
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science

Master’s thesis, 30 ECTS | Statistics and Machine Learning

2022 | LIU-IDA/STAT-A–22/004–SE

Generating Geospatial Trip Data
Using Deep Neural Networks

Ahmed Alhasan

Supervisor : Joel Oskarsson
Examiner : Johan Alenlöv

External supervisor : Kuo‐Yun Liang

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet ‐ eller dess framtida ersättare ‐ under 25 år från publicer‐
ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko‐
pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis‐
ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker‐
heten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman‐
nens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet ‐ or its possible replacement ‐ for a
period of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to down‐
load, or to print out single copies for his/hers own use and to use it unchanged for non‐commercial
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional upon the consent of the copyright owner. The publisher
has taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to bementionedwhen his/her work
is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Ahmed Alhasan

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

Synthetic data provides a good alternative to real data when the latter is not sufficient
or limited by privacy requirements. In spatio-temporal applications, generating synthetic
data is generally more complex due to the existence of both spatial and temporal de-
pendencies. Recently, with the advent of deep generative modeling such as Generative
Adversarial Networks (GAN), synthetic data generation has seen a lot of development and
success. This thesis uses a GAN model based on two Recurrent Neural Networks (RNN)
as a generator and a discriminator to generate new trip data for transport vehicles, where
the data is represented as a time series. This model is compared with a standalone RNN
network that does not have an adversarial counterpart. The result shows that the RNN
model (without the adversarial counterpart) performed better than the GAN model due
to the difficulty that involves training and tuning GAN models.

Acknowledgements

I would like to thank both of my supervisors. Kuo-Yun Liang from Scania, who offered me this
opportunity to work on this thesis and for being very accommodating to my working schedule
and providing me with technical support and continuous help through out the thesis. Joel
Oskarsson from LiU, who helped me to deliver a better thesis with his continuous feedback,
comments and guidance.

Thanks to my examiner Johan Alenlöv and my opponent Syeda Shazmeen for the valuable
comments and insight on this thesis.

I am thankful to my colleague Mohsen Pirmoradiyan, who has been a great friend and kept
me motivated through out this master program making this journey more enjoyable.

I would also like to thank my wife and son for being very supportive and considerate
throughout the whole master program. Lastly, my ultimate gratitude to my parents for all
the sacrifices they made for me to get to this point.

Linköping, December 2021
Ahmed Alhasan

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 3
1.3 Research questions . 3

2 Theory 4
2.1 Spatio-Temporal Data . 4
2.2 Generative Models . 5
2.3 Neural Networks . 5

2.3.1 Training . 6
2.3.2 Activation Functions . 7
2.3.3 Optimizers . 7

2.4 Recurrent Neural Networks . 8
2.4.1 LSTM . 9
2.4.2 Bidirectional LSTM . 10

2.5 Generative Adversarial Networks . 11
2.5.1 Training . 11

2.6 Evaluation . 13
2.6.1 Maximum Mean Discrepancy . 14

2.7 Related Work . 14

3 Method 17
3.1 Data Pre-Processing . 17
3.2 Baseline Model . 19
3.3 Main Model . 20
3.4 Evaluation . 22

4 Results and Discussion 23
4.1 Baseline Model . 23
4.2 GAN . 27

4.2.1 Hyperparameter Tuning . 27

v

4.2.2 Main Model . 30

5 Conclusion 34
5.1 Future work . 35
5.2 Social and Environmental Consideration . 35

Bibliography 37

vi

List of Figures

2.1 The structure of a neuron that first multiply the weights wk
ji with the output of

the neurons of the previous layer zk−1i , add the bias bkj , then sum over all the i’s,
i.e., all instances of training sample inputs or the outputs of the last layer. Lastly,
the output of this summation is then passed through an activation function ϕ to
produce zkj as an output of this neuron. 6

2.2 A diagram of a folded and unfolded RNN architecture, where the parameters are
the same at every time step. 9

2.3 Structure of an LSTM cell at time step t, illustrating the three gates (forget, input
and output) that control the flow of information. 10

2.4 Bidirectional LSTM, each layer consists of a forward pass and backward pass prop-
agating information in both directions . 11

2.5 General structure of a GAN, consisting mainly of two parts, a generator that usually
takes noise as input and a discriminator that takes the real data and the output of
the generator as inputs and classify them whether real or fake. Each part is updated
by descending the gradient of the cost function with respect to its parameters, i.e,
θD and θG. 12

3.1 Number of data points per trip . 18
3.2 Sample of 100 randomly selected sequences plotted over the map, each sequence

consists of 100 data points. 19

4.1 RNN training loss . 24
4.2 Real vs RNN generated sequences. Sample of 100 randomly selected sequences

drawn from the real sequences on the left and RNN generated sequences on the
right. Each generated sequence started from the same real starting point of the
corresponding real sequence. 24

4.3 RNN generated sequences vs their real counterparts. Sequences sampled from the
real data on the right and from RNN generated data on the left. Each generated
sequence started from the same real starting point of the corresponding real sequence. 25

4.4 RNN generated normalized latitude and longitude sequences against their real coun-
terparts. Each generated sequence start off from the first data point of the real
sequence. 26

4.5 MMD scores of RNN model, measuring the distance between distributions at each
time point between real data sequences and RNN generated sequences. MMD scores
are low at lower time indexes and increase rapidly once the generated sequences
starts to deviate from the real starting point. 26

vii

4.6 Data distribution of real and RNN generated sequences at selected time points.
MMD scores are higher when the distributions are less similar at higher time indexes. 27

4.7 GAN losses of hyperparameter tuning experiments. Experiments with low oscilla-
tions are less likely to produce realistic fake samples. 28

4.8 GAN accuracy of hyperparameter tuning experiments. Accuracy here is the per-
centage of fake sequences that are classified by the discriminator as real with prob-
ability higher than 0.5. 29

4.9 Training losses of the main model. Higher oscillations with lower loss values after
epoch 3000 give an indication of a better balance between the generator and the
discriminator. 30

4.10 GAN accuracy of the main model. Higher accuracies after epoch 3000 corresponds
to a better generated sequences. 30

4.11 Real vs GAN generated sequences. Sample of 100 randomly selected sequences
drawn from the real sequences on the left and GAN generated sequences on the
right. In this case the generated sequences did not start from a real data point. . . 31

4.12 Sample sequences generated by GAN. The generated sequences are not very realistic
and have random patterns. 31

4.13 GAN generated latitude and longitude sequences against real samples. In the GAN
model the sequences did not start from real starting points. GAN generated se-
quences are also more clustered in certain latitude and longitude ranges. 32

4.14 MMD scores of GAN model, measuring the distance between distributions at each
time point between real data sequences and RNN generated sequences. MMD scores
follows similar pattern to the latitude and longitude values of the generated data.
Given the clustered nature of the generated sequences around specific latitude and
longitude values and the more uniformly distributed real sequences, the distances
between data points in the two distributions will take a distinct shape similar the
values of the generated sequences. 32

4.15 Data distribution at selected time points. MMD scores are slightly lower in regions
where the generated data corresponds to another cluster of real data. 33

viii

List of Tables

3.1 Summary statistics of the filtered trips. distance_travled is the distance in kilo-
meters. trip_total_time is the time between the first and last data points in trip
in seconds. consecutive_avg_time is the average time between consecutive data
points in a trip in seconds. consecutive_max_time is the maximum time between
consecutive data points in seconds. trip_len is the number of data points in a trip. 18

3.2 Baseline model settings. Bi-d. refers to whether a Bidirectional LSTM is used
instead of Unidirectional LSTM. L.R. refers to Learning Rate of the the ADAM
optimizer. Params. refers to the number of trainable parameters in the model
(including the dense layer). The list under the Layers and Bi.d. columns refers
to the number layers and how many hidden units each layer has, in this case one
bidirectional LSTM layer with 40 hidden units . 20

3.3 Hyperparameter tuning settings . 21
3.4 Main model settings . 21

ix

1 Introduction

1.1 Motivation

Scania is one of the world’s leading manufacturers of trucks and buses for heavy transport, as
well as industrial and marine engines1. Transport and logistics services make up an increas-
ingly large part of the company’s business, ensuring cost-efficient transport solutions and high
availability for Scania’s customers.

