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Abstract

Fast detection and identification of unknown substances is an area of interest
for many parties. Raman spectroscopy is a laser-based method allowing for long
range no contact investigation of substances. A Coded Aperture Snapshot Spec-
tral Imaging (cassi) system allows for fast and efficient measurements of hyper-
spectral images of a scene, containing a mixture of the spatial and spectral data.
To analyze the scene and the unknown substances within it, it is required that the
spectra in each spatial position are known. Utilizing the theory of compressed
sensing allows for reconstruction of hyperspectral images of a scene given their
cassi measurements by assuming a sparsity prior. These reconstructions can
then be utilized by a human operator to deduce and classify the unknown sub-
stances and their spatial locations in the scene. Such classifications are then ap-
plicable as decision support in various areas, for example in the judicial system.

Reconstruction of hyperspectral images given cassi-measurements is an ill-posed
inverse problem typically solved by utilizing regularization techniques such as
Total Variation (tv). These tv-based reconstruction methods are time consum-
ing relative to the time needed to acquire the cassi measurements, which is in
the order of seconds. This leads to a reduced number of areas where the technol-
ogy is applicable.

In this thesis, a Generative Adversarial Network (gan) based reconstruction met-
hod is proposed. A gan is trained using simulated training data consisting of hy-
perspectral images and their respective cassi measurements. The gan provides
a learned prior, and is used in an iterative optimization algorithm seeking to find
an optimal set of latent variables such that the reconstruction error is minimized.
The results of the developed gan based reconstruction method are compared
with a traditional tv method and a different machine learning based reconstruc-
tion method. The results show that the reconstruction method developed in this
thesis performs better than the compared methods in terms of reconstruction
quality in short time spans.
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Sammanfattning

Snabb detektion och identifiering av okända substanser är av intresse för många
olika parter. Ramanspektroskopi är en etablerad laserbaserad metod som tillåter
kontaktfri analys av substanser från långa avstånd. Ett Coded Aperture Snapshot
Spectral Imaging (cassi) system tillåter snabba och effektiva mätningar av hyper-
spektrala bilder i en scen, som innehåller en blandning av spatiell och spektral
information. Genom att utnyttja teorin om compressed sensing är det möjligt att
rekonstruera hyperspektrala bilder i en scen givet dess cassi-mätningar genom
att anta att bilden är gles. Dessa rekonstruerade hyperspektrala bilder kan sedan
användas av mänskliga operatörer för att klassificiera okända substanser och de-
ras spatiella positioner i scenen. Sådana klassificieringar är sedan applicerbara
som t.ex. bevisföring i rättsliga mål.

Rekonstruktionsproblemet är ett inverst problem som typiskt löses genom att an-
vända sig av regulariseringstekniker såsom Total Variation (tv). Dessa tv-basera-
de rekonstruktionsmetoder är tidsineffektiva relativt till hur lång tid som krävs
för att samla in cassi-mätningar, vilka kan insamlas inom loppet av sekunder.
Detta leder till ett reducerat antal områden för vilka tekniken är applicerbar.

I denna uppsats föreslås en rekonstrutionsmetod baserad på ett s.k. Generati-
ve Adversarial Network (gan). Ett gan tränas genom att använda träningsdata
bestående av hyperspektrala bilder och deras respektive cassi-mätningar. Det
tränade gan:et används sedan i en iterativ optimeringsalgoritm vars syfte är att
finna de optimala latenta variablerna sådana att ett minimalt rekonstruktionsfel
uppnås. Resultaten för den utvecklade gan-baserade rekonstruktionsmetoden
jämförs med en traditionell tv-metod, samt en annorlunda typ av maskininlär-
ningsbaserad rekonstruktionsmetod. Resultaten visar att rekonstruktionsmeto-
den utvecklad i denna uppsats presterar bättre än de jämförda metoderna sett
till rekonstruktionskvalitet i korta tidsspann.
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1
Introduction

1.1 Background

The ability to identify unknown substances such as explosives or drugs in a scene
can be of significant interest for many parties. For example in the law enforce-
ment conducting detective work at a crime scene, or for investigating a potential
explosive device. In the latter application, time is usually of the essence. With
the risk of an (potential) explosive device, it is critical that identification of the
substances in the explosive device is quick, such that bomb disposal may com-
mence as soon as possible. Additionally, it is desirable that the identification may
take place from a safe distance from the potential explosive, to minimize the risk
of injuries and/or fatalities.

At the Swedish Defence Research Agency (foi), research has been conducted
on the ability of identifying unknown substances in a scene using Raman spec-
troscopy, a laser-based technique allowing for long range no-contact investigation
of unknown substances. A Coded Aperture Snapshot Spectral Imaging system
(cassi) is used to measure hyperspectral images (hsi) of a scene to be investi-
gated. Through the theory of compressed sensing (cs) it is possible to reconstruct
hsi from only a few 2-dimensional measurements containing mixed spatial and
spectral data using reconstructions algorithms such as the Total Variance mini-
mization by Augmented Lagrangian and ALternating ALgorithm (tval3) [1].

The reconstructed hsi allows for human operators to analyze and classify un-
known substances at different spatial locations in a scene. The reconstructed hsi
can therefore be seen as decision support, and be provided as parts of argumenta-
tion and evidence in, for example, the judicial system. Direct classifications from
a black-box model such as a neural network are not analyzable in the same sense,
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2 1 Introduction

since such a system only produces a prediction with a certain probability score.
Furthermore, the decision making of the neural network in classifying the sub-
stances can not be known to the users, making it not suitable as decision support.
Therefore, direct classification is not preferable in the context of substance detec-
tion and identification as compared to providing reconstructed hsi to a human
operator.

Although there exists great potential in using Raman spectroscopy based meth-
ods for safely identifying unknown substances, there are drawbacks as it cur-
rently stands. According to [2], a surface of size 3x3 cm2 may be measured from a
distance of 10 m in a matter of seconds using cassi. However the reconstruction
of the hsi from the measurements using tval3 may take up to several minutes.
This inhibits close to real-time identification from being realizable. Reconstruc-
tion times in parity with the measurement time is desirable.

1.2 Motivation

Some initial research into utilizing machine learning (ml) in hsi reconstruction
have been conducted at foi, with the hope of ml providing much faster recon-
struction without a significant loss in reconstruction quality [3]. The initial re-
search has shown promising results, and a further investigation into the viability
of ml based methods is therefore of interest.

In [3], the training of a neural network for hsi reconstruction was conducted
using simulated hsi training data generated via a model of the physical cassi-
system at foi. The hsi training data consisted of hsi containing a number of
randomly placed rectangles and ellipses of varying size depicting the substances.
These geometric shapes were then assigned a Raman spectra each, furthermore
white background noise was added to the hsi.

In real-world situations, the substances can typically be mixed, such that one
spatial pixel contains a mixture of several substances, and thus several Raman
spectra. Therefore it is of interest to investigate whether an ml-based method is
able to reconstruct the hsi, and thus the Raman spectra, when the data is more
complex containing a mixture of substances.

Investigating whether a different network architecture could improve the quality
of the reconstructions is also interesting. In the last years, research have been con-
ducted exploring whether generative models, such as a Generative Adversarial
Network (gan) could be useful in cs, with promising results for simpler datasets
[4, 5]. Exploration of the usage of generative models for cs in the context of
hsi reconstruction and Raman spectra is of great interest. This by comparing re-
construction time and quality of generative model based reconstruction against
reconstruction with tval3 and reconstruction with the architecture and objec-
tive used in [3]. Examples of reconstruction quality metrics include the mean
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absolute error (mae), and cosine similarity [6].

