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ABSTRACT

Quantum-mechanical calculations of electron transport in ideal graphene nanoribbons show that the transport gap that is predicted by
noninteracting theories vanishes if the long-range Coulomb interaction between electrons is taken into account. This is a result of charge
screening with the lowest subband edge being pinned to the chemical potential. However, the transport gap reappears if a ribbon is connected
to wider leads, which is typically realized in an experimental setup that is based on lithographically patterned graphene ribbons. The gap is
determined by scattering at the lead-to-ribbon interface, which can already be captured by the noninteracting theory.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0064512

I. INTRODUCTION

A transport gap in graphene nanoribbons (GNRs) is defined
as the range of gate voltages for which source-to-drain conductance
is suppressed at zero bias.1–4 This has been observed in all experi-
ments on graphene nanoribbons, regardless of width, crystallo-
graphic orientation, kind of subtract, and cleanness.1–8 Careful
analysis has shown that the main reason for the transport gap is
edge disorder,8–12 which is an imperfection of an edge profile when
compared to the ideal atomic arrangement of either an armchair or
zigzag for a hexagonal lattice. Rough edges cause localization of
electronic states inside the ribbon, and transport is consequently
dominated by the hopping mechanism3,4 or Coulomb blockade in
a chain of quantum dots.5,6 Other reasons include lattice defects
and adsorbates in the bulk7 and inhomogeneous potential due to
charged impurities.1,2,5,6 Although the strong impact of disorder on
transport in GNRs has been recognized, one common feature of
lithographically patterned ribbons has been overlooked—they are
all connected to wide regions of graphene serving as the source and
drain electrodes, and that connection might in itself cause electron
scattering and thus contribute to the transport gap. One of the
aims of the present study is to analyze how the interface between
wide leads and a ribbon affects the transport gap.

Recent technological advances have substantially improved the
quality of fabricated GNRs.13–16 Many methods, alternative to
lithography, have been demonstrated, for example, carbon

nanotube and graphite unzipping,14 organic synthesis,15 and chem-
ical vapor deposition on germanium.16 Some of them allow atomic
precision over ribbon width. However, the devices fabricated still
suffer from various sorts of disorders: adsorbed atoms and mole-
cules, charge puddles, ripples, etc.13 Another issue is the connection
of GNR to the metal electrode, which, in turn, suffers from the
presence of a Schottky barrier,15 the absence of covalent bonding,
and interfacial contamination.13 While all these factors affect the
transport gap, it is important to understand the characteristics of
an ideal defectless structure as a baseline.

Simple noninteracting theories based on the tight-binding cal-
culations or the Dirac equation predict that the bandgap exists only
for the armchair edge termination.17–22 The gap is inversely pro-
portional to the ribbon width W (disregarding the additive cons-
tant),

Egap ¼ πta
W

, (1)

where a ¼ 0:245 nm is the graphene lattice constant (see Fig. 1)
and t ¼ 2:7 eV is the hopping energy between nearest carbon
atoms.18–21 If the number of carbon dimers in the cross section of
armchair GNR is18–21

N ¼ 3p� 1, (2)
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then the gap is zero, where p is an integer and N relates to the
width by W ¼ (N � 1)a=2. A ribbon with zero gap is referred to as
metallic; otherwise, it is semiconducting. Egap is the energy gap
between the valence and conduction bands. This differs from the
transport gap that has previously been measured in experimental
setups,1–8 where voltage is applied to a remote gate electrode to
tune the charge density in the ribbon. In these setups, the ribbon
and the gate form a double plate capacitor. Using the linear disper-
sion of graphene energy spectrum, the bandgap and the transport
gap, Vgap, might be related as23

Egap ¼ ta
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πCVgap

jej

s
, (3)

where C is the differential capacitance, which should include the
contribution from classical and quantum-mechanical capaci-
tances.24,25 The latter depends on quantization of the electron spec-
trum in the ribbon and the electron–electron interaction. As the
quality of the samples improves, it is expected that the experimen-
tally measured gaps would approach theoretically predicted values
and, in particular, metallic/semiconductor alternation (2) for arm-
chair GNRs will be confirmed. However, this has not been observed
yet.