In the Connectivity department within Scania’s R&D, new solutions for connected ve-
hicles are developed in an Internet-of-Things (IoT) platform, as part of Scania’s increasing
focus on communication services and intelligent transport solutions. Advanced data analytics
capabilities are a cornerstone of this development. With more than 400 thousand connected
vehicles1, it is important to maintain a historical trip data repository that helps benchmarking,
diagnostics, and building a constructive understanding of how these vehicles operate.

Synthetic data generation has become a very popular method in recent years to augment
and expand available data when there are limitations in acquiring new and accurate real data.
It is also a way to replace private data for model development or testing functionalities due to
General Data Protection Regulation (GDPR), which regulates data protection and privacy in
the European Union (EU) and the European Economic Area (EEA)2. Spatio-temporal data,
where geo-location and time come together, is sensitive as it can be traced back to an individual
and thus violates data privacy. Therefor, the ability to generate realistic spatio-temporal data
would be invaluable to Scania.

Spatio-temporal data differs from other types of data in that it has both spatial and tempo-
ral attributes. These attributes introduces additional challenges because of the measurement

1https://www.scania.com/group/en/home/about-scania/scania-in-brief/facts-and-figures.html, 2021, Dec.
2https://gdpr-info.eu/

1

1.1. Motivation

dependencies induced by the spatial and temporal dimensions [1]. Ignoring these dependencies
in data analysis can lead to poor accuracy and interpretability of results.

In the field of trajectory generation and mobility simulation, there has been many appli-
cations of generative modeling [2][3]. A major challenge with spatio-temporal data is that the
location has a physical context, i.e., generating a geo-location in the middle of the ocean is
not desirable unless there is a ferry route. In addition, spatio-temporal data comes with high
variations in volume that change over time, i.e., irregular. Moreover, it is inherently dynamic,
leading to complex correlations and autocorrelations that are difficult to capture by a simple
model and are strongly influenced by many external factors [4]. Furthermore, long-range de-
pendencies inherent to human mobility are challenging to capture with both discriminative
and generative models [2].

Generative models have been in existence for many decades with a wide range of models
[5]. In general, the objective of generative modeling is to learn the underlying probability
distribution of the training data, i.e., the generative model generates samples similar to the
training data distribution. Deep generative models specifically uses deep neural networks to
approximate this probability distribution utilizing a large number of samples.

Deep generative modeling has seen a lot of development in recent years with the advent
of deep generative architectures such as Variational Auto-Encoders (VAE) [6] and Generative
Adversarial Networks (GAN) [7]. In particular, GANs have a wide range of applications
for generating new synthetic data [8][9]. In the field of computer vision they have shown
remarkable success in generating realistic looking images [10][11].

GAN is a generative model trained to generate realistic synthetic data in an adversarial
manner. It consists of two components, a generator, and a discriminator. The generator
takes a random noise as input and tries to learn the data distribution and generate realistic
data, while the discriminator tries to validate whether the generated and real data are real or
not. GAN follows the concept of the zero-sum non-cooperative game, where the generator and
discriminator are trained to play against each other until they reach a Nash Equilibrium3. The
generator and discriminator of the first GAN architecture were constructed using dense layers.
Since then, however, different types of architectures have been developed for different purposes
[12]. Among such architectures is a GAN that is based on Recurrent Neural Networks (RNN)
[13][14]. RNN is another type of artificial neural networks that can be used as a standalone
generative model [15][16], or as part of a bigger architect GANs. RNN addresses the limitations
of the feed forward neural networks in dealing with temporal dependencies by passing memory
through internal states, which allows it to adapt the temporal dynamics of time series data.
In spatio-temporal data generation GANs can implicitly learn rich distributions with spatio-
temporal correlations and work with multi-modal outputs that are difficult to model with
explicit likelihood [4].

The evaluation of GANs on spatio-temporal data remains an unsolved problem. It is
neither practical nor appropriate to apply the traditional evaluation metrics for GAN on
spatio-temporal data [3]. One of the main challenges is the lack of quantitative methods to
evaluate the realistic nature of synthetic traces and the associated utility-privacy trade-off [2].

3https://en.wikipedia.org/wiki/Nash_equilibrium, 2021, Dec.

2

1.2. Aim

1.2 Aim

The main aim of this thesis is to use a deep generative model to generate realistic and diverse
synthetic spatio-temporal traces (trips). Such objective could be achieved by implicitly learn-
ing the geographical context and patterns of the spatio-temporal traces from the data in time
series representation.

Furthermore, the generative model once trained should not rely on the training data for
generating new samples, for example conditioning on actual data would result in a generator
that still uses sensitive training data that is GDPR protected, which is not desired.

1.3 Research questions

1. How well does an RNN based GAN generates realistic synthetic data that has a distri-
bution similar to the original data distribution?

2. How does an RNN based GAN compares to a standalone RNN network without an
adversary discriminator?

3. What are the suitable evaluation methods to measure the model performance?

3

2 Theory

2.1 Spatio-Temporal Data

Spatio-temporal data is data that have both space and time components [17]. The existence
of time and space introduces a variety of data types differing in the representation of space
and time [3][1]. Hence, it is important to establish what type of data representation should be
used to effectively model it. Gao et al. in their survey in 2021 described four common types
of spatio-temporal data [3]:

• Time Series

• Trajectory Data

• Spatio-temporal Events

• Spatio-temporal Graphs

Time series can be represented as a sequence of data points listed in an order of time. Sim-
ilarly, trajectory data represents the recordings of locations of a moving object at certain times
and can be denoted as a sequence of location coordinates in time [3]. Time series represents a
much wider concept as compared to trajectories, and do not assume anything about the val-
ues the series takes between samples [18]. Trajectories represent the assumption of continuity.
Therefore, a trajectory computing algorithm will not only model the sampled points, instead it
needs to model the interpolation of the samples. Thus, working with trajectory representation
requires more care towards interpolation. Pre-processing methods like Map Matching, a pro-
cess that converts geo-spatial coordinates to a sequence of road segments, are normally used
to solve such issues associated with data sparsity and uncertainty [19]. Therefore, working
with trip data in a time series format requires less intensive pre-processing and only simpler
interpolation methods are used.

4

2.2. Generative Models

On the other hand, spatio-temporal events are represented as a tuple of temporal, spatial
information as well as an additional observed value [20]. Location in spatio-temporal events
is normally recorded in three dimensions with altitude or depth as the third dimension. It
usually used to model data like taxi demand or forest fires as example. Finally, a sequence of
spatio-temporal data can be represented as a set of graphs where each graph consist of vertices,
edges and weights that evolves over time [3]. This representation is normally used when we
want to model the road network as a graph. In the generative modeling settings we want to
learn underlying distribution of the data on the road network as a graph so the generated
nodes and edges will represent the new synthetic trips but this is not flexible enough for large
maps and it require more pre-processing to get graphs from trip data.

2.2 Generative Models

In probabilistic discriminative modeling, if we have two variables x and y as the independent
and target variable respectively, the discriminative model only learns the conditional probabil-
ity p(y∣x). Whereas the generative model can learn the underlying distribution of both x and y

happening together explicitly, i.e., p(x, y). Discriminative models does not care about how the
data is generated, they simply estimate the parameters of the conditional distribution p(y∣x).
In a probabilistic generative model, we treat the observations as samples from a distribution
p(x) and by learning the joint distribution p(x, y) we can sample from x using the posterior
distribution p(x∣y). This can be done by applying Bayes rule,

p(x∣y) = p(y∣x) p(x)
p(y)

.

