach is more 
general since we are primarily interested in properties that hold for all choices of initial and goal states, and we discuss the 
connections to transition systems in Section 10. It should also be noted that although we have developed our framework 
for a particular purpose, almost all of the theory is general and can be applied anywhere it fits. For instance, referring to 
the vertices as states is just a naming convention and all properties we define work also for undirected graphs.

Definition 2. Let S1 and S2 be state spaces. A transformation function from S1 to S2 is a total function f from S1 → S2 such 
that Rng( f ) is a partition of S2. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs. A transformation function from G1 to 
G2 is a transformation function from S1 to S2. A label relation from G1 to G2 is a binary relation R ⊆ L(G1) × L(G2). A 
transformation from G1 to G2 is a pair τ = 〈 f , R〉 where f is a transformation function from G1 to G2 and R is a label 
relation from G1 to G2.

The transformation function f specifies how the transformation maps states from S1 to S2 while the label relation R
provides additional information about how sets of arcs are related between the two STGs. Note that f is a function from S1
to 2S2 , that is, it maps a state in S1 to a set of states in S2. Furthermore, the range of f is a partition of S2 so all sets in the 
range are non-empty. We use a function rather than a relation since it makes the theory clearer and simpler. It is also more 
in line with previous work in the area, where ordinary functions f : S1 → S2 are commonly used for abstractions. Also note 
that Rng( f ) ⊆ 2S2 , i.e. it is a set of subsets of S2, and that f (s) �=∅ for all s ∈ S1 since Rng( f ) is a partition. Transformation 
functions are extended to sequences of states such that f (s1, . . . , sk) = f (s1), . . . , f (sk).

Example 3. Consider two STGs G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉, where S1 = {00,01,10,11}, E1 = {〈00,01,a〉, 〈01,10,b〉,
〈10,11,a〉}, S2 = {0,1} and E2 = {〈0,1, c〉}. Also define a function f1 : S1 → 2S2 such that f1(xy) = {x}. This is illustrated 
in Fig. 1 (top). We see immediately that f1 is a transformation function from G1 to G2. Then define f2 : S1 → 2S2 such 
that f2(xy) = {x, y}; this function is not a transformation function since f2(00) = {0} and f2(01) = {0,1} which implies that 
Rng( f2) is not a partition of S2. Further define an STG G3 = 〈S3, E3〉, where S3 = {0, . . . ,7} and E3 = {〈x, y,d〉 | x �= y}. 
Finally, the function f3(xy) = {2x + y, 7 − 2x − y} is a transformation function from G1 to G3 since Rng( f3) partitions 
{0, . . . , 7} into {{0, 7}, {1, 6}, {2, 5}, {3, 4}}. The function f3 is illustrated in Fig. 1 (bottom).

Our transformation concept is relational, not functional. A transformation τ is not a function that maps G1 to G2, but a 
relation from G1 to G2. Suppose τ = 〈 f , R〉 is a transformation from G1 = 〈S1, E1〉 to G2 = 〈S2, E2〉. Then the state spaces 
S1 and S2 are fixed by f , but R does not specify the arc sets E1 and E2, it only specifies relationships between them. Note 
that this transformation concept is very general, for all choices of state spaces S1, S2, arc sets E1 ⊆ 2S1 , E2 ⊆ 2S2 and label 
sets L(E1), L(E2), the pair 〈 f , R〉 is a transformation from 〈S1, E1〉 to 〈S2, E2〉 for all possible definitions of transformation 
function f and label relation R . Instead of restricting which combinations of f and R are transformations, we allow them 
all and will instead focus on studying which properties a transformation has depending on the choice of f and R . While 
it is more common to consider a graph transformation as a function from one graph to another, the relational view is a 
crucial choice of our theory, as will become evident later.

A high degree of symmetry is inherent in this transformation concept, and it is only a conceptual choice to say that one 
STG is the transformation from another and not the other way around. This symmetry simplifies our exposition considerably: 
concrete examples are the forthcoming definitions of properties together with some of the proofs.

Definition 4. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs, let f be a transformation function from S1 to S2 and let 
R be a label relation from G1 to G2. Then, the reverse transformation function f : S2 → 2S1 is defined such that f (t) =
{s ∈ S1 | t ∈ f (s)} for all t ∈ S2 and the reverse label relation R ⊆ L(G2) × L(G1) is defined such that R(�2, �1) if and only if 
R(�1, �2). Let τ = 〈 f , R〉 be a transformation, then the reverse transformation τ is defined as τ = 〈 f , R〉.
5



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1: 00 01 10 11
a b a

G2: 0 1
c

f1(00) = f1(01) f1(10) = f1(11)

G1: 00 01 10 11
a b a

G3:

0

1 2

3

7

6 5

4

d

f3(00)

f3(01) f3(10)

f3(11)

Fig. 1. The functions f1 (top) and f3 (bottom) in Example 3.

Example 5. Consider the functions f1 and f3 from Example 3 once again. We see that f1(0) = {00, 01} and f1(1) = {10, 11}, 
while f3(0) = f3(7) = {00}, f3(1) = f3(6) = {01}, f3(2) = f3(5) = {10} and f3(3) = f3(4) = {11}.

Theorem 6. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs. Let f be a transformation function from G1 to G2 , let R be a label 
relation from G1 to G2 and let τ = 〈 f , R〉 be a transformation from G1 to G2 . Then:

1. For all s ∈ S1 and t ∈ S2 , it holds that s ∈ f (t) if and only if t ∈ f (s).
2. f is a transformation function from G2 to G1 .
3. R is a label relation from G2 to G1 .
4. τ = 〈 f , R〉 is a transformation from G2 to G1 .

Proof. (1) Immediate from the definitions.
(2) We first note that Rng( f ) covers S2, so it follows from (1) that f is a total function. It remains to prove that Rng( f )

is a partition of S1.
First suppose that f (t) = ∅ for some t ∈ S2. Then there is no s ∈ S1 such that s ∈ f (t), i.e. t ∈ f (s) by (1), but this is 

impossible since f covers S2 by definition. It follows that f (t) �= ∅ for all t ∈ S2.
Then suppose there is some s ∈ S1 such that s /∈ f (t) for all t ∈ S2. This implies that there is no t ∈ S2 such that t ∈ f (s), 

which contradicts that f is total. It follows that Rng( f ) covers S1.
Finally, suppose there are two distinct elements in Rng( f ) that are not disjoint. Then there are t, t′ ∈ S2 such that 

f (t) �= f (t′) and f (t) ∩ f (t′) �=∅, so at least one of f (t) \ f (t′) and f (t′) \ f (t) must be non-empty. Without losing generality, 
assume the first of these hold. There are then s, s′ ∈ S1 such that s ∈ f (t) ∩ f (t′) and s′ ∈ f (t) \ f (t′), i.e. s ∈ f (t), s ∈
f (t′), s′ ∈ f (t) and s′ /∈ f (t′). It follows that t ∈ f (s), t′ ∈ f (s), t ∈ f (s′) and t′ /∈ f (s′). However, then f (s) �= f (s′) and 
f (s) ∩ f (s′) �= ∅, which contradicts that Rng( f ) is a partition of S1 and, thus, that f is a transformation function. We 
conclude that Rng( f ) is a partition of S1 and it follows that f is a transformation function.

(3) Immediate from definition.
(4) Immediate from (1–3) and the definitions. �
It is straightforward from this theorem that f = f .
We extend transformation functions (and other functions that map states to sets of states) in the following way. Let f be 

a function from S1 to 2S2 . Then for every subset S ⊆ S1 we define f (S) = ⋃
s∈S f (s). For instance, if f (0) = {0,1} and f (1) =

{2} we get that f ({0,1}) = {0,1,2}, not f ({0,1}) = {{0,1}, {2}}. This choice is crucial, especially for the generalisation of the
6



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
DPP criterion (in Section 4.3) and for composition of transformation functions (in Section 9). This definition respects that 
S ⊆ f ( f (S)), a property that f shares with an ordinary function and its inverse. While the range Rng( f ) of a transformation 
function f is a partition of S2 by definition, f also implicitly defines a partition P of S1, such that for each part X ∈ P , it 
holds that f ( f (X)) = X . That is, f induces a bijection from Rng( f ) to Rng( f ).

As a convention, we will often not specify the STGs in definitions and theorems, tacitly assuming transformations to 
be from an STG G1 = 〈S1, E1〉 to an STG G2 = 〈S2, E2〉 unless otherwise specified. We also sometimes refer to G1 as the 
ground graph and G2 as the abstract graph.

Definition 7. Let G1 = 〈S, E〉 be an STG. A sequence s0, �1, s1, �2, . . . , �n, sn , where s0, s1, . . . , sn ∈ S and �1, . . . , �n ∈ L(E), is 
a path from s0 to sn of length n if either (1) n = 0 or (2) 〈si−1, si, �i〉 ∈ E for all i (1 ≤ i ≤ n). A sequence s0, s1, . . . , sn of 
states in S is a state path from s0 to sn if there are labels �1, . . . , �n ∈ L(E) such that s0, �1, s1, �2, . . . , �n, sn is a path from s0
to sn . A sequence �1, . . . , �n of labels in L(E) is a label path from a state s ∈ S to a state t ∈ S if there are states s0, . . . , sn ∈ S
such that (1) s0 = s, (2) sn = t and (3) s0, �1, s1, . . . , �n, sn is a path from s0 to sn . A path is simple if no state occurs more 
than once.

For simplicity, we will usually refer to state paths as paths when it is clear from context which type of path it is. We 
will also usually refer to label paths as plans, since the labels will typically refer to actions (or operators). Also note that 
zero-length paths are allowed, that is, s is a path for any state s.

Definition 8. Let G = 〈S, E〉 be an STG. Then for all s ∈ S , the set R(s) of reachable states from s is defined as

R(s) = {t ∈ S | There is a path from s to t in G.}
This is extended to subsets of S such that R(T ) = ⋃

s∈T R(s) for all T ⊆ S .

Reachability is reflexive, i.e. s ∈ R(s) for all states s, and transitive, i.e. if t ∈ R(s) and u ∈ R(t), then u ∈ R(s), for all 
states s, t and u. We treat the STG as implicit from context, and when we consider two STGs G1 and G2 simultaneously 
we write R1(·) and R2(·) to clarify which graph the reachability function refers to.

3. Some basic properties

In this section, we will first define some simple transformation properties and then show that, despite their simplicity, 
they are powerful enough to capture concepts like embeddings, retractions and homomorphisms.

3.1. Definitions

One of the main purposes of this paper is to model abstractions and abstraction-like methods using classes of trans-
formations with certain properties. In order to describe and analyse such transformations in a general way, we define the 
following properties.

Definition 9. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs and let τ = 〈 f , R〉 be a transformation from G1 to G2. Then 
τ can have the following properties:

M↑: | f (s)| = 1 for all s ∈ S1.
M↓: | f (s)| = 1 for all s ∈ S2.
R↑: For all 〈s1, t1, �1〉 ∈ E1, there is some 〈s2, t2, �2〉 ∈ E2 such that R(�1, �2).
R↓: For all 〈s2, t2, �2〉 ∈ E2, there is some 〈s1, t1, �1〉 ∈ E1 such that R(�1, �2).
C↑: For all 〈s1, t1, �1〉 ∈ E1, if there is some �2 ∈ L(E2) such that R(�1, �2), then there is some 〈s2, t2, �2〉 ∈ E2 such that 

s2 ∈ f (s1) and t2 ∈ f (t1).
C↓: For all 〈s2, t2, �2〉 ∈ E2, if there is some �1 ∈ L(E1) such that R(�1, �2), then there is some 〈s1, t1, �1〉 ∈ E1 such that 

s1 ∈ f (s2) and t1 ∈ f (t2).

Properties M↑/M↓ (upwards/downwards many-one) depend only on f and may thus hold also for f itself. The intention 
of M↑ is to say that f maps every state in G1 to a single state in G2. While this may seem natural we will see examples 
later on where this property does not hold. We often write f (s) = t instead of t ∈ f (s) when f is M↑ and analogously 
for f . Properties R↑/R↓ (upwards/downwards related) depend only on R and may thus hold also for R itself. The intention 
behind R↑ is that if there is a non-empty set of arcs in G1 with a specific label, then there is at least one arc in G2
that is explicitly specified via R to correspond to this arc set. Properties C↑/C↓ (upwards/downwards coupled) describe the 
connection between f and R . The intention behind C↑ is to provide a way to tie up f and R to each other and require that 
arcs that are related via R must go between states that are related via f . We use a double-headed arrow when a condition 
7



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
holds both upward and downward. For instance, C� (up-down coupled) means that both C↑ and C↓ hold. These classifications 
retain the symmetric nature of transformations. For instance, 〈 f , R〉 is a C↓ transformation from G1 to G2 if and only if 
〈 f , R〉 is a C↑ transformation from G2 to G1. It should be noted that these properties are only examples that we have 
chosen to use in this paper since they are simple, yet powerful. It is naturally possible to define other similar properties 
within our framework.

Example 10. We reconsider Example 3. The transformation function f1 is M↑ but not M↓ while the transformation function 
f3 is M↓ but not M↑ . Define a label relation R1 = {a,b} × {c} and the transformation τ1 = 〈 f1, R1〉 from G1 to G2. Then 
τ1 has both property R↑ and R↓ . It also has property C↓ , but not C↑ (consider the edge from 00 to 01). Instead define the 
label relation R2 = {〈b, c〉} and the transformation τ2 = 〈 f1, R2〉. Then τ2 is not R↑ , but it is C↑ .

Proposition 11. If f is an M� transformation function from S1 to S2 , then f is a bijection from S1 to S2 .

We write X ⇒ Y to denote that every transformation that has property X must also have property Y, and we write
X � Y when this is not the case.

3.2. Morphisms

The majority of abstraction functions considered in search and planning can be divided into three groups: embeddings, 
retractions and homomorphisms [59]. An embedding is typically a mapping from a graph 〈S, E1〉 to an abstract graph 
〈S, E2〉, where E1 ⊆ E2, i.e. the state spaces are the same but there are additional arcs. Examples of embedding abstractions 
appear both explicitly [36], as well as implicitly in methods such as precondition relaxation [78] and adding macro operators 
[67,15]. In graph terms the latter means adding some of the possible transitive arcs to the graph. A retraction is the opposite, 
a mapping from 〈S, E1〉 to 〈S, E2〉 such that E2 ⊆ E1. Examples of retraction abstractions appear both explicitly [36] and 
implicitly, as in removing redundant actions [46]. Valtorta [90] showed that heuristic search with the A∗ algorithm [44]
will not outperform blind search directly in the ground state space if using a heuristic based on embedding abstractions 
(under certain assumptions on how to compute the heuristic). Holte et al. [61] showed that this result does not transfer to 
homomorphic abstractions, where the total number of explored nodes can be fewer with abstraction. Since homomorphisms 
are also well studied theoretically and have many beneficial properties, they have since been the most common type of 
abstraction function. They are often used in the form of strong (or faithful) homomorphisms. Examples of homomorphic 
abstractions appear, for instance, in the publications by Holte et al. [59], Haslum et al. [45], Helmert et al. [48] and Zilles 
and Holte [92].

We will now formally define embeddings, retractions and homomorphisms within our framework. The standard defi-
nitions of these concepts consider only unlabelled graphs, but since we want the definitions to apply to transformations, 
we also take labels into account, although these are irrelevant for the actual concepts defined. Furthermore, since these 
concepts have no well-defined meaning for set-valued functions, we restrict the definitions to M↑ transformation functions. 
Recall the convention that we write f (s) = t as a shorthand for t ∈ f (s) when f is M↑ .

Definition 12. An M↑ transformation function f from an STG G1 = 〈S1, E1〉 to an STG G2 = 〈S2, E2〉 is

1. a homomorphism if for all 〈s1, t1, �1〉 ∈ E1 there is some �2 ∈ L(E2) such that 〈 f (s1), f (t1), �2〉 ∈ E2;
2. a strong homomorphism if it is a homomorphism and for all 〈s2, t2, �2〉 ∈ E2, there is some 〈s1, t1, �1〉 ∈ E1 such that 

f (s1) = s2 and f (t1) = t2;
3. an embedding if it is M↓ and a homomorphism;
4. a retraction if it is an embedding from G2 to G1.

Note that if f is M� , then it is a bijection between Rng( f ) and Rng( f ), which is slightly more general than the usual 
assumption that f is the identity function in cases (3) and (4).

We will now show that the transformation properties that we have just introduced are sufficient to capture and dis-
tinguish between these different abstraction concepts, which strongly indicates that these properties are not arbitrary but 
express something essential about transformations.

Theorem 13. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs and let τ = 〈 f , R〉 be a transformation from G1 to G2 . Then:

1. If τ is M↑R↑C↑ , then f is a homomorphism.
2. If τ is M↑R�C� , then f is a strong homomorphism.
3. If τ is M�R↑C↑ , then f is an embedding.
4. If τ is M�R↓C↓ , then f is a retraction.
8



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
Proof. (1) Assume τ is M↑R↑C↑ . Let e1 = 〈s1, t1, �1〉 be an arbitrary arc in E1. Since τ is R↑ there is some arc 〈s2, t2, �2〉 ∈ E2
such that R(�1, �2). Since τ is also C↑ there must be such an arc where s2 ∈ f (s1) and t2 ∈ f (t1), i.e. s2 = f (s1) and 
t2 = f (t1) since f is M↑ . It follows that f is a homomorphism, since e1 was chosen arbitrarily.

(2) Assume that τ is M↑R�C� . It follows from (1) that f is a homomorphism. Let e2 = 〈s2, t2, �2〉 be an arbitrary arc in 
E2. Since τ is R↓ there is some arc 〈s1, t1, �1〉 ∈ E1 such that R(�1, �2). Since τ is also C↓ there must be such an arc where 
s1 ∈ f (s2) and t1 ∈ f (t2), i.e. s2 = f (s1) and t2 = f (t1) since f is M↑ . It follows that f is a strong homomorphism, since e2
was chosen arbitrarily.

(3) Immediate from (1) and Definition 12.
(4) Immediate from (3) by symmetry. �
For the opposite direction we make the additional assumption of unit-labelled STGs, since the original concepts ignore 

labels.

Theorem 14. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs such that L(E1) = L(E2) = {�}. Let τ = 〈 f , R〉 be a transformation 
such that R(�, �) holds. Then:

1. If f is a homomorphism, then τ is M↑R↑C↑ .
2. If f is a strong homomorphism, then τ is M↑R�C� .
3. If f is an embedding, then τ is M�R↑C↑ .
4. If f is a retraction, then τ is M�R↓C↓ .

Proof. (1) Suppose f is a homomorphism. Then it is implicitly M↑ . Let e1 = 〈s1, t1, �1〉 be an arbitrary arc in E1. Since f
is a homomorphism there is some label �2 ∈ L(E2) such that 〈 f (s1), f (t1), �2〉 ∈ E2. Then �2 = �1 = � is the only possibility, 
so R(�1, �2) holds by definition of R . Since e1, and thus �1, was chosen arbitrarily, it follows that τ is R↑ . Now suppose 
e1 = 〈s1, t1, �1〉 ∈ E1 and R(�1, �2) holds for some �2 ∈ L(E2). Since f is a homomorphism there is also some �3 ∈ L(E2)

such that 〈 f (s1), f (t2), �3〉 ∈ E2, but �3 = �2 = �1 = � is the only possibility, so it follows that τ is C↑ .
(2) Suppose f is a strong homomorphism. Then f is a homomorphism, so it follows from (1) that τ is M↑R↑C↑ . Let 

e2 = 〈s2, t2, �2〉 be an arbitrary arc in E2. Since f is a strong homomorphism there is some arc 〈s1, t1, �1〉 ∈ E1 such that 
f (s1) = s2 and f (t1) = t2. Then R(�1, �2) holds since �2 = �1 = � is the only possibility. Since e2 was chosen arbitrarily, it 
follows that τ is R↓ . Suppose 〈s2, t2, �2〉 ∈ E2 and R(�1, �2) holds for some �1 ∈ L(E1). Since f is a strong homomorphism 
there is some arc 〈s1, t1, �3〉 ∈ E1 such that f (s1) = s2 and f (t1) = t2. The only possibility is that �3 = �1 = �2 = � so it 
follows that τ is C↓ .

(3) Suppose f is an embedding. Then τ is a homomorphism, so it follows from (1) that τ is M↑R↑C↑ . The result follows 
since τ is also M↓ by definition.

(4) Immediate from (3) by symmetry. �
4. Refinement properties

In this section, we first discuss and define abstraction refinement within our framework, then we discuss these defini-
tions in the context of the backtracking-between-levels problem. We continue with defining transformation properties that 
correspond to different strengths of refinement, which we refer to as refinement properties, and then analyse how these 
properties relate to each other.

4.1. Abstraction refinement

Abstraction refinement refers to the following general technique. Suppose we want to find a path from s to t in a ground 
graph G1. Then we map s and t to their corresponding abstractions f (s) and f (t) in an abstract graph G2, and try to 
find a path σ = t0, �1, t1, . . . , �m, tm in G2, where t0 ∈ f (s) and tm ∈ f (t). There are two major techniques for refining σ : 
label refinement and state refinement. Label refinement proceeds by mapping the label sequence of σ back to a sequence 
λ = �′

1, . . . , �
′
m such that R(�′

i, �i) holds for all i. This new label sequence is usually not a valid plan in G1, so the refinement 
process has to fill in with additional labels until the result is a plan from s to t that contains λ as a subplan. Examples 
of label refinement appear in the articles by Knoblock [65] and Bacchus and Yang [3]. State refinement instead ignores 
the labels entirely and maps the abstract states t0, . . . , tm back to a sequence s0, . . . , sm of corresponding states in S1. The 
refinement process then tries to find subpaths from si−1 to si for all i. Examples of state refinement are presented by 
Knoblock [63] and Holte et al. [59]. These two methods were described and compared in principle on a representation-
independent graph level by Holte et al. [59].

A refinement abstraction must satisfy two criteria in order to always produce correct solutions:

1. It must be complete, i.e. if there is a ground path from s to t in G1, then there must also be an abstract path in G2
from f (s) to f (t).
9



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
2. It must be sound, i.e. if there is an abstract path from f (s) to f (t) in G2, then there must also be a ground path from 
s to t in G1.

One may also consider different degrees of these concepts. For instance, soundness could be strengthened to require that 
every abstract solution can be refined into a ground solution. We will consider such degrees of refinement later in this sec-
tion.

One or both of these criteria are often sacrificed in practice. If the abstraction is not complete, then we may fail to find a 
ground solution even when one exists; since there is no abstract solution, we cannot find the ground solution by refinement. 
Many abstraction methods are complete, but completeness is no guarantee that an abstraction is useful for refinement; for 
instance, the empty plan is often a valid abstract plan that can be refined into a ground plan, but it gives no clue at all how 
to do this refinement.

If the abstraction is not sound, then we may find an abstract solution even when there is no ground solution. While this 
is not disastrous, it may take longer time to find that there is no solution than if searching directly in the ground graph, in 
particular if there are many abstract solutions and many ways to refine an abstract solution. This is known as the problem 
of backtracking between levels. Knoblock et al. [66] suggested a condition on abstractions called the ordered monotonicity 
criterion, which guarantees that if there is an abstract solution, then there is also a ground solution. It was noted by Smith 
and Peot [86] that this is still a very weak criterion; there may be a large number of abstract solutions of which only one or 
a few are refinable, which will still cause extensive backtracking to the abstract level to look for different abstract solutions 
to try refining. This is thus another case where backtracking between levels occurs. This problem was further analysed and 
quantified by Bacchus and Yang [3], who suggested the stronger downward refinement property (DRP). The DRP guarantees 
that every abstract plan can be refined into a ground plan, but there are obviously fewer abstractions satisfying the DRP 
than the ordered monotonicity criterion. Both these criteria also suffer from the problem that they give no quantitative 
guarantees on the solutions. In the best case, hierarchical abstraction can give an exponential speed-up over searching in 
the ground graph [3,64]. However, hierarchical abstraction can be counter-productive in the worst case. Bäckström and 
Jonsson [5] demonstrated two different abstraction hierarchies that both satisfy the DRP, but where the abstract solutions in 
one of them can be refined into optimal ground solutions while the abstract solutions of the other one can only be refined 
into ground solutions that are exponentially longer than the optimal ground solutions.