One of the reasons why the theoretical gaps, Eqs. (1) and (2),
have not been observed experimentally is that they are based on the
simplified theory, in which electron–electron interactions are

ignored. Density functional theory calculations have shown that all
GNRs possess the bandgap and that armchair GNRs, in particular,
are all semiconducting.26,27 In general, electron–electron interac-
tions can be broken down into several components, perhaps the
simplest of which is the classical Coulomb repulsion between
charged particles.28 Coulomb interactions are known to cause
charge accumulation at the abrupt graphene edges.24,25,29,30 This
has been observed in capacitance measurements.31 The main focus
of this present study is the effect of the long-range Coulomb inter-
action on the transport gap.

Using Green’s function framework, the quantum-mechanical
calculations are performed in both noninteracting and interacting
models with the long-range Coulomb interaction taken into
account for the realistic setup where GNR is connected to wide
leads, similarly to typical experiments on lithographically patterned
graphene ribbons.2–8 The main findings are as follows:

(i) The transport gap is zero in the interacting model for any
ribbon width.

(ii) The gap opens up if the ribbon is connected to leads that are
wider than the ribbon. The gap values reveal a faint beat
pattern following semiconductor/metallic alternation for
armchair GNRs, Eq. (2). However, the pattern reveals peaks
instead of dips (i.e., zeros in the transport gap), which indi-
cates higher gaps for the metallic ribbons. The gap similarly
opens up for zigzag GNRs.

(iii) The inverse transport gap dependence is caused by strong
electron scattering between electron states in the leads and in
the ribbon, which can already be observed in the noninteract-
ing approach.

(iv) At the conduction edge, electron interaction causes enhanced
density of states along the edges of the lead-to-ribbon inter-
face, with the current flow concentrating interior.

II. MODEL

The tight-binding Hamiltonian in the Hartree approximation
on a honeycomb lattice is30

H ¼ �t
X
hi,ji

ayi aj þ
X
i

VH
i a

y
i ai, (4)

VH
i ¼ e2

4πε0ε

X
j=i

nj
1

jri � rjj �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jri � rjj2 þ 4b2
q

0
B@

1
CA, (5)

where ayi is the creation operator of the electron on the site i, aj is
the destruction operator of the electron on site j, ayi ai is the
number operator, and the angle brackets denote the nearest neigh-
bor indices. The Hartree potential VH

i describes Coulomb interac-
tion of electron at the ith atom with uncompensated charge density
�en in the system;24,30 �enj is the electron charge at the lattice site
j and rj is the position vector of that site; ε is the dielectric permit-
tivity. If the second term in (4) is omitted, then the resulting
Hamiltonian becomes the standard noninteracting approximation
for electrons on a graphene lattice.22 The effects due to spin and

FIG. 1. Sketch of a graphene nanoribbon embedded in the insulator above the
metal gate. The gate voltage Vg tunes the charge density in the ribbon con-
nected to wider semi-infinite leads, which serve as source and drain electrodes,
Nl . N. The leads have an armchair orientation; their width is measured in
units of dimer lines. The top magnified plot shows the atomic edge profile of
armchair lead-to-ribbon interface of length L ¼ 60 unit cells. A mesoscopically
smooth junction is profiled by a trigonometric (cosine) function. In the case of
the zigzag nanoribbon, a skew applies by 30�. The left-hand side bottom plots
show the unit cells of armchair N ¼ 11 and zigzag N ¼ 6 GNRs.
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next-nearest-neighbor hopping are outside the scope of present
study.

For the system studied here, as shown in Fig. 1, the Hartree
potential is obtained by the image charges method. In this
method, VH is the sum of potentials due to the charge �e and its
image—fictitious charge þe located inside the metal plate at dis-
tance b from the metal-to-insulator surface. Such charge arrange-
ment satisfies the boundary condition of zero potential along the
metal surface.

The observable properties of the system are obtained by the
non-equilibrium Green’s function framework (NEGF).32–34 After
the system is partitioned into the scattering region and two semi-
infinite leads, the retarded Green’s function Gr(r, r0, E) is defined
as

E �H0(r)� Σr
L(E)� Σr

R(E)
� �

Gr(r, r0, E) ¼ 1, (6)

where E is the electron energy, 1 is the unitary operator, and the
retarded self-energies Σr

L=R(E) describe coupling the scattering
region with the leads. The lesser Green’s function relates electron
flow from right and left reservoirs into the scattering region, and by
omitting the coordinate arguments reads as follows:

G,(E) ¼ �iGr(E)ΓL(E)G
a(E)f (E � μL)

� iGr(E)ΓR(E)G
a(E)f (E � μR), (7)

where f is the Fermi–Dirac function for the chemical potentials in
the left or right lead, μL and μR, respectively, and

iΓL=R(E) ¼ Σr
L=R(E)� Σa

L=R(E): (8)

The surface Green’s functions ΓL=R are obtained by the method
given in Ref. 35.