Probabilistic generative models can be categorized into prescribed models and implicit
models [21]. Where prescribed models define explicit density function p(x, θ) specifying the
likelihood of the data with parameters θ. Implicit models on the other hand are defined through
sampling process that transform latent variable z with distribution p(z) through some mapping
function to another distribution p(x). To find the maximum likelihood of such models it is
necessary to make either variational approximations or Monte Carlo approximations (or both)
[8]. Some of these implicit models that offer the ability to sample from the distribution do
so using a Markov Chain; the model defines a way to stochastically transform an existing
sample in order to obtain another sample from the same distribution. On the other hand,
using explicit models it is challenging to capture complex distributions while still maintaining
computational tractability.

With the advent of deep learning in recent years, deep generative models emerged utilizing
deep neural networks in generative modeling. One of the advantages of deep neural networks
is learning new hidden features that are more compact and capture the essence of the data.
Examples of the most popular deep generative models are fully visible belief networks, VAE,
and GANs [8].

2.3 Neural Networks

The perceptron, is one of the earliest versions and the simplest form of the current neural
networks. It was developed by Frank Rosenblatt in 1958 based on work done by Warren

5

2.3. Neural Networks

McCulloch and Walter Pitts in the 1940’s in an attempt to model the biological brain [22][23].
A neural network is made of input and output layers and an arbitrary amount layers in between
called hidden layers. Each layer consist of simple computational units called neurons, which
are connected to the neurons of preceding and succeeding layers through weighted connections.

The goal of a neural network is to approximate some function y = f(x, θ) such as

y = f(
M

∑
j=1

wjϕj(x)),

where f(.) is a nonlinear activation function in the case of classification and the identity in
the case of regression, M is the number of hidden units in a layer, and ϕj are non-linear basis
functions that approximate y along with the coefficients wj . The output of each neuron is
calculated using

zkj = ϕ(
D

∑
i=1

wk
jiz

k−1
i + bkj),

where D is the number of neurons from the previous layer, and wk
ji, b

k
j are the weights and

biases for layer k ∈ {1, ...,K}, and in the case of the first layer, zk−1i will be equal to xi and
D will be equal to the number of samples. These transformations can be combined multiple
times over an arbitrary number of layers. The structure of a neuron is illustrated in figure 2.1.

Figure 2.1: The structure of a neuron that first multiply the weights wk
ji with the output of the

neurons of the previous layer zk−1i , add the bias bkj , then sum over all the i’s, i.e., all instances
of training sample inputs or the outputs of the last layer. Lastly, the output of this summation
is then passed through an activation function ϕ to produce zkj as an output of this neuron.

2.3.1 Training

In order to fit a neural network to solve a specific problem it involves finding the set of network
parameters that provides the least error possible. Such error is defined by a loss function, and
by iteratively updating θ to minimize the loss we can reach the set of parameters θ that give
the network the best performance.

6

2.3. Neural Networks

In regression, one of the common cost functions is the Mean Squared Error (MSE),

MSE(θ) = 1

N

N

∑
i=1
(fi(xi, θ) − yi)

2

,

where N is the number of training data instances.

In binary classification, Binary Cross Entropy (BCE) is normally used,

BCE(θ) = −
N

∑
i=1

yi ⋅ log (fi(xi, θ)) + (1 − yi) ⋅ log (1 − fi(xi, θ)).

To minimize the loss function, the gradient is calculated with respect to θ at each iteration,
and step towards the value that minimize the loss. The parameters will be updated in the
following way,

θt+1 = θt − γ∇θL(θt),

where γ is the learning rate that determines the step size at each iteration while moving toward
a minimum.

For large training data, allocating enough memory for all the data becomes expensive; there-
fore, another algorithm called stochastic gradient descent is used which updates the weights
using a single sample or mini batch of several samples selected at random.

2.3.2 Activation Functions

Activation functions are important because they allow neural networks to approximate complex
functions [24]. Logistic and hyperbolic tangent activation functions are some of the most
common activation functions used with RNNs. Logistic activation function or ”Sigmoid” is
defined as,

σ(x) = 1

1 + e−x
, where σ ∶ R→ [0,1].

An advantage of using the sigmoid function is having a smooth derivative and that is easy
to calculate. The hyperbolic tangent activation function tanh is very similar to the sigmoid
activation function it only maps the input to an output in the interval [−1,1]. tanh is defined
as,

tanh(x) = ex − e−x

ex + e−x
.

2.3.3 Optimizers

In order to minimize the loss function, the optimizer searches through a space of possible can-
didate solutions, i.e., it finds minθ∈ΘL(θ), where Θ is a large set of possible θ’s and L is the
loss function. In other words, the goal of an optimizer is to find the set of parameters θ that
minimizes the loss function L. Gradient descent is one of the most popular optimization algo-
rithms used when training neural networks [25]. There are three variants of gradient descent
differing in how much data is used to compute the gradient of the objective function. These
variants are batch gradient descent, mini-batch gradient descent and stochastic gradient de-
scent. Batch gradient descent computes the gradient of the loss function w.r.t. the parameters

7

2.4. Recurrent Neural Networks

θ on the entire dataset. However, it is often there is not enough memory that can handle all
the training data. Moreover, in batch gradient descent redundant computations are performed
by recomputing gradients for similar examples before each parameter update since it had to
go through all the dataset before the next iteration. Mini-batch gradient descent computes
the gradient on only a portion of the training dataset, while stochastic gradient descent does
that on a single sample of the data. The updating formula for mini-batch gradient descent is,

θt+1 = θt − γ∇θtL(θt, xi∶i+k, yi∶i+k),

where k is the number of data points used to calculate the gradient.

One of the well known gradient descent algorithms is Adaptive Moment Estimation, Adam
[25]. It computes adaptive learning rates for each parameter. For calculating the gradient,
Adam stores an exponentially decaying average of past squared gradients vt and an exponen-
tially decaying average of past gradients mt as,

mt = β1mt−1 + (1 − β1) ⋅ ∇θtL(θt, xi∶i+k, yi∶i+k),

vt = β2vt−1 + (1 − β2) ⋅ (∇θtL(θt, xi∶i+k, yi∶i+k))2,

where mt and vt are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively, β1 and β2 are the decay rates for these
moments accordingly. As mt and vt are initialized as vectors of 0’s, the authors of Adam
observe that they are biased towards zero, especially during the initial time steps, and especially
when the decay rates are small (i.e. β1 and β2 are close to 1) [25]. The momentum terms are
bias-corrected by calculating them using,

m̂t =
mt

1 − βt
1

,

v̂t =
vt

1 − βt
2

,

the gradient is updates as,
θt+1 = θt −

γ√
v̂t + ϵ

m̂t,

where γ is the learning rate and ϵ is a very small number to prevent any division by zero
(usually on the order of 1e−8).

2.4 Recurrent Neural Networks

RNN is a class of neural networks for processing sequential data first introduced by Rumelhart
et al. in 1986 [26]. It has been successfully applied into applications with sequential data
like, text, video and speech [27]. RNN inherits the flexibility of standard neural networks
as universal function approximator. However, it is unlike standard neural networks utilizes
a property called parameter sharing that shares the learned parameters across different time
steps [24]. This gives RNN two advantages, it can be applied to sequences of different lengths
and it make it possible to use the same transition function with the same parameters at every
time step.

8

2.4. Recurrent Neural Networks

Given a sequence of inputs (x1, x2, ..., xT), the forward pass of unfolded RNN can be
represented by the following set of equations,

ht = tanh(Whhht−1 +Wxhxt + bh),

yt = σ(Whyht + by),

where tanh and sigmoid σ are the recurrent activation function, Whh is the hidden-to-hidden
weight matrix, and Wxh is the input-to-hidden weight matrix, Why is the hidden-to-output
weight matrix , bh is the bias used for the hidden variable h and by is the bias used for the
output y. Figure 2.2 illustrates the forward pass of an unfolded RNN.

Figure 2.2: A diagram of a folded and unfolded RNN architecture, where the parameters are
the same at every time step.

One of the common issues that RNN networks and auto-regressive generative models in
general suffer from is exposure bias [28]. Which occurs when the model uses only real data
at training time but generated data at test time. This will cause the generated samples to
deviate from a realistic paths with longer sequences which is a result of the errors made when
generating next data point will quickly accumulate.