A slightly different approach was taken by Holte et al. [59], who defined the concept classical refinement. A classical 
refinement of an abstract path t1, . . . , tm is a state sequence σ = s1, . . . , sn where there are indices i0, . . . , im such that 
i0 < · · · < im , i0 = 0, im = n and f (si j−1+1) = · · · = f (si j ) = t j for all j (1 ≤ j ≤ m). That is, all states in the abstract path 
must be mapped to states in the ground path, in the same order, all ground states that map to the same abstract state must 
occur consecutively and all ground states must map to abstract states that appear in the abstract solution.

The concept of spurious states [45,92] is more general and declarative, and it uses state refinement. A spurious state is 
a state that is reachable in the abstract graph, but that does not correspond to any reachable state in the ground graph. 
For a state s in the ground graph, the corresponding set of spurious states is S(s) = R2( f (s)) \ f (R1(s)). Spurious states 
are undesirable in an abstract solution since this solution cannot then be refined into a ground solution. A similar notion is 
used in model-checking, where a spurious state is a counter-example that can be reached in the abstract model, but not in 
the ground model [19,40]. A necessary and sufficient condition for avoiding spurious states is that an abstraction satisfies 
the downward path preserving (DPP) property [92]. The DPP property guarantees that S(s) = ∅ for all s. It was defined for 
strong homomorphic abstractions using the following two conditions:

1. R2( f (s)) ⊆ f (R1(s)) for all s ∈ S1,
2. f (R1(s)) ⊆R2( f (s)) for all s ∈ S1.

The DPP property holds if both these conditions are satisfied. We will later use these two conditions under the abbreviations 
P↓ and P↑ , respectively. We note that (1) is a soundness criterion that holds if there are no spurious states, i.e. it guarantees 
that if we can reach an abstract state in G2, then we can also reach some corresponding ground state in G1. Condition (2) 
is a completeness criterion. Zilles and Holte noted that (2) is inherent in every strong homomorphic abstraction, but not 
necessarily true in other abstractions.

As can be seen from this brief survey of results, the work on abstraction refinement in the literature has been quite dis-
parate, lacking common concepts and notation. Both the ordered monotonicity criterion and the DRP were defined within 
particular planning languages, thus being difficult to transfer to and compare with other approaches. Classical refinement 
had a clearer and more general definition, but made some strong assumptions about the abstractions used. The theory on 
spurious states is the clearest and most general of the approaches, but it has a very weak connection to the other con-
cepts. In order to improve on this situation, we will define a general framework of abstraction refinement, that captures 
a number of different refinement concepts, as well as spurious states. We will also define a number of declarative prop-
erties on transformations that capture these different concepts. Finally, we prove a number of relationships between these 
properties that allows for drawing conclusions about an abstraction based on what properties it has. In contrast to the 
other approaches described above, we do not prescribe any particular methods, but focus on capturing various refinement 
concepts declaratively.
10



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1:

s00

s01

s30

s31

G2: t0 t1 t2 t3

f

(a) Loosely downwards state refinable

G1:

s00

s01

s10

s11

s20

s21

s30

s31

G2: t0 t1 t2 t3

f

(b) Weakly downwards state refinable

G1:

s00

s01

s10

s11

s20

s21

s30

s31

G2: t0 t1 t2 t3

f

(c) Strongly downwards state refinable

Fig. 2. Downwards state refinements (curly arrows denote paths).

4.2. Formalising refinement

We focus on state refinement in this article; it is simpler and clearer than label refinement, and there are also arguments 
why it can be expected to be more efficient [59]. We define three types of state refinement, with varying degree of providing 
guidance for the refinement process.

Definition 15. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs and let τ = 〈 f , R〉 be a transformation from G1 to G2. Let 
σ = t0, t1, . . . , tn be a state path in G2. Then:

1. σ is loosely downwards state refinable if there are two states s ∈ f (t0) and s′ ∈ f (tn) such that s′ ∈R1(s).
2. σ is weakly downwards state refinable if there is a sequence s0, s1, . . . , sn of states in S1 such that si ∈ f (ti) for all i

(0 ≤ i ≤ n) and si ∈R1(si−1) for all i (1 ≤ i ≤ n).
3. σ is strongly downwards state refinable if for every i (1 ≤ i ≤ n), it holds that s′ ∈ R1(s) for all choices of s ∈ f (ti−1) and 

s′ ∈ f (ti).

The corresponding cases of upwards refinability are defined symmetrically.

These concepts are illustrated in Fig. 2. In all cases, a path σ = t0, t1, t2, t3 in the abstract graph G2 is refined into 
a corresponding path in the ground graph G1. Curly arrows denote paths, i.e. they may consist of several arcs and pass 
through states not shown in the figure.

Loose refinement only requires that there is a path corresponding to σ in the ground graph, i.e. there must be a path 
from some state in f (t0) = {s00, s01} to some state in f (t3) = {s30, s31}. This is satisfied by the path from s00 to s31, which is 
thus a loose refinement of σ . The intermediate states t1 and t2 are ignored in the refinement. Weak refinement additionally 
11



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
1 function LPath(s,t)
2 choose a state path σ = t0, t1, . . . , tk such that t0 ∈ f (s) and tk ∈ f (t)
3 if there is no such σ then fail
4 else return Refine(t0,tk)

1 function WSPath(s,t)
2 choose a state path σ = t0, t1, . . . , tk such that t0 ∈ f (s) and tk ∈ f (t)
3 if there is no such σ then fail
4 else return Refine(t0, t1, . . . , tk)

1 function Refine(t0, t1, . . . , tk)
2 choose s0 ∈ f (t0)

3 if k = 0 then return s0
4 else
5 σ2 = Refine(t1, . . . , tk)

6 s1 = first(σ2)

7 choose a state path σ1 from s0 to s1
8 if there is no such σ1 then fail
9 else return the concatenation σ1;σ2

Fig. 3. Algorithms for path refinement. The choose statements are non-deterministic and serve as backtrack points.

requires that we use all states along σ and pass through some state in each of f (t1) and f (t2). This is satisfied by the three 
subpaths s01, . . . , s11, s11, . . . , s20 and s20, . . . , s30, which together constitute a weak refinement of σ . We cannot, however, 
combine the subpaths s00, . . . , s10, s10, . . . , s21 and s20, . . . , s30, since this will not even be a path. Weak refinement may 
be viewed as a generalisation of classical refinement. Finally, strong refinement requires that there is a path for any choice 
of states in f (t0), . . . , f (t3), which is satisfied in the last example in the figure. Obviously, loose and strong refinement are 
the two extreme points of a range of possible definitions, where weak refinement serves as an example of a concept in 
between. Further variants can be added when required.

The three refinement concepts in Definition 15 correspond to varying degrees of backtracking. This is illustrated by the 
two algorithms LPath and WSPath in Fig. 3. The choose statements are non-deterministic, that is, an actual implementation 
would use search with the choose statements as backtrack points. Algorithm LPath implements loose path refinement. It 
first tries to find an abstract path σ . If this succeeds, then it calls Refine to find a ground path between the states in the 
ground graph corresponding to the first and last states of σ . Assume that we somehow know that the path σ is loosely 
refinable, then we know that there is a corresponding ground solution, so there is no need for Refine to backtrack up 
to LPath again to look for another abstract solution. Apart from this, Refine is offered no further guidance how to find 
a ground path; it will have to do the same amount of search as if finding the path from scratch in the ground graph. 
Algorithm WSPath implements weak and strong path refinement. It first tries to find an abstract path σ . If this succeeds, 
then it passes the whole path σ to Refine so the states along this path can be used as subgoals. If σ is weakly refinable, 
then there is no need for Refine to backtrack up to WSPath again, but there may still be a choice of ground subgoals in f (ti)

for each state ti along σ . The amount of backtracking in this search will depend on how these choices are made. Finally, if 
σ is strongly refinable, then there is not even any need to backtrack to the choose points within Refine. It does not matter 
how we choose the subgoals in each f (ti), there will always be a path to the next one.

In loose and weak refinement, we only require that there is a ground path in G1 from some state in f (t0), while we 
may in practice be interested in a path from a specific initial state s. We consider our definitions more general since they 
allow also for partially unspecified initial states, i.e. a set of initial states, which is sometimes considered in planning (under 
the name of conformant planning). There are several possibilities for handling a single initial state, including the following: 
Adding a dedicated initial state to the STGs, modifying f such that f (t) = {s} for all t ∈ f (s), restricting the STG as described 
in Sec. 10 or modifying the refinement definitions themselves for actual specific purposes.

4.3. Refinement properties

We now turn our attention to transformation properties that are related to path refinement. We refer to these as refine-
ment properties. All of these properties are related to various types of state refinement of paths. Hence, the actual labels on 
arcs are irrelevant.

Definition 16. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two STGs and let τ = 〈 f , R〉 be a transformation from G1 to G2. 
Then τ can have the following properties:

PL↓: Every path in G2 is loosely downwards state refinable.
PL↑: Every path in G1 is loosely upwards state refinable.
Pk↓: Every path in G2 of length k, or less, is weakly downwards state refinable.
Pk↑: Every path in G1 of length k, or less, is weakly upwards state refinable.
12



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
PS↓ P↓ PW↓ . . . P3↓ P2↓ P1↓

PL↓

Fig. 4. Hierarchies of downwards refinement properties.

PW↓: Pk↓ holds for all k ≥ 0.
PW↑: Pk↑ holds for all k ≥ 0.
P↓: R2( f (s)) ⊆ f (R1(s)) for all s ∈ S1.
P↑: f (R1(s)) ⊆R2( f (s)) for all s ∈ S1.
PS↓: Every path in G2 is strongly downwards state refinable.
PS↑: Every path in G1 is strongly upwards state refinable.

For the Pk↑ and Pk↓ properties, we first note that P0↑ and P0↓ always hold due to the definition of transformation 
functions, which matters for technical reasons in some proofs. Then consider the example in Fig. 2(b) and remove the path 
from s01 to s11. The transformation in this example is clearly P1↓ . The only paths of length 2 in G2 are t0, t1, t2 and t1, t2, t3, 
which can both be weakly refined into paths in G1 (with two choices of refinements for the first one). The transformation 
is, thus, P2↓ . The path t0, t1, t2, t3 of length 3 does not have any weak refinement, though, since there is no path from some 
state in f (t0) to some state in f (t3) that also passes some state in f (t1) and some state in f (t2), in that order. Hence, the 
transformation is not P3↓ and, thus, not PW↓ . Now add a path directly from s00 to s30. The transformation is still not P3↓ , 
but the path t0, t1, t2, t3 can now be loosely refined into this new path in G1. All shorter paths are already loosely refinable 
since they are weakly refinable, so the modified transformation is PL↓ .

Properties P↓ and P↑ are identical to the conditions for DPP, except that we have generalised them from ordinary 
abstraction functions to transformations. This is the only property which is not exactly symmetric in its upwards and 
downwards versions, because in this case it is important which graph is the ground one and which is the abstract one; we 
cannot just interchange the graphs and redirect the property arrows.3 Obviously, properties PS↓ and PS↑ are stronger than 
PW↓ and PW↑ , and we will see that they are also stronger than P↓ and P↑ . One may view property PL↓ as a generalised 
variant of the ordered monotonicity property and property PW↓ as a generalised variant of the DRP.

4.4. Relationships between refinement properties

Definition 16 contains many refinement properties so we will attempt to relate these properties to each other in this 
section. A partial summary of the results can be found in Fig. 4. In the later parts of the section, we will also consider some 
relations between refinements properties and the transformation properties from Definition 9. In particular, we show that 
the hierarchies in Fig. 4 collapse when combined with certain transformation properties. The following examples are used 
in the forthcoming proofs and are collected here for reference.

Example 17.

1. Let S1 = {1,2,3,4}, S2 = {1,2,3}, E1 = {〈1,2,a〉, 〈3,4,a〉} and E2 = {〈1,2,a〉, 〈2,3,a〉}. Let f (1) = 1, f (2) = f (3) = 2, 
f (4) = 3, R(a, a) and τ = 〈 f , R〉.

2. Same as (1) but add the arc 〈1,4,a〉 to E1.
3. Let S1 = {1,2,3,4}, S2 = {1,2}, E1 = {〈1,2,a〉} and E2 = {〈1,2,a〉}. Let f (1) = f (3) = 1, f (2) = f (4) = 2, R(a, a) and 

τ = 〈 f , R〉.
4. Same as (3) but add the arc 〈3,2,a〉 to E1.
5. Let S1 = S2 = {1,2,3}, E1 = {〈1,2,a〉, 〈2,3,a〉} and E2 = {〈1,3,a〉}. Let f (1) = 1, f (2) = 2, f (3) = 3, R(a, a) and τ =

〈 f , R〉.
6. Let S1 = {1,2}, S2 = {1,2,3,4}, E1 = E2 = {〈1,2,a〉}. Let f (1) = {1,3}, f (2) = {2,4}, R(a, a) and τ = 〈 f , R〉.

The PS , P, PW and P1 properties form strict hierarchies in both directions, as the following theorem shows.

Theorem 18. The following relationships hold:
(1) PS↓ ⇒ P↓ ⇒ PW↓ ⇒ PL↓ ⇒ P1↓,
(2) P1↓ � PL↓ � PW↓ � P↓ � PS↓,
(3) PS↑ ⇒ P↑ ⇒ PW↑ ⇒ PL↑ ⇒ P1↑,
(4) P1↑ � PL↑ � PW↑ � P↑ � PS↑.

3 While it is possible to give these two conditions different names and also define their symmetric counterparts, there seems little use for this since the 
two conditions are introduced only to make the DPP criterion comparable to our concepts.
13



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
Proof. (1) For each case assume that G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 are arbitrary STGs, and that τ = 〈 f , R〉 is an arbitrary 
transformation from G1 to G2.

PS↓ ⇒ P↓: Assume τ is PS↓ . Suppose t ∈ R2( f (s)) for some s ∈ S1 and t ∈ S2. Then there is some t0 ∈ f (s) such that 
t ∈R2(t0). Hence, there is a path σ = t0, . . . , tn in G2 where tn = t . Since τ is PS↓ there must be a path in G1 from any s0

in f (t0) to any sn ∈ f (tn). It follows that f (tn) ⊆R1(s) and, hence, that tn ∈ f (R1(s)). Hence, R2( f (s)) ⊆ f (R1(s)), so τ is 
P↓ .

P↓ ⇒ PW↓: Assume τ is P↓ . We prove by induction over k that τ is Pk↓ for all k ≥ 0, which proves that τ is PW↓ .
Base case: P0↓ holds trivially since f (t) �= ∅ for all t ∈ S2.
Induction: Suppose τ is Pm↓ for some m ≥ 0. Let σ = t0, . . . , tm+1 be an arbitrary path in G2. Then there are states 

s0, . . . , sm ∈ S1 such that si ∈ f (ti) for all i (0 ≤ i ≤ m) and si ∈R1(si−1) for all i (1 ≤ i ≤ m), since τ is Pm↓ by assumption. 
Furthermore, tm ∈ f (sm) and tm+1 ∈ R2(tm) so tm+1 ∈ R2( f (sm)). Hence, tm+1 ∈ f (R1(sm)) since τ is P↓ . There must thus 
be some sm+1 ∈ S1 such that sm+1 ∈R1(sm) and sm+1 ∈ f (tm+1). It follows that τ is P(m + 1)↓ since σ was chosen arbitrarily, 
which ends the induction.

PW↓ ⇒ PL↓: Assume τ is PW↓ . Let σ = t0, . . . , tm be an arbitrary path in G2. Then there are states s0, . . . , sm ∈ S1 such 
that si ∈ f (ti) for all i (0 ≤ i ≤ m) and si ∈ R1(si−1) for all i (1 ≤ i ≤ m). It follows that sm ∈ R1(s0), so τ is PL↓ since σ
was chosen arbitrarily.

PL↓ ⇒ P1↓: Assume τ is PL↓ . Let σ = t0, t1 be an arbitrary path of length 1 in G2. Then there are s0 ∈ f (t0) and 
s1 ∈ f (t1) such that s1 ∈R1(s0) since τ is PL↓ . It follows that τ is P1↓ since σ was chosen arbitrarily.

(2) Proof by counterexamples.
P1↓ � PL↓: Example 17(1) is P1↓ but not PL↓ .
PL↓ � PW↓: Example 17(2) PL↓ but not PW↓ .
PW↓ � P↓: Example 17(3) is PW↓ . However, we have that 2 ∈R2( f (3)) but that 2 /∈ f (R1(3)), so τ is not P↓ .
P↓ � PS↓: Consider Example 17(4). First assume s ∈ {1,3}. Then R2( f (1)) = R2( f (3)) = R2({1}) = {1,2} and we have 

f (R1(1)) = f ({1,2}) = {1,2} and f (R1(3)) = f ({3,2}) = {1,2}. Then assume s ∈ {2,4}. Then R2( f (2)) = R2( f (4)) = {2}
and we have f (R1(2)) = f ({2}) = {2} and f (R1(4)) = f ({4}) = {2}. Hence, R2( f (s)) ⊆ f (R1(s)) holds for all s ∈ S1, and it 
follows that τ is P↓ . Then consider the path 1, 2 in G2. This is not strongly refinable since there is no path from 1 ∈ f (1)

to 4 ∈ f (2) in G1. Hence, the transformation is not PS↓ .
(3) and (4) are analogous to (1) and (2), except for the following cases where we sketch the differences.
PS↑ ⇒ P↑: Suppose t ∈ f (R1(s)). Then there is some path s0, . . . , sm such that s0 = s and t ∈ f (sm). Since τ is PS↑ there 

is a path from every state in f (s0) to every state in f (sm), so it follows that t ∈R2( f (s0)) and, thus, that τ is P↑ .
P↑ ⇒ PW↑: Similar to the P↓ ⇒ PW↓ case, but the induction step differs as follows. Suppose τ is Pm↑ for some m ≥ 0. 

Let σ = s0, . . . , sm+1 be an arbitrary path in G1. Then there are states t0, . . . , tm+1 ∈ G2 such that ti ∈ f (si) for all i
(1 ≤ i ≤ m + 1) and ti ∈ R2(ti−1) for all i (2 ≤ i ≤ m + 1) since τ is Pm↑ by assumption. Obviously, t1 ∈ f (R1(s0)) so 
t1 ∈R2( f (s0)) since τ is P↑ . Hence, there must exist some t0 ∈ f (s0) such that t1 ∈R2(t0) and it follows that τ is Pm + 1↑ .

PW↑ � P↑: Example 17(6) is PW↑ . However, we have that 4 ∈ f (R1(1)) but that 4 /∈R2( f (1)), so τ is not P↑ .
P↑ � PS↑: Add the edge 〈1,4,a〉 to Example 17(6), which makes the example P↑ but not PS↑ . �
The Pk properties form an infinite hierarchy between PW and P1 in each direction.

Theorem 19. For all k, m (0 ≤ m < k),
(1) Pk↓ ⇒ Pm↓ (2) Pm↓ � Pk↓ (3) Pk↑ ⇒ Pm↑ (4) Pm↑ � Pk↑

Proof. (1,3) Trivial. (2) Example 17(1) is P1↓ but not P2↓ . (4) Analogous to (2) by reversing the example. �
However, the PL properties are incomparable with these latter hierarchies for all k > 1.

Theorem 20. 
(1) P2↓ � PL↓, (2) PL↓ � P2↓, (3) P2↑ � PL↑, (4) PL↑ � P2↑.

Proof. (1) Remove the path from s01 to s11 in Fig. 2(b). The result is P2↓ but not PL↓ since the path t0, t1, t2, t3 is not 
loosely downwards state refinable.

(2) Example 17(2) is PL↓ but not P2↓ .
(3–4) Analogous to (1–2). �
The two types of hierarchies are illustrated for the downwards direction in Fig. 4 (note that PW↓ ⇒ Pk↓ for all k by 

definition), where the arrows denote the ⇒ and � relationships between the properties. All these hierarchies collapse if 
the transformation also has property M in the same direction.

Theorem 21. (1) M↓P1↓ ⇒ PS↓, (2) M↑P1↑ ⇒ PS↑.
14



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
Proof. (1) Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two arbitrary STGs and let τ = 〈 f , R〉 be an arbitrary M↓P1↓ transfor-
mation from G1 to G2. Let σ = t0, . . . , tn be an arbitrary path in G2. For each i (0 ≤ i ≤ n) there is a unique state si ∈ S1
such that f (ti) = {si}, since τ is M↓ . Hence, it follows that si ∈R1(si−1) for all i (1 ≤ i ≤ n) since τ is P1↓ . It follows that τ
is PS↓ since f (ti) = {si} for all i (1 ≤ i ≤ n) and σ was chosen arbitrarily.

(2) Analogous. �
Also the other properties in Definition 9 have some implications for refinability. In particular, we can use them for 

proving general properties for homomorphic abstractions (Corollary 23). We first consider connections between refinement 
properties and the properties R↑/R↓ and C↑/C↓ .

Theorem 22. 
(1) R↓C↓ ⇒ P1↓, (2) P1↓ � R↓C↓, (3) PS↓R↓ � C↓
(4) R↑C↑ ⇒ P1↑, (5) P1↑ � R↑C↑ (6) PS↑R↑ � C↑

Proof. We prove only (1–3) since (4–6) are analogous.
(1) Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two arbitrary STGs and let τ = 〈 f , R〉 be an arbitrary R↓C↓ transformation 

from G1 to G2. Let σ = t, t′ be an arbitrary path of length 1 in G2, i.e. there is some arc 〈t, t′, �〉 ∈ E2. Then there is some 
label �′ ∈ L(E1) such that R(�′, �), since τ is R↓ . Hence, there is some arc 〈s, s′, �′〉 ∈ E1 such that s ∈ f (t) and s′ ∈ f (t′)
since τ is C↓ . It follows that s′ ∈R1(s) and, thus that τ is P1↓ since σ was chosen arbitrarily.

(2) Example 17(5) is P1↓ , but not R↓C↓ .
(3) Example 17(5) is PS↓ and R↓ , but not C↓ . �
Combining Theorems 21 and 22 gives the following corollary.

Corollary 23. (1) M↓R↓C↓ ⇒ PS↓ , (2) M↑R↑C↑ ⇒ PS↑ .

Combining this corollary with Theorem 14 yields that all homomorphic abstractions have property PS↑ .
These results will be used later, in Sec. 7, where we will analyse a number of abstraction methods, deriving some 

properties explicitly and then infer other properties using the results above.

5. SAS+ and implicit state-transition graphs

So far, we have only considered STGs as explicit graphs. The usual case in search and planning is to model an STG 
implicitly, using variables to define the state space and actions (or operators) to define the arcs. The two most common 
formalisms for this purpose are propositional Strips [17] and SAS+ [10,11]. The major difference between these is that
Strips models the state space by a set of propositional atoms, i.e. binary variables, while SAS+ uses variables with arbitrary 
finite domains. Actions are modelled in essentially the same way. Each action has a precondition that tells when the action 
can be applied and a postcondition that models the effect of applying the action. These formalisms are known to be 
equivalent under a polynomial reduction that preserves the solution lengths [4]. While Strips is modelled using sets of 
atoms, SAS+ is modelled using vectors allowing undefined values. To be able to mix these formalisms freely and allow for 
more direct comparisons, we use a different way to model SAS+ here, based on sets of multi-valued atoms. It should be 
stressed that this is not a new planning formalism, but only an alternative definition of an old one; it is still SAS+ .

