
Costly Black-Box Optimization with GTperform
at Siemens Industrial Turbomachinery

Department of Mathematics, Linköping University

André Malm

Credits: 16 hp

Level: G2

Supervisors: Nils-Hassan Quttineh,
Department of Mathematics, Linköping University

Christer von Wowern,
RP, Siemens Industrial Turbomachinery AB Finspång

Examiner: Torbjörn Larsson,
Department of Mathematics, Linköping University

Linköping: January 2022

Abstract

The simulation program GTperform is used to estimate the machine settings
from performance measurements for the gas turbine model STG-800 at Siemens
Industrial Turbomachinery in Finspång, Sweden. By evaluating different set-
tings within the program, the engineers try to estimate the one that generates
the performance measurement. This procedure is done manually at Siemens
and is very time-consuming. This project aims to establish an algorithm that
automatically establishes the correct machine setting from the performance mea-
surements.

Two algorithms were implemented in Python: Simulated Annealing and Gra-
dient Descent. The algorithms analyzed two possible objective functions, and
objective were tested on three gas turbines located at different locations. The
first estimated the machine setting that generated the best fit to the perfor-
mance measurements, while the second established the most likely solution for
the machine setting from probability distributions. Multiple simulations have
been run for the two algorithms and objective functions to evaluate the perfor-
mances.

Both algorithms successfully established satisfactory results for the second ob-
jective function. The Simulated Annealing, in particular, established solutions
with a lower spread compared to Gradient Descent. The algorithms give a
possibility to automatically establish the machine settings for the simulation
program, reducing the work for the engineers.

Keywords:
Black-Box Optimization, GTperform, STG-800, Simulated Annealing, Gra-
dient Descent

Malm, 2022. iii

Acknowledgment

Several people have given valuable contributions and support throughout the
thesis, and some are acknowledged below. Additionally, I want to give my sin-
cere thanks to all employees at Siemens’ performance division that have provided
support in any way. It has been a tremendous personal experience.

Firstly, I want to thank my supervisor Christer von Wovern at Siemens, for his
advice throughout the project. He helped me throughout the complete process,
from technical aspects to implementation difficulties.

Secondly, my supervisor Nils-Hassan Quttineh at Linköping University for his
significant support during many tough periods of this thesis. Without his sup-
port, I would never have accomplished this thesis.

Thirdly, my examiner Torbjörn Larsson at Linköping University with the guid-
ance and knowledge throughout the project. Both with a theoretical explanation
as well as problem solutions.

Fourthly, to my beloved friends: Erik, Tobias, Mikael, Ludwig, Patrik, Emma
och Embla for their support both individually and academically throughout my
studies.

Lastly, to my family and spouse, Elina. For their never-ending help. Giving me
confidence and support throughout the process.

To all mentioned above, and everyone else that has supported the project in
any way: thank you!

Malm, 2022. v

Contents

1 Scope of Thesis 1
1.1 Introduction . 1
1.2 Purpose . 2
1.3 Objective . 2
1.4 Method . 3
1.5 Limitations . 3
1.6 Structure of Thesis . 4

2 Background Information 5
2.1 Introduction . 5
2.2 The Gas Turbine Cycle . 5
2.3 Gas Turbine Components . 7
2.4 SGT-800 . 10
2.5 The Simulation Program GTperform 10
2.6 Problem Definition . 13

3 Mathematical Formulation 15
3.1 First Formulation . 15
3.2 Second Formulation . 16

4 Theory 17
4.1 Black-Box Optimization . 17
4.2 Earlier Work on GTperform . 19
4.3 Simulated Annealing . 19
4.4 Gradient Descent . 22

5 Implementation 25
5.1 Simulated Annealing . 25
5.2 Gradient Descent . 32

Malm, 2022. vii

viii Contents

6 Numerical Results 37
6.1 Rioja . 37
6.2 Holland . 42
6.3 Delimara . 46

7 Discussion 51
7.1 First Formulation . 51
7.2 Second Formulation . 53

8 Conclusion 55

9 Future Work 57

Chapter 1

Scope of Thesis

This thesis is written at Linköping University by André Malm with Christer von
Wovern at Siemens Industrial Turbomachinery as supervisor and Nils-Hassan
Quttineh as supervisor at Linköping University, and with Torbjörn Larsson as
the examiner. In Sections 1.1 to 1.6, we give a brief introduction together with
the purpose, objective, method, limitation and structure of the thesis.

1.1 Introduction

Siemens Industrial Turbomachinery manufactures industrial gas turbines for
electrical power production in Finspång, Sweden. These are utilised in a broad
range of areas, such as mining, oil, gas, textile, or household electricity pro-
duction. They are developed and manufactured for each specific application
and location, where each turbine has its technical requirements regarding power
efficiency, reliability, and environmental conditions. The wide range of manu-
facturing possibilities and customisation makes each machinery unique.

A gas turbine is a highly complex engine that consists of three main compo-
nents: a compressor, a combustor, and a turbine. Between specific operational
hours, the gas turbine needs maintenance to sustain its efficiency and technical
requirements. The conditions of the turbine’s components are then analysed in
detail. If a part within the components shows any signs of wear down, it may
need to be replaced to preserve the engine. Such a component may otherwise
negatively affect the turbine, increasing the wear down of components, resulting
in power inefficiency, shutdowns, and damage to the turbine.

Malm, 2022. 1

2 Chapter 1. Scope of Thesis

During the maintenance, the performance measurements are sent to the per-
formance division at Finspång, Sweden, to be analysed further. By using a
simulation program, GTperform, the machine settings are estimated. These de-
scribe the characteristics for the components within the engine, such as efficiency
rates, fuel volumes and temperature settings. At each maintenance period, the
machine settings are estimated by GTperform, and the solutions obtained are
then used to adjust the settings for the actual gas turbine, by manually regulate
these for the turbine.

By reverse engineering, the engineers at the performance division in Finspång,
tries to establish the machine settings in the GTperform that generate the best
fit between the simulated and the actual performance measurements. The engi-
neer accomplishes this by first selecting solutions for the machine settings and
simulate the performance measurements. The engineer then decides on a new
setting by analysing the setting and the simulated performance, hopefully gen-
erating a performance result that is closer to it. This trial and error procedure
continued until the employee found a satisfying solution. This method is very
time-consuming, as only one solution at a time can be evaluated by GTperform.

1.2 Purpose

The primary reason for the project is that the procedure to establish the optimal
machine settings for a gas turbine is performed manually by the GTperform.
This is both time consuming and tedious for the engineer, which needs to have
experience of the simulation program. Further, to make the correct conclusions
about the performance measurements, one needs theoretical knowledge of the
machine components and how they are connected with each other. The purpose
of the thesis is to implement two algorithms in Python that can automatically
estimate the optimal machine settings from given the performance data.

1.3 Objective

The objective of this thesis is to implement a program that can automatically
estimate the machine settings from the performance measurements, by GT-
perform. This is performed by implementing an optimization algorithm that
searches between settings to establish an optimal one.

1.4. Method 3

1.4 Method
The selected method for the described problem was to develop two different
types of optimization algorithms. The first algorithm uses a stochastic approach
called Simulated Annealing, where the machine settings are randomly selected.
The second method is Gradient Descent method, which uses the gradient infor-
mation to estiamte the best solution. The algorithms’ performance were then
evaluated for three different real-life gas turbines.

1.5 Limitations
Firstly, there is a time complexity constraint for the methods. As the algorithms
will be used multiple times each day, the methods need to produce results within
ten minutes. Secondly, we restrict the number of settings in the methods and
only analyze the most significant and relevant. Lastly, the value of the selected
settings must be chosen within give bounded intervals.

4 Chapter 1. Scope of Thesis

1.6 Structure of Thesis
The thesis is structured in the following sections:

• Background Information.
Presents the general operating principles of a gas turbine, with technical
explanations and notations of components. We last define the problem
that is studied.

• Mathematical Formulation
Describes the problem with mathematical formulation and notation.

• Theory
A literature background of earlier attempts for solving the given problem,
with additional information about the two selected methods. We last
present earlier work about GTperform.

• Implementation
Explaines in detail the implementations of the algorithms

• Numerical Results
Present the results by the two algorithms for the three different gas tur-
bines.

• Discussion
We discuss the results in further detail by analyzing the performance of
each algorithm. This is done by examining the setting solution, time
complexity, and the search patterns.