The iterative tval3 algorithm is developed such that an initial guess of a solu-
tion is required. Typically a zero matrix is provided when no alternative exists,
but a good initial guess of what the solution looks like can possibly reduce the
convergence time drastically. Therefore, it could be interesting to provide the out-
put of the network, i.e., synthetic hsi, to tval3 as an initial guess, to see whether
the number of iterations until convergence and therefore the computation time
may reduce. A great reduction in the number of iterations would also indicate
that the synthetic hsi from the generative model was of good quality.

In conclusion, for this thesis, the research questions aimed to be answered are:

1. Is a gan-based reconstruction method viable for reconstruction of hyper-
spectral images?

2. How do reconstructions achieved by a gan-based reconstruction method
compare to the reconstructions using the tval3-algorithm and the encode-
decode architecture in [3] in terms of computational time and precision?

3. Is reconstruction possible when the hyperspectral image contains two or
more mixed substances?

4. Are synthetic hyperspectral images from the gan useful and applicable as
an initial guess to the tval3-algorithm?





2
Theory and Previous Works

This chapter introduces theory relevant for the work done during this thesis. Pre-
vious works which provides building blocks, and have inspired, the developed
and investigated reconstruction method are also presented.

2.1 Raman Spectroscopy

Raman spectroscopy is a spectroscopy method which allows for identification of
unknown substances. By illuminating an unknown substance with monochro-
matic light, the incident photons will hit the molecules and become scattered.
There are two different types of scattering, depending on if the energy of the in-
coming photon Elaser has the same energy as the outgoing photon Eout after its
collision with the molecule or not. The energy of a photon is given by

E =
hc
λ
, (2.1)

where h is the Planck constant, and c is the speed of light in vacuum. Hence, the
energy is inversely proportional to the wavelength of the photon. If the scattering
causes the outgoing photon to have the same wavelength as the original photon,
the scattering effect is called Rayleigh scattering. Should the outgoing photon
have a different wavelength than the original photon, the scattering is called Ra-
man scattering, see Figure 2.1. This shift in wavelength that occurs depends on
the molecular structure of the unknown substance, and thus is unique to a spe-
cific substance. Hence, by measuring the shift in wavelength, one can identify
the unknown substance [7].

According to [8], a general Raman spectrum r for some substance can be mod-
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6 2 Theory and Previous Works

Raman 

scatter Rayleigh 

scatter

Figure 2.1: The two different types of scattering, Rayleigh scattering and
Raman scattering.

eled as a sum of wavelength peaks and some underlying noise

r =
n∑
i=1

pi + ε, (2.2)

where pi denotes the peaks, and ε is the noise. One common model of the peaks
pi is the Lorentzian lineshape

pi ≈ Li(λ) =
ai

1 +
(2(λ−λi )

bi

)2 , (2.3)

where ai is the amplitude, bi is the full width at half maximum and λi denotes the
wavelength of the peak. Figure 2.2 contains an example of a Lorentzian lineshape.
Figure 2.3 contains a toy model of a Raman spectrum generated using (2.2) with
no added noise.

It is noticeable that typical Raman spectra are sparse in nature. The Raman spec-
tra contain a few peaks with higher intensity, but are approximately zero inten-
sity for all other wavelengths.
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Figure 2.2: Lorentzian lineshape Li(λ) with parameter values: ai = 1, bi =
1, λi = 400.

2.2 Compressed Sensing

Compressed sensing is a signal processing technique allowing accurate signal re-
construction, with significantly less measurements than required by the Shannon-
Nyquist theorem. This is possible by utilizing that the majority of natural images
can be well approximated by sparse vectors in some appropriate basis, i.e., a
sparsity prior is assumed on the images, where Fourier and wavelet bases are
commonly used in image processing problems [9]. Let x denote a not fully ob-
servable signal that are to be reconstructed and

y = Hx + ε, (2.4)

are the available linear measurements of x, where ε denotes noise. If x is sparsely
representable in some basis Ψ

x = Ψ θ, (2.5)

then (2.4) can be rewritten as

y = HΨ θ + ε = Aθ + ε, (2.6)

where Ψ denotes the basis matrix for which x is transformed into a k-sparse vec-
tor θ, i.e., ||θ||0 = k. By representing the original signal as a sparse vector, it is
possible to reconstruct the signal accurately and computationally effectively [9].

The objective function of the signal recovery problem is to minimize the cardi-
nality of θ, whilst fulfilling that the noiseless measurement Aθ is ε-close to the
actual measurement y. Thus, the optimization problem to be solved can be stated
as

min
θ

||θ||0 (2.7a)

s.t. ||y − Aθ||2 ≤ ε. (2.7b)
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Figure 2.3: Model of a Raman spectrum with three peaks.

Unfortunately, is has been shown that finding an optimal solution to this opti-
mization problem is an NP-hard combinatorial problem, thus rendering the prob-
lem not feasable for application in systems where reconstruction time is critical
[9].

However, it has also been shown that a relaxation of the optimization problem
can yield an exact solution given that some conditions are fulfilled. Given a ran-
dom design matrix A, e.g., a binary matrix with i.i.d. elements, exact reconstruc-
tion is possible for a k-sparse n-dimensional signal given at least O(k log n/k)
measurements y. With these conditions fulfilled, the optimization problem in
(2.7) may be relaxed

min
θ

||θ||1 (2.8a)

s.t. ||y − Aθ||2 ≤ ε. (2.8b)

The optimization problem in (2.8) is convex, and can be formulated as a linear
program. Hence, it is easily solvable by standard optimization techniques, as
compared to the optimization problem in (2.7) [9].

2.3 CASSI

Coded aperture snapshot spectral imaging is a method for measuring 3-dimensio-
nal hsi (i, j, λ) based on the theory of cs. Compared with conventional sampling
methods ofhsi, where the measurements are typically acquired by temporal scan-
ning in the spatial or spectral domain, the measurements acquired from cassi
consists of a mixture of spatial and spectral data encoded onto a 2-dimensional
charged couple device (CCD) detector. The encoding of the data happens simul-
taneously with the usage of coded apertures and a dispersive element such as a
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Figure 2.4: The simplified CASSI model. Adapted from [3].

prism or grating. Given a hsi x, the measurements y acquired from cassi can be
written as

y = Hx, (2.9)

where the matrix operator H represents the light propagation through the system
[1].

In previous work by Brorsson et al. [3], a simplified linear model F of the cassi-
system was used for producing measurements y from the hsi x. The simplifica-
tions made in the transfer function were:

• One spatial row at the time is measured.

• The dispersion was constant, i.e., the wavelength dependence of the grating
step was ignored.

• No optical abberation.

• The spatial resolution was set to 64×64, and the spectral resolution was
kept to 512 bins.

• Four different coded apertures was used per hsi x.

The cassi model for measuring one row is illustrated in Figure 2.4. A spatial
row of the hsi hits a coded aperture, resulting in some parts of the light being
blocked. The remaining light is then dispersed through a grating. This dispersion
is simplified in the model by shifting. The light is shifted one pixel spatially for
each wavelength, resulting in e.g. the first wavelength being shifted by one pixel,
and the p:th wavelength being shifted p pixels. The results after the dispersion is
then encoded onto the CCD detector and comprises the measurement y.

2.4 TVAL3

The tval3-algorithm is a Total Variation (tv) regularization algorithm applicable
for the hsi reconstruction [10]. The main difference between tval3 and other
reconstruction algorithms is that tval3 assumes a sparsity prior on the gradients
of the signal, instead of a sparsity prior on the signal itself. Since natural images
often tend to contain sharp edges and piecewise smooth areas, the gradients of
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these images should be mostly sparse, hence the tval3 performs fairly well in
image reconstruction [11]. The optimization problem in tval3 is defined as

min
x

∑
i

||Dix||1 (2.10a)

s.t. y = Fx, (2.10b)

where Di denotes the discrete gradient of x at position i. Thus, in tval3, the
l1−minimization problem in (2.8) is solved by letting the basis Ψ in (2.5) be cho-
sen as the gradient basis of x.