Definition 24. A variable set V is a finite set of objects called variables and a domain function D for V is a function that 
maps every variable v ∈ V to a corresponding finite domain D(v) of values. An atom over V and D is a pair 〈v, x〉 (usually 
written as (v = x)) such that v ∈ V and x ∈ D(v). A state is a set of atoms and V ·D = ⋃

v∈V ({v} × D(v)) denotes the full 
state (the set of all possible atoms over V and D). A state s ⊆ V ·D is

1. consistent if each v ∈ V occurs in at most one atom in s,
2. total if each v ∈ V occurs in exactly one atom in s.

The filter functions T and C are defined for all S ⊆ V ·D as:

1. C(S) = {s ⊆ S | s is consistent}.
2. T (S) = {s ⊆ S | s is total}.

Example 25. Let V = {u, v}, D(u) = {0,1} and D(v) = {0,1,2}. Then

V · D = { (u = 0), (u = 1), (v = 0), (v = 1), (v = 2) },

15



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
T (V · D) = {{(u = 0), (v = 0)}, {(u = 0), (v = 1)}, {(u = 0), (v = 2)},
{(u = 1), (v = 0)}, {(u = 1), (v = 1)}, {(u = 1), (v = 2)} }

C(V · D) = {{(u = 0), (v = 0)}, {(u = 0), (v = 1)}, {(u = 0), (v = 2)},
{(u = 1), (v = 0)}, {(u = 1), (v = 1)}, {(u = 1), (v = 2)},
{(u = 0)}, {(u = 1)}, {(v = 0)}, {(v = 1)}, {(v = 2)}, ∅ }.

Definition 26. For arbitrary s, t ∈ C(V ·D), U ⊆ V and v ∈ V :
(1) vars(s) = {v | (v = x) ∈ s}, (2) s[U ] = s ∩ (U ·D),
(3) s[v] = s[{v}], (4) s � t = s[V \ vars(t)] ∪ t,
(5) s=c = {(v = c) | (v = c) ∈ s} (6) U :=c = {(v = c) | v ∈ U }.

That is, vars(s) is the set of variables occurring in atoms in s, s[U ] is the projection of s to the subset of atoms with 
variables in U , s � t is the update operator, s=c selects those atoms in s that have variable value c and U :=c creates a state 
with an atom for each variable in U , which are all set to value c. The operator � is typically used for updating a state s
with the postcondition of an action a; this will be made formally clear in Definition 29.

Example 27. Let s = {(u = 0), (v = 1)} and t = {(v = 2)} be two states. Then vars(s) = {u, v}, s[{u, v}] = s, s[v] = {(v = 1)}, 
s � t = {(u = 0), (v = 2)}, s=1 = {(v = 1)} and vars(s):=1 = {(u = 1), (v = 1)}.

Unless otherwise specified, states will be assumed total and we will usually write state rather than total state. As a 
convention, we will often tacitly assume that binary variables have the domain {0,1} and use the shorthands v for the 
negative atom (v = 0) and v for the positive atom (v = 1).

The following observations will be tacitly used henceforth.

Proposition 28. Let V be a variable set, let D be a domain function for V and let s, t ∈ C(V ·D). Then:

1. s[U ] ⊆ s for all U ⊆ V .
2. s ⊆ t ⇒ s[U ] ⊆ t[U ] for all U ⊆ V .
3. s = t ⇒ s[U ] = t[U ] for all U ⊆ V .
4. s[V 1] ∪ s[V 2] = s[V 1 ∪ V 2] for all V 1, V 2 ⊆ V .
5. s[U ] ∪ t[U ] = (s ∪ t)[U ],
6. s[U ]� t[U ] = (s � t)[U ],
7. If s is total, then s � t is total.
8. s[V 1][V 2] = s[V 1 ∩ V 2] = s[V 2][V 1] for all V 1, V 2 ⊆ V .
9. V 1 ⊆ V 2 ⇒ s[V 1][V 2] = s[V 1] for all V 1, V 2 ⊆ V .

We define SAS+ frames and instances as follows.

Definition 29. A SAS+ frame is a triple F = 〈V , D, A〉 where V is a variable set, D is a domain function for V and A is a 
finite set of actions. Each action a ∈ A has a precondition pre(a) ∈ C(V ·D) and a postcondition post(a) ∈ C(V ·D). The STG 
G(F) = 〈S, E〉 for F is defined such that

1. S = T (V ·D) and
2. E = {〈s, t,a〉 | a ∈ A,pre(a) ⊆ s and t = s � post(a)}.

A sequence ω = a1, . . . , ak of actions in A is a plan from a state s ∈ S to a state t ∈ S if ω is a label path from s to t in 
G(F).

A SAS+ instance is a 5-tuple P = 〈V , D, A, I, G〉 where 〈V , D, A〉 is a SAS+ frame, I ∈ T (V ·D) is the initial state and 
G ∈ C(V ·D) is the goal. A sequence ω = a1, . . . , ak of actions in A is a plan for P if it is a plan from I to some state s such 
that G ⊆ s.

Strips can be viewed as a special case of SAS+ where all variables are binary.4 We will often use the notation a : pre ⇒
post to compactly define an action a and its pre- and postconditions.

A SAS+ frame F = 〈V , D, A〉 is an implicit specification of the STG G(F) = 〈S, E〉, where the actions are used as labels. 
It is furthermore a compact representation since G(F) can be exponentially larger than F , because S = T (V · D) and an 

4 The classical variant of Strips only allows positive preconditions, but it is common to also allow negative preconditions.
16



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
action in A can induce up to |S| arcs in E . That is, a SAS+ instance is a compact graph representation in the sense of 
Galperin and Wigderson [35] and of Balcázar [12].

A SAS+ instance P = 〈V , D, A, I, G〉 is more specific than the corresponding frame F = 〈V , D, A〉, and we may define a 
corresponding extended STG 〈S, E, I, G〉, where 〈S, E〉 = G(F). Such a structure is sometimes called a transition system (cf. 
[49]), which is briefly discussed in Section 10. Note that the STG concept and most of our results are still useful for more 
advanced planning formalisms. Conditional actions, where the effect of an action depends on the state is applied in, would 
still result in a straightforward STG, as would a planning language with axioms for causal effects of actions; in both cases 
the resulting state is still a function of the state we apply an action in. Even non-deterministic actions can be modelled with 
STGs; the only difference is that a state may have more than one outgoing arc with the same label, which is not prohibited. 
Other examples of languages for planning and search are PDDL [71] and PSVN [55].

Since there is a one-to-one correspondence between SAS+ frames and STGs, it is straightforward to say that a transfor-
mation τ is a transformation from a SAS+ frame F1 to a SAS+ frame F2 if it is a transformation from G(F1) to G(F2).

6. Abstraction in planning

The goal of this section is to model a number of different abstraction and abstraction-like methods from the literature 
within our framework. We note that even though the methods are quite different, they can all be modelled in a highly 
uniform and reasonably succinct way. For instance, labels will exclusively be used for keeping track of action names in all 
examples. This coherent way of defining the methods makes it possible to systematically study their intrinsic properties; 
something that will be carried out in the next section.

Each of the methods we will study can be viewed as a function that takes a SAS+ frame F1 = 〈V , D, A〉 and some extra 
information and maps this to a new SAS+ frame F2. For example, the ABS method (that will be formally introduced in 
Section 6.1) could be viewed as a function α that takes a frame F1, a subset V C of the variables and a function g on the 
set of actions, and then constructs a new frame F2 = α(F1, V C , g). However, different methods require different type and 
amount of such extra information, so this approach would quickly result in a plethora of similar, yet different, transformation 
concepts, which is rather the opposite of our aims. Hence, we will instead take a relational view where we start with two 
frames F1 and F2 and a transformation τ from G(F1) to G(F2), and then say that τ is an ABS transformation from F1
to F2 if there exists a choice of the extra information V C and g such that F2 = α(F1, V C , g). Hence, we can focus on the 
resulting properties of the underlying transformation τ from G(F1) to G(F2). Furthermore, since the extra information is 
often a free choice, and not a function of F1, it will be essential later on, when we study compositions of transformations, 
that we use this relational view. This is also why we have chosen a relational rather than functional view on transformations 
from the very start.

6.1. Abstrips-style abstraction

The first clearly described case of abstraction in planning is the Abstrips planner [78], which was a version of the Strips

planner using state abstraction. The abstraction method used in Abstrips is to identify a subset of the atoms as critical 
and make an abstraction by restricting the preconditions of all actions to only these critical atoms while leaving everything 
else unaltered. The intention is that the critical atoms should be more important and that once an abstract plan is found, 
it should be easy to fill in the missing actions to take all atoms into account. This method has also been used elsewhere, 
for instance, in the AbTweak planner [3], and it is a special case of the broader class of abstractions known as precondition 
relaxation. We will refer to this type of abstraction as method ABS, which we define formally as follows.

Definition 30 (ABS). Let F1 = 〈V 1, D1, A1〉 and F2 = 〈V 2, D2, A2〉 be two SAS+ frames with corresponding STGs G1 =
〈S1, E1〉 and G2 = 〈S2, E2〉. Let τ = 〈 f , R〉 be a transformation from F1 to F2. Then, τ is an ABS transformation from 
F1 to F2 if there is a set of critical variables V C ⊆ V 1 and a bijection g : A1 → A2 such that the following holds:

1. V 2 = V 1, D2 = D1,
2. pre(g(a)) = pre(a)[V C ] and post(g(a)) = post(a) for all a ∈ A1.
3. f (s) = {t ∈ S2 | s[V C ] = t[V C ]} for all s ∈ S1.
4. R = {〈a, g(a)〉 | a ∈ A1}.

The original Abstrips planner used a different set of critical variables for each action.5 We simplify this to one single set, 
V C , both in order to simplify the presentation and analysis somewhat, but also to make the comparison with the following 
method clearer. This simplification does not alter any of results we show; we could define separate sets V C (a) of critical 
atoms for each action and set V C = ⋂

a∈A V C (a). We also note that ABS is an embedding-style abstraction since E1 ⊆ E2
must hold, although it is a form of generalised embedding since f is not M↑ .

5 More precisely, Abstrips uses an abstraction hierarchy and a criticality value is assigned to each precondition atom to tell at which levels it is critical.
17



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1: u, v

u, v

u, v

u, va

a

b b

G2:

u, v

u, v

u, v

u, v

g(a)

g(a)

g(a)

g(a), g(b)

g(b) g(b)

g(b)

G1: u, v

u, v

u, v

u, va

a

b b

G2:

v v
g(a)

g(a), g(b)g(b)

Fig. 5. An ABS abstraction (left) and an VP abstraction (right) of the same instance (V C = {v}).

Example 31. Let V 1 = {u, v}, where both variables are binary, let A1 = {a}, where a : u ⇒ v and b : u ⇒ u. First consider an
ABS abstraction with V C = {v}, i.e. v is the only critical variable. All states in S1 remain in S2 and the abstract actions are 
g(a) : ∅ ⇒ v and g(b) : ∅ ⇒ u. That is, the abstract actions induce twice as many arcs as the ground actions in this case. 
This is illustrated in Fig. 5 (left).

6.2. Variable projection

Knoblock [65] took this method further in planning by removing the non-critical atoms everywhere, not only in precon-
ditions. This is a general and common technique otherwise known as variable projection. It is commonly used also in search 
(cf. the article by Zilles and Holte [92]), as well as in other areas such as model checking [20]. It is also the technique 
underlying pattern database heuristics in search and planning [23,45]. We refer to this as method VP.

Definition 32 (VP). Let F1 = 〈V 1, D1, A1〉 and F2 = 〈V 2, D2, A2〉 be two SAS+ frames with corresponding STGs G1 = 〈S1, E1〉
and G2 = 〈S2, E2〉. Let τ = 〈 f , R〉 be a transformation from F1 to F2. Then, τ is a VP transformation from F1 to F2 if there 
is a set of critical variables V C ⊆ V 1 and a bijection g : A1 → A2 such that the following holds:

1. V 2 = V C , D2 = D1|V C ,
2. pre(g(a)) = pre(a)[V C ] and post(g(a)) = post(a)[V C ], for all a ∈ A1.
3. f (s) = {s[V C ]} for all s ∈ S1.
4. R = {〈a, g(a)〉 | a ∈ A}.

We note that this is a homomorphic abstraction where |E2| ≤ |E1| holds.

Example 33. Consider the same frame as in Example 31. Then consider a VP abstraction, also with V C = {v}. In this case 
the state space shrinks, since variable u disappears entirely. We get the abstract actions g(a) : ∅ ⇒ v and g(b): ∅ ⇒ ∅, but 
no abstract action induces more arcs than its corresponding ground action since the state space shrinks. This is illustrated 
in Fig. 5 (right). Note that g(b) is redundant and can usually be removed.

6.3. Variable-domain abstraction

Another abstraction technique is variable-domain abstraction, which we will refer to as method VDA. Instead of removing 
or disregarding certain variables, this method reduces the domain of one or more variables by collapsing values into new 
abstract values. This method is used both in planning [26,42], search [58,92] and model checking [20]. One may also note 
that the technique used in abstract interpretation [21] of abstracting integers to the domain {−,0,+} is domain abstraction. 
As we will see later, it is also one of the steps in the merge and shrink method [49].

Definition 34 (VDA). Let F1 = 〈V 1, D1, A1〉 and F2 = 〈V 2, D2, A2〉 be two SAS+ frames. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉
be the corresponding STGs. Let τ = 〈 f , R〉 be a transformation from F1 to F2. Then, τ is a VDA transformation if there is a 
18



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1:

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

a

b b b

c

c

c

d

d

d

G2:

0,0

1,0

0,2

1,2

g(a)

g(b), g(c)

g(c)

g(b)

g(d)

g(d)

Fig. 6. Domain abstraction. The digits x, y in a state mean (u = x), (v = y). For clarity, the figure shows f , not f .

family of surjective functions H = {hv : D1(v) → D2(v) | v ∈ V 1} and a bijection g : A1 → A2 such that the conditions below 
hold, where the function h : S1 → S2 is defined as h(s) = {(v = hv(x)) | (v = x) ∈ s}.

1. V 2 = V 1, D2(v) = hv(D1(v)) for all v ∈ V 1,
2. pre(g(a)) = h(pre(a)) and post(g(a)) = h(post(a)), for all a ∈ A1.
3. f (s) = h(s) for all s ∈ S1.
4. R = {〈a, g(a)〉 | a ∈ A}.

Example 35. Let V 1 = {u, v}, where D(u) = D(v) = {0,1,2}, and let A = {a,b, c,d}, where a : (u = 0), (v = 0) ⇒ (u = 1), 
b : (u = 1) ⇒ (u = 2), c : (v = 0) ⇒ (v = 1) and d : (v = 1) ⇒ (v = 2). Define the abstraction functions hu and hv such that 
hu(0) = 0, hu(1) = hu(2) = 1, hv(0) = hv(1) = 0 and hv (2) = 2. This yields the abstract actions g(a) : (u = 0), (v = 0) ⇒
(u = 1), g(b) : (u = 1) ⇒ (u = 1), g(c) : (v = 0) ⇒ (v = 0) and g(d) : (v = 0) ⇒ (v = 2). This is shown in Fig. 6. Note that 
this figure shows the reverse mapping f , rather than f , which is more illustrative here since it shows how the domain 
abstraction partitions S1.

6.4. Removing redundant actions

As a response to a common belief that it is good for a planner to have many choices, Haslum and Jonsson [46] showed 
that it may be more efficient to have as few choices as possible, in other words, they suggested to use retractions rather 
than embeddings. They proposed removing some, or all, of the redundant actions. While the authors did not present this 
as an abstraction, it is quite reasonable to view it as such: we abstract away redundant information by removing redundant 
actions.6 We refer to this method as Removing Redundant Actions (RRA). The original paper considered various degrees of 
avoiding redundancy so we define two extreme cases, RRAa and RRAb, differing in condition 3 below.

Definition 36 (RRA). Let F1 = 〈V 1, D1, A1〉 and F2 = 〈V 2, D2, A2〉 be two SAS+ instances with corresponding STGs G1 =
〈S1, E1〉 and G2 = 〈S2, E2〉. Let τ = 〈 f , R〉 be a transformation from F1 to F2. Then, τ is an RRA transformation from F1 to 
F2 if the following holds:

1. V 2 = V 1, D2 = D1,
2. A2 ⊆ A1.
3. (a) {〈s, t〉 | ∃�.〈s, t, �〉 ∈ E1} = {〈s, t〉 | ∃�.〈s, t, �〉 ∈ E2} (for RRAa).

(b) {〈s, t〉 | t ∈R1(s)} = {〈s, t〉 | t ∈R2(s)} (for RRAb).

6 Heusner et al. [50] suggested a new refinement method that first reduces the available actions to a small subset, and then incrementally extends this 
until a plan can be found.
19



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1: u, v

u, v

u, v

u, v

a a

a a,b

b, c

c

G2:

u, v

u, v

u, v

u, v

a a

a a

c

c

G1: u, v

u, v

u, v

u, v

a a

a a,b

b, c

c

G2:

u, v

u, v

u, v

u, v

a a

a a,b

b

Fig. 7. An RRAa abstraction (left) and an RRAb abstraction (right) of the same instance.

4. f is the identity function.
5. R = {〈a,a〉 | a ∈ A2}.

Variant 3a (RRAa) says that if an action a ∈ A1 induces an arc from s to t in the STG and we remove a, then there must 
be some remaining action that induces an arc from s to t . Variant 3b (RRAb), on the other hand, only requires that there is 
still a path from s to t . Conversely, suppose 〈s, t,a〉 ∈ E2 for some action a ∈ A2. Then it is necessary that also 〈s, t,a〉 ∈ E1
due to condition (2). That is, for both variants it holds that E2 ⊆ E1, so they are retraction-style abstractions. We also note 
that method RRAa preserves the optimal path length between all pairs of states, which is not the case for RRAb.

Example 37. Let V 1 = {u, v}, where both variables are binary, let A1 = {a,b, c}, where a : ∅ ⇒ u, b : u ⇒ v and c : v ⇒ u, v . 
Fig. 7 (left) illustrates the effect of removing action b (multiple arcs with different labels are shown as one arc with multiple 
labels). All arcs remain, if we ignore the labels, so this is an RRAa abstraction. Fig. 7 (right) illustrates the effect of removing 
action c instead. Then there is no longer any arc from {u, v} to {u, v}. However, there is still a path from {u, v} to {u, v}, so 
this is an RRAb abstraction.

6.5. Ignoring delete lists

The idea of removing the negative postconditions from all actions in Strips [14,72] is known as ignoring delete lists or 
delete relaxation. This means that false atoms can be set to true, but not vice versa. The method is commonly used as an 
abstraction in planning, where the length of an optimal plan in this abstraction is used as an estimate for the length of an 
optimal ground plan, which is known as the h+ heuristic [51]. While this method was originally defined in the classical 
variant of Strips where actions have only positive preconditions, there is no problem in principle to allow also negative 
preconditions. To make this distinction clear, we will refer to this latter variant as Generalised Ignoring Delete Lists (GIDL). 
Our forthcoming discussion will apply to both variants since we do not make explicit use of negative preconditions.

Definition 38 (GIDL). Let F1 = 〈V 1, D1, A1〉 and F2 = 〈V 2, D2, A2〉 be two SAS+ instances with corresponding STGs G1 =
〈S1, E1〉 and G2 = 〈S2, E2〉. Let τ = 〈 f , R〉 be a transformation from F1 to F2. Then τ is a GIDL transformation from F1 to 
F2 if there is a bijection g : A1 → A2 such that the following holds:

1. V 2 = V 1, D2 = D1,
2. pre(g(a)) = pre(a)=1 and post(g(a)) = post(a)=1 for all a ∈ A1.
3. f is the identity function.
4. R = {〈a, g(a)〉 | a ∈ A1}.

For actual instances P1 = 〈V 1, D1, A1, I1, G1〉 and P2 = 〈V 2, D2, A2, I2, G2〉, where I2 = I1 and G2 = G1
=1 since no plan 

for P2 can achieve a negative goal on a variable that is set to true at some point in the plan. Keeping negative preconditions 
20



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1: u, v

u, v

u, v

u, v

a a
b b

G2:

u, v

u, v

u, v

u, v
g(a)

g(a), g(b)

g(b) g(b)

g(b)

G1:

v v
a

b

G2:

v, vϕ

v, vϕ

v, vϕ

v, vϕ

g(a)

g(b)

g(a)

g(b)

Fig. 8. An GIDL abstraction (left) and an DLBS abstraction (right).

in the transformation is possible, but the transformation will then lose some favourable properties since abstract plans may 
be non-refinable and also unusable for admissible heuristics. For a GIDL abstraction, there is no clear relationship between 
E1 and E2 at all. They may even be disjoint (consider an action a : u, v ⇒ u, v).

Example 39. Let V 1 = {u, v}, where both variables are binary, and let A1 = {a,b}, where a : u ⇒ u, v and b : u ⇒ u. The GIDL
abstraction is shown in Fig. 8 (left), where g(a): u ⇒ v and g(b): ∅ ⇒ u. Let {u, v} be the initial state and {u, v} the desired 
goal state. Then b, a, b is a plan in G1, while the shorter plan g(b), g(a) suffices in the abstraction G2.

Monotonic abstractions on domains with more than two domain values have recently been intensively studied in the 
literature, cf. the article by Domshlak et al. [25] and the references therein. While GIDL may be viewed as the monotonic 
abstraction for two-valued domains, there are various options for larger domains. In particular, the accumulation seman-
tics [28,41] has become very popular and it serves as the basis for interesting approaches such as red-black relaxation [25]. 
Analysing such methods with the aid of our framework appears to be an interesting future research direction.

6.6. Direct landmark-based surrogates

A landmark is a condition that is somehow known to be a necessary subgoal for a plan. Landmarks are sometimes added 
as separate information to planners as guidance for how to solve a particular instance [53]. Domshlak et al. [27] suggested 
to combine abstraction with landmarks by encoding the landmarks explicitly in the instance—the idea is to guide the 
abstraction process via the landmarks. Based on this idea, they propose a new way for constructing abstraction heuristics 
and empirically show that this approach can produce high-quality heuristic functions. They considered disjunctive landmarks, 
i.e. each landmark is a set of atoms interpreted such that at least one of its members must be achieved at some time. This 
method is known as the direct landmark-based surrogate method, which we refer to as DLBS.

Definition 40 (DLBS). Let F1 = 〈V 1, D1, A1〉 and F2 = 〈V 2, D2, A2〉 be two SAS+ instances with corresponding STGs G1 =
〈S1, E1〉 and G2 = 〈S2, E2〉. Let τ = 〈 f , R〉 be a transformation from F1 to F2. Then, τ is a DLBS transformation from F1
to F2 if there is a set M ⊆ 2V 1·D1 of landmarks and a bijection g : A1 → A2 such that conditions (1)–(5) below hold: First 
define the variable set V M = {vϕ | ϕ ∈ M} with domain function D M : V M → {0,1} and for each a ∈ A1, define postM(a) =
{(vϕ = 1) | ϕ ∈ M ∩ post(a)}

1. V 2 = V 1 ∪ V M , D2 = D1 ∪ D M ,
2. pre(g(a)) = pre(a) and post(g(a)) = post(a) ∪ postM(a) for all a ∈ A1.
3. f (s) = {s ∪ m | m ∈ T (V M · D M)} for all s ∈ S1.
4. R = {〈a, g(a)〉 | a ∈ A1}.

For actual instances P1 = 〈V 1, D1, A1, I1, G1〉 and P2 = 〈V 2, D2, A2, I2, G2〉, we must also make the transformations 
I2 = I ∪ {(vϕ = 1) | ϕ ∈ M ∩ I} and G2 = G1 ∪ V M

:=1, if we want to enforce that every plan achieves all landmarks in M . 
Note that landmarks may contain conflicting atoms, and that even a single disjunctive landmark may do so. Consider a 
landmark ϕ = {(v = 1), (v = 3)}, which requires that every plan achieves at least one of the values (v = 1) and (v = 3) at 
21



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
Table 1
Properties of the planning abstraction methods.