The subject of this study is the transport properties of GNRs
in the linear response regime. This regime falls well within the
scope of the equilibrium Green’s function formalism. In particular,
two-terminal conductance, charge density, and local density of
states are well described by the equilibrium Green’s functions.
However, some of the transport properties, like, for example,
current, need a more detailed description, for which non-
equilibrium Green’s functions are used.

In equilibrium μL ¼ μR ¼ μ ¼ eVg , the charge density is

n(r) ¼
ð
dE ρ(r, E)f (E � μ), (9)

where ρ is the local density of states expressed in terms of the
retarded Green’s function,

ρ(r, E) ¼ � 1
π
Im Gr r, r, Eð Þ½ �: (10)

The two-terminal conductance in the linear response regime is
given by the Landauer formula

G ¼ � 2e2

h

ð
dE T(E)

@f (E � μ)
@E

, (11)

where the transmission function follows from the Fisher–Lee
relation

T(E) ¼ Tr ΓL(E)G
r(E)ΓR(E)G

a(E)½ �: (12)

To find the current density, a small bias is applied to the
leads. The current flowing between two atoms in the steady state is
expressed in terms of the lesser Green’s function (7) as36

I ji ¼ 2eti
�h

ð
dE
2π

G,
ij (E)� G,

ji (E)
h i

: (13)

III. METHOD

Equations (4)–(10) are solved iteratively to obtain a self-
consistent solution for the charge density and Hartree poten-
tial.30,32,33,37 To accelerate the convergence of the self-consistent
calculation, the Broyden method for solving systems of nonlinear
equations is used.37 Calculation proceeds in two stages;30 see Fig. 2.
In the first stage, the self-consistent solution is achieved for the
uniform computational domain, the gray area in Fig. 2, without
any scattering sources. At each iteration, the Hartree potential (5)
due to electrons in an infinite long ribbon needs to be obtained,
which is given by the sum over j index in (5) and is the most time
consuming part of the calculation. To handle the problem, in prac-
tice, the semi-infinite electron reservoirs on the left and on the
right of the computational domain are replaced by finite regions of
such length that any further increase does not change the results
considerably. In this work, those regions are tenfold extents of the
computational domain, Fig. 2, so VH at any point is due to the
direct interaction with electrons inside the computational domain
and in ten times larger leads on the left and on the right. This

FIG. 2. Calculation stages for the Hartree potential, VH , and charge density, n.
At the first stage, the computation domain, denoted in gray, is copied ten times
to the left and to the right to approximate the semi-infinite leads. VH and n in
the leads stay constant at the second stage.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 130, 144301 (2021); doi: 10.1063/5.0064512 130, 144301-3

© Author(s) 2021

https://aip.scitation.org/journal/jap


seemingly brute force approach is optimized by splitting the sum in
(5) as

X
j

!
X

j[comp:domain

þ
X
j[leads

,

where the last term becomes fixed at the end of the first stage. This
constitutes an assumption that the charge density in the semi-
infinite leads is not affected by the scattering region. In the second
stage, the scattering is imposed inside the computational domain
and a self-consistent solution is achieved again. The scattering
source in the present study is missing carbon atoms along the

edges that shape a long narrow ribbon; see Figs. 1 and 2. Two cal-
culation stages allow accurate accounting of the Coulomb interac-
tion with the charges in the semi-infinite leads, and also the
smooth joint between the leads and computation domain. This
method differs from typical NEGF calculations,32 where the peri-
odic boundary condition is applied in the transport direction and,
consequently, the spirituous interactions with the computational
domain replica or uncompensated charges at the boundaries need
to be additionally suppressed.32,34

IV. RESULTS

The system that is studied is armchair and zigzag GNRs that
are separated from the gate by SiO2 dielectric with ε ¼ 3:9 and
b ¼ 10 nm; see Fig. 1, which is similar to lithographically patterned
GNR in experiments.2–8 The ribbon is assumed to be ideal, and
without any defects in bulk or at the edges. Its length is taken to be
sufficiently large in comparison to width (2–10 times), so that the
system is quasi-1D. The ribbon is connected to ideal semi-infinite
leads, which are also made of graphene but of different widths, by
the mesoscopically smooth junctions of length L; see Fig. 1. The
leads retain the armchair orientation throughout this study. All of
the edge carbon atoms are connected to two neighboring carbons
and are hydrogen passivated. To eliminate any non-generic fea-
tures, the results presented here are averaged over different realiza-
tions of interface length L ¼ 30::100 unit cells (12::40 nm), where
the one unit cell step is taken for the noninteracting calculations
and ten samples in that range are chosen for the Hartree calcula-
tions. Given that atomic precision over the ribbon width is impor-
tant, the width is measured in units of dimer lines for armchair
GNRs and the number of carbons for zigzag GNRs; see Fig. 1. The
calculations were also performed for different b and ε with similar
results obtained.

