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Abstract
Objective To evaluate systolic flow-sensitive alternating inversion recovery (FAIR) during rest and exercise stress using 
2RR (two cardiac cycles) or 1RR intervals between inversion pulse and imaging.
Materials and methods 1RR and 2RR FAIR was implemented on a 3T scanner. Ten healthy subjects were scanned during rest 
and stress. Stress was performed using an in-bore ergometer. Heart rate, mean myocardial blood flow (MBF) and temporal 
signal-to-noise ratio (TSNR) were compared using paired t tests.
Results Mean heart rate during stress was higher than rest for 1RR FAIR (85.8 ± 13.7 bpm vs 63.3 ± 11.1 bpm; p < 0.01) 
and 2RR FAIR (83.8 ± 14.2 bpm vs 63.1 ± 10.6 bpm; p < 0.01). Mean stress MBF was higher than rest for 1RR FAIR 
(2.97 ± 0.76 ml/g/min vs 1.43 ± 0.6 ml/g/min; p < 0.01) and 2RR FAIR (2.8 ± 0.96 ml/g/min vs 1.22 ± 0.59 ml/g/min; 
p < 0.01). Resting mean MBF was higher for 1RR FAIR than 2RR FAIR (p < 0.05), but not during stress. TSNR was lower 
for stress compared to rest for 1RR FAIR (4.52 ± 2.54 vs 10.12 ± 3.69; p < 0.01) and 2RR FAIR (7.36 ± 3.78 vs 12.41 ± 5.12; 
p < 0.01). 2RR FAIR TSNR was higher than 1RR FAIR for rest (p < 0.05) and stress (p < 0.001).
Discussion We have demonstrated feasibility of systolic FAIR in rest and exercise stress. 2RR delay systolic FAIR enables 
non-contrast perfusion assessment during stress with relatively high TSNR.

Keywords Non-contrast myocardial perfusion · Exercise stress test · Systolic flow-sensitive alternating inversion recovery · 
Arterial spin labeling

Introduction

Cardiovascular magnetic resonance (CMR) allows non-
invasive assessment of myocardial ischemia using contrast-
enhanced first-pass myocardial perfusion [1]. Although this 
technique has excellent diagnostic and prognostic perfor-
mance [2], cautious use of gadolinium-based contrast agent 
is recommended in patients with poor renal function and 
the risk of gadolinium accumulation in body and brain are 
limitations [3]. Furthermore, accurate and precise perfusion 
quantification is challenging using contrast-enhanced CMR 
which primarily remains a qualitative technique [4].

In recent years, there has been increased interest in 
developing CMR techniques to assess myocardial ischemia 
without the use of contrast agents or pharmacological stress 
agents. This includes T1 mapping [5, 6], oxygen sensitive 
(T2* or T2 weighted) imaging [7] and arterial spin labeling 
(ASL) [8]. Of these, ASL is the most comparable to con-
ventional contrast-enhanced first pass perfusion as it aims to 
quantify blood flow in the myocardial microvasculature. The 
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most commonly used and well-validated ASL method for 
myocardial perfusion is the flow-sensitive alternating inver-
sion recovery (FAIR) technique [9–11]. Studies have been 
performed using myocardial FAIR during rest and exercise 
in healthy subjects and patients with myocardial ischemia, 
demonstrating the feasibility of this approach to estimate 
myocardial blood flow (MBF) reserve [12–14].

