Journal of Computer and System Sciences 124 (2022) 214-233

Contents lists available at ScienceDirect

JOURNAL or
COMPUTER
2" SYSTEM

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

L))

Check for
updates

The tree-generative capacity of combinatory categorial
grammars

Marco Kuhlmann®!*, Andreas Maletti”, Lena Katharina Schiffer -2

a Department of Computer and Information Science, Linképing University, SE-581 83 Linképing, Sweden
b Faculty of Mathematics and Computer Science, Universitiit Leipzig, P.O. box 100 920, D-04009 Leipzig, Germany

ARTICLE INFO ABSTRACT
Article history: The generative capacity of combinatory categorial grammars (CCGs) as generators of tree
Received 11 September 2020 languages is investigated. It is demonstrated that the tree languages generated by CCGs can

Received in revised form 23 August 2021
Accepted 29 October 2021
Available online 10 November 2021

also be generated by simple monadic context-free tree grammars. However, the important
subclass of pure combinatory categorial grammars cannot even generate all regular tree
languages. Additionally, the tree languages generated by combinatory categorial grammars

Keywords: with limited rule degrees are characterized: If only application rules are allowed, then
Combinatory categorial grammar these grammars can generate only a proper subset of the regular tree languages, whereas
Regular tree language they can generate exactly the regular tree languages once first-degree composition rules
Linear context-free tree language are permitted.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Categorial grammars [1] were introduced alongside the phrase-structure grammars (regular, context-free, context-
sensitive grammars, etc.) of the CHomsky hierarchy [2] inspired by classical notions from proof theory [3,4]. Combinatory
Categorial Grammar (CCG) [5,6] is an extension following the approach of combinatory logic [7,8]. CCG received considerable
attention in theoretical computer science, culminating in the proofs of its mild context-sensitivity, as well as its equivalence
to several other established grammar formalisms [9]. It has since become a widely applied formalism in computational
linguistics [10,11].

The basis for CCG is provided by a lexicon and a rule system. The lexicon assigns syntactic categories to the sym-
bols of the input, and the rule system describes how adjacent categories can be combined to eventually obtain a (binary)
derivation tree. The mentioned equivalence result due to Vijay-SHANKER and WEIR [9] shows that CCG, tree-adjoining gram-
mar (TAG) [12] as well as linear indexed grammar [13] are weakly equivalent, which establishes that they generate the same
string languages. However, the used construction depends on the ability to restrict the combination rules and to include
lexicon entries for the empty word. Modern variants of CCG disfavor rule restrictions and the obtained pure CCGs are strictly
less expressive than TAG [14] unless unbounded generalized composition rules are permitted, in which case they are strictly

* This contribution is an extended and revised version of M. Kuhlmann, A. Maletti, and LK. Schiffer. “The Tree-Generative Capacity of Combinatory
Categorial Grammars.” Foundations of Software Technology and Theoretical Computer Science, LIPIcs 150, 44:1-44:14, 2019.
* Corresponding author.
E-mail addresses: marco.kuhlmann@liu.se (M. Kuhlmann), maletti@informatik.uni-leipzig.de (A. Maletti), schiffer@informatik.uni-leipzig.de (LK. Schiffer).
1 Supported by the Centre for Industrial IT (CENIIT), grant 15.02.
2 Supported by the German Research Foundation (DFG) Research Training Group GRK 1763 ‘Quantitative Logics and Automata’.

https://doi.org/10.1016/j.jcss.2021.10.005
0022-0000/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.jcss.2021.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2021.10.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:marco.kuhlmann@liu.se
mailto:maletti@informatik.uni-leipzig.de
mailto:schiffer@informatik.uni-leipzig.de
https://doi.org/10.1016/j.jcss.2021.10.005
http://creativecommons.org/licenses/by/4.0/

M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

more expressive than TAG [15]. Indeed, CCG with unbounded composition rules, rule restrictions as well as e-entries in the
lexicon is TURING-complete [16].

The mentioned studies examine the string (or weak) generative capacity of CCG, but already [15] asks for the tree
(or strong) generative capacity or, more specifically, the expressiveness of the languages of CCG derivation trees [17]. The
relation between the strong and the weak generative capacity of CCG is not fully understood. For example, KoLLER and
KUHLMANN [18] show that CCG and TAG are incomparable when considered as generators of dependency trees, a type of
linguistically motivated tree structures that explicitly model syntactic dependencies between words in a sentence. However,
the exact characterization of what sets of dependency trees can and cannot be generated by CCG remains unknown. In the
present contribution, we answer the original question and characterize the tree languages generated by CCGs, and relate
them to the standard notions of regular [17,19] and context-free tree languages [20,21]. A tree language ¥ is generated by
a CCG G if ¥ is obtained as a relabeling of the derivation tree language of G. Our work therefore is similar in spirit to that
of TIEDE [22], who studied the strong generative capacity of LAMBEK-style categorial grammars [23].

In the variant of CCG we investigate, the rule system is finite and includes only application and composition operators
(i.e., rules based on the B-combinator of combinatory logic [24]). In general, we allow rule restrictions that further constrain
the categories which the rules can be applied to. Notice that our results concern only binary trees, since the derivation trees
of CCGs are binary. Our main result (Theorem 29) is that the tree languages generated by CCGs can also be generated by
simple monadic context-free tree grammar (sCFTG), where simple means that the productions are linear and nondeleting.
For CCG without rule restrictions, this inclusion is proper since not even all regular tree languages [17] are generated by
these CCGs (Theorem 31). In addition, we show that CCGs without composition operations, which are weakly equivalent to
(e-free) context-free grammars, generate a strict subclass of the regular tree languages that does not even include all local
tree languages (Theorem 13). This is an alternative proof for an analogous result in [25, Theorem 1.1], where the focus is
on classical categorial grammars, which are pure CCGs without composition operations. Finally, if we limit the permitted
composition operators to first degree, then exactly the regular tree languages are generated (Theorem 19).

We will briefly sketch the ideas behind our proofs. CCGs without composition operations can generate exactly those
regular tree languages where for each node there exists a short path of bounded length to a leaf. Intuitively, application
rules shorten a category on the way from the leaf upwards in the direction of the root. This is why the maximal category
length in the lexicon, which contains the categories labeling leaves, puts a bound on this path length. In our construction, we
consider decompositions of trees into these short paths and compile a lexicon containing categories modeling these paths,
that can then be assembled appropriately through the CCG operations. As for the result on CCGs allowing composition rules
of first degree, we construct a CCG that uses a certain finite set of categories, such that given a set of states of a tree
automaton, for each transition that could be present in a tree automaton using these, there are corresponding categories
that could be combined via rules. The rule restrictions of the CCG then control which of these rules are actually permitted,
with the aim to simulate only valid transitions of the given tree automaton. Finally, for the main result, given a CCG allowing
composition rules of arbitrary degree, we construct an sCFTG that generates the rule trees of the CCG. These represent its
derivation trees and have the same shape, while using only a finite set of symbols. The nonterminals of the sCFTG represent
either categories or CCG rules. The derivation takes place by gradually extending what we call a spine and by using branching
productions to start new spines that are attached to superordinated spines. Nonterminals can only be replaced by terminal
symbols when they represent either categories present in the lexicon or rules permitted by the CCG rule system.

2. Preliminaries

We denote the set of nonnegative integers by N and for every ke N let [k]={ie N |1 <i <k} as well as Zy =
{i e N |i <k}. The power-set (i.e., set of all subsets) of a set A is P(A) ={A’ | A’ C A}, and P.(A) = P(A) \ {#} contains
all nonempty subsets. As usual, an alphabet is a finite set of symbols. The monoid (X*,-, ¢) consists of all strings (i.e.,
sequences) over a (possibly infinite) set ¥, together with concatenation - and the empty string €. We often write con-
catenation by juxtaposition. The length of a string w € ¥* (i.e., the number of components in the sequence) is denoted
by |w|. Any set £ C ¥* is a language, and the languages form a monoid (P(X*), -, {¢}) with concatenation lifted to lan-
guages by L- L' ={w-w'|we L, w e L}. We assume familiarity with the context-free languages [26] and the concept of
context-free grammar (CFG) that can be used to describe them. Every mapping f: ¥ — A* [respectively, f: ¥ — P(A*)]
extends uniquely to a monoid homomorphism f’: £* — A* [respectively, f’: ¥* — P(A*)]. We will not distinguish the
mapping f and its induced homomorphism f’, but rather use f for both.

Given two sets A and A’, a relation from A to A’ is a subset p C A x A’. The inverse of p is p~! ={(@,a) | (a,d) €
p}, and for every B C A, we let p(B) ={da’ |3b € B: (b,a’) € p}. The relation p € A x A’ can also be understood as a
mapping p: A — P(A") with p(a) = p({a}) for all a € A. We will not distinguish these two representations.

We build binary trees over the set ¥, of binary internal symbols, the alphabet ¥; of unary internal symbols, and the
alphabet ¥y of leaf symbols.> Formally, the set Ty,.x,(Xo) of binary (X, ¥1)-trees indexed by Xg is the smallest set T
such that (i)aeT for all ae X, (ii) n(t) € T forallne Xq and t € T, and (iii) c(t1,t3) € T for all c € £, and t1,t; € T. We
use graphical representations of trees to increase readability. Every subset ¥ C Ty, 5, (Xo) is a tree language. The mapping

1

3 We explicitly allow an infinite set of internal binary symbols.

215



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

pos: Ty, 5, (X0) — P.([2]*) assigning positions to a tree is defined by (i) pos(a) = {¢} for all a € Xy, (ii) pos(n(t)) ={e} U
{1w | w e pos(t)} for all n € X1 and t € Ty, x, (Xo), and (iii) for all c € X3 and t1,t; € Tx,, 5, (Xo),

pos(c(ty, t2)) = {e} U{1w | w e pos(t))} U {2w | w € pos(t2)} .

We let leaves(t) = {w € pos(t) | w1 ¢ pos(t)} be the set of leaf positions in t, and ht(t) = maXweleavesir) [W| be the
height of the tree t. Let the yield of a tree be given by yield: Ty, 5, (Z0) — X with yield(a) =a for all a € o and
yield(c(tl,...,tk)) = yield(t1) - - - yield(ty) for all k € [2], c € X, and ty,...,tx € Ty, 5,(Xo). The subtree of t at posi-
tion w € pos(t) is denoted by t|,, and the label of t at position w is denoted by t(w). Moreover, t[t'],, denotes the
tree obtained from t by replacing the subtree at position w by the tree t' € Tx, »,(Zg). Given A C Xy U X1 U X,
let pos, (t) = {w € pos(t) | t(w) € A}. We simply write pos;(t) instead of poss (t).

We reserve the use of the symbol o. The set Cyx, 5, (Zo) of contexts contains all trees of Ty, 5, (X U {0}), in which the
special symbol o occurs exactly once. Let C € Cy, 5, (X9). Since pos_(C) contains one element, we often identify it with its
only element. To save space, we write tC for C[t]y, where w = pos,(C). A relabeling is a mapping o0: (X2 U X1 U Xg) —
P, (A) for some alphabet A.* It induces a mapping 0 T, 5, (X0) = P.(Ta,a(A)) for every t € Ty, 5, (Z0) by

p(t) ={u € Ta,a(A) | pos(u) = pos(t), Yw € pos(u): u(w) € p(t(w))} .

In the following, we again do not distinguish between the relabeling p and its induced mapping p on trees.

A simple monadic context-free tree grammar (sCFTG) [20,21] is a tuple G = (N, X, I, P) such that (i) N = N1 U Ng, where
N7 and Ng are alphabets of unary and nullary nonterminals, respectively, (ii) X = X, U g, where X, and Xg are alphabets
of internal and leaf terminal symbols, respectively, such that NNX = @, (iii) I € Ny are nullary start nonterminals, and (iv) P is
a finite set of productions such that

P < (No x Tx,,N, (Z0 UNog)) U (N1 x Cx, N, (S0 UNp)) -

The grammar is called monadic because there are only nullary and unary nonterminals; simple means that the productions
are linear and nondeleting, i.e., if the left side of a production is in Ny, the special symbol o (marking the new position of
the subtree of the nonterminal) appears exactly once on the right side. If Ny =@, then G is a regular tree grammar (RTG).
We write productions (n,r) as n — r. Next, we define the rewrite semantics [27] for the sCFTG G. For arbitrary &,¢ €
Ty, N, (X0 U Np) and positions w € pos(€) we let £ =¢ ¢ if there exists a production n — r € P such that

e &l =n and ¢ = &[r], with n e Ng, or
e £lw=n(&) and ¢ = £[&'r]w with n € N1 and & € Ts, n, (Zo U No).