• Conclusion
Presents the outcome from this thesis.

• Future Work
A summary of possible future extensions of the work in this thesis.

Chapter 2

Background Information

A general introduction to how gas turbines function is given in Sections 2.1 and
2.2. In Section 2.3 we clarify the technical aspects of the three main components.
In Section 2.4 we introduce and explain the specific turbine model in further
detail. Further, in Section 2.5 the simulation program GTperform is described,
explaining the technical notation and output results. Lastly, in Section 2.6 the
problem definition is given.

2.1 Introduction
A gas turbine is a mechanical engine that generates power, either in shaft power
or kinetic energy. Turbines that produce shaft power are used to drive electrical
power generators, which produce electricity used for industrial purposes, such
as gas pipelines, oil rigs, or households. In contrast, a gas turbine designed
to produce kinetic energy is used in aircraft to create the thrust to propel it.
Both types of engines consist of the same three main parts: a compressor, a
combustor, and a turbine, as displayed in Figure 2.2.

2.2 The Gas Turbine Cycle
The gas turbine cycle describes what happens to the fuel as it goes through the
gas turbine. The Brayton cycle, first formulated in 1874 and shown in Figure 2.1
describes the physical transformation by the pressure and volume of the gas, as
it flows through the gas turbine, which is displayed in Figure 2.2.

Malm, 2022. 5

6 Chapter 2. Background Information

Figure 2.1: The Brayton cycle for gas, with the x-axis displaying the volume and
the y-axis showing the pressure.

Figure 2.2: The physical state of the gas for the main components of a single shaft
gas turbine. The colour scheme displays the temperature transformation as it moves
through the components.

In the first step, cold air is drawn into the compressor from the inlet section.
From the first to the second steps, the air is compressed by reducing its space.
The air then flows from the compressor to the combustor, where a flammable gas
mixture is injected under constant pressure, increasing the fuel volume. Lastly,
the gas is ignited. The heat transferred from burning the gas increases the inter-

2.3. Gas Turbine Components 7

nal energy and velocity of the fuel mixture. As the hot pressurized combustion
exhaust gases flows through the turbine, it is allowed to expand, which means
that its volume increases, as displayed between the third and fourth steps, re-
sulting in a decrease in pressure and temperature. When the exhaust fume
changes its physical state, it releases energy to the turbine. This energy is used
to power the gas turbine and to generate shaft power.

The difference between a gas turbine and piston engine, such as a car engine, is
that in the later the compression och combustion occur after each other at the
same location, inside the combustion chamber. For gas turbines, these steps are
executed simultaneously in an integrated motion at separate locations. In other
words, there is a constant flow of fuel going through the engine and generating
a continuous stream of hot exhaust fumes that runs the turbine at a steady rate.

Following the last step, the process is complete. The exhaust gases is released
into the atmosphere, which absorbs the excess heat. At this point, the volume
of the gas decreases into its initial state. An engine that operates under this
procedure is called an open-cycle gas turbine. The compressor extracts un-
processed air at one location and releases the exhausts gases at another point.
However, if the exhausted fumes had been reused, the gas turbine operates in
a closed-cycle mode, which means that the combustion gases are recycled in an
integrated system.

Gas turbines that generate shaft power have additional possibilities to increase
the output energy efficiency by combining it with a steam engine. In the last
step, the hot exhaust fumes from the turbine go through a second process in-
stead of being released directly to the atmosphere. The gas is here used to
boil water into steam by letting it flow through metal cylinders filled with wa-
ter. The water is vaporized, creating steam that is used to generate additional
energy from another generator. Afterwards, the gas is released back into the
atmosphere.

2.3 Gas Turbine Components

To get more knowledge about a gas turbine’s operational principles, we ana-
lyze the compressor, combustion, and turbine in further detail, with specific
construction and technical characteristic of each component.

8 Chapter 2. Background Information

2.3.1 Compressor and Turbine
Gas turbines are divided into two separate groups depending on if they are con-
structed with a single or a double shaft. A turbine in the former group has
a single shaft connecting the turbine and the compressor, as shown in Figure
2.2. The second group of gas turbines are constructed with a twin-spool tur-
bine, as shown in Figure 2.3. For these, the turbine is divided into two sections,
where one runs the compressor while the other generates the shaft power. In
this configuration, the hot exhaust gases first goes through the larger turbine
and then through the smaller power turbine. For this design, the fuel cycle
consists of the same principle as in the single shaft engine but with a small
modification between the third and fourth steps, as illustrated in Figure 2.2.
The turbine is divided it into two separate componetns, as displayed in Figure
2.3. The power turbine between steps 3′ and 4 generates the shaft power, while
the larger turbine drives the compressor between steps 3 and 3′. By separat-
ing the two turbines, the machine becomes more flexible to connect to different
types of power generators.

Figure 2.3: The primary components of the twin shaft gas turbine and the physical
state of the air from the inled where it is drawn into the engine, to the endpoint where
it is exhausted. The colour scheme displays the temperature transformation of the gas
as it moves through the components.

The compressor is constructed by metal blades, called airfoils, that are put to-
gether into several layers connected to the shaft. As the shaft rotates, the airfoils
spin. By arranging the airfoils in decreasing size, starting with the largest, they
generate a suction effect that draws gas into the engine and pressurizes the par-
ticles by pushing them tighter together. By doing so, the temperature increases,
which is displayed by the change of colour from blue to green in Figures 2.1 and
2.3.

2.3. Gas Turbine Components 9

The turbine can be viewed as the compressor rotated 180 degrees horizontally,
with the airfoils now arranged by increasing size. The volume of the exhaust
fumes is now allowed to expand as space within the turbine increases. As the
hot exhaust gases flow through the turbine, it pushes the airfoils and creates a
spinning motio of the shaft. This motion drives the turbine and the compres-
sor, as it is connected to the same shaft. By maintaining a constant flow of gas
through the turbine, the engine keeps on spinning.

To start a gas turbine, one needs to generate enough rotational force to the
shaft, connecting the compressor and turbine, such that the combustion can
sustain the flow and compression in the engine. That is done by an electric
starting engine that is connected to the shaft. This starts the rotational spin of
the shaft, and when it has reached a sufficient speed, the starting engine it will
stop, and the combustion procedure will start, as the fuel is inserted into the
combustor.

2.3.2 Combustor
The combustion section controls the burning of fuel. The gas is required to be
combusted in a stable way to generate the optimal energy output. As the gas
flows from the compressor it is separated into multiple chambers. Each of these
is constructed in the same way and consists of three components: a metal case,
a gas injection system and an inner flame tube. The metal case surrounds the
injection system and flame tube. As the air flows into one end of the metal
case, the injection system infuses a flammable gas mixture to the pressurized
air. The fuel mixture is then propelled to one end of the inner flame tube, were
burning flames alocated around the tube, ignites the fuel as it flows through
the flames. When it does, an combustion occurs of the fuel, which generate hot
exhaust gases, that flows through the flame tube and metal case into the turbine.

10 Chapter 2. Background Information

2.4 SGT-800
We are interested in one particular gas turbine model, the SGT-800 model shown
in Figure 2.4. This model is an open-cycled, single shafted gas turbine, as ex-
plained in the earlier section and is one of the most manufactured gas turbine
models at the factory in Finspång.

Figure 2.4: The SGT-800 model with its three main components

2.5 The Simulation Program GTperform
GTperform is a simulation program that evaluates the performance parameters,
y, of a given gas turbine. This is done by solving a complex system of par-
tial differential equations. To establish a gas turbine performance the program
evaluates the the machine settings, x, for the compressor, combustor, and tur-
bine, together with specific known running parameters, rc, from the cite, as
displayed in Figure 2.5. The machine settings have nominal values, but their
actual current values are unknown.

2.5. The Simulation Program GTperform 11

Figure 2.5: Performance parameters from the machine settings and the running
conditions.

The running conditions consist of climate conditions and fixed technical pa-
rameters for the engine, such as air pressure, temperature, humidity, turbine
rotational speed and the gas heating temperature in the combustor, and several
more. All these parameters are known to the operator at all times.

The performance parameters are the following.

y =

Pel
T3
P3

T7

 (2.1)

The parameter Pel describes the output energy that drives the gas turbine, while
T3 and P3 describe the temperature and pressure at the end of the compressor.
Lastly, the T7 parameter describes the temperature at the end of the turbine.
The performance parameters can be measured at all times

The machine settings, which can be modified within GTperform, are the follow-
ing.