An alternative to the vanilla tval3 algorithm is the tval3+ algorithm, which
differs from the former simply by constraining all values in the image to be re-
constructed to be non-negative. This leads to the slightly differing optimization
problem to be solved

min
x

∑
i

||Dix||1 (2.11a)

s.t. y = Fx, x ≥ 0 (2.11b)

2.5 Generative Adversarial Network

A Generative Adversarial Network (gan) is a type of ml framework whose aim
is to generate new data with the same statistical distribution as the training set
via unsupervised learning. The gan was introduced by Goodfellow et al. in 2014
[12], and contains two distinct neural networks, the generator Gθ , and the dis-
criminator Dφ, where θ and φ are the parameters of the respective networks.

The generator is a generative model whose goal is to map representations z from
a low-dimensional latent space Z, into a higher dimensional space Gθ(Z), such
that for every training sample x ∼ X , there exists at least one latent representa-
tion z such that Gθ(z) ≈ x.

The discriminator is a discriminative model whose goal is to learn to classify
whether a given image is real, or a fake image generated by the generator. The
output of the discriminator is the probability of whether a given image belongs
to the training dataset. This leads to a binary classification problem where the
goal is to tune the parameters φ of the discriminator such thatDφ(x) = 1, x ∼ X ,

Dφ(x) = 0, x ∼ Gθ(Z).
(2.12)

See Figure 2.6 for a schematic of the training process of a gan. Hence, in the train-
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Figure 2.5: The generator Gθ is a mapping from a low dimensional latent
space Z to a more complicated space Gθ(Z) approximating the true data dis-
tribution X . The goal of the discriminator is to differentiate between samples
from the two distributions X and Gθ(Z).
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Generator Gaussian latent
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Real
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Fake
images

Discriminator Probability of 
Real/Fake

Update parameters 
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Figure 2.6: A schematic of the training process of a gan.

ing of the gan, the generator and discriminator can be seen as competing against
each other. The generator tries to generate images that look real in order to trick
the discriminator, and the discriminator tries to get better at distinguishing be-
tween real and fake images in order to not get tricked. Therefore the training of
the two models are coupled, and seeks to find the optimal parameters (θ∗, φ∗)
given by the solution to the min-max problem

(θ∗, φ∗) = argmin
θ

argmax
φ

E

x∼X

[
lnDφ(x)

]
+ E

z∼Z

[
ln(1 − Dφ(Gθ(z)))

]
, (2.13)

where E[ · ] denotes the expected value operator. The defined loss function in
(2.13) may however prove difficult to utilize in practice. Most probably, the
generator Gθ will perform poorly in generating real-looking images in the be-
ginning of training. This leads to the discriminator Dφ having an easy time in
labeling whether data is real or fake, in turn leading to that the minimization of
ln(1−Dφ(Gθ(z))) may saturate early on. The result of this are generator gradients
vanishing, rendering the generator unable to improve itself.

However, with a simple change of perspective, the problem of vanishing of gra-
dients early on in training may be eliminated. The minimization in (2.13) can be
interpreted as the generator trying to minimize the probability of an image being
perceived as fake. An equivalent interpretation, but with a flipped perspective
would be for the generator trying to maximize the probability of an image being
perceived as real. This leads to the so called non-saturating gan-loss given by

(θ∗, φ∗) = argmax
θ

argmax
φ

E

x∼X

[
lnDφ(x)

]
+ E

z∼Z

[
ln(Dφ(Gθ(z)))

]
. (2.14)

Since its introduction in 2014, many different types of gan consisting of varying
network architectures and loss functions have been investigated.
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2.5.1 Deep Convolutional Generative Adversarial Network

In 2016, Radford, Metz, and Chintala introduced the Deep Convolutional Gener-
ative Adversarial Network (dcgan) [13]. The authors took inspiration from con-
tinued success utilizing Convolutional Neural Networks [14] (cnn) in supervised
learning during the years prior. In dcgan, the generator Gθ and discriminator
Dφ are represented by cnn, and the authors provided architectural guidelines
for how the two models were to be constructed.

The key components in the dcgan architecture is the usage of convolutional and
transposed convolutional layers in the discriminator and generator respectively,
allowing the network to itself learn good up- and downsampling operations, lead-
ing to an increased quality in image synthesis. Furthermore, [13] proposes the
usage of batch normalization [15], which showed to have a significant impact in
avoiding a mode collapse during training of gan, where the variance of the out-
put images from the generator is notoriously low. Lastly, recommendations of
layer activation functions were provided. The rectified linear unit (ReLU) is to
be used in all generator layers, except for the output layer, where the authors rec-
ommend using the hyperbolic tangent. In the discriminator, the authors found
success with using the leaky ReLU as an activation function after all layers.

2.5.2 Conditional Generative Adversarial Network

First introduced by Mirza and Osidenro in 2014, the Conditional Generative Ad-
versarial Network (cgan) allows for greater on control on the data generation
process by conditioning on additional information, for example, class labels [16].
The additional information y is fed as an input to both the discriminator and gen-
erator, and the goal is for the generator to learn how to produce an output image
x given the additional information y. An example for this could be the usage of
class labels such as “dog” and “cat”. Given the additional information class label
y =“cat”, the goal is for the generator to produce an image of a cat, and vice versa
for y =“dog”. However, the additional information conditioned on does not nec-
essarily have to be class labels. In [17], cs using cgan is explored by Kim, Lee,
and Yang. The authors studied whether conditioning on measurements y = Fx
as the additional information could improve the images given from the generator,
with promising results on simpler datasets. The objective of cgan is formulated
similarly to the min-max objective in vanilla gan (2.14), with the addition of
conditioning on the auxiliary information y provided to the networks

(θ∗, φ∗) = argmax
θ

argmax
φ

E

x∼X

[
lnDφ(x|y)

]
+ E

z∼Z

[
ln(Dφ(Gθ(z|y)))

]
(2.15)

See Figure 2.7 for an illustration of the cgan training process.

2.5.3 Boundary Equilibrium Generative Adversarial Network

Introduced by Berthelot, Schumm, and Metz in 2017 [18], the Boundary Equilib-
rium Generative Adversarial Network (began) provided yet another architecture
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Figure 2.7: A schematic of the training process of a cgan. The auxiliary
information y is fed to both the generator and discriminator.

successful in generating diverse and real-looking images. In previously discussed
gan architectures, the discriminator Dφ is constructed as a classifier attempting
to determine whether a given image is real or fake. began instead utilizes the
idea of autoencoders in the construction of the discriminator. The theory of au-
toencoders will not be covered in this thesis, instead the reader is directed to [14].
The encoding part extracts latent features of the given input image, which is then
reconstructed using the decoder part. This process captures essential features of
the input image in a bottleneck between the two parts.

BEGAN objective

The generator Gθ works similarly as in previously discussed gan. The goal is
to map low-dimensional samples from the latent space z ∼ Z such that for all
training data x ∼ X , there exists a latent variable z such that Gθ(z) ≈ x, i.e., the
generator should ideally represent the true data distribution X perfectly.