We write £ = ¢ if there exists w € pos(§) such that & =¢  ¢. The tree language ¥ (G) generated by G is ¥(G) =
{t € Tx, ¢(Xo) | dng € 1: ng :>E t}, where :>E is the transitive closure of =¢. The tree languages generated by sCFTGs
form a subset of context-free tree languages, and a tree language ¥ is regular if and only if there exists an RTG G such
that ¥ = F(G). A detailed introduction to trees and tree languages can be found in [17]. The string language generated by
G is L(G) = {yield(t) | t € F(G)}.

Example 1. The RTG G1 = (N, %, 1, P) with N=No=1={s}, ¥ =3 U g with X ={o} and X9 ={«, 8}, and P = {s —
o(a,o0(s,B)),s— o(x, B)} generates the string language £(G1) = {«"B" | n > 1}. Clearly, the only nonterminal s is nullary
(since Gp is an RTG) and thus occurs only as leaf in the right-hand sides of productions, which is similar to right-linearity
for CFGs (Fig. 1).

Two important facts concerning the regular tree languages are that they properly include the derivation tree languages
of CFGs and that their string languages are exactly the context-free languages.

Example 2. The sCFTG G, = (N, X, I, P) with N = N7 U Ng with Ny ={n} and No=1={s}, £ = ¥y U X with X, = {0}
and ¥p ={«, B, ¥}, and

P= {s — a(a,a(n(ﬂ), y)) n— a(a,a(n(a(u,ﬁ)), y)), n— u}
generates the string language £(G) = {«"g"y"™ | n > 1}. The placeholder o, which indicates the new position of the subtree
under the unary nonterminal symbol n, appears exactly once on the right-hand sides of the productions with left-hand
side n (as required for an sCFTG) (Fig. 1).

4 We require that each input symbol can be relabeled.

216



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

o
a// \a'
o
o RN
o 7N a” o o Y
7 N\ @ g o VAN VRN
o (07 a / N\ PN o b4 a o
N 7/ N\ o B /N 7N
s=g, @ o = o b= VRN 5= SN 26, @ o =2 g Y
o 7/ N\ RN G @ o G n y —0 N G, /N
s B a o /7 N\ \ n Yy a /o-\
/N o B B o o Y
K B / N\ RN / N\
« B B~ B o B
/7 N\
B B
Fig. 1. Derivations using the RTG G (left) and the sCFTG G, (right) of Examples 1 and 2, respectively.
Alice recently divorced Bob Alice recently divorced Bob
(S\NP)/NP NP (S\NP)/(S\NP) (S\NP)/NP -
—_— >
(S\NP)/(S\NP) S\NP . (S\NP) /NP NP
> >
NP S\NP NP S\NP
5 = s =

Fig. 2. Two sample derivations.

3. Combinatory categorial grammars

Combinatory categorial grammars (CCGs) extend the classical categorial grammars of AjpukiEwIcZ and BAR-HILLEL [28]
(AB-grammars) by rules inspired by combinatory logic [24]. Here, as in most of the formal work on CCGs, we restrict our
attention to the rules of application and composition, which are based on the B-combinator.

3.1. Informal introduction

Like other categorial grammars, a CCG grammar has two components: a lexicon, which specifies the syntactic types or
categories of individual words; and a set of rules, which specify how to derive the categories of phrases and sentences from
the categories of their constituent parts. These two components together give rise to derivations such as the ones shown
in Fig. 2. We draw derivation trees according to the standard conventions for CCGs, where the root is at the bottom. The
dotted lines visualize the word-category mapping implemented by the lexicon. Categories can either be primitive, such as
S (“sentence”) or NP (“noun phrase”), or complex, such as (S\NP)/NP or S\NP. These complex categories denote function
types. More specifically, an object with a complex category of the general form X/Y or X\Y takes an argument of category
Y and returns an object of category X. When two categories are combined, the category that takes an argument is called
primary input category and the one that provides said argument is called secondary input category. The forward slash specifies
that the argument should appear to the right; the backward slash specifies that it should appear to the left. In Fig. 2, the
left derivation combines categories using rules of functional application, as in AB-grammars: forward application (denoted
by >) and backward application (denoted by <). The right derivation showcases forward composition (denoted by >g),
where the category (S\NP)/(S\NP) for the lexical item recently combines with the category (S\NP)/NP for divorced. As in
function composition, the argument /NP of the secondary input category gets appended to that part of the primary input
category which remains when the provided argument /(S\NP) has been removed, resulting in the new category (S\NP)/NP.
This category can then be combined with NP to the right. Higher-order versions of composition are able to transfer more
than one outermost argument of the secondary input category to another category.

3.2. Formal definition

In this article, we formalize categories as term trees. Let A be an alphabet, and let C(A) = Ts 4(A), where S ={/,\} is
the set of slashes. The elements of C(A) are categories (over A), of which the elements of A C C(A) are atomic. We write
categories using infix notation, omitting unnecessary parentheses based on the convention that slashes are left-associative.
Thus every category takes the form c =alicq---|kcx Where a € A, |; € S, and c; € C(A) for all i € [k]. The atomic category a
is called the target of ¢ and the slash-category pairs |;c; are called the arguments of c. Let argcats(c) = {c; | i € [k]} be the set
of all categories used as arguments of category c. If argcats(c) C A, we call c a first-order category. The set of all first-order
categories over A is denoted by Co(A). The number k is called the arity of c. Note that, from the tree perspective, the
sequence of arguments is a context & = o|qc1 - - - |[kCk. The number k is the length of «; we write it as |«|. We let A(A) C
Cs.g(A) be the set of all argument contexts (over A). Finally, for every k € N, we let C(A,k) = {c € C(A) | arity(c) < k}
and A(A k) ={a € A(A) | k > |a]|}.

217



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

A category c/c’ can be combined with a category ¢’ to its right to become c; similarly, a category c\c’ can be combined
with ¢’ to its left. Formally, given an alphabet A and k € N, a rule of degree k over A takes one of two possible forms [9]:

ax/c clicy - |kck backward rule: clicr---lkCk  ax\c
ax|1c1 - - - [kCk ax|icy - - - |kCk

forward rule:

where a € A, ce C(A)U{y}, and |; € S and ¢; € C(A) U {y;} for every i € [k]. The category variables y, y1, ..., ¥k can match
any category of C(A), while the argument context variable x can match any argument context of A(A). Note that the
variable x occurs in every rule in the category ax|c with | € {/,\}, which is called the primary input category. The other
category c|ic1---|kCk is the secondary input category of the rule, and the category variables y, y1,..., yx may, but need
not, occur in it. Each category c,cq,...,cx can thus be either a concrete category of C(A) or a category variable if no
restriction is intended. Indeed, the category variables y, y1,..., y, only offer a more succinct rule description in the notion
of combinatory categorial grammar that we consider since only the finitely many instantiations of categories that occur
in the lexicon will ever yield useful rules (see Proposition 12). Since we concern ourselves exclusively with the expressive
power, we often assume, without loss of generality, that all secondary input categories of rules are concrete categories
of C(A); i.e., the rules contain no category variables. The argument context variable x will match each argument context
of A(A), so in the primary input category we can only restrict the target and the last argument. We let R(A) be the set
of all rules over A, and for every k € N let R(A, k) be the finite set of all generic (i.e., always using variables instead of
concrete categories) rules over A with degree at most k. Rules of degree 0 are called application rules, whereas rules of higher
degree are called composition rules. A rule system is a pair I1 = (A, R) consisting of an alphabet A and a finite set R C R(A)
of rules over A. A ground instance of a rule r is obtained by substituting concrete categories for the variables {y, y1,...}
and a concrete argument context for the variable x in r. The set of all ground instances of IT induces a relation —1IT C

C(A)? x C(A), which extends to a relation =1 € C(A)* x C(A)* by = = Uy, yecayt@cc' v, oc”¥) | CCHC/ I1}.

Example 3. Consider the forward rule r = Dx/D__D/E\C

Dx/E\C
is W, where x was replaced by the argument context o/C/E. The primary input category ¢y = D/C/E/D has

target D and arguments /C, /E, and /D. As c; takes three atomic categories as arguments, it is a first-order category
and arity(cy) = 3. The rule degree is determined by the number of arguments replacing the last argument of the primary
input category, so r has degree k = 2. Note that D/C/E/D is short for ((D/C)/E)/D, which is different from (D/C)/(E/D).

The latter is a higher-order category. The rules DX/(E/gi\CE/D\C and D"/(E/g;\(CE/CE;\(C/C) both have degree 1.

, where {C, D, E} are atoms. A possible ground instance of this rule

Definition 4 ([9]). A combinatory categorial grammar (CCG) is a tuple G = (X, A, R, I, L) consisting of an alphabet ¥ of input
symbols, a rule system (A, R), a set I C A of initial categories, and a finite relation L C X x C(A) called lexicon. It is a k-CCG
[resp. pure k-CCG], for k € N, if each r € R has degree at most k [resp., if R = R(A, k)].

In a pure k-CCG the rule system contains all rules up to degree k — without exception. Thus, as long as the degree limit
is respected, all instances of forward and backward rules can be applied.

Example 5. The classical categorial grammars of AjpukiEwicz and BAR-HILLEL [28] (AB-grammars) are 0-CCGs. However, 0-
CCGs are more general since they allow rule restrictions, whereas AB-grammars are pure. As a concrete example, let G3 =
(X,A,R(A,0),1,L) be the CCG given by the input alphabet ¥ = {c, d}, the atomic categories A = {C, D}, the set I = {C} of
initial categories, and the lexicon L with L(c) ={C/D, C/D/C} and L(d) = {D}. Clearly, G3 is a 0-CCG. For a slightly more
involved example containing rule restrictions, we refer to Example 21.

Definition 6. A combinatory categorial grammar G = (X, A, R, I, L) generates the category sequences C(G) C C(A)* and the
string language £(G) € ¥*, where 1= (A, R),

CG)={peCA*|Fapel: p=%a) and LG)=L"1CWG)) .

A tree t € Tga),p(L(X)) is a derivation tree of G if WH for every w € pos(t) \ leaves(t). The set of all such trees is

denoted by D(G). Note that it is not required that t(¢) € I.

The grammar of Example 5 generates £(G3) = {c'd' | i > 1}, which is context-free but not regular. A derivation tree for
the string ccdd is shown in Fig. 3. Note that in this and the following derivations, we do no longer explicitly label the rule
instances with their names (“forward application”, “backward composition”, etc.), as we did in Fig. 2. Overall, G3 generates
the category sequences C(G3) = {(C/D/C)i=1.(C/D)-Di|i>1}.

The string language generated by a CCG is obtained by relabeling the leaf categories of the derivation trees using the
lexicon. For the generated tree language we similarly allow a relabeling to avoid the restriction to the particular symbols
of C(A). However, since the set C(A) is infinite, we restrict the possible relabelings such that they only depend on the

target and the last argument of a given category.

218



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

c c ¢ d d d e e e
© ¢ DJE/D\C
¢ ¢ dd © 1 T D/E/D  DJ/E/D\C
&b b < D EDE/ED/E/D\C D/E\C :
Coje ~ JEJE] /BC
A c D/E/E/E\C :
c/D D :
— D/EJEJE EC
D/E/E E *
DJE E
D

Fig. 3. Derivations using the AB-grammar Gs (left) and the CCG G4 (right) of Examples 5 and 21, respectively.

Definition 7. Let G = (X, A,R,I,L) be a CCG and p: C(A) — P.(A) a mapping. If p(b) = p(b’) for all atoms a € A,
slashes | € S, categories ¢ € C(A), and ground instances b and b’ of ax|c, then p is called category relabeling. Together,
G and p generate the tree language ¥, (G) = UdeD(G)’d(s)e, p(d). A tree language ¥ C T »(A) is generatable by the CCG G
if there exists a category relabeling p": C(A) — #.(A) such that ¥ =7, (G).

Because L(X) is finite, there exists k € N such that L(X) € C(A, k). The least such integer k is called the arity of L
and denoted by arity(L); i.e., arity(L) = max{arity(c) | c € L(2)}. If L =@, then we let arity(L) = 0. Further, let argcats(L) =
UceL(Z) argcats(c) be the set of all categories used as arguments of lexical entries.