• TIT , the inlet fuel temperature for the turbine.

• Cη, a scale factor for the compressor’s efficiency.

• Cm, a scale factor of the capacity of the compressor.

• Cpd, the drop in pressure by the combustor.

• Tfc, a scale factor of the efficiency for the inlet flow capacity in the turbine.

• Tη, a scaling factor for the efficiency of the turbine.

12 Chapter 2. Background Information

• I1520, the air temperature before it goes into the turbine.

The machine settings are assumed to have normal probability distributions with
known means and standard deviations. The statistics are established for a gen-
eral turbine and are given by our supervisor at Siemens. Further, we are also
given the standard deviations for the measurments of the performance param-
eters.

Figure 2.6 shows the locations of the performance parameters and the locations
for the machine settings.

Figure 2.6: Sensors for the measurments of the performance parameters and locations
for for the machine settings.

2.6. Problem Definition 13

2.6 Problem Definition
To calculate the performance of a gas turbine, the GTperform simulation pro-
gram is used. This tool is constructed to simulate an actual gas turbine as
accurately as possible. A difficulty of the performance parameters is that every
gas turbine manufactured is unique, and performance and technical requirments
may differ between machines. Given the settings for a specific gas turbine, the
simulations provides the anticipated values of the peformance parameters. The
results are compared with observed measurements, and deviations from the sim-
ulation model are analyzed. The deviations indicate that the assumed machine
settings are not correct, but must be modified in order to obtain a simulated
performance that better comply with the measured. The correction to reduce
the differences is, at the moment, done manually by the engineers at the per-
formance division in Finspång. For several reasons it can be problematic to
find the most probable machine settings. The machine settings parameters in
GTperform can interact with each other, which means that adjustments can be
made in many different ways, and it is difficult to know which one that gives
the best solution.

We will henceforth refer to measurements of the performance parameters as
peformance measurements. The goal is to implement optimization algorithms
that establish the likely machine settings from the performance measurements.
The developed optimization algorithm will generate an analyzing tool for the
employees to use at the performance division.

This research examines the possibility of automatically estimating the machine
settings from the performance measurements by GTperform with Simulated
Annealing or Gradient Descent. This will be done by analyzing two different
objective functions. The first is to estimate the machine settings in GTperform
that generate the performance parameters with the smallest difference to the
actual performance measurments. For this objective, the algorithm searches the
complete grid of solutions. The second is to establish the machine settings that
are the most likely based on their probability distributions.

Chapter 3

Mathematical Formulation

In Section 3.1, we describe the first problem formulation, while in Section 3.2,
we describe the second problem formulation.

3.1 First Formulation

We are interested in finding the machine settings x = [TIT,Cη, Cm, Cpd, Tfc, Tη,
I1520] which give the lowest residuals between the actual performance measure-
ments ym and the simulated ys(x) obtained from GTperform. The machine set-
tings and the peformance measurments are assumed to be normally distributed.
The distributions of the settings are established from technical constraints and
conditions. For the machine settings, we denote the distribution mean as µxi

and the standard deviation as σxi . For the performance measurements we de-
note the standard deviation as σyj .

The objective function is defined as minimizing the sum of squared residuals.
Each term is multiplied by a scale factor which equals to the inverted value of
the variance for the corresponding probability distribution. The scale factor is
used because the performance measurements represent physical conditions that
are measured in different units, and therefore needs to be scaled differently. The
objective function is expressed as follows.

z1 = min
x
f(x) =

4∑
i=1

1

σ2
yi

(ym
i − ys

i (x))
2 (3.1)

Malm, 2022. 15

16 Chapter 3. Mathematical Formulation

s.t. xmin ≤ x ≤ xmax (3.2)

Here, xmin and xmax are lower and upper bounds, respectively, on the machine
settings.

3.2 Second Formulation
This is achieved by including the probability distributions of the machine set-
tings in the first problem formulation. This penalizes settings by how far they
are from their theoretical mean values. As for the performance measurements,
the settings are also measured in different units and need to be appropriately
scaled. This is done by multiplying each term with a factor that equal the in-
verted value of its variance. Settings that lie far from the distribution mean will
therefore be more penalized than if the setting is closer to the theoretical mean.
We define the objective function for the second task as the following

z2 = min
x
g(x) =

4∑
i=1

1

σ2
yi

(ym
i − ys

i (x))
2 +

7∑
j=1

1

σ2
xj

(xj − µxj
)2 (3.3)

s.t. xmin ≤ x ≤ xmax (3.4)

Chapter 4

Theory

In Section 4.1, the theory of black-box optimization is explained. We give a
literature background of two main types of procedures. In Section 4.2, earlier
studies of the GTperform are discussed. Lastly, in Sections 4.3 and 4.4, we
outline the theory of the two selected methods.

4.1 Black-Box Optimization

Black-box theory refers to an area of optimization where we lack the knowledge
of a mathematical model. We can only analyze the output result for a selected
input domain. In literature, this is represented by a black box, hence the name
black-box optimization [5].

A great overview and introduction to the subject is given by Mario, Yaun,
Micheal, and Saman [5]. They present several algorithms for solving the black-
box problem, based on earlier work by Rice [6] on algorithm selection. The algo-
rithms are divided into two groups, which are either deterministic or stochastic.
Deterministic algorithms are methods that for a particular input will always
generate the same output, while stochastic algorithms are constructed based on
randomness and probability distributions. Hence, the latter methods can give
different outputs for the same input. The algorithms are further categorized
into subgroups based on search procedures, theoretical assumptions, and selec-
tion criteria. [5].

Malm, 2022. 17

18 Chapter 4. Theory

4.1.1 Deterministic Algorithms

Deterministic algorithms can be divided into three classes: Line Search meth-
ods, Trust Region methods, and Pattern Search methods [5].

Lundgren, Rönnqvist and Värbrand in [3, pp. 257-261] describe Line Search
methods as iterative algorithms that use gradient or hessian information to es-
tablish an optimal point. Depending on if the problem is convex or not, these
algorithms either finds a local or a global optimal solution.

The second class is Trust Region methods. These are often used when the time
complexity to evaluate the objective function is very high. In these situations,
we may only be able to analyze a few solutions. The idea of these methods is
to approximate the problem around the current solution by a mathematical ex-
pression, creating a smooth curvature that would be easier to evaluate. These
algorithms then estimate the optimal solution for the approximate curvature
[11].

The third class of deterministic algorithms are Pattern Search methods. At
each iteration, these algorithms construct various solutions according to chosen
pattern. The solutions are evaluated and the method chooses the point with
the lowest objective value, and then continues the search procedure from the
new solution. If the method cannot find any better solution, the search pattern
changes, and the search process continues with the new pattern. If the method
can not find any better solution after a selected number of different search pat-
terns, the algorithm stops [5].

4.1.2 Stochastic Algorithms

Stochastic methods consist of the following subclasses: Random Search meth-
ods, Simulated Annealing, and Population-Based algorithms [5].

The Random Search methods sample elements from a selected neighbourhood,
using a fixed or adaptive probability distribution. If the new solution has a
lower objective value than the old one, we move to the new one. If we cannot
find any better solution within a specific number of iterations, the algorithm
stops [3, pp. 421-428].

Simulated Annealing (SA) is a heuristic technique that uses a random-search
procedure to estimate a global optimum. The concept is based on the movement

4.2. Earlier Work on GTperform 19

of atoms in metal as they anneal. In the annealing process, the metal is first
heated, making the atoms move in the material. As temperature decreases, so
do the energy, causing the atoms to stabilize into a crystal structure. The algo-
rithm jumps between solutions, accepting solutions with worse objective values
by a probability distribution which depends of a temperature parameter. In
the beginning, the temperature is high, but as the algorithm moves between
solutions, it decreases [3, pp. 447-448].

Population-Based algorithms are methods that are inspired by genetic theory.
Each solution is here viewed as an individual and individuals are combined in
an evolutionary process to produce offsprings of solutions, called children. By
natural selection, the children that have better objective value survive. These
are then put through the same process, creating new children that are com-
binations of their parents. The process continues until the algorithm finds an
individual, that is, solution with a satisfactory objective value [5].