Type of 
method

Properties

Theorems 42 & 43 Theorem 44 Theorem 45

ABS R�C� P1↓ , P1↑ not PL↓ , P↑ , not PS↑
VP M↑R�C� P1↓ , PS↑ not PL↓
VDA M↑R�C� P1↓ , PS↑ not PL↓
RRAa/RRAb M�R↓C� PS↓ PS↑
GIDL M�R� – not P1↓ , not P1↑
DLBS M↓R�C� PS↓ , P1↑ PW↑ , not P↑

some time. Then suppose M contains two landmarks ϕ1 = {(v = 1)} and ϕ2 = {(v = 3)}. This is not inconsistent either. It 
specifies that every plan must achieve both (v = 1) and (v = 3), but not that they must hold in the same state (which 
is impossible). The new landmark variables we introduce in the transformation can be viewed as flags that are used to 
remember if a landmark has ever been achieved so far. It is set to true the first time the landmark is achieved, and remains 
true ever after.

Example 41. Let V 1 = {v}, D(v) = {0,1} and A1 = {a,b}, where a : v ⇒ v and b : v ⇒ v . Consider an DLBS abstraction with 
M = {{(v = 1)}}, i.e. there is only one landmark and which has a single atom. Let ϕ denote the landmark {(v = 1)}. This is 
illustrated in Fig. 8 (right), where g(a): v ⇒ v, vϕ and g(b): v ⇒ v . We can move forth and back freely between the states 
{v} and {v)} in G1, but in G2 the variable vϕ will always be set to 1 the first time we execute action g(a) and it will 
thereafter remain at this value, whatever the value of v .

7. Analysis of planning abstractions

We can now analyse the methods in the previous section with respect to their intrinsic transformation properties, i.e. 
properties that all transformations of a certain type must have. We note that condition (4) on f in all definitions in the 
previous section enforces that f is a transformation function, so it is not necessary to first assume that τ is a transformation.

The following theorem tells which of the properties in Definition 9 are inherent in the methods in the previous section. 
The results are also summarised in column 2 of Table 1.

Theorem 42. 
(1) ABS ⇒ R�C�, (2) VP ⇒ M↑R�C�,
(3) VDA ⇒ M↑R�C�, (4) RRAa ⇒ M�R↓C�,
(5) RRAb ⇒ M�R↓C�, (6) GIDL ⇒ M�R�,
(7) DLBS ⇒ M↓R�C�

Proof. We will tacitly make frequent use of Proposition 28. For each of the cases below, assume τ = 〈 f , R〉 is a transforma-
tion from F1 = 〈V 1, D1, A1〉 to F2 = 〈V 2, D2, A2〉, and that G(F1) = 〈S1, E1〉 and G(F2) = 〈S2, E2〉.

(1) Assume τ is ABS. Let V C ⊆ V 1 be the set of critical variables. Note that S1 = S2.
Suppose 〈s1, t1,a〉 ∈ E1. Then it must hold that pre(a) ⊆ s1, so we get pre(g(a)) = pre(a)[V C ] ⊆ pre(a) ⊆ s1 and, hence, 

〈s1, t2, g(a)〉 ∈ E2, where t2 = s1 � post(g(a)). Since R(a, g(a)) holds by definition it follows that τ is R↑ . Then also suppose 
that R(a, �) holds for some �. By definition of R , the only possibility is that � = g(a), so we already know that 〈s1, t2, g(a)〉 ∈
E2. We get t2 = s1�post(g(a)) = s1�post(a) = t1, and, thus, that 〈s1, t1, g(a)〉 ∈ E2. Since s1 ∈ f (s1) and t1 ∈ f (t1) it follows 
that τ is C↑ .

Suppose instead that 〈s2, t2, g(a)〉 ∈ E2. Then pre(g(a)) ⊆ s2, so we get pre(a)[V C ] = pre(g(a)) ⊆ s2. Hence, there must be 
some state s1 ∈ S1 such that pre(a) ⊆ s1 and s1[V C ] = s2[V C ], i.e. s1 ∈ f (s2). Let t1 = s1�post(a). Then 〈s1, t1,a〉 ∈ E1 so τ is 
R↓ since R(a, g(a)) holds by definition. Then also suppose that R(�, g(a)) holds for some �. The only possibility is that � = a. 
We have, t1[V C ] = (s1 � post(a))[V C ] = s1[V C ]�post(a)[V C ] = s2[V C ]�post(g(a))[V C ] = (s2 � post(g(a)))[V C ] = t2[V C ], i.e. 
t1 ∈ f (t2). Hence, 〈s1, t1,a〉 ∈ E1, where s1 ∈ f (s2) and t1 ∈ f (t2). It follows that τ is C↓ . (Note, that this proof still holds 
if using action-dependent sets of critical atoms by replacing pre(a)[V C ] with pre(a)[V C (a)] everywhere and defining V C as 
previously explained.)

(2) Assume τ is VP. Let V C ⊆ V 1 be the set of critical variables. It is immediate from the definition τ is M↑ .
Suppose 〈s1, t1,a〉 ∈ E1. Let s2 = s1[V C ] = f (s1). Since pre(a) ⊆ s1, we get pre(g(a)) = pre(a)[V C ] ⊆ s1[V C ] = s2, so 

〈s2, t2, g(a)〉 ∈ E2, where t2 = s2 � post(g(a)). Since also R(a, g(a)) holds by definition it follows that R↑ holds. Then also 
suppose that R(a, �) holds for some �. The only possibility is that � = g(a), so we already know that 〈s2, t2, g(a)〉 ∈ E2. 
Hence, we get that t2 = s2 � post(g(a)) = s1[V C ] � post(a)[V C ] = (s1 � post(a))[V C ] = t1[V C ] = f (t1). It follows that 
〈 f (s1), f (t1), g(a)〉 ∈ E2 and, thus, that τ is C↑ .

Suppose instead that 〈s2, t2, g(a)〉 ∈ E2. Then it holds that pre(g(a)) ⊆ s2 and t2 = s2 � post(g(a)). Since pre(a)[V C ] =
pre(g(a)) ⊆ s2 there must be some s1 ∈ S1 such that pre(a) ⊆ s1 and s1[V C ] = s2, i.e. s1 ∈ f (s2). Then 〈s1, t1,a〉 ∈ E1, where 
22



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
t1 = s1 � post(a). Since R(a, g(a)) holds by definition, it follows that τ is R↓ . Then also suppose that R(�, g(a)) holds for 
some �. The only possibility is that � = a, so we know that 〈s1, t1,a〉 ∈ E1. Furthermore, t1[V C ] = (s1 � post(a))[V C ] =
s1[V C ]� post(a)[V C ] = s2 � post(g(a)) = t2, i.e. t1 ∈ f (t2). It follows that τ is C↓ .

(3) Assume τ is VDA. Then τ is M↑ since f (s) = h(s) and h(s) ∈ S2 for s ∈ S1. Before continuing, we first note that for 
all s, t ∈ S1 it holds that if s ⊆ t , then h(s) ⊆ h(t), and that h(s � t) = h(s)� h(t).

Suppose 〈s1, t1,a〉 ∈ E1. Then pre(a) ⊆ s1 must hold, so we get pre(g(a)) = h(pre(a)) ⊆ h(s1). Hence, 〈h(s1), t2, g(a)〉 ∈ E2, 
where t2 = h(s1) � post(g(a)). Since also R(a, g(a)) holds by definition it follows that τ is R↑ . Then also suppose R(a, �)
holds for some �. The only possibility is � = g(a). We have that h(s1) = f (s1), by definition, and t2 = h(s1) � post(g(a)) =
h(s1)� h(post(a)) = h(s1 � post(a)) = h(t1) = f (t1). It follows that 〈 f (s1), f (t1), g(a)〉 ∈ E2 and, thus, that τ is C↑ .

Suppose instead that 〈s2, t2, g(a)〉 ∈ E2. Then pre(g(a)) ⊆ s2 and t2 = s2 � post(g(a)). Since pre(g(a)) = h(pre(a)), there 
must exist some s1 ∈ S1 such that pre(a) ⊆ s1 and s2 = h(s1) = f (s1), i.e. s1 ∈ f (s2). Hence, 〈s1, t1,a〉 ∈ E2, where t1 =
s1 � post(a). Since R(a, g(a)) holds by definition it follows that τ is R↓ . Then also suppose R(�, g(a)) holds for some �. The 
only possibility is � = a. We get f (t1) = h(t1) = h(s1 � post(a)) = h(s1)� h(post(a)) = s2 � post(g(a)) = t2, i.e. t1 ∈ f (t2). It 
follows that τ is C↓ .

(4–5) Assume τ is RRA (the proofs hold both for RRAa and RRAb). Then τ is M� since f is the identity function.
Suppose 〈s, t,a〉 ∈ E2. Then a ∈ A2 and, thus, also a ∈ A1 since A2 ⊆ A1. Hence, 〈s, t,a〉 ∈ E1 since S1 = S2. It follows that 

τ is R↓ since R(a, a) holds.
Suppose 〈s, t,a〉 ∈ E1 and R(a, �) holds. Then � = a. Since f (s) = s and f (t) = t we get that 〈 f (s), f (t),a〉 ∈ E2. Hence, τ

is C↑ . The C↓ case is analogous.
(6) Assume τ is GIDL. Then τ is M� since f is the identity function.
Suppose 〈s1, t1,a〉 ∈ E1. Then pre(a) ⊆ s1. Hence, pre(g(a)) = pre(a)=1 ⊆ pre(a) ⊆ s1, so 〈s1, s1 � post(g(a)), g(a)〉 ∈ E2. 

Since R(a, g(a)) holds by definition we get that τ is R↑ .
Suppose 〈s2, t2, g(a)〉 ∈ E2. There must exist some s1 ∈ S1 such that pre(a) ⊆ s1. Then 〈s1, s1 � post(a),a〉 ∈ E1. Since 

R(a, g(a)) holds by definition we get that τ is R↓ .
(7) Assume τ is DLBS. Then it is immediate from the definition that τ is M↓ .
Suppose 〈s1, t1,a〉 ∈ E1. Then pre(a) ⊆ s1. We have pre(g(a)) = pre(a) and s1 ∈ S2, since S1 ⊆ S2, so 〈s1, t2, g(a)〉 ∈

E2, where t2 = s1 � post(g(a)). Since also R(a, g(a)) holds by definition it follows that τ is R↑ . Then also suppose that 
R(a, �) holds for some �. Then � = g(a), so we know that 〈s1, t2, g(a)〉 ∈ E2. Obviously, s1 ∈ f (s1). Furthermore, t2 = s1 �

post(g(a)) = s1 � (post(a) ∪ postM(a)). Since it holds that post(a) ∈ C(V 1 · D1) and that postM(a) ∈ C(V M · D M), we get 
t2 = (s1 � post(a)) ∪ postM(a) = t1 ∪ postM(a). Hence, t2 ∈ f (t1) and it follows that τ is C↑ .

Suppose instead that 〈s2, t2, g(a)〉 ∈ E2. It then holds pre(g(a)) ⊆ s2, but pre(g(a)) = pre(a) so pre(a) ⊆ s2[V 1]. Let s1 =
s2[V 1], i.e. s1 ∈ f (s2). Then 〈s1, t1,a〉 ∈ E1, where t1 = s1 � post(a). Since R(a, g(a)) holds by definition it follows that τ is 
R↓ . Then also suppose R(�, g(a)) holds for some �. The only possibility is that � = a. We already know that 〈s1, t1,a〉 ∈ E1. 
We get t1 = s1 � post(a) = s2[V 1] � (post(a) ∪ postM(a))[V 1] = s2[V 1] � post(g(a))[V 1] = (s2 � post(g(a)))[V 1] = t2[V 1]. 
Hence, t1 ∈ f (t2). It follows that τ is C↓ . �

We then show that the remaining properties from Definition 9 do not generally hold.

Theorem 43. 
(1) ABS � M↑, (2) ABS � M↓, (3) VP � M↓,
(4) VDA � M↓, (5) RRAa � R↑, (6) RRAb � R↑,
(7) GIDL � C↑, (8) GIDL � C↓, (9) DLBS � M↑

Proof. (1–6,9) Examples 31, 33, 35, 37 and 41 constitute counterexamples.
(7–8) Consider the transformation τ in Example 39. We have R(a, g(a)) and 〈{u, v}, {u, v},a〉 ∈ E1, but there is no �

such that 〈{u, v}, {u, v}, �〉 ∈ E2 Hence, τ is not C↑ . We also have 〈{u, v}, {u, v}, g(a)〉 ∈ E2 but there is no � such that 
〈{u, v}, {u, v}, �〉 ∈ E1. Hence, τ is not C↓ either. �

The following refinement properties can be immediately deduced from the preceding theorems. They are summarised in 
column 3 of Table 1.

Theorem 44. 
(1) ABS ⇒ P1�, (2) VP ⇒ P1↓PS↑, (3) VDA ⇒ P1↓PS↑,
(4) RRAa ⇒ PS↓, (5) RRAb ⇒ PS↓, (6) DLBS ⇒ PS↓P1↑.

Proof. Combine Theorem 42 with Theorem 22 and Corollary 23. �
We now explicitly derive the remaining refinement properties of the methods, to achieve tight separations. These are 

summarised in column 4 of Table 1.
23



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
Theorem 45. 
(1) ABS ⇒ P↑, (2) ABS � PS↑, (3a) ABS � PL↓,
(3b) ABS � P2↓, (4a) VP � PL↓, (4b) VP � P2↓,
(5a) VDA � PL↓, (5b) VDA � P2↓, (6) RRAa ⇒ PS↑,
(7) RRAb ⇒ PS↑, (8) GIDL � P1↓, (9) GIDL � P1↑,
(10) DLBS ⇒ PW↑, (11) DLBS � P↑.

Sketch. (1) Suppose t ∈ f (R1(s)). Then there is a path σ = s0, a1, . . . , am, sm such that s0 = s and t ∈ f (sm). Proof by 
induction over the length of σ that t ∈ f (R1(s0)) implies t ∈R2( f (s0)).

Base case: For m = 0, we have t ∈ f (s0) and, thus, t ∈ f (R1(s0)) and t ∈R2( f (s0)).
Induction: Suppose the claim holds for paths of length k for some k ≥ 0. Suppose there is a path σ = s0, a1, s1, . . . , ak,

sk, ak+1, sk+1 in G1 such that t ∈ f (sk+1), i.e. t[V C ] = sk+1[V C ]. There must exist some state t′ ∈ S2 such that t′
� g(ak+1) = t , 

that is, t′ satisfies both
(a) t′[V C ]� post(g(ak+1))[V C ] = t[V C ] and
(b) t′[V \ V C ]� post(g(ak+1))[V \ V C ] = t[V \ V C ].
We can choose t′ such that t′[V C ] = sk[V C ], since post(g(ak+1)) = post(ak+1)) and t[V C ] = sk+1[V C ], i.e. condition (a) is 
still satisfied by this choice. With this choice of t′ we also have pre(g(ak+1)) ⊆ t′ , since pre(g(ak+1)) = pre(ak+1)[V C ] and 
pre(ak+1) ⊆ sk . It follows that g(ak+1) is from t′ to t , i.e. t ∈ R2(t′). We further have t′ ∈ f (R1(s0)) since t′ ∈ f (sk) and 
it follows from the induction hypothesis that also t′ ∈ R2( f (s0)) since sk is reachable from s0 in k steps. Transitivity of 
reachability yields that t ∈R2( f (s0)). This ends the induction, and it follows that t ∈R2( f (s)), so τ is P↑ .

(2) Consider the ABS transformation in Example 31. There is a path {u, v}, a, {u, v}. We also have {u, v} ∈ f ({u, v}) and 
{u, v} ∈ f ({u, v}), but {u, v} /∈R2({u, v}) so τ is not PS↑ .

(3–4) Let V 1 ={u, v}, where D(u) ={0,1} and D(v) ={0,1,2}. Let a : (u = 0), (v = 0) ⇒ (v = 1) and b : (u = 1), (v = 1) ⇒
(v = 2) be the only actions. Let V C = {v}. Then g(a) : (v = 0) ⇒ (v = 1) and g(b) : (v = 1) ⇒ (v = 2) for both ABS and VP. 
For ABS, {(u = 0), (v = 0)}, g(a), {(u = 0), (v = 1)}, g(b), {(u = 0), (v = 2)} is a path in G2, but there is no path from any 
state in f ({(u = 0), (v = 0)}) to any state in f ({(u = 0), (v = 2)}) in G1. For VP, {(v = 0)}, g(a), {(v = 1)}, g(b), {(v = 2)} is 
a path in G2, but there is no path from any state in f ({(v = 0)}) to any state in f ({(v = 2)}) in G1. Hence, neither method 
is PL↓ or P2↓ .

(5) Let V 1 = {v}, where D1(v) = {0,1,2,3}. Let a : (v = 0) ⇒ (v = 1) and b : (v = 2) ⇒ (v = 3) be the only actions. 
Define hv as hv(0) = 0, hv(1) = hv(2) = 1 and hv(3) = 2. Then g(a) : (v = 0) ⇒ (v = 1) and g(b) : (v = 1) ⇒ (v = 2), so 
{(v = 0)}, g(a), {(v = 1)}, g(b), {(v = 2)} is a path in G2, but there is no path from {(v = 0)} to {(v = 3)} in G1. Hence, VDA
is neither PL↓ nor P2↓ .

(6–7) For both RRAa and RRAb, if 〈s, t,a〉 ∈ E1, then t ∈ R2(s). Hence, RRAa and RRAb are P1↑ and, thus, PS↑ by 
Theorem 21.

(8–9) Consider Example 39. There is a path {u, v}, a, {u, v} in G1, but {u, v} /∈ R2({u, v}). Hence, GIDL is not P1↑ . If we 
remove action b, then there is a path {u, v}, g(a), {u, v} in G2, but {u, v} /∈R1({u, v}). Hence, GIDL is not P1↓ either.

(10) Let s0, a1, s1, a2, . . . , am, sm be a path in G1. Let t0 = s0. Then there is a path t0, g(a1), t1, g(a2), . . . , g(am), tm in G2
such that ti ∈ f (si) for all i. Hence, DLBS is PW↑ .

(11) In Example 41 we have {v, vϕ} ∈ f (R1({v})), but {v, vϕ} /∈R2( f ({v})). Hence, DLBS is not P↑ . �
Without transformation functions, the only reasonable modelling of method ABS would be to define f (s) = s, which is 

the traditional way. This works, but results in the properties M�R�C↑ instead. If using different sets of critical variables for 
the actions, then f collapses to an ordinary M� function whenever there are two actions a and a′ such that V C (a) and 
V c(a′) are disjoint.

Consulting Theorem 13, we immediately see that VP and VDA are strong homomorphisms, while RRAa and RRAb are 
both retractions. Neither of the other three methods can be immediately classified as any of the four ‘usual’ methods in 
Definition 12, although in the case of DLBS it is evident that the reverse transformation is a strong homomorphism. The 
remaining two methods, ABS and GIDL, remain unclassified with respect to Definition 12, yet they can be easily classified 
and compared to the other methods in our framework. This is particularly interesting since ABS was the first abstraction 
method used in planning and GIDL is one of the most influential methods in domain-independent heuristics for planning 
today. It is already known that VP and VDA are essentially equivalent in the sense that a VP instance can be transformed 
into a VDA instance. However, our results demonstrate a strong similarity by analysing their transformation properties only, 
not using any method-specific constructions. We finally conclude that RRA is the only one of the methods that also satisfies 
the DPP property (since DPP is equivalent to P�).

8. Metric properties

In this section we will augment our framework with metric properties for admissibility, in addition to the previous 
qualitative ones for refinement, and investigate how these properties relate to each other. The results we will prove in this 
section are summarized in Fig. 9, where the arrows denote the ⇒ and � relationships between the properties. (Note that 
the figure contains also the new properties that are yet to be defined and that we have applied in Theorem 21.)
24



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
R↑C↑ P1↑=PS↑

A↓

AC↓

P1↓

PS↓

Fig. 9. Relationships between additional properties of M↑ transformations. Arrows denote the ⇒ and � relationships between the properties.

8.1. Metrics and heuristics

Heuristic search attempts to find an optimal solution faster than blind search by using a heuristic function that approx-
imates the true cost to guide the search. It is desirable that this function is admissible, i.e. that it never overestimates the 
true cost, and consistent, i.e. that it satisfies the triangle inequality. For instance, the A∗ search algorithm [44] is near-
optimal under these conditions in the sense of expanding as few nodes as possible for finding an optimal solution [24,56]. 
This is important since A∗ and derivatives of it are commonly used in search and planning today.

More precisely, let R0 be the non-negative reals7 and define R∞
0 =R0 ∪{∞}. Extend =, < and + to R∞

0 in the obvious 
way. Let G = 〈S, E〉 be an STG. Generally, a cost function for G is a function c : S × S →R∞

0 , with the restriction that for all 
s, t ∈ S , c(s, t) = ∞ if and only if t /∈R(s). A heuristic function h for a cost function c is itself a cost function. The heuristic h
is admissible for c if 0 ≤ h(s, t) ≤ c(s, t), for all s, t ∈ S and h is consistent for c if h(s, t) ≤ c(s, u) +h(u, t) for all s, t, u ∈ S . It 
is also common to instead define the heuristic function with respect to a particular set G of goal states as a function hG of 
one state, i.e. hG(s) = mint∈G h(s, t). Our variant is more general and better suited for our purpose of comparing refinement 
with heuristics, and it is a reasonable assumption for domain-independent heuristics since hG can be “simulated” by adding 
zero-weight arcs from all states in G to a single dedicated goal state [91].

Gaschnig [36] suggested to view both the ground and abstract search spaces as graphs and to define the abstraction such 
that the length of paths in the abstract graph is an admissible heuristic for the length or cost of the corresponding paths in 
the ground graph. That is, abstraction is viewed as a graph transformation. This is a very common way to view abstraction 
heuristics today [31,59]. It is even common to preprocess the abstract graph and store the path lengths in a pattern database 
[23], or to compute a heuristic function from several such databases [45]. We will consider this method of using an abstract 
graph to define the heuristic function for a ground graph as follows. Let G = 〈S, E〉 be an STG. First define a weight function 
w : S × S →R∞

0 , which must respect that w(s, s) = 0 for all s ∈ S and that w(s, t) = ∞ if and only if there is no arc from 
s to t in E . The exact definition of w does not matter; it could be an arbitrary assignment, it could be based on a weight 
function on the labels such that w(s, t) is the minimum weight of all labels on the arcs from s to t etc. We extend the 
weight function to paths such that w(s0, . . . , sk) = ∑k

i=1 w(si−1, si). Although it is common that the arc weights are given 
by the labels (i.e. the actions), it is usually only the weights that are considered when computing heuristics, so in that 
sense, the actual labels are irrelevant. Following common practice in this context, we only consider cost functions that are 
implicitly defined by the weight function w such that c(s, t) is the minimum of w(σ ) over all paths σ from s to t , i.e. c(s, t)
is the cost of the cheapest path from s to t . Note that c(s, t) = ∞ if and only if there is no path from s to t . We also define 
the specific weight function d, the distance function, which is defined such that d(s, t) = 1 if there is an arc from s to t in E
and otherwise d(s, t) = ∞, i.e. d represents the unit cost assumption. When considering two STGs G1 and G2 simultaneously 
we index their corresponding c, d and w functions analogously, for instance, w1 is the weight function for G1.

We extend transformations with metric information, and we write τ = 〈 f , R, w1, w2〉 when 〈 f , R〉 is a transformation 
from G1 to G2 and w1 and w2 are the weight functions for G1 and G2, respectively. We could alternatively extend the 
STGs with weight functions. There is no difference in principle between the choices, but our approach allows for a simpler 
analysis. The cost functions c1 and c2 are implicitly defined by w1 and w2. For instance, using the path length in the abstract 
graph as a heuristic estimate for the path length in the ground graph corresponds to an 〈 f , R,d1,d2〉 transformation, while 
an 〈 f , R, w1,d2〉 transformation estimates path costs in the ground graph with path lengths in the abstract graph. In order 
to accommodate cost functions in our framework we will introduce some new metric properties in this section. We only 
consider such properties for M↑ transformation functions, since abstraction heuristics usually assume that f is an ordinary 
function and there is no consensus on how to define heuristics for set-valued abstraction functions. We similarly only define 
downwards metric properties since heuristics are typically only used in that direction. Corresponding upwards properties 
could be defined symmetrically, if needed.