A limitation of ASL in general, and myocardial FAIR 
in particular, is the low signal sensitivity of this technique. 
This is primarily due to the intrinsically low signal vari-
ability which may be attributed to perfusion of maximum 
4–8% [8, 15], approximately the volume of microvascular 
blood in healthy myocardial tissue [16]. Furthermore, FAIR 
relies on image subtraction of a tagged and control image, 
each acquired using selective and non-selective inversion 
recovery, respectively. As a result, FAIR images have a low 
signal-to-noise ratio (SNR) and are susceptible to spatial 
misregistration caused by cardiac and respiratory motion. 
To mitigate these challenges, multiple averages are typically 
acquired, at least 6 for each slice [17]. Other measures which 
have been employed to increase the SNR include the use 
of 3 T scanners with balanced steady-state free precession 
readouts [18], respiratory motion compensation [19], and 
different ASL techniques [20, 21]. Temporal signal to noise 
(TSNR) may also suffer during physiological stress, when 
the heart rate increases and the duration between inversion 
pulse and imaging becomes short. Waiting multiple cardiac 
cycles between inversion and imaging can mitigate this at 
the cost of slightly extended scan time and may be a prac-
tical approach to increase TSNR during stress [22]. Typi-
cally, the temporal distance between the inversion pulse and 
image acquisition is one cardiac cycle. However, for high 
heart rates this may be very short which results in a lower 
amount of inflowing blood in the labeled image slice, reduc-
ing the perfusion SNR. A previous study using cardiac FAIR 
by Javed et al. [23], investigated using two cardiac cycles 
delay between inversion and imaging instead of one in four 
healthy volunteers. However, no systematic study has been 
performed to assess the merits of a two cardiac cycle delay 
approach for cardiac FAIR during rest and stress.

Another approach to increase robustness of cardiac 
FAIR is to time the data acquisition to the systolic rather 
than diastolic rest period, as this leads to an increased area 
of analyzable myocardium and may be preferable during 
high heart rates as typically encountered in stress perfusion 
[24–26]. However, with conventional image acceleration 
systolic FAIR suffers from increased physiological noise. 
Even though advanced image acceleration techniques such 
as compressed sensing allow reducing the acquisition time 
to approximate the shorter systolic rest period, so far, sys-
tolic FAIR has only been demonstrated during rest [27]. The 
objective of this study was to evaluate systolic FAIR during 
rest and exercise stress in 10 healthy subjects. Furthermore, 

we explore the use of waiting 2RR intervals between inver-
sion pulse and imaging, and compare it to the conventional 
1RR delay in rest and stress conditions.

Materials and methods

All experiments were performed on a 3 T Philips scanner 
(Philips Healthcare, Best, The Netherlands) using a 24-chan-
nel torso coil. The study was approved by the institutional 
review board (Dnr 2016/546-32) and all subjects provided 
written informed consent.

Ten healthy volunteers (age: 32.6 ± 4.5 years; 5 male) 
were scanned at rest and during exercise stress. For the 
exercise stress test an in-bore ergometer (Ergospect Gmbh, 
Innsbruck, Austria), shown in Fig. 1, with step function 
was used. Exercise was performed in the scanner bore for 
approximately 2 min before image acquisition was started 
to find a stable exercise level which could be tolerated for 
5 min while also ensuring that the heart rate was elevated 
compared to rest. Exercise was briefly paused during the 
approximately 10 s breath-hold FAIR acquisitions to sta-
bilize the ECG signal and ensure reliable triggering was 
obtained. Exercise was resumed again during the 20–30 s 
waiting periods between breath holds.

The prosed systolic FAIR technique was ECG-triggered 
and used double-gating to ensure the inversion pulses were 
performed in the same cardiac phase but a preceding cardiac 
cycle as the image acquisition. In this work, cardiac FAIR 
was performed either with one cardiac cycle delay between 
inversion pulse and imaging (1RR FAIR) or with two cardiac 
cycle delay (2RR FAIR). Apart from this modification, the 
double-gated myocardial FAIR acquisition was performed 
as in previous studies, where tagged and control images were 
acquired within one breath hold of approximately ten sec-
onds with 8 s of delay between inversion pulses. In addition, 

Fig. 1  Step ergometer used for the exercise test. Exercise was per-
formed in the scanner bore between breath holds when stress images 
were acquired
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an  M0 image was acquired in a separate scan without any 
magnetization preparation to estimate baseline magnetiza-
tion for every data set. Myocardial blood flow (MBF) was 
calculated for both 1RR FAIR and 2RR FAIR using the for-
mula for double-gated myocardial ASL:

where C and T are the control and tagged images, respec-
tively.  T1 is the longitudinal relaxation time for blood at 3 T, 
estimated at 1700 ms [28].