4.2 Earlier Work on GTperform

Vaske [10], described in great detail the use of GTperform in combination with
different types of optimization algorithms, each one tested on simulated data
at Siemens in Finspång. The focus was to analyze the possibility of using opti-
mization algorithms to automate the estimation process for a simpler gas tur-
bine model. By investigating both the performance and computational power
requirements, they concluded that complex methods were unnecessary. Instead,
they concluded that the significant difficulty was the computational time com-
plexity in evaluating each parameter setting in GTperform. The methods that
performed well were simple algorithms that did not need to evaluate many pa-
rameter settings in GTperform

4.3 Simulated Annealing

The Simulated Annealing algorithm establishes a new OK solution by searching
for possible solutions within a given neighbourhood. If the new solution has a
lower objective value than the old, it is always accepted. On the other hand, if
the new solution has a higher objective value, the algorithm accepts or rejects
this point with a probability that depends on a temperature. The probabilities

20 Chapter 4. Theory

are given by the Metropolis Hasting formula, shown below.{
p = exp

(
znew−zx

Ti

)
, if znew < zx

1, otherwise
(4.1)

Here, znew is the value of the objective function of the new solution, zx is ob-
jective value for the current solution, and Ti is the temperature of the system
at iteration i [8].

The temperature is decreased with a geometric cooling schedule, updating the
temperature by Ti+1 = α∗Ti, where the cooling factor α ∈ (0, 1) is a constant [2].

The algorithm stops when a global or local stopping condition is satisfied. These
can be constructed in many different ways. The most common one is a max-
imum number of solutions that the algorithm can evaluate. One can however
end the search if the algorithm finds a solution that has an objective value that
is lower than a chosen value [7].

The initial temperature is of most concern for the performance and behaviour
of the algorithm. It regulates the search procedure by affecting the Metropolis
Hasting probability. A high value gives a higher probability, which means that
the algorithm can search areas further away. The problem with this is that
the algorithm moves too far off, wasting computational time by evaluating to
many poor solutions. On the other hand, having a too low starting tempera-
ture for the cooling schedule will have the opposite effect, casing the search to
be too restricted and not allowing the algorithm to search at neighbourhoods
further away. The temperature must be determined beforehand in such a way
that in the beginning, the ability to move to a point far away is large enough [9].

One way of choosing an initial temperature is by first generating N random
starting solutions. We then select a new solution within a restricted neighbour-
hood for each solution and calculate the difference, δ, between its function value
and that of the given solution. The initial temperature, T0, is then given by

T0 =

N∑
i=1

δi
N log(p)

, (4.2)

4.3. Simulated Annealing 21

where the parameter p is the probability wanted for the first iteration, for ex-
ample 0.7. The idea is that the chose temperature should give probability of
accepting a new solution in the neighborhood, independent of where the starting
point is generated [9].

Another possible option is to choose the initial based on the objective value,
z0, for the initial solution, according to

T0 =
−0.1z0
log (0.5)

. (4.3)

This temperature will accept solutions with a 10% worse objective value with
a probability of 0.5. This inital choice of temperature is done in the first iter-
ation of SA and does not need any additional function evaluations before the
algorithm can be started [9].

22 Chapter 4. Theory

4.4 Gradient Descent
The steepest descent is a deterministic method that for each iteration computes
a search direction, pn, from a given point, xn, and decides how far to move
along that direction. The new point, xn+1 is given by

xn+1 = xn + αnpn. (4.4)

where αn is the step length taken. The progress of this method depends on the
choice of both the direction pn and the step length αn [3, pp. 257-261].

If the optimization problem is to minimize an objective function, the search
direction pn must be a descending direction [3, pp. 257-261], that is, such that

pn∇f(xn) < 0. (4.5)

A commen choice of search direction is

pn = −B−1n ∇f(xn), (4.6)

where Bn is a symmetric and non-singular matrix. In the Gradient Descent
method, Bn is the identity matrix, which means that the search direction is the
negative gradient at the point xn [3, pp. 257-261].

4.4.1 Step Length
The selection of the step length αn is a difficult task. We want to find the value
that gives the lowest objective value for the search direction pk. The difficulty
is that there is a trade-off between rate of convergency and time complexity. To
achieve high accuracy, we need to calculate and evaluate many different values
α to establish the optimal one, which would take a long time. The easiest way
is to use a constant value of α. A problem with this is that it will not guar-
antee that the algorithm converges to a local minimum point, since there is a
possibility that the algorithm could jump too short or too far between different
iterations, missing the optimal solution. At the start of the procedure, the step

4.4. Gradient Descent 23

length should be larger, but as the procedure converges to minimal points, the
distances should become shorter [4, pp. 50-52].

Ahmed et al. [1] describe the possibility to use a quadratic interpolation to es-
tablish the optimal, αn. This procedure consists of three steps. First, select
two points along the direction pn and denote these as x1 and x2. Second, evalu-
ate the objective values f1(x1) and f(x2), together with the value f(x0) at the
starting point, x0.

The points are then interpolated with a quadratic function, and the minimal
point xmin of the interpolation is established from the derivative. The distance
between x0 and xmin describes how far the algorithm wants to move along the
direction pn [1].

4.4.2 Wolfe Conditions
The step length αn can sometimes become relatively small, generating short
moves that give a small decrease of the objective value. This makes the al-
gorithm inefficient, as it does not fully utilize the information by the search
direction pk. We here describe two conditions that the step lenght should sat-
isfy in order to guarentee a sufficient decrease in the objective value. These are
called the Wolfe condition [3, pp. 276-278].

The first is the Armijo condition

f(xn + αnpn) ≤ f(xn) + c1αn∇f(xn)T pn, (4.7)

where c1 is a scalar parameter chosen between 0 and 1. It will establish a min-
imal level that the objective value must satisfy [4, pp. 52-56].

The Wolfe condition requires αn to satisfy

∇f(xn + αnpn)pn ≥ c2∇f(xn)T pn, (4.8)

where c2 is a constant that must be greater than or equal to c1 and less than
or equal to 1. This condition rules out that the values of αn are too small.
It is only accepting steps giving a directional derivative that is greater than a
constant of the previous. Together, these two conditions ensure that αn gives

24 Chapter 4. Theory

sufficient decrease in the objective value [4, pp. 50-52]. In conclusion, the Wolfe
conditions require that the value αn must satisfy the following conditions [4,
pp. 52-56].

f(xn + αnpn) ≤ f(xn) + c1αn∇f(xn)T pn (4.9)

∇f(xn + αnpn)pn ≥ c2∇f(xn)T pn (4.10)

c1 ∈ [0, 1], c2 ∈ [c1, 1] (4.11)

Chapter 5

Implementation

The two proposed algorithms are thoroughly explained below. First in Sec-
tion 5.1 we describe the underlying concepts and overall procedure for Simulated
Annealing (SA), while in Section 5.2 we outline the Gradient Descent (GD). The
algorithms have been implemented in Python.

5.1 Simulated Annealing
In Section 5.1.1, we describe the higher-level representation of the method. In
Sections 5.1.2– 5.1.4 the components are further explained and the pseudocode
of the algorithm is described in Section 5.1.5.

5.1.1 Outline of Algorithm
In Figure 5.1, we display the modules of the SA method. It consists of multiple
blocks that are aligned and iteratively executed until one of two termination
conditions is satisfied.

The algorithm begins by randomly selecting the starting solution, xinit, from
seven uniform probability distributions, one for each variables. In the first it-
eration, we set both the solution vector, x, and the best found solution, xbest,
equal to xinit. Finally, the initial temperature, Tinit, is set to 1000 by equation
(4.2) in Section 4.3

Malm, 2022. 25

26 Chapter 5. Implementation

Figure 5.1: The main components of the Simulated Annealing.

There are two possible stopping conditions, either the algorithm stops after 500
iterations or when the objective value for the current solution is less then a close
number to zero, in our case 0.05. If the vector x does not fulfill the stopping
conditions, the iterative search method continues. The first step is to investi-
gate if x satisfies the restart condition. The restart ability has two significant
purposes. Firstly, to secure that the algorithm does not get stuck bu rejecting
possible moves. Secondly, it ensures that the algorithm has not moved too far
off from the best found solution, and is searching around poor regions with high
objective values. If the restart condition is satisfied, the algorithm would either
change the vector x to the best-found vector xbest we have established so far
or increase the temperature, giving a higher probability for jumping into other
regions. Important to clarify is that the restartbility is inactivated for the first
20 iterations and is switched on afterward.