2.4.1 LSTM

One of the issues with simple RNN networks is that they are not able to propagate information
through long sequences due to vanishing and exploding gradients [15]. A more complicated
architecture designed by Hochreiter and Schmidhuber in 1997 called Long Short Term Memory
(LSTM) to be better at storing and accessing information than standard RNNs [29].

A standard RNN has a simple unfolded architecture consisting of a single activation layer.
On the other hand, LSTM comes with multiple neural network layers acting as gates and
introduces the cell state in addition to the existing hidden states. Figure 2.3 shows the structure
of a standard LSTM architecture:

Cell states c act as long term memory holders by regulating what information should be
kept and what should be forgotten. The forget gate layer is the first layer from the left which
takes in the previous hidden state ht−1 and the current observation xt concatenated together
as input and applies a sigmoid function σ to it to return a value between 0 and 1 for each
number at Ct−1 and that will determine what to forget from the cell state,

ft = σ(Wf ⋅ [ht−1, xt] + bf),

where Wf and bf are the weights and biases of the forget gate.

9

2.4. Recurrent Neural Networks

Figure 2.3: Structure of an LSTM cell at time step t, illustrating the three gates (forget, input
and output) that control the flow of information.

The next two layers are a sigmoid layer which act as input gate and decides which values
to update, and a tanh layer that creates a vector of new candidates that could be added to
the cell state,

it = σ(Wi ⋅ [ht−1, xt] + bi)

C̃t = tanh(WC ⋅ [ht−1, xt] + bC),

where Wi and bi are the weights and biases of the input layer (the sigmoid layer), WC and bC

are the weights and biases of the update layer (the tanh layer), and C̃t is the new candidate
vector.

To update the old cell state Ct−1 the outputs of the first layer is multiplied component wise
and the output of the second and third layers is first multiplied together and then added to
the cell state. These operations happen in the following form,

Ct = ft ∗Ct−1 + it ∗ C̃t,

where ∗ refer to element wise multiplication.

The last step involves two more layers which will determine the output hidden state ht.
The first one of these two layers is a tanh layer that will map the values of the cell state to be
between -1 and 1, and a gate layer of a sigmoid function which decides what parts of the cell
state Ct will be outputted after it have been through the tanh layer,

ot = σ(Wo ⋅ [ht−1, xt] + bo),

ht = ot ∗ tanh(Ct),

here Wo and bo are the weights and biases associated with the sigmoid layer.

2.4.2 Bidirectional LSTM

Bidirectional RNN were first introduced by Schuster et al. in 1997 by training an RNN
simultaneously in positive and negative time direction [30]. Similarly LSTM can also used in

10

2.5. Generative Adversarial Networks

both directions. The forward unidirectional LSTM only preserve information of the past while
bidirectional LSTM will propagate information in both direction, one from the past to the
future and one from the future to the past. This can be done by using two memory states.
Figure 2.4 illustrates bidirectional LSTM.

Figure 2.4: Bidirectional LSTM, each layer consists of a forward pass and backward pass
propagating information in both directions

2.5 Generative Adversarial Networks

Generative adversarial networks are a subclass of generative models which consists of two
main parts, a generator and a discriminator that compete with each other in a zero-sum game.
The general objectives of the network is to generate new data samples that are similar to the
original data distribution. GAN were first introduced by Goodfellow et al. [7].

The generator G is a neural network that applies a deterministic transformation of the
distribution p(z) with the goal of matching the distribution p(x). While the discriminator D

is another neural network that takes the generated samples from G and the original samples
from p(x) and classify them whether they are real or fake. The structure of a GAN model is
illustrated in Figure 2.5.

2.5.1 Training

GANs are trained to solve a min-max problem [7]. In the first GAN proposed by Goodfellow
et al. the loss function that vanilla GAN aims to solve is in the following form,

min
G

max
D

V (D,G) = Ex∼pd(x)[log D(x)] + Ez∼pz(z)[1 − log D(G(z))],

where V (D,G) is objective value function. Maximizing w.r.t. D means that in the first term
we want high probabilities for detecting real data is real, and in the second term we want low
probability that fake data is real. On the other hand, minimizing G will have effect only on
the second term and means we want low probabilities for detecting fake data as fake, or in
other words we want the fake data to look real with high probability.

The discriminator is usually get updated by descending rather than ascending its stochastic
gradient by turning the sign to negative until it reaches a local or global minimum where it

11

2.5. Generative Adversarial Networks

does not have enough momentum to escape,

−∇θD

1

N

N

∑
i=1
[log D(xi) + log (1 −D(G(zi)))].

Similarly the generator is updated by descending its stochastic gradient,

∇θG

1

N

N

∑
i=1
[log (1 −D(G(zi)))],

here θG and θD are the parameters of the generator and discriminator networks respectively,
and N is the number of samples in the mini-batch at a given iteration.

Figure 2.5: General structure of a GAN, consisting mainly of two parts, a generator that
usually takes noise as input and a discriminator that takes the real data and the output of the
generator as inputs and classify them whether real or fake. Each part is updated by descending
the gradient of the cost function with respect to its parameters, i.e, θD and θG.

Despite the fact that GANs had a lot of success to produce good samples, training them
is not an easy task [31]. It requires finding a Nash equilibrium of a non-convex game with
continuous, high dimensional parameters. On the other hand, gradient descent optimization
methods are designed to find minimum values in a curve and when used to find a Nash
equilibrium they may fail to converge.

In the early stage of the learning, when the generator make new samples that are far
from the actual distribution, the discriminator can reject such samples with high probability
given they are clearly different from the actual data [7]. In such case, a Non-Saturating Loss
is used, where the generator is trained to maximize log D(G(z)) rather than minimizing
log (1 −D(G(z))) which tend to saturate. Changing the objective function for the generator
in this way provides much stronger gradients early in the learning process. The Non-Saturating
Loss is given in the following way,

−∇θG

1

N

N

∑
i=1
(1 − yi) ⋅ (log D(G(zi))),

where N is the number of sequences in the batch, yi is the class of the real sequences, i.e.
1 which means the class of fake sequences 1 − yi is 0, and zi is the noise vector. The Non-

12

2.6. Evaluation

Saturating Loss helps the generator to keep learning even if the discriminator successfully
rejects all generator samples [8].

One of the common scenarios when a GAN fails to converge is mode collapse, in which the
generator collapses too many values of z to the same value of x resulting with no diversity
in the generated samples [7][31]. One strategy to avoid mode collapse is to use mini-batch
discrimination by allowing the discriminator to look at multiple data examples in combination
rather than in isolation.

Another method that could help GANs to train better is to use one-sided label smoothing
[31]. It replaces the class values of 0 and 1 for the discriminator with smoothed probabilities,
like 0.9 or 0.1.

2.6 Evaluation

Since its inception in 2014, a wide range of evaluation metrics has been proposed to evaluate
the performance of GANs [32][33]. However, there is no one standardized evaluation metric
that captures the strengths and limitations of GANs.

Normally evaluation metrics are designed to capture either the qualitative or quantitative
properties of the generated data [33]. Both of these approaches have strengths and limitations.
Qualitative metrics normally favor models that focus on certain aspect of the data, for example:
over-fitting, low diversity, and mode dropping. On the other hand quantitative metrics, are less
subjective, and tend to focus on a variety of probability criteria and similarity measures. The
lack of meaningful distribution distance measures makes developing quantitative evaluation
metrics for GANs quite hard. As per Borji 2018 [33], an efficient GAN evaluation measure
should have several criteria, among them: being able to favor models that generate high fidelity
and diverse samples, and agree with human judgment.

Normally, for density estimation models log-likelihood (equivalently Kullback-Leibler di-
vergence) has been the de-facto standard for training and evaluating generative models [33]
[34]. However, for GANs the likelihood is computationally intractable, at least in the basic
version of GAN. Although, in such cases average log-likelihood (kernel density measure) can
be used, it is generally uninformative about the quality of the samples. In brief, kernel density
measure works by taking a finite set of samples generated by a model and then using those as
the centroids of a Gaussian mixture. Then the constructed mixture can be used to compute a
log-likelihood on a set of test samples.