To understand transport gap formation and the effect of elec-
tron–electron interaction, let us first consider the simpler noninter-
acting theory.

In the noninteracting theory, a straight armchair nanoribbon
possesses a bandgap that doubles if the ribbon is connected to
wider graphene leads (see Fig. 3); Egap is additionally averaged over
three neighbor lead widths Nl ¼ 160, 162, and 164 (� 20 nm). The
junction between the ribbon and leads introduces strong electron
backscattering.38–41 This can be observed as electron wave interfer-
ence with minimum probability density across the junction; see
Fig. 4(a). Even though the interface is mesoscopically smooth, the
scattering is strong because of multiple alternations of zigzag and
armchair terminations and also because of the broken graphene
AB-sublattice symmetry along the edges.40,41 A striking difference
to the well-known results18–21 is that the gap develops for any
ribbon width, even for those widths that are predicted to have zero
gaps for straight geometry; see Eq. (2). These metallic ribbons, in
fact, reveal even slightly larger gaps, which is a result of poor
matching to the zero energy state19 of the metallic armchair ribbon
extending over whole ribbon width; see Fig. 4(a). Egap does not
reveal dependence on the ribbon length, see Appendix A. The non-
interacting theory predicts the gap for a zigzag nanoribbon to
occur similarly to the armchair nanoribbon in a setup with wider
leads; see Fig. 3(a). Even though the low energy states in zigzag are

FIG. 3. Transport gap in a graphene nanoribbon in the noninteracting (a) and
Hartree (b) approaches. The top part of (a) shows the result for the zigzag edge
configuration, while the rest of the figure is for the armchair configuration. The
lines with open circles correspond to the straight ribbons Nl ¼ N, while those
with filled squares correspond to geometries with wider leads. The red dashed
line in (a) shows the bandgap from (1). The insert in (b) shows the gap depen-
dence on lead width for fixed N ¼ 80. The lines are given to guide the eye.
The stars mark N for local density of states and current plots in Figs. 4 and 6;
the double star is to link with transport gap definition in Fig. 5(a).
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exponentially localized at the edges,18 the same arguments apply
for gap development as for the armchair orientation.

In contrast to the noninteracting theory, the Hartree approach
predicts zero transport gap for armchair ribbons of any width having
the straight geometry; see Figs. 3 and 5. This is due to the pinning37

of the lowest subband energies to μ. The voltage applied to the back
gate induces extra charges in the ribbon to establish global equilib-
rium. This is accompanied by the energy level shift—note that in the
present calculation method, Vg is an input parameter while the
charge density and electrostatic potential are allowed to vary until a
self-consistent solution is obtained. For Vg . 0, the bottom of the
conduction band aligns with μ [see Fig. 5(b)] otherwise, it is located
at the top of the valence band. While the current carrying subband
is at μ and Vgap � 0, a finite bandgap still develops, whose value cor-
responds to Egap in noninteracting theory. Small finite Vgap values
are still observed in Fig. 3(b) due in part to the definition adopted in
this work,42 as shown in Fig. 5(a). The Hartree calculation is carried
out at T ¼ 100 K, as T decreases Vgap ! 0.

The transport gap in the Hartree theory appears if a ribbon is
connected to the wider leads, similarly to the noninteracting
approach; see Fig. 3. The reason for the transport gap is the same
for both approaches—electron backscattering at the lead-to-ribbon
interface. However, in contrast to the noninteracting approach,
semiconductor/metallic pattern of the armchair ribbon, Eq. (2),
occurs shifted. This can be explained by an additional electro-
static potential that causes electrons to redistribute toward the
edges.24,29,30 The effect is pronounced in enhanced local density
of states along the interface edges; compare Figs. 4(a) and 6(a).
While electrons tend to localize at the edges, the electrical
current in the Hartree approach flows more interior focused, and
therefore scattering by the edge states is reduced; see Figs. 4(b)
and 6(b). Another difference to the noninteracting theory is the
gap dependence on the lead width Nl ; see the inset in Fig. 3(b).
Electrons accumulated at the interface edges mask otherwise
strong scattering by small deviation from the perfectly ordered
edge atomic structure.