Since the discriminator Dφ now is an autoencoder, the output from the network
is no longer a probability of a given input belonging to the real dataset, but rather
an entire reconstructed image. The premise of the began is that matching the
reconstruction loss distributions of real and fake images in turn will lead to the
proper data distributions of real and fake images being matched. Let Dec(Enc(x))
denote a real image x that has passed through the discriminator, and thus have
been encoded and decoded. The reconstruction error can then be defined as

RDφ(x) = ||Dec(Enc(x)) − x||p, (2.16)

where p denotes the lp norm used for measuring the reconstruction error. Simi-
larly, the reconstruction error of a fake image Gθ(z) given by the generator can be
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Figure 2.8: A schematic of the training process of a began.

defined as
RDφ(Gθ(z)) = ||Dec(Enc(Gθ(z))) − Gθ(z)||p. (2.17)

Similarly as in vanilla gan, the discriminator and generator can be seen as com-
peting against each other in a game. In began we seek to train the discriminator
such that it autoencodes real images well and generated images poorly

RDφ(x) → 0

RDφ(Gθ(z)) →∞,

leading to the following discriminator objective

LDφ = min
φ

[RDφ(x) − RDφ(Gθ(z))]. (2.18)

At the same time, we seek to train the generator such that the fake image recon-
struction error is minimized, which means that the discriminator will perform
well on generated images

LGθ = min
θ
RDφ(Gθ(z)). (2.19)

A schematic of the began training process can be found in Figure 2.8.
In words, the discriminator can be seen as having two goals:

1. Being a good autoencoder, meaning that RDφ(x) should be as low as possible.

2. Being able to clearly distinguish between real and fake images.
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These two goals are competing against each other, since improved autoencoding
qualities on one hand lowers RDφ(x), but on the other hand provides better feed-
back to the generator on how to generate fake images. This in turn lowering
RDφ(Gθ(z)) contradicting the objective function in (2.18).

A good balance between these two goals during training is desirable. Equilib-
rium between the discriminator and generator has been reached if

E[RDφ(x)] = E[RDφ(Gθ(z))], (2.20)

that is, the expected value of the reconstruction losses of real images is equal to
the expected value of reconstruction losses of fake generated images. This means
that the generator is generating fake images that are indistinguishable from the
real samples for the current discriminator, and that the training will terminate.

Therefore, a slight modification is made to the loss function for the discriminator
LDφ in (2.18). A parameter k ∈ [0, 1] is defined via the equilibrium concept as

1
k

=
E[RDφ(Gθ(z))]

E[RDφ(x)]
(2.21)

leading to the modified updated loss function for the discriminator

LDφ = min
φ

[RDφ(x) − kRDφ(Gθ(z))]. (2.22)

The introduction of the parameter k allows the discriminator to maintain a bal-
ance between its two goals. However, since the value of k may vary greatly from
batch to batch, which is undesirable, the value of k is continuously updated via

LDφ = min
φ

[RDφ(x) − ktRDφ(Gθ(z))] (2.23)

kt+1 = kt + λk(RDφ(x) − ktRDφ(Gθ(z))). (2.24)

This in order to maintain how much emphasis is to be put on RDφ(Gθ(z)) during
training to keep the equilibrium. The parameter is initialized to k0 = 0 in order
to allow the discriminator to develop its autoencoding capability.

Finally, the concept of the diversity constant γ ∈ [0, 1] is introduced, which is
also defined via the equilibrium concept as

γ =
E[RDφ(Gθ(z))]

E[RDφ(x)]
, (2.25)

and it allows for a user designated bias in the discriminator goals discussed above.
A lower value of γ could lead to greater image quality, but the cost is less diver-
sity in the generated fake images. This due to the fact that a lower γ incentives
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the discriminator to focus more on the goal of autoencoding real images. The
value of γ is chosen by the user, and held constant throughout training.

To summarize, the final began objective utilizing all introduced parameters can
be written as

LDφ = max
φ

[RDφ(x) − ktRDφ(Gθ(z))] (2.26a)

LGθ = min
θ
RDφ(Gθ(z)) (2.26b)

kt+1 = kt + λk(γRDφ(x) − RDφ(Gθ(z))). (2.26c)

Convergence Measure

A big dilemma in training gan is the lack of proper methodology for monitoring
progress during training. A common method is simply visual inspection of the
generator output. After each epoch, the user inspects the output of the generator,
and given that the user has knowledge of how typical real images in the training
set looks like, one can give some judgment on whether the network is improving.
However, this methodology obviously has its flaws. The user may input its own
biases and opinions since the method is strictly subjective. The fake image diver-
sity can also be difficult to determine.

To remedy this, began provides a convergence measureM defined as

M = RDφ(x) + |γRDφ(x) − RDφ(Gθ(z))|, (2.27)

and the introduction of the convergence measure allows for a clearer insight into
how training progresses. The convergence measure is based on the reconstruc-
tion error of autoencoded real images, and the difference of the reconstruction
errors of fake and real images. If the convergence measure has gone to zero, this
would indicate that both real and fake images are reconstructed perfectly. Ideally,
it is desired that the measure converges to the lowest value possible, since that
indicates that reconstruction of both real and fake images are good.





3
Hyperspectral Image Reconstruction

Methodology

The gan based hsi reconstruction method is inspired by previous work by Bora
et al. [4]. With the gan based reconstruction approach, a learned prior is pro-
vided by the trained generator Gθ in a gan, and the images to be reconstructed
is assumed to lie near the range of Gθ . This differs from conventional cs, where a
sparsity prior on the images in some basis is assumed. A learned prior allows for
capturing the inherent structure of sparsity, but gives the possibility to capture
other structures as well, structures that may not be determinable a priori by a
human.

The method can essentially be broken down into two distinct steps. First a gan
is trained using simulated hsi training data x, and corresponding measurements
y to obtain a mapping, the generator Gθ , from the low dimensional latent space
Z to the higher dimensional image space Gθ(Z) approximating the true train-
ing data space X . Secondly, the generator is used in an iterative optimization
algorithm. Utilization of the generator in the optimization is possible due to the
differentiability of the generator.

The goal of reconstruction is that the recovered hsi x̂ is as close to the real hsi x
as possible:

||x − x̂|| ≈ 0. (3.1)

However, typically only compressed measurements y of the real hsi x are avail-
able. The premise is that minimizing the norm between recovered measurements
ŷ and true measurements y leads to the norm between the recovered and real hsi
being minimized

||y − ŷ|| = ||Fx − Fx̂|| → 0⇒ ||x − x̂|| → 0, (3.2)

19
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Figure 3.1: An illustration of the complete reconstruction process.

which holds provided that the measurement matrix F is full rank.

Hence, the optimization algorithm seeks to find the optimal latent variable values
z∗ such that the measurement error is minimized

z∗ = argmin
z
||y − FGθ(z|y)||2. (3.3)

Finally the optimal latent variables z∗ are used to retrieve the reconstructed im-
age via the generator

x̂ = Gθ(z∗|y). (3.4)

A flowchart illustrating the complete reconstruction process can be found in Fig-
ure 3.1.
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3.1 Data Generation

The training data consisted of pairs of generated hsi x of dimension (i, j, λ) =
(64, 64, 512), and their respective measurements y = Fx. The data was generated
in MATLAB by placing rectangles and ellipses of random shape, size, and rota-
tion onto a random spatial position. Each target shape was then assigned one
Raman spectrum generated using (2.2). All spectra contained the wavelengths
λ ∈ [λmin, λmax] = [300, 700]. The parameter values for generating the Raman
spectra were sampled as follows:

• Number of peaks: p ∼ Ud(1, 5)

• Location for peak i: λi ∼ Ud(λmin, λmax)

• Maximum intensity of peak i: ai ∼ Uc(0, 1)

• Width of peak i: bi ∼ 1 + 4Uc(0, 1),

where Ud(a, b) denotes the discrete uniform distribution and and Uc(a, b) denotes
continuous uniform distribution over the support [a, b].

Two different datasets were created, both containing 3000 hsi, resulting in a total
of 3000 · 64 = 192000 rows of dimension (j, λ) = (64, 512) used as inputs to the
gan. In both datasets, the hsi contains 16 target shapes, each randomly assigned
1 out of 16 generated Raman spectra. The key difference between the datasets
is whether the target shapes are allowed to overlap or not. Overlapping target
shapes may lead to single spatial pixels containing two or more Raman spectra,
simulating the real-life case of mixed substances. Examples of generated hsi
from both datasets are shown in Figure 3.2.