The two most widely used GAN evaluation measures are Inception Score and Fréchet
Inception Distance [35]. However, they are mostly used in evaluating image generation and
rely on a pre-trained network (InceptionNet) trained on ImageNet.

In this thesis, Maximum Mean Discrepancy (MMD) is used for quantitative evaluation and
visual evaluation will be considered for qualitative evaluation.

13

2.7. Related Work

2.6.1 Maximum Mean Discrepancy

MMD is a kernel based statistical test used to compare two set of samples and find whether
they come from the same distribution [36]. It is the distance between features means of two
random variables X and Y after being mapped to another domain. It works by finding a
smooth function that have high values on samples drawn from p, and small values (as negative
as possible) on the samples drawn from q such as,

MMD2(p, q) = Ep[k(X,X)] − 2Ep,q[k(X,Y)] +Eq[k(Y,Y)].

When there is no access to the underlying distribution of our samples equation 2.16 can
be estimated in the following formula,

⋀

MMD2(p, q) = 1

M2

M

∑
i=1

M

∑
j≠i

k(xi, xj) − 2
1

M ⋅N

M

∑
i=1

N

∑
j≠i

k(xi, yj) +
1

N2

N

∑
i=1

N

∑
j≠i

k(yi, yj),

where M is the number of real samples, N is the number of the generated samples, and k is
the kernel function.

The quality of MMD depends on the choice of kernel that define it [36]. The kernel should
be ”rich enough” so that the population MMD vanishes if and only if p = q, and it should also
be consistent and ”restrictive enough” for the empirical estimate of MMD to converge quickly
to its expectation as the sample size increases. A common choice of kernel is the Gaussian
Radial Basis function (RBF) kernel which is in the following form,

k(xi, xj) = exp(
−∥xi − xj∥2

2σ2
),

where σ is the standard deviation of the kernel and also called the scale or the bandwidth.

One of the main advantages of MMD is it is easy to implement with rich kernel based theory
that makes a straight forward formal analysis [33][36]. It also has reasonable computational
cost in comparison with other two-sample evaluation methods: given M points sampled from
p and N from q, the cost is O(M ⋅N) time.

2.7 Related Work

Different methods have been researched to model transport mobility and spatio-temporal data.
The following are several of these methods.

Kim et al. in 2006 modeled the mobility of mobile users using Kalman filter [37]. Where
the user’s next destination is chosen based on the probabilities of movements between different
regions. For evaluation they used a relative error metric based on the number of visitors within
a given region in each hour of a workday. Their synthetic tracks achieved a median relative
error of 17%. The relative error calculated in the following way,

RelativeError = ∑
n
i=1 ∣ri − si∣
∑n

i=1 ri
,

where n is the number of hour-long bins, r the number of real visits and s the number of
synthetic visits.

14

2.7. Related Work

Wu et al. in 2017 designed two RNN based models that take advantage of the strength of
RNN to capture variable length sequence and meanwhile address the constraints of topological
structure on trajectory modeling [16]. Moreover, they modeled their data in spatio-temporal
graph representation. First model named Constrained State Space RNN which is an extension
of regular RNN by replacing the softmax function by state-constrained softmax that mask
illegal transitions between edges that are not connected. The other model named Latent
Prediction Information RNN consists of two phases. The first phase is a shared task layer
which encodes intermediate information for the next task. The second phase is to perform
the prediction by multiple individual tasks. These individual tasks incorporate the topological
constraints by predicting the distribution of next state within legal transition set. For evalu-
ation the used Negative Log Likelihood and Prediction Accuracy; however, these metrics are
more suitable for prediction rather than a generation problem.

Kulkarni et al. in 2017 presented a synthetic traffic generator that uses LSTM to synthesize
new trajectories from mobile GPS data [38]. In their model the coordinates are mapped on to
a grid which are then one hot encoded. In addition to that they extract movement properties
as features, like amplitude of movement which captures the difference between the minimum
and maximum magnitude of the movements, the auto-correlation length which captures the
periodicity, mean variance, etc. The extracted features and movement vectors are then fed as
inputs to the network to generate new trajectories with similar properties. Their evaluation
was based on matching accuracy of the generated traces to the road network with respect
to the number of trajectories and training epochs. They also validate by comparing the
extracted features of movement properties from synthetic trajectories with same of the original
trajectories.

Ouyang et al. in 2018 proposed a non-parametric generative model based on a GAN
which have both the generator and the discriminator constructed from Convolutional Neural
Networks layers [39]. The trajectories were transformed to grid representation which results in
a sparse matrix with a large volume. This resulted in generated trajectories that are of limited
accuracy since the precision level is determined by grid size. By using this model they solved
the problem with the parametric models that have it difficult to learn the joint probability
distribution of a long trajectory without making independence assumptions about location
visits. They also avoided the problem of ”Exposure Bias” where the generated samples might
deviate from a realistic path with longer sequences when RNN are used for training [28].
For evaluation they used different marginal distributions based on the probability of visiting
certain locations, then applied Jensen-Shannon Divergence to measure the distance between
the synthetic and the original distributions.

Song et al. in 2019 used a GAN model where pre-processed data is passed through four
layers of Convolutional Neural Networks before it enters the GAN to preserve positional in-
formation in the input matrices. Similarly, the output is passed again through another four
deconvolutional layers. However, no quantitative evaluation metrics were discussed in their
paper and only visual evaluation were used to demonstrate the results.

Working with time series only with no spatial component, Yoon et al. in 2019 proposed
TimeGAN for producing realistic multivariate time series, that preserve temporal dynamics
by combining the flexibility of the unsupervised GAN approach with the control afforded by

15

2.7. Related Work

supervised learning [13]. This is handled by introducing a step wise supervised loss using
the original data as supervision in addition to the unsupervised adversarial loss on both real
and synthetic sequences, thereby explicitly encouraging the model to capture the step wise
conditional distributions in the data [13]. For evaluation they used 2-layer LSTM to distinguish
between sequences whether they are real or fake then another RNN classifier is used to report
the classification error on a held-out test data.

Wang et al. in 2021 addressed some of the issues with previous models like being coarse
grained and not precise, they proposed a map-based Two-Stage GAN model to generate fine-
grained and plausible large-scale trajectories [40]. In the first stage, they fed discretized grid
trajectories as input to a modified deep convolutional generative adversarial network (DCGAN)
to learn the general pattern. In the second stage they used encoder-decoder network as a
generator to extract road information from the map image and then embed it into two parallel
LSTM networks to generate synthetic GPS point sequences. The discriminator is conditioned
on an encoded map image to help with restraining the generated point sequences in case they
deviate from the corresponding road network. Similar to Ouyang et al. they used Jensen-
Shannon Divergence to measure the distance of marginal distributions of synthetic and original
data for visiting certain locations. In addition to that they also used distribution of lengths,
i.e., driving time and geographic distance to measure the similarity.

16

3 Method

In this chapter, the methodology used to arrive to the thesis results are discussed. In section
3.1 the methods used to pre-process the data are presented. In section 3.2, the base line model
architecture, training setup and hyper-parameter selection are presented. Main model and
hyper-parameter tuning are presented in section 3.3. In section 3.4, evaluation metrics setup
is discussed.

3.1 Data Pre-Processing

The data used in this thesis is part of Scania’s Fleet Management System data (FMS). The raw
data contained the two main variables, the latitude and longitude as well as a timestamp that
is associated with each data point, vehicle ID and other meta data that will help in filtering
to more meaningful time series sequences. The first data point in the data is in 1st of January
2019 and last data point is in 7th of September 2020. The selected region is around Stockholm
between the coordinates 59.1-59.6 longitudes and 17.3-18.5 latitudes.

The vehicle traces that could span multiple days or weeks were broken down to shorter
trips such that if there is a gap in the vehicle trace longer than one hour it marks the end of
one trip and the start of a new one.

These trips are filtered in a way such that only trips that satisfy the following rules are
left:

• Have more than 100 data points.

• Have distance traveled more than 10 kilometers.