FIG. 4. Normalized local density of states (a) and current (b) in the noninteracting approach at the conduction edge. The interface between the left-hand lead and the
ribbon is shown. N ¼ 80 (� 10 nm), Nl ¼ 162 (� 20 nm), and L ¼ 50.

FIG. 5. Transport gap (a) and bandgap (b) in the Hartree
approach. The transport gap is defined as the gate
voltage range for which conductance is less than
0:5� 2 e2=h. Vg ¼ 0:4 V in (b). Nl ¼ N ¼ 82.
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V. DISCUSSION

Graphene nanostructures are known to have intrinsically non-
adiabatic transport,39–41 which manifests in strong scattering at a
wide–narrow interface and poor conductance quantization39 in
comparison, for example, to GaAs counterparts.40 While many
studies focus on the role of disorder,9–12 which undoubtedly exists
in experimental samples, the presented results demonstrate that the
gap even occurs in ideal, defectless GNRs if they are connected to
wide leads, which is a typical connection for lithographically pat-
terned graphene samples.2–8 The transport gap still follows the
well-known pattern,18–22,26 Eq. (2), but it also reflects the ability of
electronic states in the leads to couple to the lowest conducting
state in a ribbon. This coupling is particularly poor for the zero
energy state, thus causing inverted Egap-vs-N dependence; as shown
in Fig. 3. This dependence is also observed in the Hartree approach,
in which additional effects due to Coulomb repulsion between elec-
trons take place.

Vanishing transport gap predicted by the Hartree approach
seemingly contradicts the experimental data1–8 measured so far.
There are several reasons for this discrepancy. First, all experi-
mental samples are contaminated by one or another form of
disorder—missing carbon atoms in the lattice, adsorbed atoms
and molecules, charged molecules located nearby, non-planar
graphene layer, etc. Second, all lithographically patterned GNRs
are connected to wider graphene regions. Third, the electronic
states in the source and drain metal electrodes do not couple
well with propagating states in graphene. These three factors
cause strong electron backscattering and finite transport gap.
The fourth reason might be the approximation itself, where
classical Coulomb repulsion is taken into account but the
quantum-mechanical effects of exchange and correlation inter-
actions are not included into the theory.

The effect of energy level pinning that causes the zero trans-
port gap in the straight GNRs is also responsible for other phenom-
ena, such as compressible strips in the quantum Hall effect.43,44

The alignment of the electronic states with the chemical potential

(the Fermi energy) reflects the screening ability of the system when
free electrons can redistribute to minimize electrostatic energy,
which is a property that is peculiar to a metallic system as opposite
to an insulator. Recently, the pinning of the valence band to the
Fermi energy of a gold electrode has been experimentally observed
in armchair GNRs.45

While the transport gap that is predicted in the Hartree
approach is zero, the finite bandgap still exists and can be detected
in optical measurements on absorption spectra.46 Simultaneous
transport and optical measurements would be of interest to study
the interplay between transport and bandgaps and also to elucidate
the role of electron interactions in a straight geometry. The inter-
play between the transport and bandgaps might also be studied in
a three terminal setup, as shown in Fig. 1, where both the back gate
and source-to-drain voltages vary. However, the problem of elec-
tron transport becomes more complex for finite bias because of the
nonlinear screening and pinning effects.47

The Hartree method accounts for the classical interaction
between particles, but it does not respect the principle of anti-
symmetry of the wave function, which is resolved in the Hartree–
Fock approach. An extension of the presented model to the
Hartree–Fock model is straightforward by the addition of the
exchange interaction term.33 However, that method would
require much more computational resources. The Hartree–Fock
approach is able to capture Coulomb blockade physics and is
thus of interest to theoretical analysis of the proposed explana-
tion2,5,6 of the transport gap.

One may deduce the relation between Egap and Vgap from
Fig. 3. This can be loosely related by Eq. (3), where all the effects
are included in one parameter—capacitance C. It has been
shown to consist of classical parallel plate capacitance and the
terms due to the quantization of electron spectrum and the
electron–electron interaction.24,25 The results show that C also
depends on device geometry beyond the area of parallel plates
(e.g., C � 0 for straight GNR geometry). For the geometry with
junction, estimations by (3) give C ¼ 750 aF=μm2, which agree
reasonably well with Ref. 3.