The corresponding measurements y to the simulated hsi x were acquired by the
simplified linear model F previously described in section 2.3. The four differ-
ent coded apertures that were used can be seen in Figure 3.3. The produced
measurements contains n0 = K(j + λ − 1) = 4(64 + 512 − 1) = 2300 elements,
where K denotes the number of coded apertures used, and the rows contain
n1 = jλ = 64 · 512 = 32768 elements. This results in a compression ratio of
n0/n1 ≈ 7%.
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(a) An example of simulated hsi
sampled from the dataset not allow-
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(b) An example of a simulated hsi
sampled from the dataset allowing
target shape overlap.
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(c) Row 5 (i = 5) of the hsi in (a).
The image shows that the Raman
spectrum belonging to the green el-
lipse have three peaks.
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(d) Row 35 (i = 35) of the hsi in
(b). Notice that several pixels around
j = 24 contain two different Raman
spectra.

Figure 3.2: The figures (a) and (b) show examples of data samples from the
two different datasets. The color of the target shapes indicates the spectral
intensity in the pixel, relative to the other pixels. Notice the lighter areas in
(b), indicating a higher spectral intensity due to the pixels containing over-
lapping target shapes, and therefore several Raman spectra.

Figure 3.3: The four coded apertures used to capture the measurements of
the hsi.
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3.2 Hyperspectral Image Generation using
Conditional BEGAN

As previously mentioned, the goal is to be able to reconstruct hsi x from its com-
pressed measurement y = Fx by utilizing prior knowledge on some structure of
the hsi. In tval3+, a sparsity prior on the gradient space of the hsi is assumed.
However, by training a gan with the training data described in section 3.1, a
learned prior can be used to estimate the hsi from its measurement. By training
the gan, the generator learns a mapping from the low dimensional latent space
Z to the more complex sample space Gθ(Z). Through the objective of the gan,
the generator is incited to generate new hsi reminiscent of the hsi in the train-
ing data set. Hence, the generator provides the learned prior, and captures the
essence of what constitutes a hsi in this context.

By training a gan, and extracting the generator, it is possible to generate new
samples of hsi resembling the ones in the training data. However, the goal of
this thesis is not to generate new samples of hsi similar to the training data, but
rather to reconstruct a specific hsi x∗ given its compressed measurement y. Since
the compressed measurements are available as training data, they are exploitable
during the training of the gan in learning of its network parameters. The mea-
surements y can be seen as linearly compressed signals of thehsi, thus y includes
information about the hsi x∗. This is useful in order to provide further control
on what samples the generator of the gan outputs, and by providing the mea-
surement y to the generator, the premise is that the generated sample Gθ(z|y) lies
closer to the actual hsi x∗ than what would be the case without the providing of
y. Essentially, by utilizing the concept of cgan, the learned prior in the form
of the generator is refined by utilizing Gaussian distributed latent variables z in
conjunction with the specific measurements y. Given a trained conditional gen-
erator containing the optimal network parameters Gθ∗ , taking a latent variable z
and measurement y as inputs, an estimation of the hsi x∗ is given by:

x̂ = Gθ∗(z|y). (3.5)

The began framework previously presented in Section 2.5.3 provides for easy
implementation of the conditioning on measurements y. The measurements y
are simply concatenated to the latent variables fed to the generator, and to the
latent variables in the bottleneck of the discriminator autoencoder. Figure 3.4
shows a diagram of the training and validation processes. The loss functions LDφ
and LGθ found in the diagram are described in Section 3.2.1.

The introduction of conditioning on the measurements y in order to produce spe-
cific samples of hsi holds some similarity to the method studied in [3], which
is benchmarked against later in this thesis. In [3], a decoder network is utilized
to directly learn a mapping from the compressed measurements y to the hsi x.
However, the utilization of a generative model comes with an advantage against
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direct regression as in [3]. The fact that a generative model contains the latent
variables z, sampled from the latent space Z, provides a further way of improv-
ing the output x̂ from the generator. Given the trained generator Gθ∗ , we consider
its network parameters locked in place. Since the generator is differentiable, the
latent variables z can be optimized in order to find the optimal latent representa-
tion z∗, leading to the estimate reconstruction x̂ lying closer to the true hsi x∗

x̂ = Gθ∗(z
∗|y). (3.6)
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Figure 3.4: Diagrams showing the training and validation phases.
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This latent variable optimization is presented in section 3.3.

Since the gan utilized in this thesis is built upon the cgan and began frame-
works, it is henceforth dubbed cbegan. The following sections contains the
cbegan objective and describes the training procedures. Details regarding the
network architectures can be found in Appendix A.

3.2.1 Objective

The cbegan objective is similar to the began objective previously defined in
(2.26), with the addition of the auxiliary information in form of measurements y
being fed to the generator and discriminator

LDφ = max
φ

[RDφ(x|y) − ktRDφ(Gθ(z|y))] (3.7a)

LGθ = min
θ
RDφ(Gθ(z|y)) (3.7b)

kt+1 = kt + λk(γRDφ(x|y) − RDφ(Gθ(z|y))). (3.7c)

During training of cbegan on the dataset allowing mix pixels, consistent mode
collapse occured. Inspired by the work done by Chang et al. [19], an addition
to the discriminator loss function in (3.7a) called the latent space constraint loss,
Lc was introduced. The occurrence of mode collapse whilst using the began ob-
jective implies that all latent vectors z are encoded similarly in the discriminator.
The Lc-loss puts a constraint on the norm between the input latent vector z and
the output from the discriminator encoder Enc(Gθ(z|y)), thus preventing all the
different latent vectors z from being encoded similarly. The updated discrimina-
tor loss function including the new Lc-loss is given by

LDφ = max
φ

[RDφ(x|y) − ktRDφ(Gθ(z|y)) + α · Lc] (3.8a)

Lc = ||z − Enc(Gθ(z|y))||, (3.8b)

where α is a parameter used for setting the relative importance of Lc as compared
to the other terms of the discriminator loss.

3.2.2 Training

The training of the cbegan was conducted via a custom written training loop in
Tensorflow, utilizing some parts of the Keras API. The network parameters (θ, φ)
of the generator and discriminator respectively, were updated using the ADAM
algorithm [20] configured by using a learning rate of η = 0.0001 and the Keras
standard values for the hyperparameters β1 = 0.9 and β2 = 0.999. The losses for
the parameter updates were calculated using the cbegan objective previously
defined in (3.7). The used batch size was 64, the cbegan objective diversity
constant previously defined in (2.25) was set to γ = 0.5 and the proportionality
constant defined in (2.21) was initialized to zero, k0 = 0. All parameters and their
respective values are listed in Table 3.1.
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The datasets was normalized to [−1, 1] to balance the training and in conjunction
with using the hyperbolic tangent as the output layer activation function. Fifteen
percent of the datasets was allocated as validation data, leading to the training
data containing 2550 hsi, i.e., 163200 input rows, and the validation data con-
taining 450 hsi i.e. 28800 input rows.

Training metrics such as loss values and the began convergence measureM de-
fined in (2.27) were continuously logged using Tensorboard, allowing for moni-
toring of the training process and early termination in cases of non-satisfactory
loss decrease. Additionally, a generated fake image was logged after the comple-
tion of each epoch, allowing for further user monitoring of the training process
by visual inspection. This proved useful in cases where the losses were continu-
ously decreasing, but the generated images were not in parity with the training
data.

Table 3.1: The used training parameters.