• Have average time between consecutive data points less than 20 minutes.

• Have maximum time between consecutive data points less than 1 hour.

17

3.1. Data Pre-Processing

Table 3.1: Summary statistics of the filtered trips. distance_travled is the distance in kilo-
meters. trip_total_time is the time between the first and last data points in trip in sec-
onds. consecutive_avg_time is the average time between consecutive data points in a trip
in seconds. consecutive_max_time is the maximum time between consecutive data points in
seconds. trip_len is the number of data points in a trip.

Table 3.1 shows the summary statistics of the filtered trips, and Figure 3.1 shows how
many data points each of the filtered trips has. Then each of these trips (11,557 trips) were
broken down to sequences of length equal to 100 data points, in this case the last sequence in
each trip if it is less than 100 data points it will be dropped. The result is an array of 28,897
sequences of equal lengths (100 data points) and 2 features (latitude and longitude). Figure
3.2 shows a sample of 100 sequences plotted over Stockholm region.

Figure 3.1: Number of data points per trip

The final step before feeding the data to the model is to normalize them using Min-Max
scalar. The edges of the selected region are used as min-max values. The Min-Max normal-
ization follows the following transformation,

x′itc =
xitc −min(xc)

max(xc) −min(xc)
,

where i ∈ {1, . . . ,N}, t ∈ {1, . . . , T}, c ∈ {latitude, longitude},

18

3.2. Baseline Model

Figure 3.2: Sample of 100 randomly selected sequences plotted over the map, each sequence
consists of 100 data points.

where x is a three dimensional array of the shape (number of sequences, sequence length,
number of features), x′ is the new scaled array, and min(x) and max(x) are the edges of the
selected region of Stockholm corresponding to (59.1, 17.3) and (59.6, 18.5) respectively. The
idea of normalization is that having two features with different scales will result in one of them
influence the other, hence having them on the same scale will prevent this.

However, the final data after pre-processing is still irregular, i.e. unevenly spaced in time.
Despite of the fact that there are multiple methods to solve the irregularity in times series
[41][42][43]. Such methods when applied in spatio-temporal context the resulted series will
contain interpolations that do not follow the road network. One of the other methods that
help with preparing spatio-temporal is Map Matching [19]. However, advanced methods such
as Map Matching is out of the scope of this thesis.

3.2 Baseline Model

The architecture of the baseline model is a single unidirectional LSTM layer with a dense
layer. The LSTM layer takes a 3D array as input of the shape (number of sequences in a
batch, sequence length, number of features which is two), and returns a sequence of hidden
states for each data point in the input sequence that is passed to the dense layer with two
neurons that applies the sigmoid function on the hidden states and give us the generated
sequence as in the following form,

yt = σ(Whyht + by),

where Why is the weight matrix between the LSTM layer and the dense layer, and by is the
bias vector.

The RNN was then trained for 100 epochs, where at each iteration the model takes one
batch of 1000 sequences from x0 to xT−1. Each batch is fed to a single unidirectional LSTM
layer of 40 hidden units and the resulted hidden states are then fed to the dense layer to
generate a sequences of similar length to the input sequences which then are passed to a sigmoid

19

3.3. Main Model

function that will return the corresponding prediction of the next time step, i.e. {x1,⋯, xT }.
In this process the information from x0 to xt−1 is passed through the hidden states ht−1 to
ht. At the end of each iteration the gradient of a mean squared loss is calculated w.r.t. the
parameters. An ADAM optimizer with learning rate equal to 0.001 is used to step through
gradient after each epoch towards the minimum. After the training is done the network will
have parameters that are ready to generate new sequences by the same concept of predicting
one step at a time.

Next for generating new sequences we take a random starting point from the original se-
quences. The reason for this is that if we generate the starting points from a fitted distribution
over the original starting points we might end up with starting points that are outside the
road network unless we have precisely define that distribution over the road network which
is outside the scope of this thesis. Once the starting points are randomly selected from the
original sequences then the generated sequence is formed one point at a time by predicting the
next point xt from all the previous points x0, . . . , xt−1. However, this means the information
between each prediction process to generate the next data point is not passed through a hid-
den state. Such propagation of information through hidden states only happens inside each
prediction process but not between processes. The architecture and parameters used for the
baseline model are shown in Table 3.2.

Model Layers Bi-d. L.R. Params.
RNN [40] [False] 0.001 6,962

Table 3.2: Baseline model settings. Bi-d. refers to whether a Bidirectional LSTM is used
instead of Unidirectional LSTM. L.R. refers to Learning Rate of the the ADAM optimizer.
Params. refers to the number of trainable parameters in the model (including the dense layer).
The list under the Layers and Bi.d. columns refers to the number layers and how many hidden
units each layer has, in this case one bidirectional LSTM layer with 40 hidden units

3.3 Main Model

The main model is a GAN made of two RNN networks that work as generator and discrim-
inator. Before deciding on the architecture and hyperparameters of the main model, hyper-
parameter tuning was used to select the optimal architecture and hyperparameters for the
model. For this purpose 24 experiments with different selection of hyperparameters were run
for 1000 epochs each to select the optimal hyperparameters for the main model as shown in
Table 3.3.

However, given the computational intensity of hyper-parameter tuning, it was not possible
to try out many combinations of hyperparameters. Moreover, a balance between the number of
training iterations and complexity and variety of the hyperparameter selection was needed to
accommodate for limitation in the computation resources. After the hyper-parameter tuning
there were no clear set of hyperparameters that can be considered as optimal. However, the
final model have been trained hyper-parameter as in Table 3.4.

The reason for this is because the results from the hyper-parameter tuning gave an indica-
tion that discriminator was not complex enough to properly classify into fake and real, and the
learning rates were adjusted to compensate for increase in the complexity of the discriminator.

20

3.3. Main Model

Exp. Generator Discriminator
Layers Bi-d. L.R. Params. Layers Bi-d. L.R. Params.

1

[40]

[True]
0.005

13,922

[20]

[True]
0.001

3,7212 0.001 0.0002
3 0.0005 0.0001
4

[False]
0.005

6,962 [False]
0.001

1,8615 0.001 0.0002
6 0.0005 0.0001
7

[True]
0.005

13,922

[10, 10]

[True, True]
0.001

3,5418 0.001 0.0002
9 0.0005 0.0001
10

[False]
0.005

6,962 [False, False]
0.001

1,37111 0.001 0.0002
12 0.0005 0.0001
13

[20, 10]

[True, True]
0.005

7,802

[20]

[True]
0.001

3,72114 0.001 0.0002
15 0.0005 0.0001
16

[False, False]
0.005

3,102 [False]
0.001

1,86117 0.001 0.0002
18 0.0005 0.0001
19

[True, True]
0.005

7,802

[10, 10]

[True, True]
0.001

3,54120 0.001 0.0002
21 0.0005 0.0001
22

[False, False]
0.005

3,102 [False, False]
0.001

1,37123 0.001 0.0002
24 0.0005 0.0001

Table 3.3: Hyperparameter tuning settings

Model Generator Discriminator
Layers Bi-d. L.R. Params. Layers Bi-d. L.R. Params.

GAN [30, 10] [True, True] 0.001 13,642 [30] [True] 0.0001 7,981

Table 3.4: Main model settings

The final model was trained for 10,000 epochs. The training loop for was that at each
iteration a 3D array of random noise is generated from a uniform distribution between 0 and
1 of similar dimension to the input batch of the real data which contain 1000 sequences. This
noise is fed to the generator to generate fake sequences and these sequences then fed to the
discriminator to calculate the loss and descend the generator gradient using the Non-Saturating
Loss.

Once a batch of fake sequences is generated the discriminator then takes the fake sequences
and a random batch of a shuffled real data and returns the probability of whether these se-
quences are fake or real. The discriminator gradient descend is then calculated in the following
form,

−∇θD

1

N

N

∑
i=1

0.9 ⋅ (yi) ⋅ log(D(xi)) + (1 − yi) ⋅ (1 − log D(G(zi))),

where 0.9 here is for one-sided label smoothing to reduce the vulnerability to adversarial
examples [31].