4. 0-CCGs

In this section we characterize the tree languages generatable by 0-CCGs. This has already been investigated by
Buszkowski with a focus on classical categorial grammars [25, Theorem 1.1]. We present an alternative proof for this result.
Let G=(X,A,R,I,L) be a 0-CCG. An important property of 0-CCGs is that each category that occurs in a derivation tree
has arity at most arity(L). Thus, the derivation trees are built over a finite set of symbols.

Theorem 8 (see [28] and [22, Proposition 3.25]). The string languages generated by 0-CCGs are exactly the e-free context-free lan-
guages. Moreover, for each 0-CCG G the derivation tree language D(G) and the tree languages generatable by G are regular.

Proof. It is rather easy to show that every 0-CCG generates a context-free language.® It is considerably more complicated to
show that every e-free context-free language can be generated by some 0-CCG. A GREIBACH-like normal form for context-
free grammars was developed by [28] for this purpose. By [22, Proposition 3.25] the tree language D(G) is regular. Moreover,
the regular tree languages are closed under relabelings [19, Theorem 2.4.16] and intersection [19, Theorem 2.4.2],° so also
Fp(G) is regular for every category relabeling p. O

To characterize the tree languages generatable by 0-CCGs, we need to introduce an additional structural property of the
derivation tree language D(G) and the generatable tree languages. Roughly speaking, the min-height mht(t) of a tree t is
the minimal length of a path from the root to a leaf. Recall that the height coincides with the maximal length of those
paths. For all alphabets 5 and Xg, let mht: Ty, 4(¥Xo) — N be such that mht(a) =0 and

mht(c(tq, t2)) = 1+ min(mht(t), mht(tz))

for all a € o, ¢ € Xy, and tq,t; € Ty, ¢(Zo). A tree t € Ty, 4(Xo) is universally mht-bounded by h € N if mht(t|w) <h
for every w e pos(t). Finally, a tree language ¥ C Tx, ¢(Xo) is universally mht-bounded by h if every t € # is universally
mht-bounded by h, and it is universally mht-bounded if there exists h € N such that it is universally mht-bounded by h.
Note that “universally mht-bounded” is a purely structural property of a tree as it only depends on the shape of the
tree, and is completely agnostic about the node labels. The property is thus preserved by the application of a relabeling.
Consequently, po(¥) is universally mht-bounded by h if and only if # is universally mht-bounded by h for every tree
language ¥ C Ty, ¢(X0) and relabeling p: (3 U Xg) — P.(A).

Example 9. Let us reconsider the 0-CCG G3 of Example 5. The derivation tree language 9(G3) is universally mht-bounded
by 1 (see Fig. 3). The tree y(«, y (y (o, &), ¥ (o, ))) also has min-height 1, but is only universally mht-bounded by 2, since
the subtree y (y (v, @), y (o, «)) has min-height 2.

5 This also follows from the following fact about its derivation tree language.
6 The intersection can be used to restrict D(G) to those trees whose root symbol belongs to I.

219



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

It turns out that exactly the universally mht-bounded regular tree languages are generatable by 0-CCGs. We already
observed that the tree languages generatable by 0-CCGs are regular, but for the converse we have to exploit the universal
mht-bound. We first show that indeed the tree languages generatable by 0-CCGs are universally mht-bounded.

Lemma 10. The tree language D(G) is universally mht-bounded by arity(L).

Proof. We first prove that mht(t) < arity(L) — arity(t(¢)) for every t € D(G) by induction on t. For t =c € L(X), we
have arity(c) < arity(L), so we obtain mht(c) = 0 < arity(L) — arity(c), which completes the induction base. In the induction
step, let t =c(ty, tz) with c € C(A) and tq, t; € D(G). Since R C R(A, 0) we can only use application rules. Hence, arity(c) <
max(arity(t(1)), arity(t(2))) — 1, which we call (). By the induction hypothesis (IH) we have mht(t{) < arity(L) — arity(t(1))
and mht(tp) < arity(L) — arity(t(2)). Thus, we obtain

mht(c(t1, ) = 1+ min(mht(e), mhe(cy) ) C1 4 min (arity(L) - arity(¢(1)), arity(L) — arity (¢(2))

=1+ arity(L) — max(arity(t(l)), arity(t(Z))) (2 1+ arity(L) — (arity(c) + 1)
= arity(L) — arity(t(¢))

as required. This completes the induction. Now let t € D(G) and w € pos(t). Then t|, € D(G) is a derivation tree, and
thus mht(t|,) < arity(L) by the auxiliary statement, which proves that t is universally mht-bounded by arity(L). O

Since the universal mht-bound is a structural property, we can transfer it from the derivation trees to the relabeled trees.
The following corollary is a direct consequence of Lemma 10.

Corollary 11. There exist regular tree languages ¥ C Ty, 4(Xo) that are not generatable by any 0-CCG.

Proof. The tree language ¥ = Ty, 4(Xo) for non-empty alphabets ¥, and Xo is not generatable by any 0-CCG since it is
not universally mht-bounded. O

We have thus established that the tree languages generated by 0-CCGs are regular and universally mht-bounded. We
note that this result does not concern weak generative capacity. In particular, every (binary) regular tree language can be
converted into a universally mht-bounded one that yields the same strings; this implies that a formalism that is able to
generate all universally mht-bounded regular tree languages will still be weakly equivalent to the full class of regular tree
languages, and therefore, to context-free (string) grammars.

The remainder of this section will be devoted to the second half of the proof of Theorem 8. More precisely, we will
show that every universally mht-bounded regular tree language can be generated by a 0-CCG. The construction uses the
universal mht-bound, which yields short paths to a leaf. We utilize those paths to decompose the tree into spines, which
are short paths in the tree that lead from a node to a leaf and are never longer than the universal min-height. The primary
input categories for the applications are placed along those spines and each spine terminates in an atomic category that
can be combined with the category from another spine. This idea is illustrated in Fig. 4. Consider for example the rightmost
run, which is r3. In the CCG derivation tree, the leaf at the bottom of this run is a primary input category that has two
arguments, which store besides r3 the labels of nodes on the spine and their siblings. Following the spine upwards, these
arguments are removed through application rules, until only the target remains. It stores rq, which is the run that r3 gets
combined with.

We restate the following proposition [9, Lemma 3.1], which will be needed in the proof of Theorem 13.

Proposition 12 (see [9, Lemma 3.1]). Let [T = (A, R) be a rule system, and let

C1e k=11 € Cp

for some categories c1, ..., ¢k, cq, ..., € C(A). Then k' < k and for each i € [K'] the category ] is of the form ¢} = a;|1cf -- - |ec],
where a is the target of ¢ j for some j € [k] and for each m € [£] the argument |mc;y, is an argument of the category c;,, for some jn € [k].

Theorem 13. Let ¥ C Ty, 3(Xo) be a tree language. Then the following are equivalent:
e F is generatable by some 0-CCG.
e ¥ is generatable by some pure 0-CCG.

e ¥ is regular and universally mht-bounded.

Proof. The inclusion of the tree languages generatable by 0-CCG in the regular and universally mht-bounded tree languages
is trivially true by Theorem 8 and Lemma 10. The step from the second to the first statement is also immediately apparent

220



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

S (S,2)
VRN /N
NP VP (NP, 1) (VP, 1)
/ \ /\ /\ / N\
the car ran NP the car ran (NP,2)
/ \ / N\
the NP the (NP,2)
/ \ / \
red light red light

(S, r3, light)

(NP, r1, VP) (S, r3, lighty\(NP, r, VP)
(NP, ri, VP)/(car, ry,the) (car,r,the) (S,r3 lighty\(NP,r|, VP)/(NP,r;,ran) (NP, r,ran)
/ \
(the, r3,NP) (NP, ry, ran)\(the, r3, NP)
/ \

(red, r3, light) (NP, ry,ran)\(the, r3, NP)\(red, r3, light)
Fig. 4. Decomposition into spinal runs and the corresponding derivation tree of the 0-CCG with the symbol resulting after relabeling underlined.

since each pure 0-CCG is a 0-CCG. In the following, we will show the remaining step: that each regular, universally mht-
bounded tree language ¥ is generated by some pure 0-CCG.

Let h € N be such that F is universally mht-bounded by h. Since ¥ is regular, there exists a context-free gram-
mar G = (N, T, I, P) and a relabeling p [19, Theorem 2.9.5] such that ¥ = {p(t) |t e D), te) e I}, where D(G) consists
of the usual derivation trees of the CFG G. Without loss of generality, we can assume that N does not contain useless
nonterminals.” Since the composition of two relabelings (seen as relations) is again a relabeling, it is sufficient to prove that
there exists a pure 0-CCG G’ and a relabeling o’ such that 7,/ (G') = {t € D(G) | t(e) € I}. We observe that D(G) is also
universally mht-bounded by h.

First we will annotate the derivation trees with directions, where 1 indicates left and 2 indicates right. For every r €
Tnxp21,0(TUN) we let r[0] =r if re TUN and r[0] =n if r = (n, §)(r1,12) for some n e N, 6 € [2], and 11,12 € Tyx2;,0(TUN).
The set SR(G) of spinal runs of G is the smallest set R C Tyx2),¢(I" U N) such that (i) I" € R, and (ii) (n, 8)(r1,m2) € R for
every ne N, § €[2], r3_s € TUN, and rs € R with (n — r{[0] - r[0]) € P. The direction § € [2] indicates which successor
continues the spine. Since D(G) is universally mht-bounded by h, we are interested only in those spines of length at
most h, so we let SR = {r € SR(G) | ht(r) < h}. Clearly, SR is finite, so we can build the atomic categories A= (I"UN) x SR x
(' U N). Each atomic category thus stores two symbols, which are required for the relabeling, and a spinal run to enforce
consistency. Next, we construct the argument tree arg(r’, r”"), which is an element of A(A, h), and define additional direct
spine access r'[i] € T UN for all spinal runs 1, r” € SR, and i € [ht(r’)] as follows:

e if ' €T, then arg(r', ") =,
o if I’ =(n,8)(r1,r2) for some ne N, § €[2], r3_s e TUN, and r5 € SR, then®

arg(r',r") = arg(rs, 1) [u |(ra—s. 1", 15 [0])] and rlil=rsli—1],
where | =/ if §=1 and | =\ otherwise.

The base “base(r’)” of r’ is simply r'[ht(r’)]. Note that base(r’) € I'. The notion of spinal runs and the construction of the
argument tree are illustrated in Fig. 5.
Next, we construct the pure 0-CCG G’ = (T", A, R(A,0), I x SR x (' UN), L) with

L(y)= [arg(r, r) [(r[O], r, g)] |r,r" €SR, base(r)=y, geT'U N}

for every y €T. It is clear that all categories of L(I") are left-spinal (i.e., all right children are leaves — see Fig. 5). Moreover,
all right children are atomic categories. Together with the fact that we can only use application rules, we obtain that all
categories that can occur in derivations of 9(G’) must be subtrees of the categories in L(I"). Consequently, let C € C(A) be

7 We require that for every nonterminal n € N there exist strings w, w1, w, € I'* and an initial nonterminal ng € I such that ng =S¢ winwy =S¢ w.
8 For better readability, we write |(o, ¢) using the infix notation o | c.

221



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

(S,2) / (NP, 2) \
/ \ / \ / N\ /N
NP (VP, 1) \ (NP, r,ran) the (NP,2) \ (red,r’,light)
/\ /' N\ / \ /N
ran NP O (NP,r, VP) red light O (the,r’,NP)
r[0]=S r[11 = VP r[2] = ran r'[0] = NP r[1] = NP r'[2] = light
base(r) = ran base(r’) = light

Fig. 5. Two spinal runs r (left) and r’ (right) together with their argument trees arg(r,r) and arg(r’,r’) and their bases base(r) and base(r’).

that subset of all categories. Moreover, if the right child of a category c € C is decorated with the spinal run r, then the
category c is a subtree of a category built from arg(r,r) in the definition of L. Finally, we need to construct the missing
category relabeling p’. To avoid complication, we only define it on the categories of C, since its definition on the remaining
categories is irrelevant as those other categories cannot occur in derivations of D(G’). Let p’: C — P.(I' U N) be given by
o' (g, r,g'))=1{g} and p'(c|(g.r,g)) ={g'} for all (g,r,g’) e ANC, ceC, and | € S. Note that p is trivially a category
relabeling.