Parameter Value

η 0.0001
β1 0.9
β2 0.999
γ 0.5
k0 0
Batch size 64
α 0.1

3.3 Latent Variable Optimization

Given an unknown hsi x∗ we wish to reconstruct, and its corresponding avail-
able compressed measurement y = Fx∗, a generator Gθ∗ obtained via training of
cbegan produces a reconstruction x̂ by

x̂ = Gθ∗(z|y). (3.9)

However, since the latent variables z are sampled from the traversable latent
space Z, there is an opportunity to fine tune the latent variables against some
measure depending on the output of the generator.

The goal of the latent variable optimization is to find the optimal latent variables
z∗ such that the measurement error is minimized

z∗ = argmin
z
||y − FGθ∗(z|y)||. (3.10)
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The optimal latent variables z∗ are then taken to produce and improved recon-
structed hsi x̂ by

x̂ = Gθ∗(z
∗|y). (3.11)

Due to the measurement matrix F used for collecting the measurements not hav-
ing full rank, the implication in (3.2) does not hold. However, F is very close to
full rank, and empirically the results showed that minimizing the measurement
error in (3.10) and obtaining the optimal latent variables z∗, leads to the recon-
struction error becoming smaller

||x∗ − Gθ(z∗|y)|| < ||x∗ − Gθ(z|y)||. (3.12)

Since a major goal of the reconstruction process was for it to be fast-paced, an
optimization algorithm with fast convergence was desired. According to Nocedal
and Wright [21], the Gauss-Newton method is a good candidate, because of it
not requiring costly calculations of Hessian matrices. Hence, the Gauss-Newton
method was chosen for carrying out the latent variable optimization.

Figure 3.5 contains a block diagram illustrating the latent variable optimization
procedure.

3.4 Final Reconstruction Algorithm

Since the hsi x are 3-dimensional signals of dimension (i, j, λ) = (64, 64, 512),
reconstructing entire hsi simultaneously was not feasible due to hardware limi-
tations. Instead, the reconstruction is done row-wise by reconstructing the rows
xi one at a time in order, and later puzzled together to form the complete recon-
structed hsi x.

Combining the learned prior from the trained generator Gθ∗ with the Gauss-
Newton method for fine-tuning the latent variables z, yields the algorithm used
for reconstruction of hsi found in Algorithm 1.

The reconstruction algorithm is written using Tensorflow, utilizing its framework
for easy and quick calculations of the Jacobians with respect to the residuals, and
allowing for easy access to the generator during optimization.
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Figure 3.5: Diagram illustrating the latent variable optimization.
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Algorithm 1: Hyperspectral image reconstruction using CBEGAN and
the Gauss-Newton optimization method.

Input: Measurement matrix F, Trained generator Gθ∗ , number of
iterations T , true row measurements y i ;

Initialize: x̂ = 0;
for i = 1 to 64 do

Sample: z0 ∼ N (0, 1) ;
for t = 0 to T-1 do

x̂it = Gθ∗(zt |y i) ;
ŷ it = Fx̂it ;
Loss = MeanSquaredError(y i , ŷ it ) ;
J = Jacobian(Loss, zt) ;
zt+1 = zt − (JT J)−1JT · Loss ;

end
x̂i = Gθ∗(zT |y i);

end
Output: Reconstructed hyperspectral image x̂





4
Results

To evaluate the performance of the gan-based hsi reconstruction method, the
450 hsi in the respective validation sets were benchmarked against reconstruc-
tion with tval3+, both in the case of no initial guess and the case where initial
guesses from cbegan were provided. Additionally, the cbegan-Gauss-Newton
method was benchmarked against the method presented in [3]. Due to the pri-
mary goal being fast reconstruction, the algorithms were compared by fixating
the allowed run times of cbegan-Gauss-Newton and tval3+, and evaluating
the reconstruction precision metrics. Since the method in [3] does not contain
any fine tuning optimization steps, its reconstruction time can not be varied.

Additionally for completeness, tval3 was allowed to run until a convergence
criterion was met. The tval3 convergence criterion checks whether the relative
error of the reconstructed hsi x̂ between subsequent iterations are less than some
tolerance ε. That is, if

||x̂t−1 − x̂t ||2
||x̂t−1||2

< ε, (4.1)

where ε = 10−6, and other algorithm parameters, was chosen according to their
default values as specified by the authors [10]. The mean reconstruction time
was noted and the result of cbegan-Gauss-Newton was evaluated at that same
runtime.

Two metrics were used to evaluate the quality of reconstructed hsi. The first
performance metric is the mean absolute error (mae), defined as

MAE(x, x̂) =
1
N

N∑
i=1

|xi − x̂i |, (4.2)

31
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where N denotes the total number of voxels in the hsi. The second used perfor-
mance metric is the cosine similarity, given by

SC(x, x̂) =
x · x̂

||x||2||x̂||2
. (4.3)

The cosine similarity metric looks at the angle between two given vectors, and
output a similarity value between zero and one. A value of zero indicates that the
two vectors are orthogonal, and a value of one indicated that they are paralell.
Hence, the absolute magnitudes are not affecting the similarity score, as is the
case with mae.

4.1 Robustness Test

A small test was conducted to test the robustness of the cbegan-Gauss-Newton
reconstruction. This was done to verify that the initialization of the latent vari-
ables z was not severely affecting the quality of the reconstructions. Due to the
validation sets containing 450 hsi, the collection of reconstruction results would
prove quite time-consuming if robustness verification was to be conducted for all
runs with different fixed execution times.

The robustness test was conducted by running cbegan-Gauss-Newton recon-
struction on all 450 hsi in the validation set five consecutive times. The number
of optimization iterations was fixed such that reconstruction of a hsi took ten
seconds. The mean mae of the reconstructed hsi was collected for each of the
five runs, and the result can be seen in Figure 4.1.

As illustrated in Figure 4.1, the mean mae score obtained after reconstruction
of hsi in the validation set are consistent up to four decimals for all five indepen-
dent runs, which indicates that the cbegan-Gauss-Newton is indeed robust. To
save time, the collection of results for other fixed reconstructions times were only
done once, with the knowledge of the probability of obtaining a non representa-
tive “lucky” run was small.
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Figure 4.1: Box chart showing mean mae scores.
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4.2 Dataset not Allowing Mixed Substances

Figure 4.2 shows the metrics after reconstruction of all hsi in the validation set
where only one Raman spectrum per pixel was allowed. Tables 4.1 to 4.4 contain
all resulting numerical values of the chosen metrics, for approximate fixed run
times of five and ten seconds, as well for the case when tval3+ was allowed
to run until convergence. Reconstruction with cbegan only, i.e. without latent
variable optimization with Gauss-Newton, and the cnn in [3] was also evaluated.
Bold text is used to indicate the best result for the metrics.
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Figure 4.2: Plots visualising how the reconstruction methods perform at dif-
ferent runtimes. The big gap in time is due to tval3+ taking approximately
40 seconds to converge.

Table 4.1: Reconstruction metrics of reconstruction with cbegan and cnn
in [3].

Method Mean runtime [s] Mean mae Mean SC
cbegan 0.50 0.004589 0.7268
cnn in [3] 0.06 0.006727 0.6270

Table 4.2: Reconstruction metrics of investigated methods where runtime
was fixed to approx. 5s.

Method Mean runtime [s] Mean mae Mean SC
cbegan-Gauss-Newton 4.97 0.003496 0.8574
tval3+ 5.47 0.009733 0.4717
tval3+ w. initial guess 5.50 0.005923 0.7966

The resulting reconstruction metrics show that for fixed low reconstruction times,
cbegan-Gauss-Newton reconstruction is performing better than tval3+, with



4.2 Dataset not Allowing Mixed Substances 35

Table 4.3: Reconstruction metrics of investigated methods where runtime
was fixed to approx. 10s.

Method Mean runtime [s] Mean mae Mean SC
cbegan-Gauss-Newton 10.18 0.003345 0.8754
tval3+ 9.92 0.007558 0.8220
tval3+ w. initial guess 9.87 0.006079 0.8845

Table 4.4: Reconstruction metrics of investigated methods where tval3+
ran until convergence.