21

3.4. Evaluation

3.4 Evaluation

The evaluation was done in two parts. The first part is qualitative evaluation based on visually
plotting the generated sequences and comparing their authenticity to the real sequences. while
the second part is quantitative using MMD.

For visual evaluation, a sample of 1000 sequences was generated from both the fake data
and the real data. Then, these samples are plotted in different ways to show how they are
similar to each other. First method was to plot them against each other over a map of the
region of Stockholm to show if the generated sequences follow the same movement patterns as
the real sequences and whether they follow the road network or not. The second method was
to plot the distribution as scatter plot at certain time steps from both samples and see how
each sample evolved over time. Last method was to evaluate the performance of the GAN
model is by plotting a single sequence from the generated sequences on the map of Stockholm
after each epoch and see how the sequences evolve over time and see whether the model is
learning the geographical context from the data.

For quantitative evaluation using MMD a Gaussian kernel is used. The MMD compares
the distribution of the generated sequences against the real sequences at each time point. The
MMD score then compared against the second method of the visual evaluation, i.e. scatter
plot at certain time steps.

22

4 Results and Discussion

In this chapter the results of the models and experiments are presented and discussed. In
section 4.1, the baseline model is presented. In section 4.2, the main GAN model and the
hyper-parameter tuning experiments are discussed.

4.1 Baseline Model

The base line model have been trained for 100 epochs shows fast convergence to a low loss
value as shown in Figure 4.1. This can be explained by the fact that the generated sequences
have close data points to each other as shown in Figures 4.2 and 4.3, making the error or
distance between the predicted data point and the preceding data points smaller than the
distances between data points in the actual sequences. Normally, when working with spatial
data Average Displacement Error and Final Displacement Error are used instead of MSE,
however both of these metrics are best suited when predicting long sequences but in this case
we are only predicting one step at time which leads to the same measurement. Moreover,
the distances between data points could be better captured by Haversine Distance1, which
measures distances between two points on a sphere, even though the data is normalized.

The generated sequences from the base line model as shown in Figure 4.2, have a distri-
bution that is diverse enough with no signs of over-fitting the training data. This should be
expected since only the the first data point from the generated data was used when generating
new sequences. Figure 4.3 clearly shows that generated sequences tend to deviate from the
path of the real sequences with the corresponding starting point.

From visually inspecting different generated sequences they do not seem to show signs
that they follow the road network. However, in spatio-temporal settings this can be expected
given that there is no context or condition for the model to learn the underlying road network

1https://en.wikipedia.org/wiki/Haversine_formula, 2022, Jan.

23

4.1. Baseline Model

Figure 4.1: RNN training loss

Figure 4.2: Real vs RNN generated sequences. Sample of 100 randomly selected sequences
drawn from the real sequences on the left and RNN generated sequences on the right. Each
generated sequence started from the same real starting point of the corresponding real se-
quence.

except from learning it implicitly from the data. In Figure 4.4, where each generated sequence
originates from an initial point of a real sequence, we can see that the normalized latitude
and longitude of the generated sequences are mostly between 0.1 to 0.9 which similar to the
real sequences except that it less diverse and concentrated in smaller ranges once they deviate
enough from their starting points. This effect of deviating from the starting points is exposure
bias that has been referred to in Section 2.4.

Quantitative evaluation using MMD also shows the same behavior by starting at 0 at
the starting point and increasing rapidly after the first few points. This indicates that the
distribution of the generated sequences starting to get more distant from the real distribution
with increasing t as can been in Figure 4.5. When compared with Figure 4.4 we can notice
that MMD scores are the highest when the generated sequences are on latitudes and longitudes
that don’t have high representation in the real sequences such as distributions from time index
30 until the last time index.

Similarly we can see in Figure 4.6 the same kind of clustering of the generated sequences
the more we move away from the starting point. We can also see in the same figure that to
a great extent that higher MMD values corresponds to more distinct distributions. This gives
an indication that MMD is capturing the similarity between the two distributions. However,
it is hard to tell from MMD alone whether the generated distribution have a high diversity

24

4.1. Baseline Model

Figure 4.3: RNN generated sequences vs their real counterparts. Sequences sampled from the
real data on the right and from RNN generated data on the left. Each generated sequence
started from the same real starting point of the corresponding real sequence.

and fidelity. This is expected from MMD since it only measure the distance between the two
distributions.

Another aspect of the generated sequences is that they seem to converge to certain regions,
this can be observed in both Figure 4.2 and 4.6. This could be explained by the fact the state
space model, i.e. the hidden states of LSTM is converging to a steady state, which happens
when there is little change over time.

25

4.1. Baseline Model

Figure 4.4: RNN generated normalized latitude and longitude sequences against their real
counterparts. Each generated sequence start off from the first data point of the real sequence.

Figure 4.5: MMD scores of RNN model, measuring the distance between distributions at each
time point between real data sequences and RNN generated sequences. MMD scores are low
at lower time indexes and increase rapidly once the generated sequences starts to deviate from
the real starting point.

In general, the baseline model made from an RNN network is generating sequences that
have some diversity as can be seen in Figure 4.2 where the generated sequences span over
different areas of the selected region. The generated sequences also do not have high fidelity
given that they don’t follow the road network. However, they seems to be generated mostly
over land areas rather than lakes or sea which clearly can be seen in the west region of the
map. This indicates that the RNN is learning, to some extent, the underlining distribution of
the training data.

26

4.2. GAN

Figure 4.6: Data distribution of real and RNN generated sequences at selected time points.
MMD scores are higher when the distributions are less similar at higher time indexes.

4.2 GAN

As presented in section 3.3, the main model is made of a GAN with two RNN networks as
generator and discriminator. Before implementing the main model, hyper-parameter tuning
was carried out with 24 experiments to select the architecture and hyperparameters of the
main model.

4.2.1 Hyperparameter Tuning

Hyper-parameter tuning is used to try out different combinations of GAN architecture and
hyperparameters. It helped to explore how GAN works and what is the dynamics between
the generator and the discriminator. Eventually, it helped in identifying what is required for
the model generate better results. In Figure 4.7 and 4.8 we can see that there are several
experiments where the generator did not perform very well, i.e. large loss values and low
accuracy. Accuracy here is the percentage of fake sequences that are classified by the discrim-
inator as correct if they have more than 0.5 probability. However, with further inspection the
discriminator seems to have very low confidence of generated sequences as the probabilities of
the fake samples are slightly higher or lower than 0.5. This means at some iterations many of
the fake sequences have probability of being classified as real with probability slightly higher
than 0.5, and in other iterations most of the fake sequences have a probability a little less than
0.5. This means experiments with sharp oscillation in accuracy like exp. 11 and 15 are very
clear examples of this behavior. The discriminator could not classify with high probability
whether the sequences are generated from real or fake distribution. This indicates that the
discriminator in such cases is not powerful enough to distinguish between the real and fake
distributions.

In experiments with low accuracy over most epochs like exp. 12, the generator does not
seem to learn the real data distribution. However, in exp. 13 and 16 this effect is less visible
and can also be seen in the oscillation of the loss in Figure 4.7. In both experiments the
generator was made of two layers of (20, 10) hidden units and the discriminator of one layer of
[20] hidden units disregarding of whether they are bidirectional or not. The high oscillations
may argued to be attributed to the high learning rates, but in this case the same can not

27

4.2. GAN

Figure 4.7: GAN losses of hyperparameter tuning experiments. Experiments with low oscilla-
tions are less likely to produce realistic fake samples.

be said about other experiments with high learning rates as well, i.e., other experiments with
high learning rate does not have high oscillating accuracies.

28

4.2. GAN

Figure 4.8: GAN accuracy of hyperparameter tuning experiments. Accuracy here is the per-
centage of fake sequences that are classified by the discriminator as real with probability higher
than 0.5.