It is common to consider admissible heuristics that are also consistent, although exceptions are possible [34]. In our 
case, the heuristic function c2 is based on minimum lengths or costs of paths in an abstract graph, so it always satisfies 
the triangle inequality, i.e. c2(s, t) ≤ c2(s, u) + c2(u, t) for all states s, t, u ∈ S2. Suppose τ is admissible, i.e. c2( f (s), f (t)) ≤
c1(s, t) for all s, t ∈ S1. Then, for all s, t, u ∈ S1 we get that

7 We use reals for generality of the results. In practice we are, of course, restricted to integers and rationals, and the choice of the numeric domain 
influences the computational complexity of finding cost-optimal paths [1].
25



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1:

11

12

21

22

31

32

G2: 1 2 3

f

Fig. 10. A transformation that is PS↑ but not A↓ . Unit label � assumed.

c2( f (s), f (t)) ≤ c2( f (s), f (u)) + c2( f (u), f (t)) ≤ c1(s, u) + c2( f (u), f (t)),

that is, c2 must also be a consistent heuristic for c1. Hence, there is no need to consider consistency explicitly.

Definition 46. An M↑ transformation τ = 〈 f , R, w1, w2〉 can have the following metric properties:

A↓: c2( f (s), f (t)) ≤ c1(s, t) for all s, t ∈ S1.
AC↓: c2( f (s), f (t)) ≤ c1(s, t) or c2( f (s), f (t)) = ∞ for all s, t ∈ S1.

Property A↓ corresponds to admissibility and AC↓ is a conditional variant of A↓ that is incomplete, admissibility is only 
required to hold in the cases where there actually is a path in G2. The following proposition is immediate.

Proposition 47. (1) M↑A↓ ⇒ AC↓ (2) M↑AC↓ � A↓

The results in the remainder of this section will fill in the rest of the arrows in Fig. 9.

8.2. Metric properties and upwards refinement

The following theorem formalizes that admissibility implies completeness, but the opposite is false; not even the 
strongest form of completeness, PS↑ , guarantees admissibility. Furthermore, conditional admissibility is not strong enough 
to imply even the weakest form of completeness.

Theorem 48. 
(1) M↑A↓ ⇒ PS↑ (2) M↑PS↑ � AC↓ (3) M↑AC↓ � P1↑

Proof. In each case below, let τ = 〈 f , R, w1, w2〉 be an M↑ transformation from G1 = 〈S1, E1〉 to G2 = 〈S2, E2〉.
(1) Choose G1, G2 and τ arbitrarily. Suppose τ is A↓ . Let e = 〈s, t, �〉 be an arbitrary arc in E1. Then c1(s, t) < ∞, so 

c2( f (s), f (t)) < ∞ since τ is A↓ . Hence, f (t) ∈ R2( f (s)). Since e was chosen arbitrarily, it follows that τ is P1↑ and, thus, 
also PS↑ by Theorem 21.

(2) Let S1 = S2 = {1,2,3}, E2 = {〈1,2,a〉, 〈2,3,a〉} and E1 = E2 ∪ {〈1,3,a〉} Let f be the identity function, R = {〈a,a〉}
and τ = 〈 f , R,d1,d2〉. Then, τ is clearly PS↑ , but not AC↓ since c1(1, 3) = d1(1, 3) = 1 but c2( f (1), f (3)) = d2( f (1), f (2)) +
d2( f (2), f (3)) = 2.

(3) Let S1 = S2 = {1,2}, E1 = {〈1,2,a〉}, E2 = ∅, f (1) = 1, f (2) = 2, R(a, a) and τ = 〈 f , R,d1,d2〉. Then τ is vacuously 
AC↓ , but it is not P1↑ . �

We obviously also get M↑A↓ ⇒ P1↑ , M↑PS↑ � A↓ and other immediate consequences. Fig. 10 is an example of a PS↑
transformation (the labelling is omitted for readability since all arcs have label �). However, there is a one-arc path 12, 32
in G1 but the shortest path from f (12) to f (32) in G2 is of length 2. If we apply unit cost to both graphs, then the 
transformation cannot be A↓ .

It is sufficient to combine conditional admissibility with the weakest form of completeness to get full admissibility, as 
the following theorem demonstrates.

Theorem 49. M↑P1↑AC↓ ⇒ A↓

Proof. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be arbitrary STGs and let τ = 〈 f , R, w1, w2〉 be an arbitrary M↑P1↑AC↓ trans-
formation. Let s, s′ be two arbitrary states in S1. If c1(s, s′) = ∞, then c2( f (s), f (s′)) ≤ c1(s, s′) holds trivially, so suppose 
c1(s, s′) < ∞. Then there is a path s0, . . . , sn in G1, where s0 = s and sn = s′ . Since τ is M↑ and P1↑ there are states 
t0, . . . , tn ∈ S2 such that ti = f (si) for all i (0 ≤ i ≤ n) and ti ∈ R2(ti−1) for all i (1 ≤ i ≤ n). Hence, tn ∈ R2(t0), i.e. 
26



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G1:

11

12

21

22

31

32

G2: 1 2 3

f

G1:

11

12

21

22

31

32

G2: 1 2 3

f

Fig. 11. Transformations that are PS↓ but not AC↓ (left) and A↓ but not P1↓ (right). Unit label � assumed.

f (s′) ∈ R2( f (s)), so it must hold that c2( f (s), f (s′)) ≤ c1(s, s′) since τ is AC↓ . It follows that τ is A↓ since s and s′ were 
chosen arbitrarily. �
8.3. Metric properties and downward refinement

Admissibility enforces completeness but not soundness; that is, there can be an abstract path with no corresponding 
ground path. In fact, admissibility and downward refinement are largely orthogonal and incomparable concepts.

Theorem 50. (1) M↑PS↓ � AC↓ (2) M↑A↓ � P1↓

Proof. (1) Use the same counterexample as in the proof of Theorem 48(2) and note that τ is also PS↓ . However, c1(1, 3) = 1
but c2( f (1), f (3)) = 2, so τ is not AC↓ .

(2) Let S1 = S2 = {1,2}, E1 = ∅ and E2 = {〈1,2,a〉}. Also let f be the identity function, R = ∅ and τ = 〈 f , R,d1,d2〉. 
Then τ is A↓ but not P1↓ since E1 = ∅. �

We can also prove similar results for the hierarchy of refinement properties.

Theorem 51. 
(1) M↑P1↓A↓ � PL↓ (2) M↑PL↓A↓ � PW↓
(3) M↑PW↓A↓ � P↓ (4) M↑P↓A↓ � PS↓

Proof. (1-4) Follows from Theorem 18 since Examples 17(1, 3, 4) are A↓ for τ = 〈 f , R,d1,d2〉 and Example 17(2) is A↓ for 
τ = 〈 f , R, w1,d2〉, where w1 = d1 except that w1(1, 4) = 2. �

The major reason for these results is that refinement is defined without any metrics; even if we have a guarantee that 
an abstract plan can be refined into a ground plan, we have no guarantee that there is no shorter ground plan.

To illustrate Theorem 51, consider the transformation in Fig. 11(left), which is obviously PS↓ . It does, however, have a 
path in G1 of length one from 12 to 32, while the shortest path from f (12) = {1} to f (32) = {3} is of length 2. It follows 
that the transformation is not A↓ , or even AC↓ . That is, it is sound in the strongest sense but d2 is not even a conditionally 
admissible heuristic for d1.

Then consider the transformation in Fig. 11(right). There is a path of length one, i.e. an arc, in G2 from 2 to 3 but 
there is no path of whatever length in G1 from some state in f (2) = {21,22} to some state in f (3) = {31,32}. Hence, 
the transformation, is not P1↓ . It is A↓ , though. Note, for instance, that d2(2, 3) = 1 because of the arc from 2 to 3 while 
d1(s, s′) = ∞ for all s ∈ f (2) and s′ ∈ f (3). That is, d2 is an admissible heuristic for d1 but the transformation is not sound 
even in the trivial sense.

8.4. Relating metric and non-metric properties

Also the properties in Definition 9 have connections with the metric properties. We know that M↑R↑C↑ ⇒ PS↑ and 
PS↑ ⇒ P1↑ , so it follows from Theorem 49 that M↑R↑C↑AC↓ ⇒ A↓ . However, we can also derive the following more direct 
relationship between metric and non-metric properties, since M↑R↑C↑ transformations are homomorphisms.

Proposition 52. Let τ = 〈 f , R, w1, w2〉 be an M↑R↑C↑ transformation. Then:

1. If w2( f (s), f (t)) ≤ w1(s, t) for all s, t ∈ S1 such that 〈s, t, �〉 ∈ E1 for some � ∈ L(E1) and 〈 f (s), f (t), �′〉 ∈ E2 for some �′ ∈
L(E2), then τ is A↓ .

2. Otherwise, τ need not be A↓.
27



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
8.5. Examples with metric properties

In this section we give examples of how the extended framework can be used to express new things or express old 
things in new ways. The examples are deliberately quite different from each other in order to demonstrate the breadth of 
applicability of an abstract framework of this kind.

8.5.1. Admissibility and homomorphisms
Homomorphisms, i.e. M↑R↑C↑ transformations, are known to be very suitable as abstraction functions in heuristic search, 

cf. the articles by Holte et al. [59], Helmert et al. [48] and Zilles and Holte [92]. One reason for this is that they are 
admissible. The following result shows that also the opposite holds, admissibility implies that the abstraction function is a 
homomorphism, if all arcs in both graphs have unit cost. Without unit costs, this relationship breaks down. This is a most 
relevant observation in the context of using the path length in the abstract graph as the heuristic estimate for the path 
length or path cost in the ground graph.

Theorem 53. Let τ = 〈 f , R, w1,d2〉 be an M↑A↓ transformation. Then:

1. If w1(s, t) < 2 or w1(s, t) = ∞ for all s, t ∈ S1 , then f is a homomorphism.
2. Otherwise f need not be a homomorphism.

Proof. (1) Suppose that τ is M↑A↓ and w1(s, t) < 2 or w1(s, t) = ∞ for all s, t ∈ S1. Then suppose that f is not a 
homomorphism. There must then be some arc 〈s, t, �〉 ∈ E1 such that 〈 f (s), f (t), �′〉 /∈ E2 for any �′ ∈ L(E2). That is, 
c1(s, t) ≤ w1(s, t) < 2, but every path from f (s) to f (t), must be of length 2 or more. Hence, c2( f (s), f (t)) ≥ 2, so 
c2( f (s), f (t)) > c1(s, t) and τ cannot, thus, be A↓ . This contradicts the assumption, so f must be a homomorphism.

(2) Let S1 = S2 = {1,2,3}, E1 = {〈1,3,a〉}, E2 = {〈1,2,a〉, 〈2,3,a〉}. Let f (s) = s for all s ∈ S1 and let w1(1, 3) = 2. 
Clearly, τ is A↓ for this example. However, f is not a homomorphism since 〈1,3,a〉 ∈ E1 but 〈 f (1), f (3),a′〉 /∈ E2 for any 
a′ ∈ L(E2). �
8.5.2. Spurious states

We have earlier noted that the DPP criterion [92] is equivalent to P� . Since A↓ ⇒ PS↑ and PS↑ ⇒ P↑ , we can alternatively 
define the DPP property as P↓A↓ , instead of P� . Although P↓A↓ is a stronger criterion than P� it means that we need not 
verify independently that P↑ holds if we already know that the heuristic is admissible, which is often the case.

8.5.3. Globally admissible heuristics
Karpas and Domshlak [62] considered optimal solutions with non-admissible heuristics. One example is so called globally 

admissible heuristics, which need only be admissible for the states along some optimal plan. Let G = 〈S, E〉 be an STG, c a 
cost function for G and h a heuristic for c. Then, for arbitrary s, t ∈ S , h is globally admissible for c from s to t if there is 
an optimal path s0, . . . , sn such that s0 = s, sn = t and h(si, t) ≤ c(si, t) for all i, 0 ≤ i ≤ n. One may view this concept in the 
following alternative way.

Theorem 54. Let τ = 〈 f , R, w1, w2〉 be an M↑AC↓ transformation from G1 to G2 . For all states s and t in G1 , if there is an optimal 
path σ from s to t in G1 such that f (σ ) is a path in G2 , then c2 is a globally admissible heuristic for c1 from s to t.

Proof. Since σ is a path from s to t in G1 and f (σ ) is a path in G2, the latter must be a path from f (s) to f (t). Hence, 
c2( f (s), f (t)) < ∞, so c2( f (u), f (t)) < ∞ for all states u along σ . The theorem then follows by definition of AC↓ . �

This makes use of properties M↑ and AC↓ and a type of completeness property that is even weaker than P1↑ .

8.5.4. Valtorta’s theorem
Valtorta [90] proved that when using embeddings as abstraction functions, it is not possible to explore fewer nodes in 

total, counting both ground and abstract nodes, when using the A∗ search algorithm [44] with path length in the abstract 
graph as heuristic estimate, than if using Dijkstra’s algorithm directly in the ground graph. This was later generalised to 
abstraction functions in general by Holte et al. [61]. This is known as the generalised version of Valtorta’s theorem and can 
be stated as follows using our notation and formalism.

Theorem 55 (Generalised Valtorta’s theorem, [31,61]). Assume τ = 〈 f , R,d1,d2〉 is an M↑ transformation. Let u be any state in G1
that is necessarily expanded when the instance 〈s, t〉 is solved by blind search in G1 and let the heuristic function h be h(u, t) =
d2( f (u), f (t)), computed by blind search in G2. If A∗ solves this instance, then either u or f (u) will be expanded during the search.

We follow Holte et al. [61] and view blind search as A∗ search without a heuristic, i.e. a kind of breadth-first search. Holte 
et al. noted that this does not rule out that some abstractions might explore fewer nodes in total. (The theorem is somewhat 
weak, though, since it only tells us that u or f (u) is expanded, allowing the possibility that both are expanded.) It is well
28



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
known that this requires that there are abstract nodes corresponding to two or more ground nodes; the expansion of an 
abstract node can then result in a heuristic estimate that prevents A∗ from exploring the corresponding ground nodes. An 
alternative characterization of this is that f is not M↓ . While this is hardly an interesting new result itself, it demonstrates 
that the framework defined so far is sufficient to express this important criterion for A∗ search.

We may also step outside the M↑ assumption. Suppose we have some concept of expanding f (u) for a state u when 
f is not M↑ . We need not have a precise definition of this concept to see that Theorem 55 still holds, and that f must still 
not be M↓ to have any chance of exploring fewer nodes.

8.5.5. Previous abstraction methods and admissibility
All of the methods VP, VDA, RRAa and GIDL are M↑ and they also satisfy that if a1, . . . , an is a plan for P1, then 

g(a1), . . . , g(an) is a plan for P2. Hence, these methods are all suitable for defining admissible heuristics, if w2( f (s), f (t)) ≤
w1(s, t) for all s, t . Also RRAb is M↑ , but it is not A↓ in general since the costs in the two graphs have no suitable 
relationship. The usual admissibility concept does not even apply to methods ABS and DLBS, since they are not M↑ .

Since VP and VDA are M↑R↑C↑ , we can alternatively apply Theorem 52 to derive that they are A↓ under the stated 
assumptions about the graph weights. Also, GIDL is known to be admissible, which is essential for its success as a heuristic. 
Yet, this does not follow automatically from any inherent properties in our framework, but must be explicitly derived. This 
indicates that it differs from methods like VP and VDA in some fundamental way.

9. Transformation composition and abstraction hierarchies

In this section, we define composition of transformations and define a transitivity concept for transformation properties. 
This is important in cases where we have to combine transformations, either the same type, as in hierarchical abstraction, 
or mixed types, as in computing the Merge and Shrink heuristic. We thus prove that essentially all properties, as well as 
the previous planning abstraction methods, are transitive.

9.1. Composition of transformations

Let S1, S2 and S3 be sets of states and let f1 : S1 → 2S2 and f2 : S2 → 2S3 be functions. Then the composition f1 ◦ f2
of f1 with f2 is defined in the usual way,8 i.e. ( f1 ◦ f2)(s) = f2( f1(s)) for all s ∈ S1. Note that f1(s) is a set of states, so 
f2( f1(s)) = ⋃

t∈ f1(s) f2(t) according to our previous definitions. That is, ( f1 ◦ f2)(s) is a set of states in S3, not a set of 
subsets of S3. This is essential, since f1◦ f2 could otherwise never be a transformation function from S1 to S3.

The composition f1◦ f2 is not necessarily a transformation function, even if both f1 and f2 are transformation functions, 
as the following example shows.

Example 56. Let S1 = S3 = {0,1} and S2 = {0,1,2}. Define two transformation functions f1 : S1 → 2S2 and f2 : S2 → 2S3

such that f1(0) = {0,1}, f1(1) = {2}, f2(0) = {0} and f2(1) = f2(2) = {1}. Then ( f1◦ f2)(0) = {0,1} and ( f1◦ f2)(1) = {1}, so 
f1◦ f2 is not a transformation function.

Conversely, f1◦ f2 can be a transformation function even if neither f1 nor f2 is a transformation function.

Example 57. Let S1 = S3 = {0,1}, S2 = {0,1,2} and let the functions f1 : S1 → 2S2 and f2 : S2 → 2S3 be defined such that 
f1(0) = {0}, f1(1) = {1}, f2(0) = {0}, f2(1) = {1} and f2(2) = {0,1}. Then neither f1 nor f2 is a transformation function. 
However, ( f1◦ f2)(0) = {0} and ( f1◦ f2)(1) = {1}, so f1◦ f2 is a transformation function.

We will frequently say that a composition f1◦ f2 is a transformation function without specifying the domain and range, 
since these are implicitly defined by f1 and f2. We will not give a precise characterisation of when a composition is a 
transformation function or not, but the following is a sufficient condition.

Definition 58. Let S1, S2 and S3 be state spaces, let f1 be a transformation function from S1 to S2 and let f2 be a transfor-
mation function from S2 to S3. Then the tuple 〈 f1, f2〉 has the intermediate subset property if for all s ∈ S1 and u ∈ ( f1◦ f2)(s)
either (1) f1(s) ⊆ f2(u) or (2) f2(u) ⊆ f1(s).

Theorem 59. Let S1 , S2 and S3 be state spaces, let f1 be a transformation function from S1 to S2 and let f2 be a transformation 
function from S2 to S3 . Then f1◦ f2 is a transformation function if 〈 f1, f2〉 has the intermediate subset property.

Proof. Let f3 = f1◦ f2. Suppose 〈 f1, f2〉 has the intermediate subset property. Then suppose that f3 is not a transformation 
function. We first note that f3 must be a total function since f1 and f2 are total, so it must be the case that Rng( f3)

is not a partition of S3. Obviously, f3(S1) covers S3 and f3(s) �= ∅ for all s ∈ S1. Hence, there must be s, s′ ∈ S1 such

8 Note that both definitions ( f1 ◦ f2)(s) = f2( f1(s)) and ( f1 ◦ f2)(s) = f1( f2(s)) occur in the literature.
29



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
that f3(s) �= f3(s′) and f3(s) ∩ f3(s′) �= ∅, since Rng( f3) is not a partition of S3. There must then be u, u′ ∈ S3 such that 
u ∈ f3(s) ∩ f3(s′) and either u′ ∈ f3(s) \ f3(s′) or u′ ∈ f3(s′) \ f3(s). Without losing generality, assume that u′ ∈ f3(s) \ f3(s′). 
Let T = f1(s) and T ′ = f1(s′). Then T �= T ′ since f2(T ) = f3(s) �= f3(s′) = f2(T ′). It follows that s �= s′ and T ∩ T ′ = ∅, since 
f1 is a transformation function. It also follows that u ∈ f2(T ) ∩ f2(T ′) and u′ ∈ f2(T ) \ f2(T ′). There are, thus, t, t′ ∈ T such 
that u ∈ f2(t) and u′ ∈ f2(t′). There is also some t′′ ∈ T ′ such that u ∈ f2(t′′). Suppose that t = t′ . Then u′ ∈ f2(t), so we have 
{u, u′} ⊆ f2(t) and {u} ⊆ f2(t′′). However, it must then hold that also u′ ∈ f2(t′′) since f2 is a transformation function. This 
contradicts the assumptions and it hence follows that t �= t′ . We now have t, t′ ∈ f1(s), t′′ /∈ f1(s), t, t′′ ∈ f2(u) and t′ /∈ f2(u). 
It follows that neither f1(s) ⊆ f2(u) nor f2(u) ⊆ f1(s) can hold, but this contradicts the assumptions so we conclude that 
f3 must be a transformation function. �

The following condition is an immediate consequence.

Corollary 60. A composition f1◦ f2 of two transformation functions f1 and f2 is a transformation function if either f1 is M↑ or f2 is 
M↓ .

While Theorem 59 is a sufficient condition, it is not a necessary one, as the following example shows.

Example 61. Let S1 = S3 = {1,2} and S2 = {1,2,3,4}. Define the transformation functions f1 from S1 to S2 and f2 from 
S2 to S3 such that f1(1) = {1,2}, f1(2) = {3,4}, f2(1) = f2(3) = {1} and f2(2) = f2(4) = {2}. Let f3 = f1 ◦ f2. We get 
f3(1) = f3(2) = {1,2}, so f3 is a transformation function. However, 〈 f1, f2〉 does not have the intermediate subset property.

We define composition of label relations in the usual way. Let G1 = 〈S1, E1〉, G2 = 〈S2, E2〉 and G3 = 〈S3, E3〉 be STGs. 
Let R1 be a label relation from E1 to E2 and let R2 be a label relation from E2 to E3. Then the composition R1 ◦R2 of R1
with R2 is R1 ◦ R2 = {〈�1, �3〉 | ∃�2 ∈ L(E2).R(�1, �2) and R(�2, �3)}. It is immediate that R1 ◦ R2 is always a label relation. 
Furthermore, let τ1 = 〈 f1, R1〉 be a transformation from S1 to S2 and let τ2 = 〈 f2, R2〉 be a transformation from S2 to 
S3. Then the composition τ1 ◦τ2 of τ1 with τ2 is defined as τ1 ◦τ2 = 〈 f1◦ f2, R1◦R2〉. It is immediate that τ1 ◦τ2 is a 
transformation from G1 to G3 if and only if f1◦ f2 is a transformation function from S1 to S3. We will frequently say that 
τ1◦τ2 is a transformation without explicitly specifying the STGs, meaning that f1◦ f2 is a transformation function.

9.2. Transitivity of transformation properties

One of the properties that make homomorphic abstractions attractive is transitivity, i.e. the composition of two homo-
morphisms is itself a homomorphism [48]. This is particularly interesting when forming hierarchies of abstractions [65,3,61]; 
if we have a hierarchy τ1, τ2, . . . , τn of transformations that all have a property X, then it is desirable that also the com-
posite transformation τ1 ◦τ2 ◦ . . .◦τn has property X. Since we do not restrict ourselves to homomorphisms, or any other 
particular type of abstraction, we instead show that almost all transformation properties in this article are transitive in the 
following sense.

Definition 62. A transformation property X is transitive if for all STGs G1, G2 and G3, and for all transformations τ1 from 
G1 to G2 and τ2 from G2 to G3 the following holds:

if both τ1 and τ2 are X and τ1◦τ2 is a transformation, then τ1◦τ2 is X.

All properties in Definition 9 are transitive.

Theorem 63. Properties M↑, M↓ , R↑ , R↓ , C↑ and C↓ are transitive.