Given the solution x, the algorithm calculates the neigbhourhood, explained in
Section 5.1.2. Within the neighbourhood the algorithm randomly selects a new
solution, xnew, and calculates the objective value z(xnew) by using GTperform.
Whether, the solution is accepted or rejected is explained in more detail in Sec-
tion 5.1.4.

The last step for each iteration, regardless if we have moved from the current
solution or not, is to update the temperature, Ti. Finally we invesigate if the
new point satisfies any of the two stopping conditions. If it does, the algorithm
stops and writes the best-found solution. Otherwise, it continues the iterative
process until one of the two stopping conditions are satisfied.

5.1. Simulated Annealing 27

5.1.2 Neighbourhood
The neighbourhood is defined as a portion of the feasible set. If the problem had
been in two variables, x1 and x2, the feasible set would look like in Figure 5.2.
The larger box illustrates the whole feasible set, while the smaller boxes display
the neighbourhoods. The intersections of the feasible set and the neighbour-
hoods are shown in grey colour, the algorithm is allowed to select the new point
only within these regions. For the problem with six variables, the neighborhood
and the gray region are hypercubes in six dimensions.

Figure 5.2: Illustrations of the Neighbourhood regions in a two dimensional space
for three points.

5.1.3 Restart Ability
The restart functionality makes sure that the algorithm does not move too far
away from the current best solution. The large number of possible jumps in
combination with the complexity of evaluating the objective function makes it
essential for the algorithm not to get stuck within poor regions. This is es-
pecially important at the beginning of the algorithm, when the temperature
is high. Suppose that the method has not found a solution that has a lower
objective value then to the solution xbest within 30 iterations. In that case,
the search procedure will be restarted from solution xbest with the temperature
setting left unchanged.

28 Chapter 5. Implementation

Figure 5.3: Schedule for the reset procedure.

With the restart functionality, we can search along multiple paths from the
current best solution to find areas with better solutions. In the beginning, the
algorithm tends to search in wider areas, but as temperature decreases, so does
the region that is searched. In the later stage of the algorithm, there is a low
probability of jumping to worse solutions, and at this point the method will
only accept better solutions. To accommodate this behaviour, we add a feature
in the restart that will affect the temperature. We add a climbing ability within
the restart function so that the algorithm does not get stuck at specific areas
because of a too low temperature. If the method rejects ten solution in a row, it
updates the temperature, increasing it to promote the possibility to jump and
continue the search. In the theory section, we described a method for the initial
temperature setting. We will use the same method to increase the temperature
by using the expression

Titer =
−z(xinit)× 0.1

log (0.5)
, (5.1)

which means that an objective value that is 10% worse than the current one
should be accepted with a probability of 0.5. Suppose this temperature increase
did not help for ten successive iterations. In that case, the algorithm will update
the temperature once more and continues until it either jumps to a new solution
or restarts from the best found solution. Further, the algorithm will then set
the counters for the restart and climbing ability to zero.

5.1. Simulated Annealing 29

5.1.4 Selection Algorithm
In Figure 5.4, we display the move selection procedure. Firstly, we investigate if
the function value z(xnew) is smaller than z(xbest). If true, set both x and the
best found solution xbest equal to xnew. Otherwise, evaluate if the value is less
than z(x). If this is true, then we move to the new point, but update only x and
set it to xnew. Important to notice is that we are not changing the solution xbest.

Figure 5.4: A diagram for the selection procedure.

In the second case, if none of the earlier conditions were satisfied, then the
objective value z(xnew) is higher than both z(x) and z(xbest). The algorithm
then analyses if it should still move to the newly established solution by the
acceptance probability p from the current temperature Ti by equation (4.1) in
Section 4.3. To do this, we choose a random value q from a continuous uniform
distribution between zero and one. If q is less than p, we update and select xnew
as our new solution x. Lastly, update the temperature setting by multiplying
it with a scale factor and restart the procedure.

30 Chapter 5. Implementation

5.1.5 Pseudocode for SA

Algorithm 1 Simulated Annealing
1: Set: i = 1
2: Select temperature: Ti = 1000
3: Set: crestart = 0
4: Set: cclimb = 0
5: Generate a starting vector: xinit
6: Set the best and current point equal to the inital point:

xbest = x = xinit
7: Calculate the objective value for the initial point: z(xinit)
8: Set the best and current objective values equal to the initial value: zbest =
zx = z(xinit)

9: while i < 500 or zbest < 0.05 do
10: if crestart < 30 then
11: Set: x = xbest
12: Set: zx = zbest
13: Set: crestart = 0
14: Set: cclimb = 0
15: if cclimb < 10 then
16: Increase temperature: Titer =

−z(x)×0.1
log (0.5)

17: Set: cclimb = 0
18: Set: i = i+1
19: Break
20: else
21: Set: cclimb = cclimb + 1
22: Set: crestart = crestart + 1

23: Calculate neigbourhood A(x) for current solution x
24: Chose new point within the neighbourhood: xnew ∈ A(x)
25: Calculate the xnew objective value: znew = z(xnew)
26: if znew < zbest then
27: Set: xbest = xnew
28: Set: zbest = znew
29: Set: x = xnew
30: Set: zx = znew
31: else if znew < zx then
32: Set: x = xnew
33: Set: zx = znew

5.1. Simulated Annealing 31

Algorithm 1 Simulated Annealing (continued)

34: else
35: Calculate acceptance probability: p = exp

(
znew−zx

Ti

)
36: Choose value from a uniform distribution: q ∈ U [0, 1]
37: if q < p then
38: Set: x = xnew
39: Set: zx = znew

40: Update temperature: Ti = 0.99× Ti
41: Set: i = i+1
42: end while
43: return xbest and zbest

32 Chapter 5. Implementation

5.2 Gradient Descent

In Section 5.2.1 we give a high-level representation of the method, while the
main parts of the algorithm are explained in more detail in Sections 5.2.2 and
5.2.3. In Section 5.2.4 we illustrate the pseudocode.

5.2.1 Overview of the Gradient Descent

In Figure 5.5 we display Gradient Descent approach.

Figure 5.5: Overview of the Gradient Descent

As for the Simulated Annealing method, there are two stopping conditions. The
method stops after 45 iterations or if the objective value is smaller than 0.05.
If the solution does not fulfill any of these criteria, the algorithm continues the
search by calculating the gradient for the solution, as described in Section 5.2.2.

Given the gradient, the algorithm finds the best step length by interpolating
three different solutions, as explained in Section 5.2.3. If the new solution
satisfies the Armijo and Wolfe conditions with the parameters c1 = 0.01 and
c2 = 0.05, the method moves to the new solution. If the solution does not
satisfy these conditions, the algorithm analyses if the interpolation should be
re-made with other solutions. The interpolation method has an stopping con-
dition, which stops the complete search procedure if it can not find a better
solution within seven attempts.

5.2. Gradient Descent 33

5.2.2 Search Direction
The search direction is determined by a numerical approximation of the gradient.
This is done by the forward difference method, expressed as

∂z

∂xk
=
z(x1, . . . , xk + h, . . . xn)− z(x1, . . . , xk, . . . xn)

h
, k = 1, . . . , n, (5.2)

with h = 10−5. For each partial derivative, the method needs to evaluate one
new point, at the distance h. The gradient is given by

∇z = (
∂z

∂x1
,
∂z

∂x2
,
∂z

∂x3
,
∂z

∂x4
,
∂z

∂x5
,
∂z

∂x6
,
∂z

∂x7
). (5.3)

The gradient is normalized with the euclidean norm, giving the vector

γ =
1

‖∇z‖2
∇z. (5.4)

The steepest descent direction at x is given by hx = −γ.

34 Chapter 5. Implementation

5.2.3 Interpolation Method
In Figure 5.6 we show a flow diagram for the interpolation method.

Figure 5.6: The interpolation procedure for Gradient Descent

The interpolation starts by selecting two solutions on equal distance along the
search direction,

xn = x+ ndshx, n = 1, 2. (5.5)

The distance parameter ds is initially set to 0.01. This parameter can change if
the two selected solutions do not give any satisfactory results.