Method Mean runtime [s] Mean mae Mean SC
cbegan-Gauss-Newton 39.13 0.003286 0.8869
tval3+ 39.95 0.002072 0.9779
tval3+ w. initial guess 35.37 0.002047 0.9778

or without an initial guess, in terms of both metrics. The case where no optimiza-
tion steps with Gauss-Newton are executed, i.e., the reconstruction is taken via
inference of cbegan, is still better in terms of the precision metrics than tval3+
at fixed reconstruction times of five and ten seconds.

The method in [3] is by far the fastest reconstruction method. However, the qual-
ity of the reconstructed hsi is worse when compared to reconstruction with cbe-
gan without latent optimization in terms of both metrics.

The results does also show that providing an initial guess to tval3+ significantly
improves the quality of the output reconstructions for the lower fixed runtimes.
However, cbegan-Gauss-Newton still outperforms tval3+ with initial guess in
all metrics except for the cosine similarity at 10 second runtime. Providing an
initial guess to tval3+ does also reduce the time to convergence with approxi-
mately 5 seconds.

Given adequate time, tval3+ will outperform cbegan-gn eventually. The im-
provements on reconstruction quality induced by the latent variable optimiza-
tion withgn diminish fairly quickly. After five seconds of cbegan-Gauss-Newton
the reconstruction quality barely improves and the method’s performance clearly
saturates.

Figure 4.3 shows magnitude images of a ground truth hsi and the reconstructed
ditto with fixed runtimes of five seconds, and Figures 4.4 and 4.5 shows individ-
ual spectra in three different pixels. Clearly, the reconstruction achieved with
cbegan-Gauss-Newton outperforms both versions of tval3+. The magnitude
images show that cbegan-Gauss-Newton is superior in capturing the spatial
structure of the ground truth hsi. Comparing the spectrum plots in we see that
cbegan-Gauss-Newton reconstructs most peaks, and the single peak that it did
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Figure 4.3: Magnitude pictures of ground truth and reconstructed hsi using
the different methods with an allowed runtime of five seconds.

not reconstruct correctly, neither versions of tval3+ could reconstruct either.
Compared to the spectrums of both versions of tval3+, the reconstructed spec-
tra from cbegan-Gauss-Newton does not contain any ghost peaks.
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Figure 4.4: Ground truth and reconstructed spectra.
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Figure 4.5: Ground truth and reconstructed spectra.
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Figure 4.6 shows the metrics after reconstruction of all hsi in the validation set
where several Raman spectrum per pixel was allowed. Tables 4.5 to 4.8 contain
all resulting numerical values of the chosen metrics, for differing fixed runtimes.
Bold text is used to indicate the best result for the metrics.
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Figure 4.6: Plots visualising how the reconstruction methods perform at dif-
ferent runtimes.

Table 4.5: Reconstruction metrics of inference with cbegan and cnn in [3].

Method Mean runtime [s] Mean mae Mean SC
cbegan 0.55 0.003535 0.5806
cnn in [3] 0.05 0.004211 0.4124

Table 4.6: Reconstruction metrics of investigated methods where runtime
was fixed to approx. 5s.

Method Mean runtime [s] Mean mae Mean SC
cbegan-Gauss-Newton 4.26 0.002873 0.7562
tval3+ 5.65 0.006012 0.4415
tval3+ w. initial guess 5.51 0.004573 0.6863

The resulting reconstruction metrics show similar results as for the previous
dataset. Reconstruction with cbegan-Gauss-Newton produces a lower mae and
higher cosine similarity scores on average for low allowed runtimes. Given an
allowed runtime of ten seconds, tval3+ produces higher cosine similarity scores
than cbegan-gn, and in the case of allowing tval3+ to run until convergence,
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Table 4.7: Reconstruction metrics of investigated methods where runtime
was fixed to approx. 10s.

Method Mean runtime [s] Mean mae Mean SC
cbegan-Gauss-Newton 10.42 0.002725 0.7863
tval3+ 10.79 0.004864 0.8135
tval3+ w. initial guess 10.23 0.004323 0.8566

Table 4.8: Reconstruction metrics of investigated methods where tval3+
ran until convergence.

Method Mean runtime [s] Mean mae Mean SC
cbegan-Gauss-Newton 40.33 0.002633 0.8063
tval3+ 38.97 0.001321 0.9848
tval3+ w. initial guess 36.83 0.001320 0.9849

we acquire cosine similarity scores close to one.

We see a similar trend regarding the performance of cbegan-Gauss-Newton as
for the previous dataset, namely that the performance saturates rather quickly,
and that not a lot of performance gain is added by letting cbegan-Gauss-Newton
run for more than 5 seconds.

Figure 4.7 shows magnitude images of a ground truth hsi and the reconstructed
ditto with fixed runtimes of five seconds, and figures 4.8 and 4.9 shows individ-
ual spectra in three different pixels. It is noticeable that cbegan-Gauss-Newton
is able to capture the spatial structure of the hsi than the two versions of tval3+.
Given an initial guess from cbegan, the spatial structure in the reconstruction
from tval3+ is significantly improved as compared to when no initial guess is
provided. However still, the content in the magnitude pictures from tval3+ still
looks a lot more smeared out as compared to cbegan-Gauss-Newton. The effect
of this smearing can be seen in Figure 4.9a, where tval3+ has introduced spec-
tral content, in a voxel with basically zero ground truth spectrum. This is prob-
ably due to tval3+ recognizing that there exists spectral content somewhere on
the row, as can be seen in 4.7a. Since the objective is to minimize tv, the algo-
rithm attempts to spread the spectral content to neighboring voxels creating a
smooth surface containing small discrete gradients.
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Figure 4.7: Magnitude pictures of ground truth and reconstructed hsi using
the different methods with approximate runtimes of five seconds.
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Figure 4.8: Ground truth and reconstructed spectra from cbegan-gn
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Figure 4.9: Ground truth and reconstructed spectra from tval3+.





5
Analysis and Conclusions

The work in this thesis shows that generative model based reconstruction method
is indeed viable for reconstruction of hsi when fast reconstruction is of great im-
portance. The cbegan-Gauss-Newton reconstruction method performs better
than tval3+ in terms of reconstruction quality when using low reconstruction
times. But the performance of the method saturates rather quickly, and therefore
tval3+ is preferable if time is not the most essential parameter. As previously
mentioned in the introduction, hsi can be measured in a matter of seconds using
cassi, and with cbegan-Gauss-Newton, good reconstructions of these hsi are
now available in a matter of seconds as well.

The results show that given data samples with mixed substances, cbegan-Gauss-
Newton is able to reconstruct the hsi fairly well. However, comparing the mean
cosine similarity scores of cbegan-Gauss-Newton for the different data sets show
that the reconstructions of data samples with mixed substances are not as success-
ful as compared to the case when the substances are not mixed. This is probably
the case because of the allowance of mixed substances simply makes the data dis-
tribution more complex, making it harder for the cbegan to capture it. Since
similar cbegan with the same number of parameters were trained on the two
data sets, it is probable that the cbegan had more difficulty learning the distri-
bution of samples with mixed substances. A more flexible gan, trained using
data sets with higher cardinality than available in this thesis, should improve the
reconstruction results.

The results does also show that providing tval3+ with initial guesses in form
of output images from the trained cbegan does indeed improve upon the re-
construction quality. For fixed low algorithm run times, the quality metrics are
significantly lower compared to reconstruction without initial guesses. Addition-
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ally, when letting tval3+ run until convergence, the convergence time is lower
when providing an initial guess.