Proof. We show only the upwards cases. The downwards cases are analogous. Let G1 = 〈S1, E1〉, G2 = 〈S2, E2〉 and 
G3 = 〈S3, E3〉 be arbitrary STGs. Let τ1 = 〈 f1, R1〉 from G1 to G2 and τ2 = 〈 f2, R2〉 from G2 to G3 be two arbitrary 
transformations such that τ1◦τ2 is a transformation, i.e. f1◦ f2 is a transformation function. Define f3 = f1◦ f2, R3 = R1◦R2
and τ3 = τ1◦τ2 = 〈 f3, R3〉.

M↑: Suppose both τ1 and τ2 are M↑ . Choose s ∈ S1 arbitrarily. By definition, f3(s) = f2( f1(s)) = ⋃
t∈ f1(s) f2(t). However, 

f1 is M↑ so there is some t ∈ S2 such that f1(s) = t . Hence, f3(s) = f2(t) and it follows that | f3(s)| = 1 since f2 is M↑ . 
Hence, f3 is M↑ since s was chosen arbitrarily.

R↑: Immediate from the definitions of composition.
C↑: Suppose both τ1 and τ2 are C↑ . Let 〈s1, t1, �1〉 be an arbitrary edge in E1 and let �3 ∈ L(G3) be an arbitrary label 

such that R3(�1, �3). By definition of R3 there must be some label �2 ∈ L(G2) such that R1(�1, �2) and R2(�2, �3). Since τ1
is C↑ there must, thus, be some edge 〈s2, t2, �2〉 ∈ E2 such that s2 ∈ f1(s1) and t2 ∈ f1(t1). Furthermore, since also τ2 is C↑
there must be some edge 〈s3, t3, �3〉 ∈ E3 such that s3 ∈ f2(s2) and t3 ∈ f2(t2). It then follows from the definition of f3 that 
s3 ∈ f3(s1) and t3 ∈ f3(t1). Hence, τ3 is also C↑ since s1, s2, �1 and �3 were chosen arbitrarily. �
30



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
Also all important refinement properties are transitive.

Theorem 64. Properties PL↓ , PL↑ , PW↓ , PW↑ , P↓ , P↑ , PS↓ and PS↑ are transitive.

Proof. We show only the downwards cases. The upwards cases are analogous. Let G1 = 〈S1, E1〉, G2 = 〈S2, E2〉 and 
G3 = 〈S3, E3〉 be arbitrary STGs. Let τ1 = 〈 f1, R1〉 from G1 to G2 and τ2 = 〈 f2, R2〉 from G2 to G3 be two arbitrary 
transformations such that τ1◦τ2 is a transformation, i.e. f1◦ f2 is a transformation function. Define f3 = f1◦ f2, R3 = R1◦R2
and τ3 = τ1◦τ2 = 〈 f3, R3〉.

PL↓: Suppose both τ1 and τ2 are PL↓ . Let σ = u0, . . . , um in G3 be an arbitrary path in G3. Since τ2 is PL↓ there are 
states t0 ∈ f2(u0) and tn ∈ f2(un) such that tn ∈ R2(t0). Hence, there must be a path t0, . . . , tn in G2. Since also τ1 is PL↓
there are states s0 ∈ f1(t0) and s� ∈ f1(tn) such that s� ∈ R1(s0). It follows that s0 ∈ f3(u0) and s� ∈ f3(um). Hence, τ3 is 
PL↓ since σ was chosen arbitrarily.

PW↓: Suppose both τ1 and τ2 are PW↓ . Let σ = u0, . . . , um ∈ S3 be an arbitrary path in G3. Since τ2 is PW↓ there are 
states t0, . . . , tm ∈ S2 such that ti ∈ f2(ui) for all i (0 ≤ i ≤ m) and ti ∈ R2(ti−1) for all i (1 ≤ i ≤ m). That is, there is a 
path v0, . . . , vn ∈ S2, where m ≤ n, and integers i0, . . . , im such that 0 = i0 < i1 < i2 < . . . < im = n and t j = vi j for all j

(0 ≤ j ≤ m). Since also τ1 is PW↓ there are states s0, . . . , sn ∈ S1 such that si ∈ f1(vi) for all i (0 ≤ i ≤ n) and si ∈R(si−1) for 
all i (1 ≤ i ≤ n). For all j (0 ≤ j ≤ m) it thus holds that vi j ∈ f2(u j) and that si j ∈ f1(vi j ), i.e. si j ∈ f3(u j). It also holds for 
all j (1 ≤ j ≤ m) that si j ∈R1(si j−1 ) since reachability is transitive. It follows that τ3 is PW↓ , since σ was chosen arbitrarily.

P↓: Suppose both τ1 and τ2 are P↓ . Let s1 ∈ S1 and t3 ∈ S3 be arbitrary states such that t3 ∈R3( f3(s1)), i.e. there is some 
state s3 ∈ f3(s1) such that t3 ∈ R3(s3). By definition of f3 there must also be some state s2 ∈ S2 such that s2 ∈ f1(s1) and 
s3 ∈ f2(s2). Then t3 ∈R3( f2(s2)), so t3 ∈ f (R2(s2)) since τ2 is P↓ . That is, there is some t2 ∈R2(s2) such that t3 ∈ f (t2). It 
follows that t2 ∈ R2( f1(s1)), so t2 ∈ f1(R1(s1)) since τ1 is P↓ . Hence, t3 ∈ f2( f1(t1)) = f3(t1) so t3 ∈ f3(R1(s1)). It follows 
that R3( f3(s1)) ⊆ f3(R1(s1)) and, thus, that τ3 is P↓ since s1 was chosen arbitrarily.

PS↓: Analogous to the PW↓ case. �
The properties Pk↑ and Pk↓ , on the other hand, are not transitive for any fixed k, which is less important since they are 

primarily used as tools for defining other properties.
We define composition of metric transformations in the obvious way. Let G1, G2 and G3 be STGs, let τ1 =

〈 f1, R1, w1, w2〉 be a metric transformation from G1 to G2 and let τ2 = 〈 f2, R2, w2, w3〉 be a metric transformation from 
G2 to G3. Then τ1◦τ2 = 〈 f1◦ f2, R1◦R2, w1, w3〉, i.e. the weights in the graphs remain unchanged.

Theorem 65. Properties A↓ and AC↓ are transitive.

Proof. We prove only the A↓ case, since the AC↓ case is analogous. Let G1 = 〈S1, E1〉, G2 = 〈S2, E2〉 and G3 = 〈S3, E3〉
be arbitrary STGs. Let τ1 = 〈 f1, R1, w1, w2〉 from G1 to G2 and let τ2 = 〈 f2, R2, w2, w3〉 from G2 to G3 be two arbitrary 
M↑ metric transformations. Suppose τ1 and τ2 are A↓ and that τ1 ◦τ2 is a transformation, i.e. f1 ◦ f2 is a transformation 
function. Define f3 = f1◦ f2, R3 = R1◦R2 and τ3 = τ1◦τ2 = 〈 f1◦ f2, R1◦R2, w1, w3〉. Let s1, t1 be arbitrary states in S1. Then 
there are states s2, t2 ∈ S2 such that s2 = f1(s1) and t2 = f1(t1) and states s3, t3 ∈ S3 such that s3 = f2(s2) and t3 = f2(t2). 
It follows from Theorem 63 that f3 is M↑ since both f1 and f2 are M↑ , so s3 = f3(s1) and t3 = f3(t1). Furthermore, 
c2( f1(s1), f1(t1)) = c2(s2, t2) ≤ c1(s1, t1) since τ1 is A↓ and c3( f2(s2), f2(t2)) = c3(s3, t3) ≤ c2(s2, t2) since τ2 is A↓ . It follows 
that c3( f3(s1), f3(t1)) = c3(s3, t3) ≤ c1(s1, t1) and, hence, that τ3 is A↓ since s1 and t1 were chosen arbitrarily. �
9.3. Transitivity of planning abstractions

In this section, we will show that (almost) all of the abstraction methods in Section 6 are transitive. It becomes es-
sential here to cast these in the relational form that we have used. Although some of the methods have been used in a 
compositional manner in the literature, to create abstraction hierarchies, there is no obvious or standard way to define the 
extra information for compositions. Consider the composition of two ABS transformations τ1, with critical variables V C1 and 
function g1, and τ2, with critical variables V C2 and function g2. In practice, the sets V C1 and V C2 will usually be chosen 
by some principle. However, if we construct the composite transformation τ3 = τ1 ◦τ2, then there is no single obvious or 
standard way to construct the set of critical variables for this composition. Hence, we will instead show that there exists a 
systematic way to choose a set V C3 and function g3 such that τ3 preserves the ABS property.

Theorem 66. Methods ABS, VP, VDA, RRAa, RRAb and GIDL are transitive.

Proof. Let F1 = 〈V 1, D1, A1〉, F2 = 〈V 2, D2, A2〉 and F3 = 〈V 3, D3, A3〉 be arbitrary SAS+ frames with corresponding STGs 
G1 = 〈S1, E1〉, G2 = 〈S2, E2〉 and G3 = 〈S3, E3〉. Let τ1 = 〈 f1, R1〉 from F1 to F2 and τ2 = 〈 f2, R2〉 from F2 to F3 be two 
arbitrary transformations. Recall that τ1 is then implicitly a transformation from G1 to G2 and τ2 a transformation from 
31



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
G2 to G3. Suppose that τ1◦τ2 is a transformation, i.e. f1◦ f2 is a transformation function. Define f3 = f1◦ f2, R3 = R1◦R2
and τ3 = τ1◦τ2 = 〈 f3, R3〉.

ABS: Suppose both τ1 and τ2 are ABS. Then there are two corresponding sets V C1 ⊆ V 1 and V C2 ⊆ V 2 of critical variables 
and two corresponding bijections g1 : A1 → A2 and g2 : A2 → A3, such that Definition 30 is satisfied for both τ1 and τ2. 
We must prove that there is a set V C3 ⊆ V 1 of critical variables and a bijection g3 : A1 → A3 such that τ3 is an ABS
transformation from F1 to F3. Note that τ3 does not specify V C3 and g3, there must only exist a choice of them that 
satisfies Definition 30 for τ3. Choose9 V C3 = V C1 ∩ V C2 and g3 = g1◦g2, which is a bijection. We now prove that conditions 
(1)–(5) in Definition 30 are satisfied.

(1) We have V 2 = V 1 and D2 = D1, since τ1 is ABS, and V 3 = V 2 and D3 = D2 since τ2 is ABS, so it follows that V 3 = V 1
and D3 = D1.

(2) {g3(a) | a ∈ A1} = {g2(g1(a)) | a ∈ A1} = {g2(a) | a ∈ A2} = A3.
(3) For all a ∈ A1, we get pre(g3(a)) = pre(a)[V C3] = pre(a)[V C1 ∩ V C2] = pre(a)[V C1][V C2] = pre(g1(a))[V C2] =

pre(g2(g1(a)) and that post(g3(a)) = post(a) = post(g1(a)) = post(g2(g1(a)).
(4) We need to prove that f3(s) = {u ∈ S3 | s[V C3] = u[V C3]} for all s ∈ S1. We have that u ∈ f3(s) = f2( f1(s)) if and 

only if there is some t ∈ S2 such that t ∈ f1(s) and u ∈ f2(t). By definition, this is equivalent to t[V C1] = s[V C1] and 
u[V C2] = t[V C2 ], which holds if and only if s[V C1 ∩ V C2] = u[V C1 ∩ V C2]. Since V C3 = V C1 ∩ V C2 it follows that u ∈ f3(s) if 
and only if s[V C3] = u[V C3].

(5) By definition, R3 = R1◦R2. We have R1(a1, a2) if only if a2 = g1(a1) and R2(a2, a3) if and only if a3 = g2(a2). Hence, 
we have R3(a1, a3) if and only if a3 = g2(g1(a)) = g3(a).

VP: Suppose both τ1 and τ2 are VP. Then there are two corresponding sets V C1 ⊆ V 1 and V C2 ⊆ V 2 of critical variables 
and two corresponding bijections g1 : A1 → A2 and g2 : A2 → A3, such that Definition 32 is satisfied for both τ1 and τ2. 
By definition, V 2 = V C1 and V 3 = V C2, so V 3 ⊆ V 2 ⊆ V 1 and V C2 ⊆ V C1. We must prove that there is a set V C3 ⊆ V 1 of 
critical variables and a bijection g3 : A1 → A3 such that τ3 is an VP transformation from F1 to F3. Choose V C3 = V C2 and 
g3 = g1 ◦ g2, which is a bijection. We now prove that the conditions (1)–(5) in the definition are satisfied. We will tacitly 
use that s[V C1][V C2] = s[V C2] for all s ∈ S1 since V C2 ⊆ V C1. The proofs for (2) and (5) are identical to ABS.

(1) We know that V 3 = V C2, since τ2 is VP. Hence, it holds that V 3 = V C3 since V C3 = V C2.
(3) For all actions a ∈ A1, we have pre(g3(a)) = pre(a)[V C3] = pre(a)[V C2] = pre(a)[V C1 ∩ V C2] = pre(a)[V C1][V C2] =

pre(g1(a))[V C2] = pre(g2(g1(a)) and analogously for post(g3(a)).
(4) f3(s) = f2( f1(s)) = f1(s)[V C2] = s[V C1][V C2] = s[V C2] = s[V C3].
VDA: Suppose τ1 and τ2 are VDA. Then there are two families H1 = {h1,v : D1(v) → D2(v) | v ∈ V 1} and H2 =

{h2,v : D2(v) → D3(v) | v ∈ V 2} of domain mappings and two corresponding bijections g1 : A1 → A2 and g2 : A2 → A3 such 
that Definition 34 is satisfied for both τ1 and τ2. We must prove that there is a family H3 = {h3,v : D1(v) → D3(v) | v ∈ V 1}
of domain mappings and a bijection g3 : A1 → A3 such that τ3 is a VDA transformation from F1 to F3. Choose H3 such 
that h3,v = h1,v ◦h2,v for all v ∈ V , and g3(a) = g2(g1(a)) for all a ∈ A1, i.e. g3 is a bijection. We must prove that conditions 
(1–5) in Definition 34 hold. The proofs for (2) and (5) are identical to ABS.

(1) We have V 2 = V 1 and V 3 = V 2, so V 3 = V 1. Furthermore, h3,v(D1(v)) = h2,v(h1,v(D1(v))) = h2,v(D2(v)) = D3(v).
(3) We get pre(g3(a)) = pre(g2(g1(a)) = h2(pre(g1(a))) = h2(h1(pre(a))) = h3(pre(a)) and analogously for post(g3(a)).
(4) f3(s) = f2( f1(s)) = h2(h1(s)) = h3(s).
RRAa: Suppose both τ1 and τ2 are RRAa. We must prove that τ3 is an RRAa transformation from F1 to F3, that is, we 

must prove that conditions (1–2), (3a) and (4–5) in Definition 36 hold. The proof for (1) is identical to ABS.
(2) Both τ1 and τ2 are RRAa so A2 ⊆ A1 and A3 ⊆ A2. It follows that A3 ⊆ A1.
(3a) We know that {〈s, t〉 | 〈s, t, �〉 ∈ E1} = {〈s, t〉 | 〈s, t, �〉 ∈ E2} since τ1 is RRAa, and that {〈s, t〉 | 〈s, t, �〉 ∈ E2} =

{〈s, t〉 | 〈s, t, �〉 ∈ E3}, since τ2 is RRAa. It follows that {〈s, t〉 | 〈s, t, �〉 ∈ E1} = {〈s, t〉 | 〈s, t, �〉 ∈ E3}.
(4) Both f1 and f2 are the identity function since both τ1 and τ2 are RRAa. It follows that f3 is the identity function 

since f3 = f1◦ f2.
(5) Both R1 and R2 are the identity relation since both τ1 and τ2 are RRAa. It follows that R3 is the identity relation 

since R3 = R1◦R2.
RRAb: Identical to RRAa, except that we prove condition (3b) instead of (3a).
(3b) We know that {〈s, t〉 | t ∈R1(s)} = {〈s, t〉 | t ∈R2(s)}, since τ1 is RRAb, and that {〈s, t〉 | t ∈ R2(s)} = {〈s, t〉 | t ∈

R3(s)}, since τ2 is RRAb. It follows that {〈s, t〉 | t ∈R1(s)} = {〈s, t〉 | t ∈R3(s)}.
GIDL: Suppose both τ1 and τ2 are GIDL transformations. Then there are two corresponding bijections g1 : A1 → A2 and 

g2 : A2 → A3 such that Definition 38 is satisfied for both τ1 and τ2. We must prove that there is a bijection g3 : A1 → A3
such that τ3 is a GIDL transformation from F1 to F3. Choose g3 = g1◦g2, which is a bijection. We must prove that conditions 
(1)–(5) in Definition 38 hold. The proofs for (1), (2) and (5) are identical to ABS and the proof for (4) is identical to RRA.

(3) For all a ∈ A1, it holds that post(g3(a)) = post(a)=1 = (post(a)=1)
=1 = post(g1(a))=1 = post(g2(g1(a))) and analo-

gously for pre(g3(a)). �
9 In the case of action-dependent critical sets, we do as previously described. Each a ∈ A1 has a set V C1(a) and each a ∈ A2 has a set V C2(a), so we 

define V C3(a) = V C1(a) ∩ V C2(g1(a)) for each a ∈ A1. We can then define V C1 = ⋂
a∈A1

V C1(a) and V C2 = ⋂
a∈A2

V C2(a), as previously described. Defining 
V C3 = V C1 ∩ V C2 still works then.
32



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
In the proof for ABS, it may happen that the set V C3 is empty, in the case where V C1 and V C2 are disjoint. This is fine, 
but results in a very coarse abstraction where f3(s) = S3 for all s ∈ S1 and all preconditions will be empty, which happens 
also when doing the transformations τ1 and τ2 in sequence. For GIDL transformations, we note that it is redundant to apply 
the transformation twice. Applying it once results in a frame where all action postconditions are positive, i.e. of the form 
(v = 1). Applying it once more has no effect since all postconditions already are positive.

Property DLBS is the only one of the methods in Section 6 that is not transitive. The following example illustrates why.

Example 67. Let M1 be the landmarks for τ1 and M2 the landmarks for τ2. Let v be a variable in V 1 and let ϕ1 = {(v = 0)} ∈
M1 be a landmark on V 1. Then V 2 contains both v and a variable vϕ1 for the landmark (the actual name of the variable 
is not important) and every action in A2 that contains (v = 0) in its postcondition will also contain (Vϕ1 = 1). Since M2
is a set of landmarks on V 2, it is allowed to contain the landmark ϕ2 = {(vϕ1 = 1)}, which is a landmark for the landmark 
ϕ1. Then V 3 contains v , vϕ1 and vϕ2 and every action in A3 with (v = 0) in its postcondition will also contain (vϕ1 = 1)

and (vϕ2 = 1) in its postcondition. Now consider the composite transformation τ3 = τ1◦τ2, which is a direct transformation 
from F1 to F3. Let M3 be the landmark set for τ3. By definition, M3 can only contain landmarks on V 1 so it can contain 
the landmark ϕ1 = {(v = 0)} but not the landmark ϕ2 = {(vϕ1 = 1)}. Hence, τ3 and τ1 ◦τ2 do not result in the same frame 
and, thus, cannot both be transformations from G1 to G3.

In practice there will usually be some reason for composing two transformations, for instance, to let F2 and F3 represent 
different abstraction levels for F1. It is then reasonable that M2 does not contain any landmarks on the variables in M1, 
since this is redundant; we note in the example above that both the landmarks ϕ1 ∈ M1 and ϕ2 ∈ M2 must always be set 
simultaneously, so the first one is sufficient. We will now show that also DLBS is transitive under the additional assumption 
that M2 contains no landmarks on the explicit landmarks in M1.

Theorem 68. Let F1 = 〈V 1, D1, A1〉, F2 = 〈V 2, D2, A2〉 and F3 = 〈V 3, D3, A3〉 be arbitrary SAS+ frames with the corresponding 
STGs G1 = 〈S1, E1〉, G2 = 〈S2, E2〉 and G3 = 〈S3, E3〉. Let τ1 = 〈 f1, R1〉 from G1 to G2 and τ2 = 〈 f2, R2〉 from G2 to G3 be two 
arbitrary transformations such that τ1◦τ2 is a transformation. Let f3 = f1◦ f2 , R3 = R1◦R2 and τ3 = τ1◦τ2 = 〈 f3, R3〉. If there are 
two sets M1, M2 ⊆ 2V 1·D1 of disjunctive landmarks and two bijections g1 : A1 → A2 and g2 : A2 → A3 such that both τ1 and τ2 are 
DLBS transformations, then there is a set M3 ⊆ 2V 1·D1 of disjunctive landmarks and a bijection g3 : A1 → A3 such that τ3 is DLBS.

Proof. We must prove that there is a set M3 of landmarks and a bijection g3 : A1 → A3 such that τ3 is an DLBS transfor-
mation from F1 to F3. Choose M3 = M1 ∪ M2 and g3 = g1 ◦ g2, which is a bijection. We must prove that conditions (1–5) 
in Definition 40 hold. The proofs for (2) and (5) are like those for ABS.

(1) We know that V 2 = V 1 ∪ V M1, D2 = D1 ∪ D M , since τ1 is DLBS, and that V 3 = V 2 ∪ V M2, D3 = D2 ∪ D M , since also 
τ2 is DLBS. It follows that V 1 ∪ V M3 = V 1 ∪ V M1 ∪ V M2 = V 2 ∪ V M2 = V 3.

(3) We have postM1(a) = {(vϕ = 1) | post(a) ∩ ϕ �= ∅ and ϕ ∈ M1} and post(g1(a)) = post(a) ∪ postM1(a) for all a ∈ A1
since τ1 is DLBS. Since also τ2 is DLBS we further get that postM2(g1(a)) = {(vϕ = 1) | post(g1(a)) ∩ ϕ �= ∅ and ϕ ∈
M2} = {(vϕ = 1) | (post(a) ∪ postM1(a)) ∩ ϕ �=∅ and ϕ ∈ M2}. However, postM1(a) ∩ϕ = ∅ for all ϕ ∈ M2 since postM1(a) ⊆
V M1 · D M and ϕ ⊆ V 1 · D1 for all ϕ ∈ M2. Hence postM2(g1(a)) = {(vϕ = 1) | post(a) ∩ ϕ �= ∅ and ϕ ∈ M2}. We 
get post(g2(g1(a))) = post(g1(a)) ∪ postM2(g1(a)) = post(a) ∪ postM1(a) ∪ postM2(g1(a)). However, we have postM1(a) =
{(vϕ = 1) | post(a) ∩ ϕ �= ∅ and ϕ ∈ M1} and postM2(g1(a)) = {(vϕ = 1) | post(a) ∩ ϕ �= ∅ and ϕ ∈ M2}, so we get that 
postM1(a) ∪ postM2(g1(a)) = {(vϕ = 1) | post(a) ∩ ϕ �= ∅ and ϕ ∈ M1 ∪ M2}. Since M1 ∪ M2 = M3, we get post(g2(g1(a))) =
{(vϕ = 1) | post(a) ∩ ϕ �= ∅ and ϕ ∈ M3}.