It remains to prove that 7,/ (G") = {t € D(G) | t(e) € I}. We first prove the auxiliary statement p’(D(G")) = D(G).

We start with the direction p’(D(G")) € D(G) using induction. In the induction base we have ¢ € L(I'). Now we
distinguish two cases: If ¢ = (g,r’,g’) € A is atomic, then p’(c) = g = base(r) € I" for some r € SR by construction
of the lexicon. Otherwise ¢ =c¢’ | (g,1’,g’) for some ¢’ €C, | €S, and (g,r’, g’) € A. Moreover, ¢ was obtained from
the argument tree arg(r,r) for some r € SR by substitution. In this case p’(c) = g’ = base(r) € ' by the definition
of “arg”. Consequently, we have p’(c) e I' and ' € D(G), which completes the induction base. In the induction step,
let d = g(dy,d2) for some g € TUN and dy,dz € p/(D(G)). Consequently, there exist c € C and tq,t; € D(G’) such
that c(tq,tz) € D(G’) and p’(c(t1,t2)) = g(dy,d2). Moreover, di,d; € D(G) by the induction hypothesis. It remains to prove
that g — di(¢) - da(¢) € P, and thus g(dq,dy) € D(G). We already remarked that only left-spinal categories can occur
in D(G"), hence {t1(¢),t2(e)} = {cla, a} for some | € S and a € A. Moreover, let a = (g1,r, g&2) for some g1,g82 e TUN
and r € SR. We assume that t1(¢) = a and tz(¢) = c\a. The remaining case, in which t{(¢) =c/a and t;(¢) = a, is analo-
gous. By the definition of p’, we obtain that dq(¢) = g1 and d»(¢) = g2. Moreover, we already remarked that c\a must be
a subtree of a category in L(I'). More precisely, it must be a subtree of the category arg(r, r)[{r[0], 1, g)] for some r’ € SR
and g € ' U N because we have the spinal run r annotated to a right child. Clearly, the left-spinal property makes it easy
for us to locate the required subtree.

Now we distinguish two cases according to the definition of p’. If ¢ is atomic, then ¢ = (r[0],7',g) and r[0] = g by the
definition of p’. By the construction of the argument “arg(r,r)” we have

r(e)=(r[0],2)=(g,2) and r(1)=gi=di(e) and r(2)=(r[1],8) = (g2, d) = (d2(¢), )

for some & € [2]. Since r € SR we have r[0] — r(1) - r[1] € P, which yields g — d1(¢) -d2(¢) € P as desired with the help of
the equations above. In the remaining case c¢ is not atomic. Let c=c’|(g’,r, g") for some ¢’ €C, | €S, and g’,g” e TUN.
The definition of p’ yields that g’ = g. Since ‘arg’ reverses the order (see Fig. 5), our subtree c\a corresponds to an initial
fragment of r. Thus, let r = C[r”] with C € Cyx21,9(I"' UN) and r” € SR such that c\a = arg(C[r" ()], r)[(r[0],1’, &)]. Let w =
pos_ (C). Since we have at least two arguments in c\a, the definition of ‘arg’ yields |w| > 2, so let w = w’§ 8, with w’ € [2]*
and &/, 8} € [2]. Then the last two arguments are constructed by o | (g’,r, g") \ (g1, T, g&2) = arg(Clw/[r"(¢)],1) and thus

r(w's)) =(g".8) =(g,2) and rw&=gi=di(e) and (W' 2)=(g2,8")=(d2(e),8")

for some 8" € [2]. Since r € SR we have r|W15; [0] — r|W/5; 1) - r|w/5; [1] € P, which together with the equalities above yields
the existence of the production g — di(¢) - d2(¢) € P as required. Hence p'(D(G')) € D(G).

For the converse inclusion D(G) € p'(D(G’)) we first prove an auxiliary statement. Let t € D(G’) be a derivation
with arity(t(¢)) = 0 (i.e., that terminates in an atomic category). Moreover, let t(¢) = (g,r,g) for some g,g € TUN
and r € SR. Then for every r’ € SR and g’ € ' UN there exists a derivation t. g € D(G’) such that t. g (e) = (g,1', g’)
and p’(ty ¢) = p’(t). In other words, in any derivation with an atomic category at the root we can adjust the derivation
such that the root label contains any desired spinal run 1’ € SR and third component g’ € I' U N. The resulting tree is still
a derivation and relabels to the same tree as t. This statement is very easy to prove using Proposition 12, which shows
that t(¢) is the target of a category of L(I"). However, by the construction of L(I") those targets always allow each spinal
run r’ as second component and each g’ as third component. A detailed proof is left to the reader.

We return to the main proof that D(G) C p’(D(G')). We rather prove the stronger statement that

D(G) S p'(Do(G))  with  Do(G") = {t € D(G") | arity(t(e)) =0} M)

222



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

by induction. This means that we restrict ourselves on the right-hand side to those derivations Dg(G’) that finish in an
atomic category. In the induction base, let u =y € I". Then (y,r, g) € L(y) N Dy(G’) is atomic for every r € SR and g e TUN,
and thus u € p'(Dp(G)) by the definition of p’. In the induction step, we have u ¢ I'" and the desired property u’ €
' (Do(G")) is true for all proper subtrees u’ of u. For every u’ € D(G) and w € pos(u’) such that u’(w) € I' we construct a
spinal run ry, , as follows:

o Ifw=e¢g, thenry,  =u'.
o If w=246w and u’' =n(u},u)) for some & € [2], w’ € pos(uf), n € N, and u},u}, € D(G), then the spinal run ry , is
given by ry . (8) = (n.8), rwwls =y ;. and rw wl3—s = uy_g(e).

It is easily checked that ry, , is a spinal run of G (i.e., ry € SR(G)) and ht(ry ) = [w|. Now we return to the tree u €
D(G). Since u is universally mht-bounded by h, there exists a position w € pos(u) such that (w| <h and u(w) €I'. In other
words, we select a short path w to a leaf arbitrarily. More precisely, let w =387 ---§, with 81, ..., 8¢ € [2]. Consequently, the
spinal run r =ry y € SR(G) has height ¢ <h, which yields that r € SR. We first deal with the positions outside the spine.
For every i € [£], let 8; =3 — §;, so we have §; =1 if §; =2, and §; = 2 if §; = 1. Moreover, we define the positions W; =
81---8i_18;, which refer to the positions outside the spine of r. Similarly, for every 0 <i < ¢, let w; = &;---8; be the
i-th position on the spine of r. Trivially, r(w;) = u(w;) for all i € [€] by the construction of r =ry, ;. By the induction
hypothesis, for every i € [¢] we know that uly; € p’'(Do(G’)) and together with the auxiliary statement we obtain that
there exists a derivation t; € Do(G’) such that ulw- € p'(t;) and t;j(e) = (u(w;),r, u(w;)). By construction, we have r[i] =
u(w;) for all 0 <i < ¢. In particular, base(r) = u(w). Let ' € SR be an arbitrary spinal run and g’ € I’ U N. We consider
the category ¢ = arg(r, r)[{r[0],1’, g)], which is contained in L(u(w)) by construction of L because base(r) = u(w). More
precisely, let ¢ = (r[0],1, g')|1a1l2---|¢a; for some |1,...,|¢ €S and ay,...,a; € A. Note that the categories a1, ...,a, are
atomic because all relevant categories are left-spinal. By the construction of ¢ we know for every i € [¢] that (i) |; = / if and
only if §; =1, and (ii) a; = t;(¢). Now we can construct the required derivation of Dg(G’) by combining this category ¢ with
the subderivations t; € Do(G’). For every i € Z, we let

tp=c and (&) =(rl0Lr. ghhalz---liai  Cilsy, =ty Gl =t

Finally, we set t' =t{. A straightforward check shows that t’ € Dg(G’). It remains to show that u € p’(t'). Obvi-
ously, pos(u) = pos(t’), so we need to show that u(w) € p/(t'(w)) for every w € pos(u). If w =w;w’ for some i € [£]
and w’ € pos(ulw;), then this is trivially true because t'|; = t; and we already observed that ulw: € o/(t;). Consequently,
we only need to prove the property for all the prefixes w; (with i € Z,11) of w. Let i € Zy1. By the construction of t’
we have t’'(w;) = (r[0],1, g')|1ai]2 - - - |;ja;. For i =0, we thus obtain o’((r[0],1’, g')) = {r[0]} = {u(e)}. For all i € [£] we
have p'(t'(w;)) = {u(wj)} since a; =ti(e) = (u(w;), r, u(w;)). Consequently, we established the more general statement ()
and D(G) C p'(D(G))).

We proved the two main statements o' (D(G")) = D(G) and p'(Do(G")) = D(G). With the help of the latter statement,
we can now reason as follows:

'fp/(G/) ={p'(t) |t € Do(G'), t(e) e  x SRx (TUN)} ={t € D(G) |t(e) €1} ,

which concludes the proof. O

The good closure properties of regular tree languages allow us to derive a number of closure results for the tree languages
generatable by 0-CCGs (see Table 1). We have seen that, while classical categorial grammars and context-free grammars are
weakly equivalent, they are not strongly equivalent when considered as tree-generating devices. More specifically, the class
of derivation tree languages of classical categorial grammars are a proper subclass of the class of local tree languages (i.e.,
derivation tree languages of context-free grammars). This result is similar to a result by ScHABEsS et al. [29] showing that
context-free grammars are not closed under strong lexicalization, meaning that there are context-free grammars such that
no lexicalized grammar® generates the same derivation tree language.

5. 1-CCGs

In this section, we will consider 1-CCGs, which allow rules of degree at most 1. Thus, the secondary input categories ap-
pearing in derivation tree languages have at most one additional argument after the category consumed by the composition.
We will prove that 1-CCGs generates exactly the regular tree languages by showing inclusion in both directions. Regarding
the first direction, it has already been reasoned in the literature [30,31] that the derivation trees of 1-CCGs can be simulated
by CFGs.

9 A CFG is called lexicalized if every production contains a terminal symbol.

223



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

Table 1
Closure properties of the tree languages generatable by 0-CCGs and 1-CCGs.
closure \ class regular tree languages tree languages
= tree languages generatable by 0-CCGs

generatable by 1-CCGs

union

intersection
complement
relabeling
«-concatenation [17]
a-iteration [17]

ANANA N
BN NI NS

Lemma 14 (see [30, Proposition 4] and [31, Section 3.1]). For each 1-CCG G the derivations D(G) and the generated tree language are
regular.

Proof. The derivation tree language D(G) contains only a finite number of arguments. Furthermore, there exist only finitely
many secondary input arguments, since the degree of the rules is limited [31]. A rule of degree 1 only replaces the last
argument of the primary input category by another argument. As a consequence, the arity of the primary input category
cannot increase through composition. So we have only a finite number of categories and can use the same construction that
was used in [22, Proposition 3.25] for 0-CCGs to show that D(G) is regular. Analogous to the proof for 0-CCGs, ¥, (G) is
regular for every relabeling o as well since regular tree languages are closed under relabelings [19, Theorem 2.4.16] and
intersection [19, Theorem 2.4.2]. O

The following lemma establishes a normal form for regular tree grammars that is easily achieved using standard
techniques. The construction is illustrated in Example 16. An RTG (N, X, I, P) is a tree automaton (TA) if for each pro-
duction (n — r) € P there exist 0 € ¥ and n’,n” € N such that r=0 or r=0(n’,n”).

Lemma 15. For each RTG there exist a TA G’ = (Zm, =, I’, P’) that accepts the same tree language and a mapping 7w : Zm — X such
that every nonterminal n € Z, generates a uniquely defined terminal symbol 7 (n); i.e., foralln € Zy, and t € Ty withn :>g, t we
have t(e) = (n).

Proof. For each RTG there exists an equivalent TA G = (N, X, I, P) by [19, Theorem 2.3.6]. Given a TA G in which a
nonterminal n can produce terminals oy and o2 with oy # 03, we can construct an equivalent TA G’ by creating copies
Ny, and ng, of n. Productions with n on the left-hand side like n — o (n’,n”) and n — o with o € {07, 03} are replaced
by ne, — o(n’,n”) and n, — o, respectively. Productions with n on the right-hand side [e.g., n" — o (n,n”)] are replaced
by one copy of the production for each copy of n [e.g, n’ — o (ng,,n”) and n’ — o (ns,,n")]. Each copy n, of a start
nonterminal n € I becomes part of the new set of start nonterminals. The nonterminal set Z, is obtained by applying a
bijection 77 : N' — Z /|, where N’ contains all copied and unmodified nonterminals of N. It is easy to see that G’ generates
the same tree language as G. O

Example 16. Let G = (N, %, I, P) be the TA with N={s,a,b,c}, ¥ ={o, t},  ={s}, and

P={s—o(b),a—>obc,a>1,b>0,c>0}.