As previously discussed, the performance of cbegan-Gauss-Newton saturates
rather quickly. One theory as to why this is the case could be the fact that the
number of latent variables are significantly lower than the number of elements
in the measurements. Since both of these are provided as inputs to the gan, it
is possible that the latent variables simply does not play a big enough part in
shaping the distribution of the weights in the generator. Possible future work
would be to investigate how changes of the ratio between latent variables and
measurements could affect the reconstructed hsi. Increasing the number of la-
tent variables would allow the optimization over the latent variables to play a
bigger part, and the decrease in the number of measurements means that less
time has to be allocated into collecting those measurements.

The generator from the trained gan provides a learned prior on the training
samples, where different types of structures can be captured. In the cs literature,
sparsity priors are most commonly assumed, such as in tval3+. In this case, the
hsi are quite sparse, hence tval3+ performs well. A hypothesis is that cbegan-
Gauss-Newton reconstruction should also perform fairly well when the data is
not sparse. Additionally, the learned prior could provide insight into other prop-
erties of the data such as spatial context. Since the gan outputs rows of the hsi
the correlation between neighboring pixels row wise should be captured.

The data sets used in this thesis is unfortunately not totally realistic, due to the
fact that any substances of the sixteen in total could neighbor each other or be
mixed. In practice, it is more probable that some substances lie near to each
other spatially, and other should never lie near each other. More realistic data
sets would allow the learned prior to capture which substances typically lie near
each other spatially, and which substances that do not. Even better, would be if
the ganwas fed a couple of rows at a time, a small window of thehsi. This would
allow for capturing of the correlation in both spatial directions. If the windows
overlap somewhat, the learned prior would contain insight into what substances
typically neighbor each other in both the vertical and horizontal directions.

Even though the focus of this thesis was not classification of Raman spectra per se,
but rather reconstruction of hsi, it would be interesting to think about these two
goals jointly whilst training the gan. In classification of Raman spectra, there
are two different aspects involved:

1. The location of the peaks of the reconstructed Raman spectra should coin-
cide with the true Raman spectra.

2. In the case of the Raman spectra containing several peaks with different
heights, the reconstructed peaks should be of the same relative height to
each other as the true peak heights are relative to each other.
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Since the absolute intensity of reconstructed peaks are not that important, but
their relative heights are, cosine similarity could be a great candidate to involve
in the gan objective in a clever way.

Since it has been shown that tval3+ produces high quality reconstructions of
hsi given adequate time, it would be interesting to investigate whether parts of
which tval3+ can be incorporated into the gan objective with success. One ex-
ample could be to investigate whether a tv regularization term could be useful
in either the generator loss, discriminator loss, or both. A tv regularization term
in the generator would incentivise generation of synthetic images sparse in the
gradient basis, and the incorporation of a tv term in the discriminator would
provide an additional way for differentiating between real and synthetic images.
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A
CBEGAN Network Architectures

A.1 Generator Architecture

The generator network aims to produce a row of an hsi x̂i given a measurement
of the row y i and Gaussian distributed latent variables z as inputs. The output
x̂i is of dimension (i, j) = (64, 512), so to output an entire hsi x̂, 64 outputs
x̂i , i ∈ [1, 64] from the generator are required

The generator takes the latent variables z and measurements y i as inputs, and
is built up by one fully connected layer followed by five transposed 2D convolu-
tional layers. The fully connected layer reshapes the data into size (16, 2, 256).
The convolutional filter kernels are of size (3, 3) and stride (2, 2), resulting in each
convolutional layer upsampling the input data by a factor of two, until reaching
the desired size of (512, 64). All layers in the generator are followed by batch
normalization and Leaky ReLU activation, except for the last layer which uses
the hyperbolic tangent as activation function.

The original began paper [18], proposes a generator architecture containing two
convolutional layers prior to each upsampling, as well as skip connections from
the input to the output of each convolutional layer. However, due to hardware
limitations, the architecture was not feasible, and thus the scaled down dcgan
inspired variant found in Table A.1 was used. An illustration of the generator
architecture can be found in Figure A.1.
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Table A.1: The generator architecture used in cbegan.

Name Layer Filters Output dimension

Input z Input - (100,)
Input y Input - (2300,)
Concatenate Concatenation(z, y) - (2400,)
FC1 Dense-BN-LeakyReLU - (16, 2, 256)
Upsamp. 1 Conv2DTrans-BN-LeakyReLU 256 (32, 4, 256)
Upsamp. 2 Conv2DTrans-BN-LeakyReLU 128 (64, 8, 128)
Upsamp. 3 Conv2DTrans-BN-LeakyReLU 64 (128, 16, 64)
Upsamp. 4 Conv2DTrans-BN-LeakyReLU 32 (256, 32, 32)
Output Conv2DTrans-tanh 1 (512, 64, 1)
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Figure A.1: An illustration of the generator architecture in cbegan. Figures
created by utilizing [22].
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A.2 Discriminator Architecture

As previously presented in Section 2.5.3, the discriminator used in the began
framework is an autoencoder. The input of the discriminator is a real row of an
hsi, or a fake row outputted from the generator, and the output of the discrimi-
nator is a reconstruction of the input, leading to the inputs and outputs having
the same dimension of (j, λ) = (64, 512).

The complete architecture of the discriminator is based on the architecture of
the generator, where the decoding part of the discriminator is identical to the
generator. The encoding part of the essentially mirrors the decoder part. The
transposed convolutional layers are replaces with regular convolutional layers,
resulting in the input being downsampled instead of upsampled.

The encoder input is, as previously mentioned, a real row from the training set,
or a fake row from the generator, and it encodes the input into a a vector of the
same dimensionality as the latent variable vector

Enc : [−1, 1]64x512 → R
dim(z) (A.1)

The output from the encoder is then treated exactly like the input variables z in
the generator. It is concatenated with a measurement y and then decoded to an
output of the same dimensionality as the input

Dec : Rdim(z)+dim(y) → [−1, 1]64x512 (A.2)

By trial and error, the utilization of dropout layers in the discriminator resulted
in more real looking synthetic data output from the generator. The introduction
of dropout layers in the decoder leads to the discriminator acting like a denoising
autoencoder according to Goodfellow, Bengio, and Courville [14]. The encodings
of denoising autoencoders are particularly useful when attempting to learn the
underlying distribution of the input data, rather than learning the identity func-
tion copying the input to the output.

Table A.2 lists all layers used in the discriminator architecture, and Figure A.2
provides an illustration.



54 A CBEGAN Network Architectures

Table A.2: The discriminator architecture used in cbegan.

Name Layer Filters Output dimension

Input x Input - (512, 64, 1)
Downsamp. 1 Conv2D-LeakyReLU-Dropout 32 (256, 32, 32)
Downsamp. 2 Conv2D-LeakyReLU-Dropout 64 (128, 16, 64)
Downsamp. 3 Conv2D-LeakyReLU-Dropout 128 (64, 8, 128)
Downsamp. 4 Conv2D-LeakyReLU-Dropout 256 (32, 4, 256)
Downsamp. 5 Conv2D-LeakyReLU-Dropout 256 (16, 2, 256)
Flatten1 Flatten - (16 · 2 · 256, 1)
FC1 Dense - (100,)
Input y Input - (2300,)
Concat1 Concatenation(FC1, y) - (2400,)
FC2 Dense-BN-LeakyReLU - (16, 2, 256)
Upsamp. 1 Conv2DTrans-BN-LeakyReLU 256 (32, 4, 256)
Upsamp. 2 Conv2DTrans-BN-LeakyReLU 128 (64, 8, 128)
Upsamp. 3 Conv2DTrans-BN-LeakyReLU 64 (128, 16, 64)
Upsamp. 4 Conv2DTrans-BN-LeakyReLU 32 (256, 32, 32)
Output Conv2DTrans-tanh 1 (512, 64, 1)
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Figure A.2: An illustration of the discriminator architecture in cbegan. Fig-
ures created by utilizing [22].
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