(4) We have that f3(s) = f2( f1(s)) = ⋃
t∈ f1(s) f2(t) and we also have that f1(s) = {s ∪ m | m ∈ T (V M1 · D M)} and f2(t) =

{t ∪ m | m ∈ T (V M2 · D M)}. It follows that

f3(s) = {s ∪ m1 ∪ m2 | m1 ∈ T (V M1 · D M) and m2 ∈ T (V M2 · D M)}
= {s ∪ m | m ∈ T ((V M1 ∪ V M2) · D M)}
= {s ∪ m | m ∈ T (V M3 · D M)}. �

9.4. An example: merge and shrink abstraction

As an example of composing mixed types of transformations, we model the Merge-and-shrink (M&S) abstraction method 
[48,49]. This method computes a smaller abstract version of the STG for a SAS+ frame, with the purpose of using this 
abstraction to compute a heuristic function. We will briefly define this method within our transformation framework and 
sketch an analysis of it. We first need the concept of synchronous products, which is identical to the usual one in the 
literature although we use the set-based definition of SAS+ instead of the usual vector-based one. Let G1 = 〈S1, E1〉 and 
G2 = 〈S2, E2〉 be two STGs such that S1 and S2 are disjoint. Then the synchronous product of G1 and G2 is G1 ⊗ G2 =
〈S3, E3〉, where S3 = {s ∪ t | s ∈ S1 and t ∈ S2} and
33



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
E3 = {〈s ∪ s′, t ∪ t′, �〉 | 〈s, t, �〉 ∈ E1 and 〈s′, t′, �〉 ∈ E2}.
The M&S method can now be described as follows within our framework. Let F = 〈V , D, A〉 be a SAS+ frame with STG 

G(F). Assume V = {v1, . . . , vn}. For each vi ∈ V , compute the SAS+ frame Fi as the VP abstraction of F with V C = {vi}
and let Gvi =G(Fi). Each Gvi is of polynomial size in the size of F and can be computed in polynomial time. By definition 
of VP, all actions in F appear as labels in each Gvi , i.e. L(Gvi ) = L(G(F)). Hence, we get that G(F) =Gv1⊗, . . . , ⊗Gvn , so 
we could, in principle, construct G(F) in this way. However, this is no gain since the size of G(F) is typically exponential 
in the size of F and it could as well be computed directly from F . The M&S method instead constructs a smaller abstraction 
of G(F) as follows. Let 	 = {Gv1 , . . . ,Gvn }. The abstract STG for F is then constructed by repeatedly applying the following 
three operations.10

Merge Choose two G, G′ ∈ 	. Remove G and G′ from 	 and add G ⊗G′ to 	.
Shrink Choose some G = 〈S, E〉 ∈ 	, S ′ ⊂ S and surjective function h : S → S ′ . Define G′ = 〈S ′, E ′〉 where E ′ =

{〈h(s),h(t), �〉 | 〈s, t, �〉 ∈ E}. Replace G with G′ in 	.
Reduce labels Let L be the set of labels in 	. Choose a new label set L′ and define a function λ : L → L′ . Replace each 

G = 〈S, E〉 in 	 with G′ = 〈S, E ′〉, where E ′ = {〈s, t, λ(�)〉 | 〈s, t, �〉 ∈ E}.

These operations can be arbitrarily interleaved with each other. The process typically stops when |	| = 1 and no more 
shrinking is required to achieve the desired size of the abstract state space. Let G = 〈S, E〉 be an STG in 	 at some point 
during this process. Then S ⊆ T (V ′ · D) for some V ′ ⊆ V and S �= T (V ′ · D) if and only if G is the result of applying at least 
one shrink operation. Let GA = 〈S A, E A〉 be the final single STG in 	. Then S A ⊆ T (V · D) and |S A | ≤ N for some predefined 
value N .

Once again, let G = 〈S, E〉 be an STG in 	 at some point during the process. Although S will often contain states defined 
by more than one variable, we may view S itself as the domain of a new single compound variable (which is also how M&S
is usually described in the literature). Hence, the shrink operation is nothing else but method VDA (Definition 34) where all 
hv functions but one are the identity function, i.e. it only abstracts the domain of one compound variable.

Let op1, . . . , opm be a sequence of merge/shrink/reduce labels operations. Let 	0 = {Gv1 , . . . ,Gvn } and let 	i be the 
result of applying operation opi on 	i−1 for all i (1 ≤ i ≤ m). For each 	i , define the STG GA

i = 〈S A
i , E A

i 〉 as ⊗G∈	i
G. We 

can then treat the sequence GA
1 , . . . , GA

m as a hierarchy of abstractions of GA
0 =G(F).

For arbitrary i (1 ≤ i ≤ m), let G1, . . . , Gp be the STGs in 	i−1. Then GA
i = G1 ⊗G2 ⊗ . . . ⊗Gp . There are three cases 

to consider:
1. Suppose opi is a merge operation of G j and Gk in 	i−1, where j �= k. Without losing generality, assume j = 1 and 

k = 2. Then we construct 	i = {G1 ⊗G2,G3, . . . ,Gp}. We get GA
i = (G1 ⊗ G2) ⊗ . . . ⊗ Gp = GA

i−1, since synchronous 
product is associative. We can thus define a transformation function f i from GA

i−1 to GA
i as the identity function, i.e. 

f (s) = s. We further note that L(Gv j ⊗Gvk ) = L(Gv j ) = L(Gvk ) and that L(Gv j ) = L(Gvk ) = L(G(F)), as previously noted, 
so L(Gv j ⊗Gvk ) = L(G(F)). We can thus define a label relation Ri ⊆ L(GA

i−1) × L(GA
i ) as the identity relation, i.e. Ri(�, �)

for all � ∈ L(GA
i−1) = L(GA

i ). Then define τi = 〈 f i, Ri〉, which is an M↑R�C� transformation since f i is the identity function, 
Ri the identity relation and GA

i =GA
i−1.

2. Instead suppose opi is a shrink operation on G j = 〈S j, E j〉 ∈ 	i−1 with result G′
j = 〈S ′

j, E ′
j〉 and shrinking function 

hi : S j → S ′
j . Without losing generality, assume j = 1. Then GA

i = hi(G1) ⊗G2 ⊗ . . . ⊗Gp . Let V j be the variables defining 
the state space S j . Define a function f i such that f i(s) = s[V \ V j] ∪ hi(s[V j]) for all s ∈ GA

i−1. Then f i is a transformation 
function from GA

i−1 to GA
i . We also have that L(G′

j) = L(G j) =G(F), so also in this case we can define the label relation 
Ri ⊆ L(GA

i−1) × L(GA
i ) as the identity relation. Finally, define τi = 〈 f i, Ri〉, which is a transformation. We note that f i can 

also be viewed as a shrinking function from S A
i−1 to S A

i , so τi is a VDA abstraction, and it is thus also M↑R�C� .
3. Finally, suppose opi is a reduce labels operation. Let λi be the label reduction function for this step. For each G j =

〈S j, E j〉 in 	i−1, let G′
j = 〈S j, E ′

j〉 where E ′
j = {〈s, t, λi(�)〉 | 〈s, t, �〉 ∈ E j}. Then 	i = {G′

1, . . . ,G
′
p} and GA

i = G′
1 ⊗ G′

2 ⊗
. . . ⊗G′

p . Clearly, GA
i−1 and GA

i have the same state sets, so we can define the transformation function f i for this step as 
the identity function. Also define the label relation Ri such that Ri(�, λi(�)) for all � ∈ L(GA

i−1). Define the transformation 
τi = 〈 f i, Ri〉, which is obviously M↑ since f i is the identity function. Furthermore, if 〈s, t, �〉 is an arc in GA

i−1, then it is 
straightforward that 〈s, t, λi(�)〉 is an arc in GA

i , and it follows that τi is R↑ and C↑ . Finally, opi is a reduce labels operation 
so τi is R↓ and C↓ due to the definition of reduce labels operations.

It follows that each opi implements an M↑R�C� transformation, so it follows by repeated application of Theorem 63 that 
the composite transformation τ = τ1 ◦τ2 ◦ . . .◦τm is M↑R�C� . That is, M&S abstraction is M↑R�C� and, thus, also inherits 
properties P1↓ and PS↑ by Theorem 22 and Corollary 23. We can finally use this result in combination with Theorem 13 as 
an alternative way to deduce that M&S abstractions are strong homomorphisms (which is already known in the literature).

10 Note that there are various definitions of label reduction in the literature. We follow the definition in [85], which is simpler and more general than 
previous approaches.
34



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
We finally note that M&S abstraction is very similar to a method used in model checking, where clusters of variables are 
merged to single variables and domain abstraction is then performed on these variables [19].

10. Discussion

We have presented a general and flexible framework for modelling different methods for abstraction and similar con-
cepts in search and planning. We have shown that this framework enables us to study many different aspects of both 
general methods and individual problem instances. In particular, it allowed for comparing a number of different abstraction 
methods on an abstract level, which high-lighted similarities and differences between the methods. It also allowed for a 
similar high-level comparison of abstraction refinement and abstraction heuristics, which is important for understanding 
their connections. However, the properties and classifications we have defined should only be viewed as examples of what 
our framework can do. The strength of a unifying framework is that it opens up for a multitude of different comparisons 
and analyses. We acknowledge that the framework may need adjustments and/or generalisations in order to be applica-
ble in different situations—such variations appear to be simple to implement in many cases, though. At least one such 
example already exists. Sievers [84] defined a more restricted transformation concept for transition systems with the pur-
pose of analysing transformation steps for M&S abstraction. Similar to us, he identified a number of properties that such 
transformations may have, with a focus on properties, and combinations of properties, that are beneficial when using the 
transformed instances to compute heuristics. Sieves acknowledges that the earlier conference publications of our work was 
one of the major inspirations for defining a transformation concept and study properties of transformations. We will briefly 
discuss a number of other ways to use or extend our framework below.

10.1. Labelled transition systems

We consider labelled state-transition graphs in order to focus on the general properties of various abstraction methods. 
It is also common to consider specific cases where also a set of initial states (or a single such state) is specified. This is 
common not only in search and planning, but also in other areas such as model checking. We can then specify a structure 
〈S, E, I〉 where I ⊆ S is the set of initial states. Such a structure is often referred to as a labelled transition system [49]). 
In this case, we may not want to require that certain properties hold for the whole graph 〈S, E〉, but only for the part 
that is reachable from I . Suppose we have a transformation τ = 〈 f , R〉 from G1 = 〈S1, E1〉 to G2 = 〈S2, E2〉 and a set 
I ⊆ S1 of initial states. Then S ′

1 = R1(I) and S ′
2 = R2( f (I)) are the ground and abstract state spaces reachable from I

and f (I) respectively. We can then construct the restricted STGs G′
1 = G1|S ′

1
and G′

2 = G2|S ′
2

and restrict τ accordingly. 
Our framework can then be directly applied to this restriction. It is also common to additionally specify a set G of goal 
states. We may then in some cases wish to define S ′

1 = {s ∈ S1 | s ∈R1(I) and R1(s) ∩ G �=∅} and similarly for S ′
2, i.e. we 

consider only the space of states that are on a path from I to G . We conclude that our choice of defining the framework 
using STGs rather than specific structures is more flexible. However, an interesting case here is GIDL abstraction, which is 
known to be admissible, but does not even satisfy the P1↑ property. Consider a SAS+ instance P1 = 〈V 1, D1, A1, I1, G1〉 and 
its corresponding GIDL transformation P2 = 〈V 2, D2, A2, I2, G2〉. Suppose there is a path s0, s1, . . . , sn in G(P1) such that 
s0 = I1 and G1 ⊆ sn . Then there is a path t0, t1, . . . , tn in G(P2) such that t0 = I2 and si

=1 ⊆ ti
=1 for all i (0 ≤ i ≤ n), and 

it follows that G2 ⊆ tn . This means that a solution path for a specific instance can always be weakly upwards refined into 
a corresponding abstract solution. It could, thus, make sense to also consider variants of our properties that apply only to 
specific instances. Such properties should not replace the ones defined in this article, but rather complement them. A similar 
case arises for admissibility of heuristics, which is defined to hold for all paths in the instance, disregarding specific initial 
states and goals. The idea of globally admissible heuristics [62] restricts the concept such that admissibility only needs to 
hold for specific paths, which is similar to the suggestion above of adding a restricted case of refinability.

10.2. Metric refinement

The concept of simulation is often used in model checking [19]) and sometimes also in planning [75]. An abstraction 
G2 of G1 is a simulation of G1 if every path t0, t1, . . . , tn in G2 has a corresponding path s0, s1, . . . , sn in G1 such 
that si ∈ f (ti) for all i. Fan and Holte [33] extend the concept of spurious states in search to spurious paths, based on the 
simulation concept. A path in G2 is spurious if it has no corresponding simulation in G1, which is analogous to the concept 
of spurious counterexamples in model checking [19]. Simulation is a stronger concept than PW↓ since each abstract arc must 
be refined into a single ground arc, not a path. Hence, the simulation concept is related to the results in Section 8, which 
demonstrate that the lack of metrics in usual refinement concepts makes it hard to prove further positive results on the 
connections between refinement and heuristics. The obvious way forward would be to somehow add metric aspects also 
to refinements. The properties Pk↑ and Pk↓ do so, but not in a sufficient way. For instance, one might consider a property
Pm

k↓ that is like Pk↓ but additionally requires that each arc along the path can be refined into a path of length m at most. 
Obviously, the simulation concept could then be covered by the property P1

k↓ . This might also allow for finding tighter 
relationships between refinement and heuristics, perhaps relating Pm

k↓ to approximate heuristic search, e.g. using weighted 
A∗ [29]. However, it could also provide a deeper insight into refinement itself; it is well known that purely qualitative 
35



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
criteria can cause anomalous behaviour in refinement such as exponential slow-down of the search process [5]. Another 
possibility is a property expressing that every path σ in G2 can be loosely refined into a path that is at most k times 
longer than σ , which would open up for connections with approximation algorithms.

10.3. Other abstraction methods

We will now briefly give some further examples of abstractions that can be modelled in our framework. Sturtevant and 
Buro [88] build abstractions for path planning in connected graphs. Somewhat simplified, they let each clique in the graph 
become an abstract state, and then repeat this process hierarchically. The graphs are not directed in this case, but almost 
all of our framework is applicable also to undirected graphs, so we can see that each abstraction step in their framework 
seems to result in a transformation that is PS↓ , thus allowing for easy refinement. Some abstraction methods are even more 
procedural in nature. For instance, the Star method [59] builds an abstraction by arbitrarily choosing one hub state at a time, 
and aggregates it with all non-abstracted states within a predefined radius to form an equivalence class to be abstracted 
to one abstract state. Hierarchies can also be built in this way. As yet another example, Heusner et al. [50] have recently 
suggested a method where one first tries to find a plan with only a subset of all actions available. As long as this fails, the 
restricted action set is gradually increased. We can view this as an abstraction hierarchy where the top level corresponds 
to the initial restricted action set and the bottom level to the full original action set. This results in a hierarchy where all 
levels have the same state set, but where the arc set at one level is always a subset of the arc set on the level below.

In the case of abstraction heuristics, one might consider also non-M↑ abstractions, but defining such heuristics is much 
less straightforward. For instance, we can no longer exploit ordinary homomorphisms, and the literature on this topic is 
very scarce. One interesting exception is multimapping abstractions [76] that is a method for aggregating multiple heuristics. 
In order to make the heuristic admissible, it must satisfy that

h(s, t) = max
s′∈ f (s)

min
t′∈ f (t)

d(s′, t′).

However, in their case, the function f does not necessarily induce a partition on the states in the abstract graph, so 
modelling multi-mapping abstractions would also require relaxing the definition of transformation functions, which may 
have a fundamental impact on our framework. There is also recent work by Steinmetz and Torralba [87] who consider 
abstract states, called concepts, and abstractions that map each ground state to a set of abstract states. Contrary to our 
theory, it is possible that two ground states map to distinct but overlapping sets of abstract states, so the abstraction does 
not define a partition on the abstract states. Another difference is that the abstract graph is a hypergraph, induced by the 
actions. This is used to compute a heuristic such that h(s, t) is the minimal distance from f (s) to f (t) in this hypergraph.

We have also previously noted that the ABS method may be viewed as a kind of generalised embedding. This can be 
formalised to consider generalised variants of embeddings, retractions and homomorphisms. For instance, it is straightfor-
ward and natural to define a generalised homomorphism such that if 〈s, t, �〉 ∈ E1, then there is some 〈s′, t′, �′〉 ∈ E2 such 
that s′ ∈ f (s) and t′ ∈ f (t).

10.4. Other applications: hierarchical graphs

We will finally sketch an example of how our framework could be applied in other contexts than search and planning. It 
is common to represent graphs in hierarchical representations, where a top-level abstraction of the graph can be refined into 
increasing levels of detail. Such representations are important in many application areas, e.g. to speed up graph operations 
in CAD systems [70]. It is usually desirable that such representations retain certain interesting properties at the abstract 
levels. Ancona et al. [2] considered structured graphs, where the abstraction consists of reducing subgraphs with certain 
properties into a single vertex or arc. In particular, they studied properties of paths and whether a path in the original 
graph can be adequately represented by a structured path, i.e. a path that is defined via the abstraction hierarchy. We will 
not go into details of this topic, but briefly sketch how our framework might be applied in this context. Let us consider 
vertex-structured graphs, where a subgraph can be reduced into a single vertex. Let G = 〈V , E〉 be the original graph and 
G1 = 〈V 1, E1〉, . . . , Gn = 〈Vn, En〉 be the disjoint subgraphs to reduce. Let v1, . . . , vn be the new vertices corresponding to 
these subgraphs, i.e. the abstract graph will have the vertex set V ′ = (V \⋃n

i=1 V i) ∪{v1, . . . , vn}. It is then natural to define 
a transformation function f such that f (v) = vi if v ∈ V i for some subgraph Gi and f (v) = v for all vertices not in any 
of the subgraphs. Given the requirements stated by the authors for when a subgraph may be reduced, it follows that this 
abstraction is PW� . Since f is obviously M↑ , it also follows that it is PS↑ . This only applies to ordinary paths in the graphs, 
though, so new properties would have to be defined if we want to also analyse structured paths.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.
36



C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
Appendix A. List of key concepts

Table A.2
Key concepts in this article.

Concept Abbreviation Definition

Upwards many-one M↑ Definition 9
Downwards many-one M↓ Definition 9
Upwards related R↑ Definition 9
Downwards related R↓ Definition 9
Upwards coupled C↑ Definition 9
Downwards coupled C↓ Definition 9

Loosely upwards state refinable PL↑ Definition 16
Loosely downwards state refinable PL↓ Definition 16
Weakly upwards state refinable PW↑ Definition 16
Weakly downwards state refinable PW↓ Definition 16
Strongly upwards state refinable PS↑ Definition 16
Strongly downwards state refinable PS↓ Definition 16

Downward path preserving DPP Sec. 4.1
Completeness of DPP P↑ Definition 16
Soundness of DPP P↓ Definition 16
Downward refinement property DRP Sec. 4.1

Abstrips-style abstraction ABS Definition 30
Variable projection VP Definition 32
Variable domain abstraction VDA Definition 34
Removing redundant actions RRA Definition 36
Generalised ignoring delete lists GIDL Definition 38
Direct landmark-based surrogates DLBS Definition 40
Merge-and-shrink M&S Sec. 9.4

Admissibility A↓ Definition 46
Conditional admissibility AC↓ Definition 46

References

[1] M. Aghighi, C. Bäckström, Cost-optimal and net-benefit planning–a parameterised complexity view, in: Proceedings of the 24th International Joint 
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 2015, pp. 1487–1493.

[2] M. Ancona, L.D. Floriani, J.S. Deogun, Path problems in structured graphs, Comput. J. 29 (1986) 553–563.
[3] F. Bacchus, Q. Yang, Downward refinement and the efficiency of hierarchical problem solving, Artif. Intell. 71 (1994) 43–100.
[4] C. Bäckström, Expressive equivalence of planning formalisms, Artif. Intell. 76 (1995) 17–34.
[5] C. Bäckström, P. Jonsson, Planning with abstraction hierarchies can be exponentially less efficient, in: Proceedings of the 14th International Joint 

Conference on Artificial Intelligence, IJCAI 1995, Montréal QC, Canada, 1995, pp. 1599–1605.
[6] C. Bäckström, P. Jonsson, Abstracting abstraction in search with applications to planning, in: Principles of Knowledge Representation and Reasoning: 

Proceedings of the 13th International Conference, KR 2012, Rome, Italy, 2012, pp. 446–456.
[7] C. Bäckström, P. Jonsson, Bridging the gap between refinement and heuristics in abstraction, in: Proceedings of the 23rd International Joint Conference 

on Artificial Intelligence, IJCAI 2013, Beijing, China, 2013, pp. 2261–2267.
[8] C. Bäckström, P. Jonsson, S. Ordyniak, S. Szeider, A complete parameterized complexity analysis of bounded planning, J. Comput. Syst. Sci. 81 (2015) 

1311–1332.
[9] C. Bäckström, P. Jonsson, S. Ståhlberg, Fast detection of unsolvable planning instances using local consistency, in: Proceedings of the 6th Annual 

Symposium on Combinatorial Search, SoCS 2013, Leavenworth, WA, USA, 2013, pp. 29–37.
[10] C. Bäckström, I. Klein, Planning in polynomial time: the SAS-PUBS class, Comput. Intell. 7 (1991) 181–197.
[11] C. Bäckström, B. Nebel, Complexity results for SAS+ planning, Comput. Intell. 11 (1995) 625–656.
[12] J. Balcázar, The complexity of searching implicit graphs, Artif. Intell. 86 (1996) 171–188.
[13] S. Bogomolov, D. Magazzeni, A. Podelski, M. Wehrle, Planning as model checking in hybrid domains, in: Proceedings of the 28th AAAI Conference on 

Artificial Intelligence, AAAI 2014, Québec City, QC, Canada, 2014, pp. 2228–2234.
[14] B. Bonet, G. Loerincs, H. Geffner, A robust and fast action selection mechanism for planning, in: Proceedings of the 14th National Conference on 

Artificial Intelligence, AAAI 1997, Providence, RI, USA, 1997, pp. 714–719.
[15] A. Botea, M. Enzenberger, M. Müller, J. Schaeffer, Macro-FF: improving AI planning with automatically learned macro-operators, J. Artif. Intell. Res. 24 

(2005) 581–621.
[16] A. Bundy, F. Giunchiglia, R. Sebastiani, T. Walsh, Calculating criticalities, Artif. Intell. 88 (1996) 39–67.
[17] T. Bylander, The computational complexity of propositional Strips planning, Artif. Intell. 69 (1994) 165–204.
[18] B.Y. Choueiry, Y. Iwasaki, S.A. McIlraith, Towards a practical theory of reformulation for reasoning about physical systems, Artif. Intell. 162 (2005) 

145–204.
[19] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic model checking, J. ACM 50 (2003) 

752–794.
[20] E.M. Clarke, O. Grumberg, D.E. Long, Model checking and abstraction, ACM Trans. Program. Lang. Syst. 16 (1994) 1512–1542.
[21] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, in: 

Conference Record of the 4th ACM Symposium on Principles of Programming Languages, POPL 1977, Los Angeles, CA, USA, 1977, pp. 238–252.
[22] P. Cousot, R. Cousot, Abstract interpretation: past, present and future, in: Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on 

Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, 2014, 
2.
37

http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1183473E6998FB094F33B84FF54663B1s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1183473E6998FB094F33B84FF54663B1s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib550D8C0D85CADE800C0ADEA68B3AB385s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib32C31DAC8BCBE8C744D6B722CB13DAEEs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibB843CA503E3F792B9342F502121C392Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibA4688FC72DE30F71C03FC8429AC5848Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibA4688FC72DE30F71C03FC8429AC5848Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib045B61A718218B56DBE585C9A2EA1517s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib045B61A718218B56DBE585C9A2EA1517s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib273AEEA09BFC0639B462AC1579D75887s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib273AEEA09BFC0639B462AC1579D75887s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC5F5635E3A741CAC4BE326E34364C0B1s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC5F5635E3A741CAC4BE326E34364C0B1s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC35E06759A4C4DF2568FC2452B643D05s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC35E06759A4C4DF2568FC2452B643D05s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibCCB4707F6935EA3BF0688FAC5ACA8265s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibE656926F1B0255626D5CABCA9C80E358s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibEAD55F899AD8264329E77F0F34BA1187s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib4CCBE38DE42E5E0E7D6903F97F6A503Bs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib4CCBE38DE42E5E0E7D6903F97F6A503Bs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib253A052E9DD2498D44BE97A0195BAFFAs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib253A052E9DD2498D44BE97A0195BAFFAs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibF1E3A1DEB658F96C58A92AC9C5C71FEFs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibF1E3A1DEB658F96C58A92AC9C5C71FEFs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib95AB28BA77849421065892E046B367BFs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib94B192DD649AAC0D00A4B8FAFB4A146As1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibDBF21C961979072E0015937D335EC835s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibDBF21C961979072E0015937D335EC835s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibCB1914B629C03E231F8930C48DC0E730s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibCB1914B629C03E231F8930C48DC0E730s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib924148343DE2C3D324D8FC705AC9A2C4s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1912A470DE8547DF444A87105F0F4DC7s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1912A470DE8547DF444A87105F0F4DC7s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib4C07FC753C5BE411F0B110AA316159EDs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib4C07FC753C5BE411F0B110AA316159EDs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib4C07FC753C5BE411F0B110AA316159EDs1