Nonterminal a can produce the terminal symbol ¢ or 7, so our intermediate TA G’ = (N’, X, I, P’) has nonterminals N’ =
{s,as,ar,b,c}, the production a — o (b, c) has been replaced by a, — o(b,c), and a — t has been replaced by a; — .
Instead of s — o (a, b), the two copies s — o (as,b) and s — o (a;,b) are contained in P’. After mapping N’ to Zs, we
obtain productions P ={0 - 0(1,3),0—>0(2,3),1->03,4,2—>1,3—>0,4—>0}.

Given a TA G = (Zm, X, 1, P) in the normal form of Lemma 15 with mapping 7 : Zn — X, we are allowed to re-
gard only the nonterminals of G when constructing an equivalent 1-CCG. Our goal is to find a 1-CCG G’ = (¥, A,R,I', L)
and a category relabeling p: C(A) - Zp such that F(G) = Fr.p(G’). Because p maps from categories to nonterminals,
but F(G) is labeled by terminal symbols, we use m: Z; — ¥ to map from nonterminals to terminals. Given a produc-
tion n — o (ny,ny) € P and a category relabeling p: C(A) — Z,,, we need categories c; € p~'(ny) and c; € p~1(ny) for
each category c € p~'(n) such that % is a valid ground instance of a rule in R. This ensures that each category can
be derived by the composition of two categories mapped to matching nonterminals. We only regard first-order categories
with at most one argument due to the restriction on 1-CCGs. Starting from any nonterminal, the productions in P allow
the derivation of at most all ordered pairs of nonterminals. The number of ordered pairs Z,zn increases quadratically in m,
whereas the number of different composition input pairs resulting in a fixed category increases only linearly in |A|. The
category matrix depicted in Fig. 6 illustrates that a first-order category with one argument is the result of the forward com-
positions of |A| different category pairs. In addition to composition rules, application rules are necessary to obtain an atomic
initial category. Based on these observations, we construct a 1-CCG G’ with m? atoms in the following way:

224



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

(0,0) 0,1) €0,2) 1,0y (1,1) (1,2) (2,0) 2,1) (2,2)

0,0) O 1 2 0 1 2 0 1 2
dg ai az as on(o [1[ 2 (o] 1 2 0o 1 2]
©2 o0 |1 2 o 1 2 0 1 2
ap ap/ay |ao/ar| ap/ay aolas o 1 [2]1 0 1 2 o 1 2 o0
(1,1) 1 2 0 1 2 0 1 2 0

aj [611/610 ay/ay | ai/ay al/%}
a2 1 |20 1 2 0o 1 2 0
ay @fay |afa| ax/ay ax/as e 2 0} 1 2 0o 1 2 0 1
2,1y 2 0 1 2 0 1 2 0 1
a3 aszfay |az/ai| az/ay as/az 22 2 (o] 1 2 0 1 2 0 1

Fig. 6. The category matrix (left) contains all first-order categories of arity 1 with only forward slashes in a CCG with four atoms. Each category is the result
of the forward composition of a category taken from the same row and one from the same column, respectively. The i-th entry of each row can be combined
with the i-th entry of each column. Thus, each category a/a’ is the result of four different forward compositions combining a/a” and a”/a’ (with 4 choices
for a”). The relabeling matrix (right) shows a 1-CCG with nine atomic categories after relabeling using category relabeling pg : C(Z%) — Z3, obtained from
a TA G with 3 nonterminals by applying Definition 17. Suppose we want to find two categories projected to nonterminals (g, h) = (0, 2) whose composition
yields (i, j)/(i’, j') = (0,1)/(0, 1). These are categories (0, 1)/(1,0) and (1,0)/(0, 1) since (k,l) = (h— j’ mod 3, g—i mod 3) = (2—1 mod 3,0—0 mod 3) =
(1,0).

Definition 17. Given a TA G = (Zn,, X, I, P) in the normal form of Lemma 15, we construct the 1-CCG
Ce = (To, Z4, R, pc"(DNZZ, L)
and the category relabeling p¢: C(Z2) — Zm such that

b b x/b b
- U <{a></ax %)@= o (p@m, o) € P} u| L2 piase) o (o (a/b»p(b/c))ep}) ,
o€y
a,b,ceZ?,

L(a) = U ({a ’ p@—ace P} U {a/b ‘ p(a/b) > a e P}) foralla € &g ,
a,beZ?

and p((i,j)) =i as well as p((i, j)/(i’,j’)) =i+ j'modm for all i,i, j, j’ € Zn. The relabeling on all other categories is
irrelevant.

Lemma 18. Every regular tree language ¥ is generatable by a 1-CCG.

Proof. By definition there exists an RTG G such that ¥(G) = #. Moreover, by Lemma 15 there exists an equivalent
TA G' = (Zw, 2,1, P) and mapping w: Zm — X with the properties mentioned in Lemma 15. We show that the 1-
CCG Cg = (ZO,Zm, R, pe nn Z ,L) of Definition 17 generates the tree language ¥ = ¥ (G’) using the category rela-
beling 77 o pg’. We achieve this by arguing that D(G’) = pg/ (D(Cg)), which by the choice pc’,l(l) N Z,Zn of initial categories
and the definition of p¢ already proves the main statement. The category (i, j)/(i’, j') is the result of the forward com-
position of (i, j)/(k, 1) and (k,1)/(i’, j'), where i,7, j, j/, k,1 € Zn,. Fig. 6 illustrates the category relabeling ps by means of
a relabeling matrix, which is a matrix indexed by atoms a and @’ with entries indicating the relabeling p¢ (a/a’). The row
and column labels of this matrix follow lexicographic order. When we slice it evenly into blocks of size m x m, we can
observe that the entries in the rows cycle through the nonterminals, whereas in a single column, each block has only a
single nonterminal in all m entries. This is because the value of j* changes in every entry, whereas the value of i changes
only every m entries. Nonetheless, a complete column of the whole relabeling matrix contains all m nonterminals. Relabel-
ing in this manner ensures that all pairs (g, h) of nonterminals are covered by each result category a/a’; i.e., we can find
an atom a” such that a/a” relabels to g and a”/a’ relabels to h and their composition would yield a/a’ as required. For-
mally, given a category (i, j)/{i’, j/) and an ordered pair (g, h) of nonterminals, we need to verify that there exist k,l € Zn,
with p¢ (i, j)/{k,1)) = g and p¢ ((k,1)/{i’, j’)) = h. Since g =i+ mod m and h =k + j' mod m, we obtain [ = g — i mod m
and k = h — j’ mod m. Furthermore, given an arbitrary atom (i, j) and nonterminals g, h € Z,,, we want to find a cate-
gory (i, j)/(k,1) and an atom (k,I) such that p¢/((i, j)/{k,I)) = g and p¢'({k,l)) = h. From the definition of the relabeling
we have p¢/({k,I)) =k, so k=h and | = g — i mod m. It is straightforward to show that each derivation of Cs relabels
(via pg/) to a derivation of G’ due to the definition of R. For the converse, suppose that we would like to simulate a pro-
duction n — o (g, h) € P and we have already settled on category a/a’ for n. We already argued that we can always find
suitable preimages a/a” and a”/a’ that relabel to g and h, respectively. So for every derivation d € D(G’) we can find a
derivation of Cg that relabels to d. Due to the fact that the categories occurring in derivation trees of Cs cannot have
higher order or arity greater than 1, they never leave the relevant domain of pg'. O

225



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

ax/a a ax/fa a
ax ax {a, a, O)
a cla\a alblb bjc\c / /
cla a/b/c\c WT/ZX\C a C/HT/Z’C\C (a) {a,\c, [a)
a/b/c/a a /
a/b/c a_cra ”"“;x,c(’f\‘ (c/a) ax/Zx/cfc{c\a (a, /b, [c\c)
/ N\ (a/b/b)
a c/a\a a/b/b b/c\c a/b/b (b/c\c)

Fig. 7. CCG derivation tree (without lexical entries), corresponding rule tree t, spinal(t), and its encoding enc(t).
Theorem 19. The tree languages generatable by 1-CCGs are exactly the regular tree languages.

Because the yield languages of the regular tree languages are exactly the context-free languages, we obtain the following
generalization of Theorem 8. Note that 0-CCGs are included in the set of 1-CCGs.

Corollary 20. The string languages generated by 1-CCGs are exactly the e-free context-free languages. Moreover, for each 1-CCG G the
derivation tree language D(G) and the tree languages generatable by G are regular.

6. Inclusion in the context-free tree languages

In this section, we want to relate the derivation tree languages of CCGs to the context-free tree languages. However, this
is complicated by the presence of potentially infinitely many categories in the derivation trees D(G) for a CCG G. Let us
illustrate the problem first.

Example 21. Let G4 = (X, A, R, {D}, L) be the 3-CCG given by the alphabet ¥ = {c, d, e}, the atoms A = {C, D, E}, the lexi-
con L with L(c) ={C}, L(d) ={D/E\C, D/E/D\C}, L(e) = {E}, and the rule set R consisting of the rules
Dx/D D/E/D\C Dx/E E Dx/D D/E\C C Dx\C
Dx/E/D\C Dx Dx/E\C Dx
where x € A(A). From a few sample derivation trees (see, e.g., Fig. 3) we can convince ourselves that G4 generates the

string language £(G4) = {cid’e! | i > 1}, which demonstrates that 3-CCGs can generate non-context-free string languages. In
addition, the derivation trees D(G4) contain infinitely many categories as labels.

Since classical tree language theory only handles finitely many labels, we switch to a different representation and con-
sider rule trees. The idea is to label the internal nodes of these trees not by categories, but by the rules that are applied
at them to obtain the respective categories, whereas the leaves are still labeled by lexical categories. To keep the presenta-
tion simple, we assume, without loss of generality, that all secondary input categories of rules in R are concrete categories
of C(A); i.e., we disallow rules with category variables. We introduce the following shorthands. We let T =T 4(L(X)) be
the set of all potential rule trees (see Definition 22), and for all alphabets N1 and Ng we let SF(N1, No) = Tg n; (L(X) U No)
be the sentential forms of a sCFTG with unary nonterminals N1 and nullary nonterminals Np.

Definition 22. Let G = (X, A, R,I,L) be a CCG. A tree t € T is a rule tree of G if catg(t) € I, where catg: T — C(A) is the
partial mapping that is inductively defined by

e catg(c) =c for all c € L(Z),

. catc(ax/gxy L (t1,t2)) =aay for all trees ty,t; € T such that catg(t7) = aer/c and catg(t) = cy, and
o catg (L axj‘jx\c (t1,t2)) =aay for all trees t1,t; € T such that catg(t1) = cy and catg(t2) = aor\c

and is undefined for all other cases. The set of all rule trees of G is denoted by R(G).

Through rule trees, the (well-formed) derivation trees of a CCG are encoded in a natural way while using only finitely
many labels. More precisely, there is an (obvious) bijection between the derivation trees 9(G) and the domain of the
function catg. An example rule tree alongside the corresponding CCG derivation tree is depicted in Fig. 7.

In the following, let G = (X, A, R, I, L) be a CCG. Our goal is to construct an sCFTG that generates exactly the rule tree
language R(G). To this end, we first need to limit the number of categories. Let k € N be the maximal arity of a category in

ax/c cy c cy ax\c c R}

TUL(S) U [cy | o o

R]u[cy\

226



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

i.e., the maximal arity of the categories that occur as initial category, in the lexicon, or as the secondary input category of
a rule of R. Further, let C;(A, k) = {c € C(A, k) | argcats(c) C argcats(L)}. The sets C.(A), AL(A, k), and A;(A) are defined
analogously. The derivation trees in D(G) can only contain categories whose arguments already appear as arguments of
lexical entries since every argument in an output category already appears in one of the input categories [9, Lemma 3.1].
Thus, we can restrict ourselves to categories using these arguments.'® Roughly speaking, the constructed sCFTG will use
the categories C(A,k) as nullary nonterminals and tuples (a, |c, y) consisting of an atomic category a € A, a single ar-
gument |c with | € S and c € C1(A, k), and an argument tree y € AL(A, k) as unary nonterminals. Recall that we write
substitutions «[t] as ta for a € A(A) and t € C(A) U A(A).