For the in-vivo experiments, a mid-ventricular 2D FAIR 
image was acquired in short-axis and each data set consisted 
of six pairs of tagged and control images, each pair acquired 
during a breath-hold and with alternating order of the con-
trol/tagged images. Imaging parameters were: spatial resolu-
tion = 2 × 2  mm2, FOV = 300 × 300 × 10 mm, flip angle = 50°, 
TR/TE = 2.2/1.1 ms, acquisition time = 110 ms, 25 ramp-up 
radiofrequency pulses preceded the data acquisition with lin-
early increasing flip angles, from 1 to 49º with 2 incrementsº. 
Compressed SENSitivity Encoding (SENSE) was used for 
image acceleration with a factor of 3. The systolic rest period 
was visually determined using a four-chamber cine slice 
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with 50 cardiac phases acquired during rest and assumed to 
be the same for the stress scans [29]. The scan protocol and 
1RR and 2RR FAIR pulse sequences are shown in Fig. 2.

Data analysis and statistics

The images were processed offline to generate pixelwise 
maps of MBF. First, all images (tagged, control and  M0) 
were jointly co-registered using non-linear image registra-
tion to account for differences in respiratory position within 
and between breath-holds [30]. MBF maps were then calcu-
lated for each of the six pairs of control and tagged images, 
as previously outlined for double-gated myocardial FAIR 
[11]. The final MBF maps were then generated by averag-
ing across the six MBF that were calculated for each control 
and tagged pair.

From the acquired images MBF was estimated and tem-
poral signal-to-noise ratio (TSNR) was calculated based on 
a region of interest which was manually drawn to include the 
entire myocardium in the mid-ventricular slice. TSNR was 
defined as the ratio between the mean MBF and the standard 
deviation of the MBF across the 6 measurements [13].

Two-tailed paired student’s t test were used to statisti-
cally compare group mean differences for heart rate, mean 

Fig. 2  Illustration of the scan 
protocol for the rest and stress 
experiments, including scouts 
to localize the short axis and 
4 chamber views, 4 chamber 
(4ch) cine to determine the end-
systolic trigger delay (TD), and 
rest and stress 1RR and 2RR 
FAIR with 6 averages each. 
The order of the FAIR scans 
was randomized for the differ-
ent subjects. Pulse sequence 
diagrams for the 1RR and 2RR 
FAIR are also shown, with 
non-selective inversion pulses 
(NS INV) and selective inver-
sion pulses (S INV) with the 
same TD, but preceding cardiac 
cycles, as the image acquisition 
(ACQ). The inversion pulses 
were spaced approximately 8 s 
apart to allow for near complete 
(> 99%)  Mz recovery
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MBF and TSNR. A threshold of P < 0.05 was used to define 
statistically significant differences.

Results

The rest and stress 1RR FAIR and 2RR FAIR scans were 
successfully performed in all but one volunteer, where 
excessive respiratory motion during the 1RR FAIR stress 
scan could not be sufficiently corrected and resulted in unin-
terpretable MBF maps. Therefore, 1RR and 2RR FAIR data 
for this volunteer were not included in the statistical analysis 
to allow pairwise comparisons.

Example perfusion maps for two subjects using 1RR and 
2RR FAIR during rest and stress are shown in Fig. 3 with 
markedly increased perfusion during stress compared to 

rest. Figure 4 shows the group average heart rate, MBF and 
TSNR during rest and stress for both 1RR FAIR and 2RR 
FAIR. The mean ± standard deviation end-systolic trigger 
delay was 319 ± 36 ms. The mean heart rate during the stress 
scan was significantly higher compared to rest for both 1RR 
FAIR (85.8 ± 13.7 bpm vs 63.3 ± 11.1 bpm; p < 0.01) and 
2RR FAIR (83.8 ± 14.2 bpm vs 63.1 ± 10.6 bpm; p < 0.01). 
However, there was no statistical difference in heart-rate 
between 1 and 2RR FAIR for either rest and stress. The 
MBF of the stress scans were significantly higher compared 
to the rest scans for both 1RR FAIR (2.97 ± 0.76 ml/g/
min vs 1.43 ± 0.6  ml/g/min; p < 0.01) and 2RR FAIR 
(2.8 ± 0.96 ml/g/min vs 1.22 ± 0.59 ml/g/min; p < 0.01). The 
MBF was significantly higher using 1RR FAIR during rest 
compared to 2RR FAIR (p < 0.05), but not during stress. 
The myocardial perfusion reserve (MPR) was calculated 