C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
[23] J.C. Culberson, J. Schaeffer, Pattern databases, Comput. Intell. 14 (1998) 318–334.
[24] R. Dechter, J. Pearl, Generalized best-first search strategies and the optimality of A∗, J. ACM 32 (1985) 505–536.
[25] C. Domshlak, J. Hoffmann, M. Katz, Red-black planning: a new systematic approach to partial delete relaxation, Artif. Intell. 221 (2015) 73–114.
[26] C. Domshlak, J. Hoffmann, A. Sabharwal, Friends or foes? On planning as satisfiability and abstract CNF encodings, J. Artif. Intell. Res. 36 (2009) 

415–469.
[27] C. Domshlak, M. Katz, S. Lefler, When abstractions met landmarks, in: Proceedings of the 20th International Conference on Automated Planning and 

Scheduling, ICAPS 2010, Toronto, ON, Canada, 2010, pp. 50–56.
[28] C. Domshlak, A. Nazarenko, The complexity of optimal monotonic planning: the bad, the good, and the causal graph, J. Artif. Intell. Res. 48 (2013) 

783–812.
[29] R. Ebendt, R. Drechsler, Weighted A∗ search - unifying view and application, Artif. Intell. 173 (2009) 1310–1342.
[30] S. Edelkamp, S. Leue, W. Visser, Summary of Dagstuhl seminar 06172 on directed model checking, in: Directed Model Checking, 2007.
[31] S. Edelkamp, S. Schrödl, Heuristic Search - Theory and Applications, Academic Press, 2012.
[32] S. Eriksson, G. Röger, M. Helmert, A proof system for unsolvable planning tasks, in: Proceedings of the 28th International Conference on Automated 

Planning and Scheduling, ICAPS 2018, Delft, The Netherlands, 2018, pp. 65–73.
[33] G. Fan, R.C. Holte, The spurious path problem in abstraction, in: Proceedings of the 8th Annual Symposium on Combinatorial Search, SoCS 2015, Ein 

Gedi, Israel, 2015, pp. 18–27.
[34] A. Felner, U. Zahavi, R. Holte, J. Schaeffer, N.R. Sturtevant, Z. Zhang, Inconsistent heuristics in theory and practice, Artif. Intell. 175 (2011) 1570–1603.
[35] H. Galperin, A. Wigderson, Succinct representations of graphs, Inf. Control 56 (1983) 183–198.
[36] J. Gaschnig, A problem similarity approach to devising heuristics: first results, in: Proceedings of the 6th International Joint Conference on Artificial 

Intelligence, IJCAI 1979, Tokyo, Japan, 1979, pp. 301–307.
[37] F. Geißer, T. Keller, R. Mattmüller, Abstractions for planning with state-dependent action costs, in: Proceedings of the 26th International Conference on 

Automated Planning and Scheduling, ICAPS 2016, London, UK, 2016, pp. 140–148.
[38] F. Giunchiglia, A. Villafiorita, T. Walsh, Theories of abstraction, AI Commun. 10 (1997) 167–176.
[39] F. Giunchiglia, T. Walsh, A theory of abstraction, Artif. Intell. 57 (1992) 323–389.
[40] S.G. Govindaraju, D.L. Dill, Verification by approximate forward and backward reachability, in: Proceedings of the 1998 IEEE/ACM International Confer-

ence on Computer-Aided Design, ICCAD 1998, San Jose, CA, USA, 1998, pp. 366–370.
[41] P. Gregory, D. Long, M. Fox, J.C. Beck, Planning modulo theories: extending the planning paradigm, in: Proc. 22nd International Conference on Auto-

mated Planning and Scheduling (ICAPS-2012), 2012.
[42] P. Gregory, D. Long, C. McNulty, S.M. Murphy, Exploiting path refinement abstraction in domain transition graphs, in: Proceedings of the 25th AAAI 

Conference on Artificial Intelligence, AAAI 2011, San Francisco, CA, USA, 2011, pp. 971–976.
[43] G. Guida, M. Somalvico, A method for computing heuristics in problem solving, Inf. Sci. 19 (1979) 251–259.
[44] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (1968) 100–107.
[45] P. Haslum, A. Botea, M. Helmert, B. Bonet, S. Koenig, Domain-independent construction of pattern database heuristics for cost-optimal planning, in: 

Proceedings of the 22nd AAAI Conference on Artificial Intelligence, AAAI 2007, Vancouver, BC, Canada, 2007, pp. 1007–1012.
[46] P. Haslum, P. Jonsson, Planning with reduced operator sets, in: Proceedings of the 5th International Conference on Artificial Intelligence Planning 

Systems, AIPS 2000, Breckenridge, CO, US, 2000, pp. 150–158.
[47] M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions: what’s the difference anyway?, in: Proceedings of the 19th International Confer-

ence on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, 2009, pp. 162–169.
[48] M. Helmert, P. Haslum, J. Hoffmann, Flexible abstraction heuristics for optimal sequential planning, in: Proceedings of the 17th International Conference 

on Automated Planning and Scheduling, ICAPS 2007, Providence, RI, USA, 2007, pp. 176–183.
[49] M. Helmert, P. Haslum, J. Hoffmann, R. Nissim, Merge-and-shrink abstraction: a method for generating lower bounds in factored state spaces, J. ACM 

61 (2014) 16.
[50] M. Heusner, M. Wehrle, F. Pommerening, M. Helmert, Under-approximation refinement for classical planning, in: Proceedings of the 24th International 

Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, NH, USA, 2014, pp. 365–369.
[51] J. Hoffmann, Where ‘ignoring delete lists’ works: local search topology in planning benchmarks, J. Artif. Intell. Res. 24 (2005) 685–758.
[52] J. Hoffmann, P. Kissmann, Á. Torralba, “Distance”? Who cares? Tailoring merge-and-shrink heuristics to detect unsolvability, in: Proceedings of the 21st 

European Conference on Artificial Intelligence, ECAI 2014, Prague, Czech Republic, 2014, pp. 441–446.
[53] J. Hoffmann, J. Porteous, L. Sebastia, Ordered landmarks in planning, J. Artif. Intell. Res. 22 (2004) 215–278.
[54] J. Hoffmann, A. Sabharwal, C. Domshlak, Friends or foes? An AI planning perspective on abstraction and search, in: Proceedings of the 16th International 

Conference on Automated Planning and Scheduling, ICAPS 2006, Cumbria, UK, 2006, pp. 294–303.
[55] R. Holte, B. Arneson, N. Burch, PSVN Manual, Technical Report TR14-03, Department of Computing Science, University of Alberta, Edmonton, AB, 

Canada, 2014.
[56] R.C. Holte, Common misconceptions concerning heuristic search, in: A. Felner, N.R. Sturtevant (Eds.), Proceedings of the 3rd Annual Symposium on 

Combinatorial Search, SOCS 2010, Stone Mountain, Atlanta, GA, USA, July 8-10, 2010, AAAI Press, 2010, pp. 46–51.
[57] R.C. Holte, B. Choueiry, Abstraction and reformulation in artificial intelligence, Philos. Trans. R. Soc. Lond. B 29 (358) (2003) 1197–1204.
[58] R.C. Holte, I.T. Hernádvölgyi, A space-time tradeoff for memory-based heuristics, in: Proceedings of the 16th National Conference on Artificial Intelli-

gence, AAAI 1999, Orlando, FL, USA, 1999, pp. 704–709.
[59] R.C. Holte, T. Mkadmi, R.M. Zimmer, A.J. MacDonald, Speeding up problem solving by abstraction: a graph oriented approach, Artif. Intell. 85 (1996) 

321–361.
[60] R.C. Holte, M.B. Perez, R.M. Zimmer, A.J. MacDonald, The Tradeoff Between Speed and Optimality in Hierarchical Search, Technical Report TR-95-19, 

Computer Science, University of Ottawa, 1995.
[61] R.C. Holte, M.B. Perez, R.M. Zimmer, A.J. MacDonald, Hierarchical A∗: searching abstraction hierarchies efficiently, in: Proceedings of the 13th National 

Conference on Artificial Intelligence, AAAI 1996, Portland, OR, USA, 1996, pp. 530–535.
[62] E. Karpas, C. Domshlak, Optimal search with inadmissible heuristics, in: Proceedings of the 22nd International Conference on Automated Planning and 

Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, 2012, pp. 92–100.
[63] C.A. Knoblock, A theory of abstraction for hierarchical planning, in: D.P. Benjamin (Ed.), Change of Representation and Inductive Bias, Kluwer, Boston, 

MA, USA, 1990, pp. 81–104.
[64] C.A. Knoblock, Search reduction in hierarchical problem solving, in: Proceedings of the 9th National Conference on Artificial Intelligence, AAAI 1991, 

Anaheim, CA, USA, 1991, pp. 686–691.
[65] C.A. Knoblock, Automatically generating abstractions for planning, Artif. Intell. 68 (1994) 243–302.
[66] C.A. Knoblock, J.D. Tenenberg, Q. Yang, Characterizing abstraction hierarchies for planning, in: Proceedings of the 9th National Conference on Artificial 

Intelligence, AAAI 1991, Anaheim, CA, USA, 1991, pp. 692–697.
[67] R.E. Korf, Macro-operators: a weak method for learning, Artif. Intell. 26 (1985) 35–77.
[68] R.E. Korf, Planning as search: a quantitative approach, Artif. Intell. 33 (1987) 65–88.
38

http://refhub.elsevier.com/S0004-3702(21)00159-4/bib7A7601A80D3093B9E22450306825CB79s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib69657D76ED3DD021A44AAE9F4E857961s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibD8B937F0A0622ECE768A6F1BE4417520s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib56D484AC307D1D6B7AD22A4FDA16DFC6s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib56D484AC307D1D6B7AD22A4FDA16DFC6s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib0C358740E713582A831B11B51D04C63Bs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib0C358740E713582A831B11B51D04C63Bs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibA6777D4DEBBF48F6560B72ECD864F06Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibA6777D4DEBBF48F6560B72ECD864F06Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibFF573D4C33A77678562BE3E0A6E8DD90s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib0C12D98022812B361CC758BF0566D38Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib2AE589C84C929E47EE9E681B5F698DE1s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3D368BE9FA9CFC03B1C3CE10E3E56A5Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3D368BE9FA9CFC03B1C3CE10E3E56A5Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3B09E719BC65BF57BDDCB68B77D4D1A4s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3B09E719BC65BF57BDDCB68B77D4D1A4s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib36698CB4E9F9BF61682580E4BA2EDF0Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibF120AF3C35F84BF60650EE59EBB5CC84s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib95A2FAB515AA7C3F7F99D57CF85B1B97s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib95A2FAB515AA7C3F7F99D57CF85B1B97s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3E21C86DB59975474EF53E72B7A18471s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3E21C86DB59975474EF53E72B7A18471s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib555D5651AA68B720807F68CCA935E263s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib492D089B1A6B0C6543808A69359A267Cs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib660D4B02168040FE82B39B88A06AC8BBs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib660D4B02168040FE82B39B88A06AC8BBs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibAC08C2F589A72748A4127249AD7D4D8Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibAC08C2F589A72748A4127249AD7D4D8Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib72F6735060A9D54C90223C0273592B97s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib72F6735060A9D54C90223C0273592B97s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib5FB8F5C9C09B1EC5143D6C3876D53C61s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC2B0B7C2C1DABCD74427F20838AFD22Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibB90837C72150AB5BF725C46BC65D5E2Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibB90837C72150AB5BF725C46BC65D5E2Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib31A5CC0828CE89552727878A8CC90853s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib31A5CC0828CE89552727878A8CC90853s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6D0F25249109F712578B0BEC250E62AEs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6D0F25249109F712578B0BEC250E62AEs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3FF6895FADBB811E1848678799D138EDs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib3FF6895FADBB811E1848678799D138EDs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibD6BDAD686184C8A432D4AD3132C0D7CCs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibD6BDAD686184C8A432D4AD3132C0D7CCs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibF51E19D8C1358C9D4D03FEEBC6C0F116s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibF51E19D8C1358C9D4D03FEEBC6C0F116s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib85A3343982BB9A0612ADB4B85560299Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib33FF0E0B252CF82DE612F5AE05CCBAC9s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib33FF0E0B252CF82DE612F5AE05CCBAC9s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib2861C0E0FF42BE70EFED364B81B11B42s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBAFBE6BD5CB9D901DEA796BF4D992BD8s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBAFBE6BD5CB9D901DEA796BF4D992BD8s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib34D9A5AE83994706AF6827A72BA8F406s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib34D9A5AE83994706AF6827A72BA8F406s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC81FD1B23E27E10BACBB159878983E2Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC81FD1B23E27E10BACBB159878983E2Es1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib4D561C9B19464BF2D499FE52636B83B4s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib777EE4E605A683DBAC5E6294FB661845s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib777EE4E605A683DBAC5E6294FB661845s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib64F13B2894EA54341D9EC9B93F30A590s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib64F13B2894EA54341D9EC9B93F30A590s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib874E6EBB19C131FBA590B5926E7422FDs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib874E6EBB19C131FBA590B5926E7422FDs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib62D5436E621B6BDC4D794A8842B5BC9Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib62D5436E621B6BDC4D794A8842B5BC9Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6BB783C2033B39774B80C2AFA2C990B3s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6BB783C2033B39774B80C2AFA2C990B3s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib25A57BD9408AE1EEFDEB21D5A8A1CEC7s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib25A57BD9408AE1EEFDEB21D5A8A1CEC7s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib8F8A8AE016282DFA492455F3873B23D1s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib8F8A8AE016282DFA492455F3873B23D1s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib082509FF1603E327D66B2D0D6765BF2As1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1F561C03AEFC9C8D772B15F1C3F98A19s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1F561C03AEFC9C8D772B15F1C3F98A19s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib9EDE88E9C47207139D1F7C3220B9EECEs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib01F302785B74CB270A9A87F66BBDE531s1


C. Bäckström and P. Jonsson Artificial Intelligence 302 (2022) 103608
[69] R.E. Korf, Linear-time disk-based implicit graph search, J. ACM 55 (2008) 26.
[70] T. Lengauer, K.W. Wagner, The correlation between the complexities of the nonhierarchical and hierarchical versions of graph problems, J. Comput. 

Syst. Sci. 44 (1992) 63–93.
[71] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins, PDDL—the Planning Domain Definition Language, Technical 

Report CVC TR98003/DCS TR1165, Yale Center for Computational Vision and Control, New Haven, CT, USA, 1998.
[72] D.V. McDermott, A heuristic estimator for means-ends analysis in planning, in: Proceedings of the 3rd International Conference on Artificial Intelligence 

Planning Systems, AIPS 1996, Edinburgh, UK, 1996, pp. 142–149.
[73] P.P. Nayak, A.Y. Levy, A semantic theory of abstractions, in: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, 

Montréal QC, Canada, 1995, pp. 196–203.
[74] A. Newell, J.C. Shaw, H.A. Simon, Report on a general problem-solving program, in: IFIP Congress, Paris, France, UNESCO, 1959, pp. 256–264.
[75] R. Nissim, J. Hoffmann, M. Helmert, Computing perfect heuristics in polynomial time: on bisimulation and merge-and-shrink abstraction in op-

timal planning, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, 2011, 
pp. 1983–1990.

[76] B. Pang, R.C. Holte, Multimapping abstractions and hierarchical heuristic search, in: Proceedings of the 5th Annual Symposium on Combinatorial Search, 
SoCS 2012, Niagara Falls, ON, Canada, 2012, pp. 72–79.

[77] F. Pommerening, M. Helmert, B. Bonet, Abstraction heuristics, cost partitioning and network flows, in: Proceedings of the 27th International Conference 
on Automated Planning and Scheduling, ICAPS 2017, Pittsburgh, PA, USA, 2017, pp. 228–232.

[78] E.D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artif. Intell. 5 (1974) 115–135.
[79] E.D. Sacerdoti, The nonlinear nature of plans, in: Advance Papers of the 4th International Joint Conference on Artificial Intelligence, IJCAI 1975, Tbilisi, 

Georgia, USSR, 1975, pp. 206–214.
[80] L. Saitta, J.D. Zucker, Abstraction in Artificial Intelligence and Complex Systems, Springer, New York, 2013.
[81] Z.G. Saribatur, J.P. Wallner, S. Woltran, Explaining non-acceptability in abstract argumentation, in: Proceedings of the 24th European Conference on 

Artificial Intelligence, ECAI 2020, Santiago de Compostela, Spain, 2020, pp. 881–888.
[82] J. Seipp, M. Helmert, Counterexample-guided Cartesian abstraction refinement, in: Proceedings of the 23rd International Conference on Automated 

Planning and Scheduling, ICAPS 2013, Rome, Italy, 2013, pp. 347–351.
[83] J. Seipp, M. Helmert, Counterexample-guided Cartesian abstraction refinement for classical planning, J. Artif. Intell. Res. 62 (2018) 535–577.
[84] S. Sievers, Merge-and-Shrink Abstractions for Classical Planning, Ph.D. thesis, Universität Basel, 2017.
[85] S. Sievers, M. Wehrle, M. Helmert, Generalized label reduction for merge-and-shrink heuristics, in: C.E. Brodley, P. Stone (Eds.), Proceedings of the 28th 

AAAI Conference on Artificial Intelligence, Québec City, Québec, Canada, July 27-31, 2014, AAAI Press, 2014, pp. 2358–2366.
[86] D. Smith, M. Peot, A critical look at Knoblock’s hierarchy mechanism, in: Proceedings of the 1st International Conference on Artificial Intelligence 

Planning Systems, AIPS 1992, College Park, MD, USA, 1992, pp. 307–308.
[87] M. Steinmetz, Á. Torralba, Bridging the gap between abstractions and critical-path heuristics via hypergraphs, in: Proceedings of the 29th International 

Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, 2019, pp. 473–481.
[88] N.R. Sturtevant, M. Buro, Partial pathfinding using map abstraction and refinement, in: Proceedings of the 20th National Conference on Artificial 

Intelligence, AAAI 2005, Pittsburgh, PA, USA, 2005, pp. 1392–1397.
[89] A. Tate, Generating project networks, in: Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 1977, 

pp. 888–893.
[90] M. Valtorta, A result on the computational complexity of heuristic estimates for the A∗ algorithm, Inf. Sci. 34 (1984) 47–59.
[91] F. Yang, J.C. Culberson, R. Holte, U. Zahavi, A. Felner, A general theory of additive state space abstractions, J. Artif. Intell. Res. 32 (2008) 631–662.
[92] S. Zilles, R.C. Holte, The computational complexity of avoiding spurious states in state space abstraction, Artif. Intell. 174 (2010) 1072–1092.
[93] J.D. Zucker, A grounded theory of abstraction in artificial intelligence, Philos. Trans. R. Soc. Lond. B 29 (358) (2003) 1293–1309.
39

http://refhub.elsevier.com/S0004-3702(21)00159-4/bib2D0C51972CEE2068F26A166A530C397Bs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibDA63A65A0515F4317DEFA0FA0BA70847s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibDA63A65A0515F4317DEFA0FA0BA70847s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBADCB4C449470149E0803000A41C0608s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBADCB4C449470149E0803000A41C0608s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib8B3C2797E4E17582BE6940001F60F0B7s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib8B3C2797E4E17582BE6940001F60F0B7s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibA70BFE4A48698B0F4317AD5607250B8Fs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibA70BFE4A48698B0F4317AD5607250B8Fs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib8437014244C0B908C43B0CFDABA539E0s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6E55E461DF130081B4F8559E51822CDAs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6E55E461DF130081B4F8559E51822CDAs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6E55E461DF130081B4F8559E51822CDAs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib9ABB7BA9F4BA56ED9AC67CE7EE3A4AF9s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib9ABB7BA9F4BA56ED9AC67CE7EE3A4AF9s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib2041954FA1FBE352E7F0D99B132B79E3s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib2041954FA1FBE352E7F0D99B132B79E3s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibFA6545C62C41B8BE5A1ABC91A63B26BEs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib0C5B8AC3158742EB2673BE77B854F084s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib0C5B8AC3158742EB2673BE77B854F084s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1B6A083751E1F1438CB8174507308FA4s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBB8E083D63452599DF24C78BEF08D115s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBB8E083D63452599DF24C78BEF08D115s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibEF539D6EE75728BE80AD5445E24507C5s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibEF539D6EE75728BE80AD5445E24507C5s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibB0F753C44FAD6557EC89346E62F93AA9s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib4DC2DB4589ABDB49384B0667BD2D31C6s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib5BA93A1CA93A79317C9583900145EEDBs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib5BA93A1CA93A79317C9583900145EEDBs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6E8A9BA3A717CB60BC3F4F06E919FF39s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib6E8A9BA3A717CB60BC3F4F06E919FF39s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib68B31BA08F7F587EEA5A6AE2393825B8s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib68B31BA08F7F587EEA5A6AE2393825B8s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib31C11680681947EFDA7B922B4AFAE0ACs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib31C11680681947EFDA7B922B4AFAE0ACs1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBBD4AAC57D85FF5F599A20B018ED8B77s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibBBD4AAC57D85FF5F599A20B018ED8B77s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibF8EF99A2DBD53D2E6CEB28C4797EC1F0s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib8B61080865B2BCCC01CFD0414A139E5Ds1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bib1FF5EE16F97B7DBB5463EA741557A178s1
http://refhub.elsevier.com/S0004-3702(21)00159-4/bibC46BCCB8B4C17353DF81E6FBE906CA2Es1

	A framework for analysing state-abstraction methods
	1 Introduction
	1.1 Abstraction in search and planning
	1.1.1 Abstraction refinement
	1.1.2 Abstraction-based heuristics

	1.2 Our contribution

	2 STGs and STG transformations
	3 Some basic properties
	3.1 Definitions
	3.2 Morphisms

	4 Refinement properties
	4.1 Abstraction refinement
	4.2 Formalising refinement
	4.3 Refinement properties
	4.4 Relationships between refinement properties

	5 SAS+ and implicit state-transition graphs
	6 Abstraction in planning
	6.1 Abstrips-style abstraction
	6.2 Variable projection
	6.3 Variable-domain abstraction
	6.4 Removing redundant actions
	6.5 Ignoring delete lists
	6.6 Direct landmark-based surrogates

	7 Analysis of planning abstractions
	8 Metric properties
	8.1 Metrics and heuristics
	8.2 Metric properties and upwards refinement
	8.3 Metric properties and downward refinement
	8.4 Relating metric and non-metric properties
	8.5 Examples with metric properties
	8.5.1 Admissibility and homomorphisms
	8.5.2 Spurious states
	8.5.3 Globally admissible heuristics
	8.5.4 Valtorta’s theorem
	8.5.5 Previous abstraction methods and admissibility


	9 Transformation composition and abstraction hierarchies
	9.1 Composition of transformations
	9.2 Transitivity of transformation properties
	9.3 Transitivity of planning abstractions
	9.4 An example: merge and shrink abstraction

	10 Discussion
	10.1 Labelled transition systems
	10.2 Metric refinement
	10.3 Other abstraction methods
	10.4 Other applications: hierarchical graphs

	Declaration of competing interest
	Appendix A List of key concepts
	References