FIG. 6. (a) and (b) are the same as Figs. 4(a) and 4(b) but for the Hartree approach.
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Measurements for the ribbon width of 25 nm reveal
Vgap � 20–30 V.3,6,8 These values exceed the ones obtained above,
Fig. 3(b), which might be attributed to the wider width in compari-
son to the one explored here (10 nm), different setup geometry,
and dominance by the disorder effects.

The structures considered in this study are all graphene made.
In real experimental devices,1–8 the wide graphene regions are
eventually connected to the metal electrodes. That connection can
modify electron transport through a GNR.48,49 In particular, the
transport gap can be suppressed due to poor coupling between
states in the metal and the propagating states in the GNR, the
effect that has a stronger impact on devices with small sizes.49

The Hartree calculation results in Ref. 24 do not reveal the
pinning effect responsible for the vanishing transport gap. This
might be attributed to the difference in the models: in Ref. 24, the
average charge density is an input parameter, while here it is the
gate voltage.

Some final comments follow. First, because electron transport
in graphene is characterized by strong scattering by any lattice
defects and both armchair and zigzag edges are equally affected by
edge imperfection,9 it is expected that zigzag GNRs possess a finite
transport gap in a geometry with wide leads as explicitly shown in
the noninteracting approach in Fig. 3. That is also expected for
ribbons with general edges,18 which are not considered here.
Second, the effect due to next-neighbor hopping is not included in
above theory. The extended Hückel model with five
next-nearest-neighbor hopping energies shows50 that correction to
the nearest-neighbor approximation for the bandgap is small,
though other studies27,51 show that it might be not so. Third, the
effects due to the Coulomb interaction on the transport gap in dis-
ordered GNRs are a substantial topic that deserves a separate study.
Fourth, the Hartree approach used in this study can be combined
with the scalable tight-binding model52 to simulate graphene
devices of much larger sizes. Fifth, phonons are known to be the
dominant heat carriers in the ungated graphene samples near room
temperature.53 They also affect electron transport for neutral gra-
phene due to considerable electron–phonon coupling.54 However,
in doped graphene, which is a subject of this study, phonon effects
are negligible.53,54

VI. CONCLUSION

Quantum-mechanical calculations of electron transport in
both noninteracting and interacting approaches predict that the
semiconductor/metal alternation pattern that is widely discussed in
the literature for armchair GNRs is much weaker and inverted for
the setup with wide leads. This is a result of the strong electron
scattering on the ribbon-to-lead interfaces. The long-range
Coulomb electron interactions cause the transport gap to vanish for
all widths of GNRs in the straight geometry due to subband
pinning to the chemical potential. In geometry with wide leads, the
interaction results in additional deviation of the alternation pattern.
These findings demonstrate that the transport gaps that are typi-
cally discussed in the literature are hardly able to be observed in
lithographically patterned graphene ribbons, not only because of
defects inside the ribbon but also because of interaction effects and
setup geometry.
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APPENDIX A: LENGTH DEPENDENCE OF TRANSPORT
GAP

Figure 7 shows Egap and Vgap as a function of ribbon length
for fixed width and interface length. The lead width is twice the
ribbon width and the gaps are averaged over ten neighbor Nl for
the noninteracting and three neighbors for the Hartree approach.
The gaps do not depend on the ribbon length because quantization
of energy spectrum is defined in the cross-sectional direction. Some
fluctuations of Egap are observed due to wave function interference
between ribbon entrance and exit points and insufficient averaging
at T ¼ 0. The results for the Hartree approach are obtained for
T ¼ 100 K so temperature acts additionally as an averaging quan-
tity. Independence of the transport gap on ribbon length agrees
with previous studies.2,3,9

APPENDIX B: HARTREE POTENTIAL

In this appendix, representative distribution of Hartree poten-
tial VH , Eq. (5), is discussed. Figure 8 shows VH at the interface
between the left-hand lead and GNR. The magnitude of μ� VH

raises near the edges, which indicates charge accumulation along
the boundaries.24,25 The potential fluctuations of the order of 0:1t,
which are generated, e.g., by the charged impurities, should affect

FIG. 7. Transport gap in the noninteracting (right axis) and Hartree (left axis)
approaches as a function of ribbon length. N ¼ 80, Nl � 2N, and L ¼ 30.
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the distributions of VH , n, and thus the transport gap values. The
effects of such fluctuations, however, are outside the scope of this
study, which is rather devoted to the ideal GNRs. The effects due
to various disorder types, using the noninteracting approach, were
previously studied in Refs. 9–12.
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