Fig. 3  Example perfusion images for two healthy volunteers (HV2 and 6) during rest and stress using 1RR and 2RR FAIR. Increased heart rate 
and myocardial blood flow (MBF) is observed during the stress test compared to rest

Fig. 4  Boxplots of mean heart rate, myocardial blood flow (MBF) and temporal signal-to-noise ratio (TSNR) for 1RR and 2RR FAIR during rest 
and stress. Statistical differences (p < 0.05) are indicated by asterisk
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for all volunteers using 1RR FAIR and 2RR FAIR, where 
both rest and stress were available. The MPR for 1RR FAIR 
was 2.28 ± 0.72 and for 2RR FAIR 2.56 ± 1.07, which was 
not statistically significant (p = 0.32). The TSNR was sig-
nificantly lower for the stress scans compared to rest for 
both 1RR FAIR (4.52 ± 2.54 vs 10.12 ± 3.69; p < 0.01) and 
2RR FAIR (7.36 ± 3.78 vs 12.41 ± 5.12; p < 0.01). How-
ever, TSNR was significantly higher for 2RR FAIR com-
pared to 1RR FAIR for both rest (p < 0.05) and stress scans 
(p < 0.001). The measured MBF and MPR for each volunteer 

using 1RR FAIR and 2RR FAIR during rest and stress are 
shown in Fig. 5.

Discussion

Here, we have demonstrated the ability to estimate perfu-
sion during rest and exercise stress using systolic FAIR. We 
compared the use of 2RR interval delays between inversion 
pulse and imaging acquisition to 1RR delay and found that 

Fig. 5  Mean myocardial blood flow (MBF) for all 10 healthy subjects 
during rest and stress and for 1RR and 2RR FAIR (top graph). 1RR 
FAIR stress images for healthy subject 8 was excluded due to signifi-

cant artifacts. Mean myocardial perfusion reserve (MPR) for all 10 
volunteers for 1RR and 2RR FAIR are shown in the bottom graph
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the former approach yielded higher TSNR at both rest and 
stress at the expense of producing, on average, 6% lower 
MBF values during rest.

Similar to previous studies exploring the use of 1RR and 
2RR FAIR techniques, we found a reduction in MBF for the 
2RR approach [23]. This may be explained by the partial 
labeling of the inflowing blood for 2RR but not 1RR FAIR. 
Despite the loss of MBF accuracy it can be advantageous to 
use a 2RR delay as it appears to increase the TSNR, which 
is particularly important during stress when physiological 
noise is higher. Although the lower MBF for 2RR compared 
to 1RR FAIR was significantly different only during rest, 
we hypothesize that any similar effect during stress may be 
masked by the increase in MBF variability during this scan. 
This variability may be attributed to differences in respira-
tory and cardiac motion between the 1RR and 2RR FAIR 
scans which are typically larger during rest than stress, but 
also actual differences in cardiac workload between the 1RR 
and 2RR scans.

The rest mean MBF was approximately 1.2–1.4 mL/g/
min in this study. Others also reported a similar range 
(1.3–1.5 mL/g/min) [10, 13], but which is above the consid-
ered normal limit of 0.8 mL/g/min. The measured MBF was 
doubled during stress which is rather low considering the 
rule of thumb of 3.5 times increase [31]. We observed only 
a modest heart rate increase in the scanned healthy subjects 
during exercise stress, which may indicate that the work load 
was relatively low, yielding a similarly moderate perfusion 
increase. Another source of reduced difference between rest 
and stress perfusion could be that the subjects were slightly 
anxious in rest. However, physiological stress derived from 
muscle work is not the same as pharmacological stress. 
Furthermore, no correction was made for how well-trained 
the people were, and fitness status may explain differences 
and the variability in physiological response to stress. The 
reduction in TSNR during stress compared to rest may be 
attributed to a combination of changes in the systolic rest 
period relative to rest (which would increase physiological 
noise) and actual changes in perfusion across the 6 breath-
holds. Further work is required to limit the adverse effects 
of physiological noise during stress, including improved 
respiratory motion compensation, such as prospective cor-
rection or breathing guidance. Physiological noise due to 
cardiac motion could be further reduced by shortening the 
acquisition window using alternative acceleration tech-
niques. Finally, the use of pharmacological stress is likely 
to be extremely beneficial for reducing respiratory and car-
diac motion (mainly due to ECG-mistriggering cause by 
the exercise) and will be explored in future patient studies. 
Nevertheless, the proposed systolic FAIR technique appears 
robust and may offer an attractive approach for myocardial 
perfusion assessment during stress without the use of con-
trast agents or pharmacological stress.