The two solutions are evalauted as z1 = z(x1) and z2 = z(x2). In the next step
we interpolate the three objective values z, z1 and z2 by a quadratic expression

p(α) = α2 + bα+ c, (5.6)

where a, b and c are constant. The interpolation between x,x1 and x2 for the
function values z, z1 and z2 is displayed by the blue dashed line in Figure 5.7.
If a > 0, the minimal point of the quadratic interpolation is calculated. Other-
wise, the interpolation has no minimal point and it is rejected. In this situation,

5.2. Gradient Descent 35

the algorithm will restart with the distance divided by two. The reason for the
bisection is due to efficiency. By halving the distance, the interpolation only
needs to evaluate one new solution for the new trial, and can therefore reuse
information from the unsuccessful interpolation. The procedure is repeated a
maximum of seven times. If it cannot find a solution within this limit, the in-
terpolation procedure stops, and so will the complete algorithm and return the
solution x as the best found.

If the interpolation finds a minimum point, αmin, it is used to calculate the dis-
tance we should move in the search direction. The best solution is established
by xbest = x+ αminhx, we then analyze if the objective value z(xbest) satisfies
the Armijo and Wolfe conditions. If it does not fulfill these criteria, then the
algorithm will reject the solution xbest and restarts the interpolation method
with the ds parameter divided by two.

Figure 5.7: Interpolation curve by three points in black with the yellow point equal
to the xbest.

For each successful move, the algorithm analyses the selected distance αmin it
moves from the starting point. By looking at the ratio between the value αmin
and the starting distance ds, the method analyses the number of times it failed
before finding a solution that satisfied the Armijo and Wolfe conditions. If it
was too large, then the starting distance was too large and that the method
wasted a lot of time trying to interpolate points that were too far away from
each other. For this reason, if the ration α

ds
is larger than three for three con-

secutive successful iterations, we divide the distance ds by two.

36 Chapter 5. Implementation

5.2.4 Pseudocode of Gradent Descent

Algorithm 2 Gradient Descent
1: Set distance d = 0.01
2: Set iteration parameter to zero: c = 0
3: Generate a random starting solution: x
4: Calculate the objective value for the initial point: z = z(x)
5: while c < 45 or z < 0.05 do
6: c = c+ 1
7: Calculate the numerical derivative ∇z
8: Set the search direction to hx = − 1

‖∇zx‖2
∇z

9: Set x1 = x+ diterhx and x2 = x+ 2diterhx

10: Evaluate objective values z1 = z(x1) and z2 = z(x2)
11: Interpolate p(α) = aα2 + bα+ c using the three points zx, z1, z2
12: if p(α) > 0 then
13: The interpolation curve is a parabola
14: Find the minimal point αmin of p(x).
15: Calculate the new best solutions xbest = x+ αminhx
16: if z(xbest) satisfies Armijo and Wolfe conditions then
17: x = xbest
18: z = z(xbest)
19: if the ratio d

α > 3 then
20: if crestart > 3 then
21: d = d

2
22: crestart = 0

23: else
24: crestart = crestart + 1

25: else
26: if crestart > 7 then
27: Stop algorithm
28: return x solution and z
29: else
30: d = d

2
31: ctemp = ctemp + 1

32: return solution x and objective value z

Chapter 6

Numerical Results

The numerical results are divided into three sections, one for each gas turbine.
Each method was tested 15 times for the two problem formulations. To eas-
ier present the results, the residuals for the variables settings and performance
measurements are transformed to standard normal distributions, with zero mean
and standard deviation one.

6.1 Rioja
For the Rioja dataset, the results are divided into two parts. In Section 6.1.1
we show the results for the first problem formulation, while in Section 6.1.2 we
show the outcome for the second problem formulation.

6.1.1 First Problem Formulation
Figures 6.1 and 6.2 show the objective values for Simulated Annealing and Gra-
dient Descent, with the best objective value for each run in Figure 6.3. Figure
6.4 shows boxplots of the residuals for the machine settings and performance
measurements.

Malm, 2022. 37

38 Chapter 6. Numerical Results

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

0 100 200 300 400 500
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Simulated Annealing

Figure 6.1: The SA process for the
15 runs, where each starting position
was randomly selected.

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

0 5 10 15 20 25 30 35 40 45
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Gradient Descent

Figure 6.2: The GD process for the
15 runs, where each starting position
was randomly selected.

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●● ●

●

● ●
● ●

● ● ● ●
●

●

●
●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attempt Number

O
b

je
c
ti
v
e

 V
a

lu
e

Methods:
●

●

SA
GD

Best Objective Value

Figure 6.3: The best found objective function values for each of the 15 runs.

6.1. Rioja 39

−3

−2

−1

0

1

2

3

TIT Cη Tη Cm Tfc Cpd I1520 Pel T3 P3 T7

Machine Settings and Performance Measurements

Re
sid

ua
l V

alu
e

Method:

SA
GD

Boxplot of Residuals

Figure 6.4: Boxplots of the machine settings and performance measurements for the
two methods, with red for GD and blue for SA. Within each box, the central mark
indicates the median. The bottom and top edges of the box indicate the 25th and
75th percentiles, and the thin lines at the ends of each box represent outliners.

40 Chapter 6. Numerical Results

6.1.2 Second Problem Formulation
Figures 6.5 and 6.6 illustrate the objective values for Simulated Annealing and
Gradient Descent, with the best objective value for each run in Figure 6.7.
Figure 6.8 shows the boxplots of the residuals for the machine settings and per-
formance measurements

−1

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Simulated Annealing

Figure 6.5: The SA process for the
15 runs, where each starting position
was randomly selected.

−1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Gradient Descent

Figure 6.6: The GD process for the
15 runs, where each starting position
was randomly selected.

●
●

●

●
●

●

●
●

●
●

● ●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attempt Number

O
b

je
c
ti
v
e

 V
a

lu
e

Methods:
●

●

SA
GD

Best Objective Value

Figure 6.7: The best found objective function values for each of the 15 runs.

6.1. Rioja 41

−1.0

−0.5

0.0

0.5

1.0

TIT Cη Tη Cm Tfc Cpd I1520 Pel T3 P3 T7

Machine Settings and Performance Measurements

Re
sid

ua
l V

alu
e

Method:

SA
GD

Boxplot of Residuals

Figure 6.8: Boxplots of the machine settings and performance measurements for the
two methods, with red for GD and blue for SA. Within each box, the central mark
indicates the median. The bottom and top edges of the box indicate the 25th and
75th percentiles, and the thin lines at the ends of each box represent outliners.

42 Chapter 6. Numerical Results

6.2 Holland
For the Holland machinery the results are divided into two parts. In Section
6.2.1 we show the results for the first problem formulation, while in Section 6.2.2
we show the outcome for the second problem formulation.

6.2.1 First Problem Formulation
Figures 6.9 and 6.10 show the objective value for Simulated Annealing and Gra-
dient Descent, with the best objective value for each run in Figure 6.11. Figure
6.12 shows the boxplots of the residuals for the machine settings and perfor-
mance measurements

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

0 100 200 300 400 500
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Simulated Annealing

Figure 6.9: The SA process for the
15 runs, where each starting solution
was randomly selected.

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

0 5 10 15 20 25 30 35 40 45
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Gradient Descent

Figure 6.10: The GD process for the
15 runs, where each starting solution
was randomly selected.

6.2. Holland 43

●

● ●

●

●
● ●

●

● ●

●
●

● ● ●●
●

●
●

● ●
●

● ●

●

● ● ● ●
●

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attempt Number

O
b

je
c
ti
v
e

 V
a

lu
e

Methods:
●

●

SA
GD

Best Objective Value

Figure 6.11: The best found objective values for each of the 15 runs.

−3

−2

−1

0

1

2

3

TIT Cη Tη Cm Tfc Cpd I1520 Pel T3 P3 T7

Machine Settings and Performance Measurements

Re
sid

ua
l V

alu
e

Method:

SA
GD

Boxplot of Residuals

Figure 6.12: Boxplots of the residuals of the machine settings and performance
measurements for the two methods, with red for GD and blue for SA. Within each
box, the central mark indicates the median. The bottom and top edges of the box
indicate the 25th and 75th percentiles, and the thin lines at the ends of each box
represent outliers.

44 Chapter 6. Numerical Results

6.2.2 Second Problem Formulation
Figures 6.13 and 6.14 show the objective values for Simulated Annealing and
Gradient Descent, with the best objective value for each run shown in Figure
6.15. Figure 6.16 shows the boxplots of the residuals for the machine settings
and performance measurements.