Definition 23. We construct the sCFTG G’ = (N1 U Ng, RUL(X), I’, P) with

e Ny={{a,c,y)la€A, €S, ceCL(Ak), y e AL(A k)} and No = {(c) | c € CL(A, K)},
e I'=1{{ap) |ap €I}, and
o the following set P = P; U P, U P3 U P4 U Ps of productions with

Pi={{c)>clcelL(®)} (1)
Py={(a, /c,y)—s(o, (cy)) | s= (ax/c, cy — axy) € R} (2)
P3={(a,\c.y) — s(({cy),o) | s=(cy. ax\c — axy) € R} (3)
Py={(aay) — (a,|c,y)((ax|c)) |a€ A, o,y € AL(A), | €S, c€CL(A,K), |a] <k, lay| <k} (4)
Ps={(a,lc,y)— (a.I'c,o)({a,lc,y ') (@) lacA, |,|'€S, c,c €CL(A,k), y € AL(A, k— 1)} (5)

We still have to establish that G’ indeed generates exactly R(G). This will be achieved by showing both inclusions in the
next chain of lemmas.

Lemma 24. ¥ (G') C R(G)

Proof. We will start with an auxiliary statement. For all sentential forms & € SF(N1, Ng) and t € T such that & :>E, t, we
prove that

(i) if £&(e) = (c) € Ng, then catg(t) =c, and
(ii) if £(e) =(a, |c, y) € N1, &|1 €T, and catg(€]1) = ax|c with o € AL (A), then catg(t) =aay.

Note that we do not make any statement for trees & such that &£(¢) ¢ No U Ny. For the remaining trees, we prove this
statement by induction on the length of the derivation. We have & =¢/ . ¢ :>‘é/ t for some ¢ € SF(N1, No) and £ € N, where
we applied the first derivation step at the root and :>‘é, is the ¢-fold composition of = with itself. We distinguish five
cases based on the production p € P used at the root in the first derivation step:

(1) If p={(c) - c € Py is a production of type (1), then c € L(¥), £ = (c), and ¢ =t = c. Since c € L(X¥), we trivially
have cat¢ (t) = ¢, which proves statement (i).!!

(2) If p={(a,/c,y)— s(a,{cy)) € P, is a production of type (2), then we have &(¢) = (a, /c, ¥) and we only need to
prove statement (ii). Consequently, let &|; € T and catg(¢]1) = ax/c for some o € AL (A). From the derivation ¢ =
s(&l, (cy)) =>é, t, we can conclude that (cy) :>€, t|, for some 1 < ¢ < ¢. The latter yields catg(t|) = cy by the

ax/;x—ycy € R, catg(t|;) =aa/c, and catg(t|2) = cy, we conclude that catg(t) =

induction hypothesis. From the facts s =
ay.

(3) If p=(a,\c, y) — s({cy),n) € P3 is a production of type (3), then we need to prove statement (ii), which can be done
in the same way as in the previous case (2).

(4) If p = (aay) — (a,|c, y)((aa|c)) € P4 is a production of type (4), then we need to prove statement (i). By context-

freeness, we can rearrange the derivation ¢ :>‘é, t such that

¢ =(alc.y)((axlc)) =& (a,lc, y) () =6 t

for some t' € T and ¢/, ¢” > 1 such that ¢ = ¢’ + ¢”. Consequently, we have a subderivation (ac|c) :>€, t/, from which
we conclude that catg(t’) = aa|c by the induction hypothesis. Now we established the preconditions of statement (ii)
for the subderivation {(a, |c, y)(t’) :>é, t, so catg(t) = aay by the induction hypothesis.

10 This restriction is required for the sCFTG to have a finite set of nonterminals and was missing in the previous version of this contribution [32].
11 This also proves statement (ii) in this case since its precondition is not fulfilled. We omit such obvious observations in the next cases.

227



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

(5) If p={a,lc,y)— {a,|c, m)((a, lc, y|’c/)(m)) € Ps5 is a production of type (5), then we need to prove statement (ii).
Let £]1 €T and catg(§|1) = aa|c for some o € A (A). We can again reorder the derivation ¢ :>é, t such that

¢ =(aI'c,o)((alc, yI'c)EN) =5 (a,1c, o)) =26t

for some t' € T and ¢,¢” > 1 such that ¢ = ¢ + ¢”. In the first subderivation we find (a,|c, y|'c’)(&]1) :>g, t'.
Since £|7 € T and catg(£]1) = ax|c, we meet the requirements of statement (ii), obtaining catg(t’) = axy|'c’ by the
induction hypothesis. Once more we now have established that t' € T and catg(t') = aay|'c/, so we satisfy the re-

. .o . . . . . . l//
quirements of statement (ii) of the induction hypothesis applied to the second subderivation (a, |/c/,/3)(t’) =c t
Consequently, catg(t) = aay.

This completes the proof of the auxiliary statement. We can apply the auxiliary statement to derive that catg(t) =ag € I for
all t e T and (ap) € I’ such that (ap) =¢, t. Consequently, ¥ (G') SR(G). O

For the converse, we decompose and encode rule trees R(G) in a more compact manner. These encodings will help us to
structure the derivation of rule trees, as we can use them as components and intermediate steps of the complete derivation.
First, we translate a rule tree into its primary spine form. For all a € A, c € C1(A, k), y € AL(A,k), and t1,t; € T we let

spinal(c) =c
. ax/c cy B ax/c cy .
spmal(v(ﬁ,tz)) = W(spmal(ﬁ), (cy))

. cy ax\c cy ax\c .
51nal(4t,t ):— cy), spinal(t .
p axy (t1,t2) axy ((cy). spinal(tz))
Clearly, spinal: T— Tg ¢(L(X) U No). An example is shown in Fig. 7. Additionally, we encode rule trees using only the non-
terminals of G'. To this end, we define a mapping enc: T — Ty n,(No). Forallae A, c e CL(A, k), y € AL(A,k), and t1,t, €T
we let

enc(c) = (c)

enc<M/aCx7ycy(th tz)) =(a, /c, y)(enc(ty))

enc(%(tl, tz)) = {a,\c, y)(enc(t2)) .

This encoding is also demonstrated in Fig. 7. We show that (cat¢ (t)) =, enc(t) =¢, spinal(t) for every t € T with catc(t) €
Cr(A, k) in the following sequence of lemmas. We begin by proving the second, easier part.

Lemma 25. enc(t) =, spinal(t) for every t € T with catg (t) € CL(A, k).

Proof. The proof is by induction on t. In the induction base, we have t € L(X) and thus t € C;(A, k). Hence enc(t) = (t)
and spinal(t) =t. Since t € L(X) we can apply a production of type (1) to obtain enc(t) = (t) = t = spinal(t) as desired. In
ax/c

the induction step, let t = s(ty, tz) with s = TC” € R. The case of a backward composition is analogous. Then enc(t) =

(a, /c, y)(enc(ty)) and spinal(t) = s(spinal(ty), (cy)). Consequently,

enc(t) = (a, /c, y)(enc(t1)) =§& (a, /c, y)(spinal(t1)) =% s(spinal(ty), {cy)) = spinal(t) ,

where we used the induction hypothesis in the first step and then a production of type (2). O

We now turn to the first part, that is showing that (catc(t)) =¢, enc(t) for every t € T with catg(t) € CL(A, k). This
will be dealt with in the next two lemmas. For this purpose, we need to introduce some additional notation. As usual, let
A be a finite set of atomic categories. For all argument trees o, o’ € AL (A) we write o C «’ if there exists a position w €
pos(a’) N {1}* such that @ = '|y (i.e., @ is a subtree of « that is located on the left spine). In other words, if @ C o’
and o’ =alicy---|¢ce, then o =alicq---ic; for some i < £. Additionally, we simplify our notation for encodings. Recall
the sets Ny and No of nonterminals from Definition 23. We let Enc = Ty n,(Ng) be the set of encodings. Encodings are
essentially strings, so pos(e) C {1}* for all e € Enc. Instead of a position 1¥ we simply write just k in an encoding. Moreover,
we write |e| instead of | pos(e)|. In other words, we identify the set pos(e) with the corresponding set Z | of nonnegative
integers.

Let e € Enc be an encoding with positions pos(e) = Z,4+1 such that e(¢) = (acr) and e(i) = (a;, |ici, y;) for all i < £. It is
consistent if

228



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

e a=aq; forall i < ¥, and
e there exist o, ...,a¢—1 such that « = oy—_1|¢—1c¢—1 and «;y; = otj_1li—1¢i—1 for all i e [£ —1].

For such a consistent encoding, we have catg(e|¢) = ax and catg(e|;) = aa;y; for all i < ¢. Now, let e, e’ € Enc be two
encodings. We write e < e’ if there exist positions i € pos(e) and i’ € pos(e’) with i <i’ such that

e e(j) = (aj, |jcj,o) for all j <i (i.e., all labels of e at positions j <i have o in the third component), and
e e|i={a,lc,y)(e) and €'|y = (a, |c, y’)(e) with y C ¥’ (i.e., the subtrees e|; and e’|; coincide except for the third com-
ponents Y and y’ of the labels at the roots, for which we have that y is a strict subtree on the left spine of y").

It is clear that < is a strict partial order (irreflexive and transitive) on encodings. Indeed the positions i and i’ that demon-
strate e < e’ are unique. Finally, we let f: Enc® — Z be such that f(e,e’) = |¢/| — |e| for all e,e’ € Enc. It is obvious
that f(e,e’) € N provided that e <e’.

Lemma 26. Let e, e’ € Enc be consistent encodings with catg(e) = catg(e) such thate < e’. Thene =, ¢'.

Proof. Let i <i’ be the unique positions required to show that e < ¢’, and e|; = (a, |c, ¥)(e) and €|y = (a, |c, ¥')(e). Also
let aB = catg(e) = catg(e’) and aw|c = catg(e). Then obviously catg(e|;) = aay. Moreover, i = @y | — |8| because the third
component is o for all labels at positions strictly smaller than i, which yields that catg(eli—j) = (aay)|; for all j <i.
Similarly, we have catg(e’) = awy’ with |ay’| > |ay|. Since we can only remove a single argument in each step, we obtain
that |ay'| — 8] <1'.

We now prove the statement by induction on f(e,e’). In the induction base, we assume that f(e,e’) = |e/| — |e| = 0.
Consequently, we have i =i’ and |ay’| — || <i' =i=|ay|—|B| < |ay’| —|Bl, which is a contradiction. Hence this case
cannot occur.

In the induction step, let f(e,e’) = |e/| — |e|] > 0. Consequently, i < i’. Let Y’ = y|'c’y” for some |' € S, ¢’ € CL(A, k),
and y” € AL (A, k). Using an application of a production of type (5) we obtain

eli=(a,lc,y)® =¢ (a,'d,0)((@lc,yI'c)@) =8 .

Let e” = e[e];, which immediately yields |e”| > |e|. Then e” is again a consistent encoding because cat(é) = aay, which is
also the category of the replaced subtree e|;. Consequently, the newly constructed encoding e” has the same category as
e and e’. Next we prove that e” < e’. If e” = ¢/, then trivially e” < ¢’. Thus, let e” # ¢’. Since e”|i12 =€’|yr41, let j” <i+1 be
the largest integer such that e”(j”) # €’(j), where j' =i’ — (i+1)+ j”. Clearly, such an integer j” must exist because e” #¢’'.
Now we prove by case analysis on j” <i+1 that e” <e'.

e If j/=i+1, then j/ =1i'. Since the labels of ¢’ at j” =i+1 and of ¢’ at j/ =i’ differ, although their first two components
are the same, we obtain that y|'c’ £y’ = y|'c’y” and thus y” # o. Then trivially e” < e’ using the positions j’ =
i+1 and j/ =1, for which we know i+ 1 < i’ and all labels of e” at strict prefixes of i +1 have o in the third
component (for all positions strictly smaller than i this is true since the labels of e” and e coincide and for i it is true
by the definition of e”).

e Otherwise, we have j” <i+1. Lete”|j» = (a,|"c”, 0)(h”) and e'|j = (a, |"’c””, o’} (h'). Obviously, we have h” = h’ because
we selected the maximal j”. Consequently, we also have |”¢”” =|"c” by consistency. Since the labels are different, we
must have o C o'. Then e” < e’ using the positions j” and j’, for which we know that j" =j —i'+ ({+1) <j
because i + 1 < i’. Moreover, all labels of e” at strict prefixes of j” <i have o in third component since those labels
coincide in e” and e.