A clinical exercise test aims to reach an age-based heart 
rate, to induce ischemia which may be hidden at rest [32]. 
In this study, a modest significant heart rate increase of 35% 
was achieved, which for patients might not be sufficient 
given the low average age of the subjects. However, similar 
experiments have been performed to investigate whether a 
difference in perfusion could be detected using hand grip 
exercise [13]. The scanning protocol and equipment in this 
study was designed to evaluate a particular cardiac ASL 
technique in healthy subjects. To develop a clinical proto-
col requires either pharmacological stress, where drugs are 
given strictly according to weight and tolerance or exercise 
with an age-based target heart rate [32], and including at 
least three short-axis views of the heart [4].

The clinically most common modality for perfusion 
measurement is Single Photon Emission Computed Tomog-
raphy (SPECT), but it provides low temporal and spatial 
resolution. Photon Emission Tomography (PET) is consid-
ered the clinical gold standard but requires the use of ion-
izing radiation, unlike MRI [33]. There are various MRI 
techniques used clinically to measure perfusion in the brain 
without Gd contrast, some of which have been implemented 
for cardiac MRI [8]. In particular, ASL, blood oxygenation 
level dependent sequence (BOLD) [7], intravoxel incoherent 
motion (IVIM) [34] and  T1 mapping [35] have been evalu-
ated in animal experiments, healthy subjects and patients. 
ASL is the most widely used non-contrast media MRI tech-
nology in the brain due to its robustness [36] and, therefore, 
probably has the greatest chance of also succeeding in the 
heart.

The study has several limitations: The study comprised of 
a small number of healthy subjects, and larger studies includ-
ing patients with coronary artery disease are warranted to 
evaluate this technique, including validation against quanti-
tative reference techniques, such as contrast-enhanced MRI. 
Furthermore, validation using a perfusion phantom would be 
desirable and will be the focus of future work [37, 38]. The 
use of a step ergometer to stress the myocardium has practi-
cal challenges, including a likely higher incidence of large-
scale bulk respiratory and cardiac motion compared to con-
ventional pharmacological stress, where patients can lie still. 
Furthermore, the step ergometer requires additional patient 
preparation to ensure the equipment is tightly fastened to the 
patient which increases scan complexity and adds examina-
tion time overhead. However, it can be desirable to avoid 
the use of pharmacological stress agents, and alternative 
exercise approached may be explored in those patients [39]. 
A technical limitation of this technique is the requirement 
for relatively long breath-holds which can be challenging 
to consistently maintain during stress, and particularly for 
patients with cardiovascular disease. Respiratory-induced 
motion in the through-plane direction may cause MBF 
quantification errors if it occurs between the slice-selective 
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inversion and image acquisition, which may be particularly 
problematic for the 2RR FAIR technique, where this delay is 
the longest. Prospective motion correction can mitigate these 
limitations, and techniques to enable motion-tolerant free-
breathing FAIR would be desirable to facilitate patient scans 
and clinical translation [19, 40, 41]. A fixed  T1 for blood of 
1700 ms was used for all subjects. However, blood  T1 varies 
particularly with hematocrit levels, and a subject-specific 
blood  T1 measurement may yield more accurate MBF esti-
mation. Finally, the systolic time was determined from cine 
images at rest, similar to a previous perfusion publication 
[26], but no control cine was performed in stress. However, 
the systolic rest perdiod is invariant to heart rate changes 
compared to the diastolic rest period (29).

Conclusions

We have demonstrated the feasibility of systolic FAIR dur-
ing rest and exercise stress. Systolic FAIR with 2RR delay 
between inversion and imaging enables non-contrast perfu-
sion assessment during stress with relatively high TSNR. 
MBF may be slightly underestimated compared to 1RR 
FAIR due to partial signal saturation. Further studies are 
warranted to investigate the diagnostic potential of this tech-
nique in patients with coronary artery disease.
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