−1

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Simulated Annealing

Figure 6.13: The Simulated Anneal-
ing process for the 15 runs, where
each starting solution was randomly se-
lected.

−2

−1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Gradient Descent

Figure 6.14: The Gradient Descent
process for the 15 runs, where each
starting solution was randomly se-
lected.

●

●

●

●
●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

● ●
● ● ●

●
●

●

●

●

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attempt Number

O
b

je
c
ti
v
e

 V
a

lu
e

Methods:
●

●

SA
GD

Best Objective Value

Figure 6.15: The best found objective values for each of the 15 runs.

6.2. Holland 45

−1.0

−0.5

0.0

0.5

1.0

TIT Cη Tη Cm Tfc Cpd I1520 Pel T3 P3 T7

Machine Settings and Performance Measurements

Re
sid

ua
l V

alu
e

Method:

SA
GD

Boxplot of Residuals

Figure 6.16: Boxplots of the machine settings and performance measurements for
the two methods, with red for GD and blue for SA. Within each box, the central mark
indicates the median. The bottom and top edges of the box indicate the 25th and
75th percentiles, and the thin lines at the ends of each box represent outliers.

46 Chapter 6. Numerical Results

6.3 Delimara
For the Delimara machinery the results are divided into two parts. In Section
6.3.1 we show the results for the first problem formulation, while in the Section
6.3.2 we show the outcome for the second problem formulation.

6.3.1 First Problem Formulation
Figures 6.17 and 6.18 show the objective values for Simulated Annealing and
Gradient Descent, with the best objective value for each run in Figure 6.19.
Figure 6.20 shows the boxplots of the residuals for the machine settings and
performance measurements.

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

0 100 200 300 400 500
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Simulated Annealing

Figure 6.17: The SA process for the
15 runs, where each starting solutions
was randomly selected.

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

0 5 10 15 20 25 30 35 40 45
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Gradient Descent

Figure 6.18: The GD process for the
15 runs, where each starting solutions
was randomly selected.

6.3. Delimara 47

●

●
●

●

● ● ● ●
● ● ●

●

● ●

●

●

●
●

●

●

●

● ● ● ● ●
●

● ●

●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attempt Number

O
b

je
c
ti
v
e

 V
a

lu
e

Methods:
●

●

SA
GD

Best Objective Value

Figure 6.19: The best found objective function values for each of the 15 runs.

−3

−2

−1

0

1

2

3

TIT Cη Tη Cm Tfc Cpd I1520 Pel T3 P3 T7

Machine Settings and Performance Measurements

Re
sid

ua
l V

alu
e

Method:

SA
GD

Boxplot of Residuals

Figure 6.20: Boxplots of the residuals for the machine settings and performance
measurements, by the two methods with red for GD and blue for SA. Within each
box, the central mark indicates the median. The bottom and top edges of the box
indicate the 25th and 75th percentiles, and the thin lines at the ends of each box
represent outliers.

48 Chapter 6. Numerical Results

6.3.2 Second Problem Formulation
Figures 6.21 and 6.22 show the objective values for the Simulated Annealing
and Gradient Descent, with the best objective value for each run illustrated in
Figure 6.23. Figure 6.24 shows the boxplots of the residuals for the machine
settings and performance measurements

−1

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Iteration Number

Lo
ga

rit
hm

ic
 V

al
ue

Attempt
Number:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Value for Simulated Annealing

Figure 6.21: The SA process for the
15 runs, where each starting solution
was randomly selected.

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45
Iteration

Lo
ga

rit
hm

ic
 V

al
ue

Boostrap
 Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Logarithmic Objective Function Value for Gradient Descent

Figure 6.22: The GD process for the
15 runs, where each starting solution
was randomly selected.

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Attempt Number

O
b

je
c
ti
v
e

 V
a

lu
e

Methods:
●

●

SA
GD

Best Objective Value

Figure 6.23: The best found objective values for each of the 15 runs.

6.3. Delimara 49

−1.0

−0.5

0.0

0.5

1.0

TIT Cη Tη Cm Tfc Cpd I1520 Pel T3 P3 T7

Machine Settings and Performance Measurements

Re
sid

ua
l V

alu
e

Method:

SA
GD

Boxplot of Residuals

Figure 6.24: Boxplots of the residuals for the machine settings and performance
measurements by the two methods, with red color for GD and blue color for SA.
Within each box, the central mark indicates the median. The bottom and top edges
of the box indicate the 25th and 75th percentiles, and the thin lines at the ends of
each box represent outliers.

Chapter 7

Discussion

The discussion is divided into two parts. In Section 7.1 we analyze the perfor-
mances of the algorithms for the first problem formulation, while in Section 7.2
we examine the performance of the algorithms for the second formulation.

7.1 First Formulation

The best found objective values by the two algorithms for the respective gas
turbines are displayed in Figures 6.3, 6.11 and 6.19. The majority of the runs
established solutions with low objective values. However, for some attempts the
algorithms had difficulties finding satisfactory solutions, since they got stuck at
poor local minima.

When comparing the performances between the two algorithms, we notice a
significant difference in results between the three gas turbines. We notice that
for the Rioja machinery, the Gradient Descent gave the best solutions. The
Simulated Annealing had a greater spread between the solutions and produced
a poor local minimum in the eighth run. However, for the Delimara turbine,
the SA outperformed the GD which gave poor local minima at the first, fifth,
sixth, and fifteenth iterations. The objective values of these outliers were higher
compared with the outliers for the other two gas turbines. For the Holland
turbine, the results were not as clear as for the Rioja and Delimara engine. In
this case, the Gradient Descent had better general performance. However, it
also had the worst outliers.

Malm, 2022. 51

52 Chapter 7. Discussion

By analyzing the overall performance of the algorithms for the three turbines,
we notice that there are similar patterns for the two methods. The performance
of the SA is shown in Figures 6.1, 6.9 and 6.17. For the first 100 iterations, the
algorithm gives large decreases in objective values by finding better solutions
without the need to restart. The restart procedure is used in the later stages
when the temperature setting is lower and limits the search to a small neigh-
bourhood.

The Gradient Descent gave a significant decrease in the objective value for the
first few iterations, as seen in Figures 6.2, 6.10 and 6.18. This is due to large
step lengths from the quadratic interpolation method, described in Section 5.2.3.
After the first few iterations, the algorithm struggles for many iterations, gen-
erating only small changes in the objective value, since it gets stuck at the same
neighbourhood for many consecutive iterations.

With the first objective formulation, we are trying to establish the machine set-
tings in GTperform by using only the performance measurements. By analyzing
the residual boxplots, displayed in Figures 6.4, 6.12 and 6.20, we can see that
there are similarities between the solutions. For all three turbines, the methods
have a large spread for the TIT , Cm, Tfc and I1520 settings, with the mass
capacity scale factor for the combustor being the worst, having solutions that
range almost within the complete parameter grid The three other machine set-
tings, Cη, cpd and Tη do not fluctuate as much, having minimal residuals, and
are all close to the theoretical zero mean. Further, we notice that the residuals
for the performance measurements are smaller for the Gradient Descent than for
Simulated Annealing. However, Gradient Descent has a larger spread between
the machine settings, while Simulated Annealing has the opposite outcome, with
higher residuals for the performance measurements and lower for the machine
settings.

For most starting solutions, the algorithms find satisfactory solutions within the
time limit. Nonetheless, the varying results make the algorithms unpredictable,
we obtain a different solution for the machine settings each time we run them.
The solution may be highly different, which could be seen from the boxplots,
meaning that it is hard to draw any accurate conclusions.

7.2. Second Formulation 53

7.2 Second Formulation

The best found objective values for the algorithms are displayed in Figures 6.7,
6.15 and 6.23. We notice that the solutions have much higher objective val-
ues than from the solutions the first problem formulation. This is because we
add the machine setting terms to the objective function. The algorithms must
now balance between the residuals of machine settngs and the residuals for the
performance measurements. We notice that the Simulated Annealing shows a
more stable performance with smaller deviations and fewer outliers. Neverthe-
less, the Gradient Descent found acceptable solutions. The unpredictability of
its performance however makes it more unreliable, having a higher probability
of giving inaccurate information about the machine settings.