Hence ¢” < e’. Now we return to the main statement. If e” =¢’, then clearly e :>E, e” = e’. Otherwise, we have consistent
encodings e” and e’ with catg(e”) = catg(e’) such that e” < ¢’. Since |e”| > |e|, we additionally have f(e”,e’) =e/| — |e¢”| <
le’| — lel = f(e,e’). Consequently, we can apply the induction hypothesis to e” and e’ and obtain that e” =¢, ¢/, which
together with e = e” yields e =, e’ as desired. O

It should be obvious that for every t € T with catg(t) € C.(A) the encoding enc(t) is consistent and has the same
category catg(t). For the proof of (catc(t)) =¢, enc(t) for all ¢ € T with catg(t) € C(A, k), we define another map-
ping enc’: T — Ty n, (No). For all t € T with catg(t) € CL(A, k), we let

enc (t) = (catg(t)) .
Otherwise, for all a € A, c € CL(A, k), y € AL(A, k), and t1,t; €T, we let

e (PLL10t)) = (o fe. ) enc )

229



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

{a, /a, D)
{a,\c, O) |
(a, /b, [c) | (a,\c, /a)
(a/bjc) =6 | = (a, /b, /c\¢c) =¢ |
{a/b/b) | {a, /b, [c\c)
(a/b/b)
{a/b/b)

Fig. 8. Derivation of the encoding.

encl<%(fl, t2)> =(a,\c,7)(enc(t2)) .

Similarly, for every t € T with catg(t) € C.(A) the encoding enc’(t) is consistent and has the same category catg(t). Note
how this is different from the previous encoding enc(t). While before, we only added a nullary nonterminal if the input
consisted of a single node c € C; (A, k), we now compress a complete subtree whose category is in C;(A, k) to a nullary
nonterminal. In the following, we will show that we can derive the original encoding from this shortened variant.

Lemma 27. enc/(t) = enc(t) for every t € T with catg (t) € CL(A).

Proof. We prove it by induction on t. In the induction base, we let t € L(X). Consequently, t = catc(t) € CL(A,k)

and enc’(t) = (catg(t)) = enc(t), which proves the induction base. In the induction step, let t =r(tq, t3) for some rule r € R
and t1, t; € T. We only consider forward compositions. Thus, let r = ax/acx—ycy By assumption catg(t) € C(A), so let catg(t) =

aay for some o € AL (A). Now we distinguish three cases depending on the arities of the categories of t and t;:
e Suppose that catg(t) =aay ¢ C(A, k). Then

enc'(t) = (a, /c, y)(enc'(t1)) =% (a, /c, y)(enc(ty)) = enc(t) ,

where we used the induction hypothesis applied to t1.

e Now suppose that catg(t) = axy € C (A, k) and for the subtree t; suppose that catg(t;) = ac/c ¢ C(A, k). Let {aB|c’)
be the leaf of enc/(t1). Note that the categories of subtrees of enc’(t1) for all strictly smaller positions are not in C(A, k).
Consequently, we have af C aay, so let y’ € AL(A, k) be such that afy’ =aay. In addition,

enc’(t) = (aay) =¢ (a, |, ¥')({alc)) =e .
Clearly, e = {(a, |c, y")({aB]|c’)) is consistent and has category acy, which is also true for e’ = {(a, /c, y)(enc’(t1)). Next
we show that e < e’. Let £ = |e’| — 1. Obviously, e|; = (ag|c’) =¢€'|; and e,_; = (a,|c’,y"”) for some y” € AL (A, k)
because e’ is consistent. It remains to prove that y’  y”, which is true because for all non-zero positions strictly
smaller than ¢ — 1 the encoding has subtrees with categories that are not in C(A, k). Hence aBy’ = aay € Cr(A,k)
must be a subtree on the left spine of all those categories. Consequently, we have e < e’ for these consistent encodings
with catg (e) = catg(e’), so we use Lemma 26 to conclude that e =¢, ¢’. Thus, in summary we have

enc'(t) = (aay) =¢ (a.|c', y")((aBlc)) =e={ e = (a, /c,y)(enc (t1)) =¢ (a, /c, y)(enc(tr)) = enc(t) .

e Finally, suppose that catg(t) =axy € CL(A, k) and for t; suppose that catg(t1) =aa/c € Cr(A, k). Then

enc'(t) = (aay) =¢ (a. /c, y)({aee/c)) = (a, /c, y)(enc'(t1))
=& (a, /c, y)(enc(tr)) =enc(t) .

Thus, we have proved the statement. A particular case is the desired derivation (catg(t)) =¢, enc(t) for every t €T
with catg(t) e CL(A, k). O

An example of a derivation of the form (catc(t)) =, enc(t) is presented in Fig. 8. Combining Lemmata 25 and 27, we
can conclude that {catc(t)) =¢, enc(t) =, spinal(t) holds for every t € T with catg(t) € CL(A, k). This will prove extremely
useful in the following.

Lemma 28. R(G) C 7(G')

Proof. We first prove by induction the auxiliary statement that for every rule tree t € T such that catg(t) € Cr(A, k) we
have (catg(t)) =¢, t. In the induction base we have t € L(X), which also yields t = catg(t) € CL(A, k), and thus (t) =¢ t

230



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

ax/(by) bya/c - bya/c ¢ ax/(by) bya\c 3 ¢ bya\c
axa/c ¢ — 7 ax/(by) bya c axa\c — ax/(by) bya
axo axo axa axo
bya\c ax\(by) o bya\c bya/c ax\(by) - bya/c ¢
c axo\c ~— by« ax\(by) axa/c c "  bya ax\(by)

axo axo axo axo

Fig. 9. Rule schemes of [14] with a,b € A, x, ¥y, € A(A), and c € C(A).

) /(Lj) ) )

G+ 1,5 @j+1) g} i+2,5y 77 G+ 1,5 G j+1) g (i+1,j+1) 7
(i+2,j/> (z>1,j+1) +1,j+1) (G j+1) +1,j+1) (G,j+2) +1,5 G j+2)
) (i, J) ) (i, J)

G+ 1,7y Gj+1) i 2?7 (i, j+2) G+ 1,5 Gj+1) i 2 (i+1,j+1)
(+1,j+1) G,j+2) +1,7) G+1,j+1) <i+2,j/) (i+1,j+1) (G+2,j) G, j+1)

Fig. 10. Rule schemes of [14] with the relabeling indicated based on the input tree. The roots of equal subtrees occurring at the wrong position are marked
in red and blue. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

by a production of type (1). In the induction step, we use Lemmata 25 and 27 to obtain {(c) =, spinal(t), and we apply
the induction hypothesis to the nullary nonterminals present in spinal(t) to conclude the proof of the auxiliary statement.
With the help of the auxiliary statement, we immediately obtain that for every rule tree t € R(G) we have (catg(t)) =¢ t
because catg (t) € I. Moreover, (catg(t)) € I’ and hence t € £L(G). O

Theorem 29. The rule tree language R(G) of a CCG G can be generated by an sCFTG.

7. Proper inclusion for pure CCGs

Recall that a CCG (X, A, R, I, L) is pure if R =R(A,k) for some k € N. In this section, we show that there exist CFG
derivation tree languages that cannot be generated by any pure CCG. In particular, this shows that the inclusion demon-
strated in Section 6 is proper for pure CCGs. We start with our counterexample CFG. We will use nonterminals that are
pairs of integers, and we will use standard arithmetic. In fact, to make the text more readable, we assume henceforth that
all computations with the integers inside of nonterminals are performed modulo 3.

Example 30. Let us consider the CFG Gex = (N, T, (0, 0), P) with the nonterminals N = {(i, j) | i, j € Z3}, the terminals I =
{a}, and the set P of productions containing exactly (i, j) — (i + 1, j) (i, j+ 1) and (i, j) — « for every (i, j) € N. Clearly,
the tree language D(Gex) is not universally mht-bounded.

Theorem 13 already shows that the tree language D(Gex) is not generatable by any 0-CCG. Similarly, it is impossible to
generate D(Gex) With a pure CCG. This follows from the transformation schemes of [14] that change the order of consecutive
application and non-application operations, resulting in derivation trees with reordered subtrees and therefore with the
wrong shape after relabeling. The transformation schemes are depicted in Fig. 9. Due to the absence of rule restrictions in
pure CCGs, the applicability of these transformations cannot be prevented.

Theorem 31. The tree language D(Gex) is not generatable by any pure CCG.

Proof. For the sake of a contradiction, suppose that there exists a pure CCG G = (X, A, R(A,k),I,L) and a (category)
relabeling p such that ¥,(G) = D(Gex). Let t € D(Gex) be such that mht(t) > arity(L). Since D(Gex) is not universally
mht-bounded, such a tree exists. By Lemma 10, the CCG G has to use non-application operations to produce trees with
the shape of t, so k > 1. Let u € D(G) be such that t € p(u). Moreover, select the top-most (i.e., least with respect to the
shortlex order) position w € pos(u) at which an application rule is applied followed by a non-application operation. Such a
position must exist since the rule applied at the root is always an application rule (because the initial category is atomic).
This yields one of the cases listed left of the =-symbol in Fig. 9. We apply the such identified transformation rule of
Fig. 9 that matches at w to obtain another tree u’ € D(G) [14]. However, as we illustrate in Fig. 10, each transformation
rule leads to a derivation tree of the wrong shape (i.e., one that can be relabeled in an undesirable manner). Let us walk

231



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

Table 2
Summary of the expressive power of various types of CCGs, where CFL, TAL, RTL, and sCFTL are the
context-free languages, tree-adjoining (string) languages, regular tree languages, and tree languages
generated by sCFTG, respectively.
expr. power \ class pure 0-CCG ‘ 0-CCG | pure 1-CCG | 1-CCG pure CCG CCG
strings =CFL C TAL =TAL
trees =mht-bounded RTL | CRIL | =RTL | CCFIL | =sCFIL

through one case in detail. Suppose that the first transformation rule of Fig. 9 applies at position w. Moreover, assume
that u(w) relabels to (i, j) for some i, j € Z3 because t € p(u) C D(Gex). Then we know that u(w2) relabels to (i, j + 1)
because p(u) € D(Gex). However, after applying the transformation (i.e., in the tree u’), the subtree u|,, now occurs
at 1|22, which creates the wrong shape, so p(u’) € D(Gex) contradicting F,(G) = D(Gex). O

8. Conclusion

Table 2 summarizes our main results and puts them into the context of related work on the expressive power of various
types of CCGs, both as generators of strings and as generators of trees (weak and strong generative capacity). The weak
equivalence of CFG and pure 0-CCG, which is CCG without rule restrictions and only application rules, is a classical result
due to BAR-HILLEL, GAIFMAN, and SHAMIR [28]. We showed that the tree languages generated by 0-CCGs are a proper subset
of regular tree languages (Theorem 13, see also [25]), whereas those generated by 1-CCGs are exactly the regular tree
languages (Theorem 19). While the step from 0-CCGs to 1-CCGs does not increase weak generative capacity (Corollaries 8
and 20), the strong generative capacity increases. We also observe that there is no difference in tree expressivity for 0-CCGs
between the pure and non-pure variants (Theorem 13), while for higher rule degrees, pure CCGs are strictly weaker and
cannot even generate all regular tree languages (Theorem 31). For weak generative capacity, this difference has already been
investigated [14,31] and occurs for rule degrees 2 and higher.