Comparing the complete performance of the algorithms in Figures 6.5, 6.6, 6.13,
6.14, 6.21 and 6.22, shows that most runs converge towards the same endpoint.
The residuals for the performance measurements, besides the T3 parameter for
the Holland machinery, are all distributed above zero. By further analyzing each
solution, we notice that both Gradient Descent and Simulated Annealing have
established solutions which deviate from the true performance measurements.
This is because the probability distribution for the machine settings pushs the
algorithm to find settings that are closer to the theoretical mean values.

The boxplots displayed in Figures 6.8, 6.16 and 6.24, show that the spread of
the residuals for the machine settings is within one standard deviation around
zero. The settings that had the most significant deviation throughout the three
gas turbines were I1520, Tfc, and cm. The first of these regulates the inlet air
temperature before it goes into the turbine. The second and third settings rep-
resent the scale factor capacities for the compressor and turbine. An interesting
finding for all three gas turbines is that that the two scale factors are simul-
taneously above or below the zero, with a correlation to the I1520 temperature
settings. Note that if the scale factor median mark is positive, the temperature
median is negative for both the Holland and Delimara gas turbines. The oppo-
site effect can be seen for the Rioja engine, with a negative median for the scale
factor and a positive median value for the inlet temperature.

If we further compare the algorithms, we notice that Gradient Descent gives
the lowest deviations for the performance measurements. Thishowever gives a
higher spread for some machine settings, like the Cm parameter, which is more
significant for the Holland and Delimara turbines. We notice an opposite effect
for the Simulated Annealing, with a higher deviation for the performance mea-
surments and a lower spread for most machine settings. By analyzing the two

54 Chapter 7. Discussion

most fluctuating variables, Cm and Tfc, in detail, we notice that they are much
lower for the Simulated Annealing than for the Gradient Descent.

Chapter 8

Conclusion

Two optimization algorithms were developed at the performance division at
Siemens to estimate the machine settings for the simulation program GTper-
form. The difficulty aspect is that every single turbine is unique and tuned for
its specific purpose. The goal was to reduce the work for the engineers, which
have earlier determined these settings by trail and error. The idea originated
from an earlier student thesis, which investigated the possibility of estimation
parameters in a simpler gas turbine model using optimization and GTperform
from simulated data.

Our work was based on two optimization algorithms: Simulated Annealing and
Gradient Descent, which were evaluated for performance measurements from
three different turbines. We tried two objective function for each turbine and
objective function, the algorithms were tested 15 times to establish statistical
conclusions about the spread of the solutions found.

The second problem formulation was most successfully accomplished. For this
formulation, both algorithms gave a spread of the solution that was smaller than
one standard deviation. Comparing the algorithms the Simulated Annealing had
a more stable performance and fewer outliers compared to the Gradient Descent.
However, the algorithms were not able to achieve any accurate estimation for
the first problem formulation. The spread between the solution was for this
formulation too large, resulting in unreliable conclussion about the machine
settings.

Malm, 2022. 55

Chapter 9

Future Work

Due to time constraints, several possible topics within this thesis work have not
been researched or investigated in any detail. Firstly, we have not compared the
performance of local and global optimization algorithms’ performance, since we
have only used the first type of methods. This could be reasearch by analysing
many different starting solutions for the algorithms and investigate how the
method converges. Another interesting possiblity to analyse further is to ex-
tend the line search algorithm, by adding the second derivative information, for
example, using the Newton-Raphson method. Then Line Search method would
might faster converge to local minimal points and not get stuck around specific
neigbhourhoods for mutiple iterations. The problem is that the algorithm then
becomes very computational heavy, increasing the time complexity even further.
Another possible change is within the step length procedure, by increasing the
number of solutions to be interpolated and the degree of the interpolation poly-
nomial. These suggestions could increase the efficiency of the algorithm and
decrease the spread for the machine settings.

Secondly, our Python code could be more efficiently structured and written.
There are several time losses and memory inefficiencies within both algorithms.
This is due to the operational usage of the GTperform program. Sometimes
the program can not keep up with the speed of the algorithms. Having dif-
ficulties generating internal files that is need for the process. Mutiple times,
the program needs to wait for the files to be created in order to continue the
algorithm procedure. If we don not stop and wait, the GTperform would crash,
which could crash our algorithms. The GTperform creates a bottlenecks due
to is implementation. This problem have not probably been adressed, as the
process of finding the machine settings have been done manual by the engineers.

Malm, 2022. 57

58 Chapter 9. Future Work

Thirdly, the statistical inference needs to be extended to many more turbines
with large sample sizes.

In this thesis we have applied the algorithms to a single gas turbine from each
location. It would be interesting to analyze the best solutions for a group of
turbines within similar geographical areas and technical constraints. The rea-
son for this is that many companies have multiple gas turbines connected to
the same electrical network to fulfil their energy demands. However, analyzing
multiple turbines with GTperform would be highly time-consuming, since we
have to reset and reconfigure the complete GTperform program for each turbine
and machine settings. This might be possible, but not within the 10 minutes
time limit. We also woud need to implement and code a higher structual pro-
gram in Python that would managed the complete process. This would give
further knowledge and understanding of the performance of a unique type of
turbine in a certain operational enviroment and how it differs from the general
performance.

Bibliography

[1] A. Abdel-Rahman. ”A Modified Partial Quadratic Interpolation Method
for Unconstrained Optimization”. In: J. Concretee and Appliable Mathe-
matics 11 (1) (2013), pp. 136–146.

[2] D. Abramson, M. Krishnamoorthy, H. Dang. ”Simulated Annealing Cool-
ing Schedules for the School Timetabling Problem”. In: Asia-Pacific Jour-
nal of Operational Research 16 (1) (1997), pp. 1–22.

[3] J. Lundgren, M. Rönnqvist, P. Värbrand. Optimeringslära. Vol. Upplag
3:5. Studentlitteratur AB.

[4] J. Nocedal, S.J. Wright. Numerical Optimization. Springer, 2006.

[5] M. Acosta, M. Andres, Y. Sun, M. Gerard, S. Kumara. ”Algorithm Se-
lection for Black-Box Continuous Optimization Problems: A Survey on
Methods and hallenges”. In: Information Sciences, 317 (2015), pp. 224–
245.

[6] J.R. Rice. ”The Algorithm Selection Problem”. In: Advances in Computers
15 (1976), pp. 65–118.

[7] S. Alizamir, S. Rebennack, P. Pardalos. ”Improving the Neighborhood
Selection Strategy in Simulated Annealing Using the Optimal Stopping
Problem”. In: Simulated Annealing. IntechOpen, 2008. Chap. 18.

[8] S. Ledesma, J. Avina-Cervantes, R. Sanchez. Practical Considerations for
Simulated Annealing Implementation. IntechOpen, 2008.

[9] B. Walid. ”Computing the Initial Temperature of Simulated Annealing”.
In: Computational Optimization and Applications 29 (2004), pp. 369–385.

[10] S. Vaske. ”Implementation and Analysis of a GPA Method Usign Opti-
mization Techniques on a Indstrial Gas turbine.” MA thesis. Chalmers
University of Technology, 2000.

Malm, 2022. 59

60 Bibliography

[11] Y. Ya-Xiang. ”A Review of Trust Region Algorithms for Optimization”.
In: Proceedings of the Fourth International Congress on Industrial and
Applied Mathematics ICM99 (Sept. 1999).

Linköping University Electronic Press

Copyright
The publishers will keep this document online on the Internet – or its possible
replacement – from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for
anyone to read, to download, or to print out single copies for his/her own use
and to use it unchanged for non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional upon the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authentic-
ity, security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its www home page: http://www.ep.liu.se/.

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
från publiceringsdatum under förutsättning att inga extraordinära omständig-
heter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda
ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/.

c© 2022, André Malm

http://www.ep.liu.se/
http://www.ep.liu.se/

	Scope of Thesis
	Introduction
	Purpose
	Objective
	Method
	Limitations
	Structure of Thesis

	Background Information
	Introduction
	The Gas Turbine Cycle
	Gas Turbine Components
	SGT-800
	The Simulation Program GTperform
	Problem Definition

	Mathematical Formulation
	First Formulation
	Second Formulation

	Theory
	Black-Box Optimization
	Earlier Work on GTperform
	Simulated Annealing
	Gradient Descent

	Implementation
	Simulated Annealing
	Gradient Descent

	Numerical Results
	Rioja
	Holland
	Delimara

	Discussion
	First Formulation
	Second Formulation

	Conclusion
	Future Work