The string languages generatable by pure 1-CCGs are, as for the non-pure variant, exactly the context-free languages.
This statement deserves some further explanation. Although it follows from Corollary 20 that 1-CCGs cannot generate non-
context-free languages, it is not immediately clear that they can generate all context-free languages. To demonstrate this,
we employ the classical construction for pure 0-CCGs [28]. Given a CFG, a pure 0-CCG generating the same string language
is constructed, such that lexicon entries contain only atomic arguments with leading backward slashes. As a consequence,
each derivation tree generated by a CCG with this lexicon can use only backward rules, and all secondary input categories
of application rules are atomic. Now consider some derivation tree of the pure 1-CCG with the same lexicon. As argued in
the proof of Theorem 31, if a composition rule appears in the derivation tree, we can find a position where a composition
is followed by an application. This is because the root category is always obtained through application. We transform the
derivation tree by repeated use of rule scheme R2 (see Fig. 9) into a derivation tree that uses only application rules. Note
that each use of the transformation rule eliminates a composition from the derivation tree, since y and « are empty due
to the properties of the grammar. The transformation does not change the string that labels the leaves, since this particular
rotation does not change the order of the three involved subtrees. This shows that the corresponding pure 0-CCG can
generate the same string. Thus, the pure 1-CCG generates the same string language as the pure 0-CCG, and therefore the
desired context-free language.

We now turn our attention back to the more general discussion. Our main result is that the tree languages generated
by CCGs with limited composition depth and rule restrictions are a subset of the tree languages generated by simple
monadic context-free tree grammars (Theorem 29). The size of the constructed grammar (Definition 23) is exponential in
the maximum arity of categories that occur in the lexicon or as secondary input categories of the given CCG. As mentioned
above, the inclusion is proper for pure CCGs (Theorem 31).

The construction used in the classical equivalence proof between CCG and TAG [9] demonstrated that there is no differ-
ence in string-generative capacity between 2-CCGs and k-CCGs with k > 2, and that the inclusion of higher-order categories
in the lexicon does not change weak generative capacity. However, as stated in the Introduction, this construction utilizes
g-entries, which are problematic from a computational point of view [16]. Recently, it has been shown that for a given
sCFTG a strongly equivalent CCG can be constructed [33]. This is the inverse direction of what we showed in Theorem 29
and, together with our result, proves strong equivalence of CCG and sCFTG, thus characterizing the tree-generative capacity
of CCG exactly. It also proves strong equivalence of CCG and TAG because of the strong equivalence of sCFTG and TAG [34].
Further, from the construction is concluded that rule degree 2 and first-order categories suffice to give CCG its full expres-
sive power on trees, and that e-entries can be avoided. The translation of an sCFTG into a strongly equivalent CCG increases
the grammar size only polynomially. However, to remove ¢-entries from a CCG, it first has to be converted into an sCFTG,
then they are trimmed from the sCFTG, and the result is converted back into a CCG, leading to an overall increase of the
grammar size exponential in the maximum arity of categories occurring in the lexicon or as secondary input categories of
the given grammar.

Finally, we would like to point out the structural similarity between the rules of the sCFTG in Definition 23 and the
parsing algorithm for CCG proposed in [35]. This similarity is not coincidental: Both that parsing algorithm and the con-
structed sCFTG rely on very similar decompositions of CCG derivations into small, recombinable parts. More generally, we

232



M. Kuhlmann, A. Maletti and L.K. Schiffer Journal of Computer and System Sciences 124 (2022) 214-233

believe that work on the formal aspects of CCG and work on its parsing can be very fruitful for each other. Future efforts
in both areas could study practically relevant extensions of the classical CCG formalism that we considered in this article,
and in particular the inclusion of the rules of type raising and substitution (respectively based on the T and S combinator
of combinatory logic), which have so far been left out from much of the theoretical literature on CCG.

CRediT authorship contribution statement

Marco Kuhlmann: Conceptualization, Methodology, Validation, Writing - original draft, Writing - review & editing.
Andreas Maletti: Conceptualization, Methodology, Validation, Writing - original draft, Writing - review & editing. Lena
Katharina Schiffer: Conceptualization, Methodology, Validation, Writing - original draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase structure grammars, in: Y. Bar-Hillel (Ed.), Language and Information: Selected
Essays on Their Theory and Application, Addison Wesley, 1964, pp. 116-150, Ch. 9.
[2] N. Chomsky, Three models for the description of language, IEEE Trans. Inf. Theory 2 (3) (1956) 113-124.
[3] K. Ajdukiewicz, Die syntaktische Konnexitat, Stud. Philos. 1 (1935) 1-27.
[4] Y. Bar-Hillel, A quasi-arithmetical notation for syntactic description, Language 29 (1) (1953) 47-58.
[5] M. Steedman, The Syntactic Process, MIT Press, 2000.
[6] M. Steedman, ]. Baldridge, Combinatory categorial grammar, in: R.D. Borsley, K. Borjars (Eds.), Non-Transformational Syntax: Formal and Explicit Models
of Grammar, Blackwell, 2011, pp. 181-224, Ch. 5.
[7] M. Schénfinkel, Uber die Bausteine der mathematischen Logik, Math. Ann. 92 (3-4) (1924) 305-316.
[8] H.B. Curry, Foundations of combinatorial logic, Am. J. Math. 52 (3) (1930) 509-536.
[9] K. Vijay-Shanker, D.J. Weir, The equivalence of four extensions of context-free grammars, Math. Syst. Theory 27 (6) (1994) 511-546.
[10] M. Lewis, M. Steedman, Unsupervised induction of cross-lingual semantic relations, in: Proc. 2013 EMNLP, ACL, 2013, pp. 681-692.
[11] K. Lee, M. Lewis, L. Zettlemoyer, Global neural CCG parsing with optimality guarantees, in: Proc. 2016 EMNLP, ACL, 2016, pp. 2366-2376.
[12] AK. Joshi, Y. Schabes, Tree-adjoining grammars, in: G. Rozenberg, A. Salomaa (Eds.), Beyond Words, in: Handbook of Formal Languages, vol. 3, Springer,
1997, pp. 69-123.
[13] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison Wesley, 1979.
[14] M. Kuhlmann, A. Koller, G. Satta, Lexicalization and generative power in CCG, Comput. Linguist. 41 (2) (2015) 187-219.
[15] K. Vijay-Shanker, D.J. Weir, Combinatory categorial grammars: generative power and relationship to linear context-free rewriting systems, in: Proc.
26th ACL, ACL, 1988, pp. 278-285.
[16] M. Kuhlmann, G. Satta, P. Jonsson, On the complexity of CCG parsing, Comput. Linguist. 44 (3) (2018) 447-482.
[17] E. Gécseg, M. Steinby, Tree languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 3, Springer, 1997, pp. 1-68, Ch. 1.
[18] A. Koller, M. Kuhlmann, Dependency trees and the strong generative capacity of CCG, in: Proc. 12th EACL, ACL, 2009, pp. 460-468.
[19] F. Gécseg, M. Steinby, Tree automata, Tech. Rep., arXiv:1509.06233, 2015.
[20] W.C. Rounds, Context-free grammars on trees, in: Proc. 1st STOC, ACM, 1969, pp. 143-148.
[21] W.C. Rounds, Tree-oriented proofs of some theorems on context-free and indexed languages, in: Proc. 2nd STOC, ACM, 1970, pp. 109-116.
[22] H.-]. Tiede, Deductive systems and grammars: Proofs as grammatical structures, Ph.D. thesis, Indiana University, Bloomington, IN, USA, 1999.
[23] J. Lambek, The mathematics of sentence structure, Am. Math. Mon. 65 (3) (1958) 154-170.
[24] H.B. Curry, R. Feys, W. Craig, Combinatory Logic, Studies in Logic and the Foundations of Mathematics, vol. 1, North-Holland, 1958.
[25] W. Buszkowski, Generative power of categorial grammars, in: Categorial Grammars and Natural Language Structures, 1988, pp. 69-94.
[26] J.-M. Autebert, J. Berstel, L. Boasson, Context-free languages and pushdown automata, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Lan-
guages, vol. 1, Springer, 1997, pp. 111-174, Ch. 3.
[27] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[28] Y. Bar-Hillel, H. Gaifman, E. Shamir, On categorial and phrase structure grammars, in: Y. Bar-Hillel (Ed.), Language and Information: Selected Essays on
Their Theory and Application, Addison Wesley, 1964, pp. 99-115.
[29] Y. Schabes, A. Abeillé, A.K. Joshi, Parsing strategies with ‘lexicalized’ grammars: application to tree adjoining grammars, in: Proc. 12th CoLing, 1988,
pp. 578-583.
[30] T.A.D. Fowler, G. Penn, Accurate context-free parsing with combinatory categorial grammar, in: Proc. 48th ACL, ACL, 2010, pp. 335-344.
[31] M. Kuhlmann, A. Koller, G. Satta, The importance of rule restrictions in CCG, in: Proc. 48th ACL, ACL, 2010, pp. 534-543.
[32] M. Kuhlmann, A. Maletti, L. Schiffer, The tree-generative capacity of combinatory categorial grammars, in: Proc. Foundations of Software Technology
and Theoretical Computer Science, in: LIPIcs, vol. 150, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019, pp. 44:1-44:14.
[33] LK. Schiffer, A. Maletti, Strong equivalence of TAG and CCG, Trans. Assoc. Comput. Linguist. 9 (2021) 707-720.
[34] S. Kepser, J. Rogers, The equivalence of tree adjoining grammars and monadic linear context-free tree grammars, J. Log. Lang. Inf. 20 (3) (2011) 361-384.
[35] M. Kuhlmann, G. Satta, A new parsing algorithm for Combinatory Categorial Grammar, Trans. Assoc. Comput. Linguist. 2 (Oct 2014) 405-418.

233


http://refhub.elsevier.com/S0022-0000(21)00102-1/bib633A5DA0E9ECD297E3FDCCB83B3082B1s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib633A5DA0E9ECD297E3FDCCB83B3082B1s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib423A0BA44167064F78C445B028201366s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibE7171923D298F4C9A886EFD7C3C4A5E7s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib35A7234DC34B8B2AF62D6C02473EA386s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibDDDDDD839A858A7D258E6C3C5E538FFBs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibF44B56EC8C801813DB267CC7358784F4s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibF44B56EC8C801813DB267CC7358784F4s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibA6A4E8A0B71F40D3CD6B80406520C9C0s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib74A454DD4D4CBBE2B5C5FC7A38928992s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib8F658088F3DA1C1AF2E42D0D844B507Ds1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib253A3D8A7340F29CF64DFA6172463250s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib7CA7FCC887D20DF9A0D623D6C53867EDs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib26671389DE9373DC1089F66C7102E458s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib26671389DE9373DC1089F66C7102E458s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib8135DC7050B4DB756EFEA72F0AEFFF1Cs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib80E46FCE5AB85085D11C8321A6EEEDDCs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib5BBB877C57F70EC96AB9A7BB84E1B97As1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib5BBB877C57F70EC96AB9A7BB84E1B97As1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib776EABD2BDD9071556934BD0C8A483A5s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibFD4A46949131E6D266AE901DB2F49BC0s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibFE90D7EDC3B0F96CA8483436C6C5B428s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib9E86C160F9621017CE1D4681C996A832s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibD1FA4DEA9D4E52CC3487BC3A3F1DEA87s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib448B12C7E225EDC5F77CC35B23F7F619s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib6D8025856FD3E56E5C71429FD4D86E06s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibC0FE90788096AB9F45C875F16B573017s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibD1ECBD8418BDE09B7A663F905D1F1D6Cs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibDAD891629DBCA0C7B7C934D95CBC8070s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibB258A72ED4F162D2C00CD70743759C01s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibB258A72ED4F162D2C00CD70743759C01s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibD977A21EC1B6686B0F5B3EEAA1AB057Ds1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib4AF8086000A780B6CE2404E15CBE2A32s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib4AF8086000A780B6CE2404E15CBE2A32s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib9D5BE04DC53B85D191E21DA44B7F63A1s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib9D5BE04DC53B85D191E21DA44B7F63A1s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibDAC367F96E5D51FBB23048A063C1793Es1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibE849B30FB3E9F24826940F84A92A741Bs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibC449599B200CF7351012AA1378B5C47Bs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibC449599B200CF7351012AA1378B5C47Bs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib4D5B57C71BF27642EA279EE3ECF9F4E6s1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bibF682BE566311C51D254839E67DFF81EDs1
http://refhub.elsevier.com/S0022-0000(21)00102-1/bib5DDDAC0BAB115932429B7B75E2584834s1

	The tree-generative capacity of combinatory categorial grammars
	1 Introduction
	2 Preliminaries
	3 Combinatory categorial grammars
	3.1 Informal introduction
	3.2 Formal definition

	4 0-CCGs
	5 1-CCGs
	6 Inclusion in the context-free tree languages
	7 Proper inclusion for pure CCGs
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