29

4.2. GAN

4.2.2 Main Model

Following the conclusion from the hyper-parameter tuning, the main model architecture was
made of a generator with two bidirectional LSTM layers with [30, 10] hidden units and a
discriminator with single bidirectional LSTM layer with [30] hidden units. This kept the
number trainable parameters in the generator on the higher range at 13,642 compared to
previous experiments, and increased parameters for the discriminator to 7,981, about double
the number of parameters in experiments with strong discriminator. The learning rates were
set to 0.001 for the generator and 0.0001 for the discriminator to allow the generator to learn
faster than the discriminator. The training data as shown in Section 3.1 had 28,897 sequences,
each with 100 data points.

In Figure 4.9 we can see that for the latter part of the training there are higher oscillations
with lower loss values for the generator, which can be an indication of a better balance between
the generator and discriminator. This also correspond to the oscillation in the number of fake
sequences classified as correct by the discriminator as can be seen in Figure 4.10.

Figure 4.9: Training losses of the main model. Higher oscillations with lower loss values after
epoch 3000 give an indication of a better balance between the generator and the discriminator.

Figure 4.10: GAN accuracy of the main model. Higher accuracies after epoch 3000 corresponds
to a better generated sequences.

The generated sequences from the main model as can been seen in Figure 4.11 and 4.12 are
much less diverse than the ones generated by the baseline model. Similarly, the fidelity of the
generated sequences are worse than the RNN samples and have a lot oscillation that does not
follow a specific path. While inspecting the behavior of the generated sequences over different

30

4.2. GAN

epochs, similar type of distribution found in Figure 4.11 are generated over different areas of
the Stockholm region. In many cases that was happening near the edges of the map. This
clearly indicates that the model did not learn the underlying true distribution, which can be
attributed to the fact that the generator and the discriminator are not reaching an equilibrium
at any giving point in the training.

Figure 4.11: Real vs GAN generated sequences. Sample of 100 randomly selected sequences
drawn from the real sequences on the left and GAN generated sequences on the right. In this
case the generated sequences did not start from a real data point.

Figure 4.12: Sample sequences generated by GAN. The generated sequences are not very
realistic and have random patterns.

In Figure 4.13, we can see the same cluster of sequences when plotted as in a time series
format of latitude and longitude. This could be seen as mode collapse but in such scenario
when mode collapse happens usually the model collapse to a sample from the real distribution
and generate very realistic samples similar to that real sample while the remaining generated

31

4.2. GAN

samples of poor quality. In this case the model doesn’t seem to generate such sample. Al-
though, in spatio-temporal settings achieving high fidelity is very difficult, i.e. generating a
sequence that follows the road network as a real sequence, it doesn’t seem to generate samples
that similar pattern to real sequences when looking to them as time series sequences as can
been seen Figure 4.13.

Figure 4.13: GAN generated latitude and longitude sequences against real samples. In the
GAN model the sequences did not start from real starting points. GAN generated sequences
are also more clustered in certain latitude and longitude ranges.

In Figure 4.14, the MMD scores for the generated sequences from the main model are much
higher than the ones generated from the RNN model. This is another indication that the GAN
generated sequences do not have a similar distribution to the real sequences. It can also be
noticed that MMD scores follows similar pattern to the latitude and longitude values of the
generated data as can be shown in Figure 4.13. Given the clustered nature of the generated
sequences around specific latitude and longitude values and the more uniformly distributed
real sequences, the distances between data points in the two distributions will take a distinct
shape similar the values of the generated sequences. In Figure 4.15, we can see that each time
step in all sequences seems to be concentrated in one region of the map.

Figure 4.14: MMD scores of GAN model, measuring the distance between distributions at
each time point between real data sequences and RNN generated sequences. MMD scores
follows similar pattern to the latitude and longitude values of the generated data. Given the
clustered nature of the generated sequences around specific latitude and longitude values and
the more uniformly distributed real sequences, the distances between data points in the two
distributions will take a distinct shape similar the values of the generated sequences.

32

4.2. GAN

Figure 4.15: Data distribution at selected time points. MMD scores are slightly lower in
regions where the generated data corresponds to another cluster of real data.

Overall, the main model generated sequences with poor quality, which have low diversity
as can be seen in Figure 4.11. The generated sequences were clustered in one area of the
region. They also did not have high fidelity when compared to real data or even with the RNN
generated sequences. This clearly indicates that the GAN model failed to learn the underlying
distribution, which can be attributed to the fact the generator and discriminator did not reach
a state of equilibrium where the generator make high quality samples and the discriminator
learned what a real sample should be look like.

33

5 Conclusion

In this thesis, we explored how effective a GAN model can generate synthetic data and com-
pared it to an RNN network. The thesis began by going through the theory of generative
models and neural networks, reviewing a quantitative evaluation metric, literature review,
and how we handled the data and the implementation of the models. However, the aim was
not try out advanced GAN architecture but rather to shed a light on how a basic GAN setup
geared towards time series data can learn the distribution of a transportation mobility data.
Answer to the research questions are presented below.

How well does an RNN based GAN generates realistic synthetic data that has a
distribution similar to the original data distribution?

As explored in the previous chapter, the performance of the GAN model was largely under-
whelming. Results from the main model did not have high quality. The diversity of the
generated sequences being very condensed in small area. The fidelity was not great either,
the generated samples did not follow the road network and had random patterns. However,
training GANs requires finding an equilibrium of a non-convex function with continuous, high
dimensional parameters [31]. Gradient descent methods normally are not designed to find
Nash equilibrium which cause GANs to fail to converge. Thus, finding an equilibrium between
a generator and a discriminator is very hard to balance. In most cases the there will be an
overbalance either to the generator or the discriminator, resulting with poor synthetic data.
Another possible reason for the poor performance in this thesis, was that due to computa-
tional limitation there was not enough exploration of different combinations of layers, hidden
units and hyperparameters. In general, the GAN model in this thesis failed to synthesis new
sequences that have a distribution similar to the original data distribution.

How does an RNN based GAN compares to a standalone RNN network without
an adversary discriminator?

34

5.1. Future work

The baseline model was a standalone RNN network without an adversarial discriminator.
When compared with the GAN model, the generated sequences had better quality with more
diversity and better fidelity. The generated samples from the baseline model were spanning
over almost all the land area of Stockholm region with relatively few data points that happen
to be in the lakes or sea. The patterns of generated sequences were also better than the ones
generated by the GAN. The reason for the better performance of the baseline model over
the main model is mostly because the RNN didn’t need to optimize for Nash equilibrium
which is hard to achieve and balance. Therefore, the baseline with choice of settings and
hyperparameters of both models had an overall better performance.

What are the suitable evaluation methods to measure the model performance?

In general, despite the wide range of evaluation metrics that has been proposed for GANs, there
has not been a standarized evaluation metric that captures the strengths and limitations of
GANs. Moreover, for spatio-temporal data it is even more difficult to capture the limitations
of GANs given the complex nature of the data. In this work MMD and visual evaluation
were used. As discussed in Section 2.6, the main advantages of using MMD is that it is easy
to implement and interpret and has reasonable computational cost. However, MMD is not
suitable to measure diversity or fidelity, and for this purpose visual evaluation is better suited
although it is subjective metric and have its limitation as well. In our analysis MMD for
the most part was correlated with visual evaluation, and using both methods it was easy to
evaluate the quality of the generated sequences.

5.1 Future work

Working with spatio-temporal data requires more adaptive models that can capture the geo-
graphic context of the data as well as the temporal dynamics. Using GANs that can capture
this context like CNN based GANs or conditional GAN that could take the road network of the
selected region as a condition will make the generated sequences more constrained to within
that conditioning. Such conditioning can take different forms such as conditioning on a map
that contains the road network or a representation of the road network such as Geohash1.

More tuning is also very important to help the model to reach more stable form especially
for finding a balance in the complexity of the generator and the discriminator. Additionally,
trying different loss functions could be also another viable option such as Wasserstein distance
[44].

5.2 Social and Environmental Consideration

Deep neural networks has become widely used in recent years with the development in compu-
tational power as well as the advancement in theory such GANs in 2014. However, despite all
the positive impact of such methods solving various problems, there are concerns toward their
social and environmental impact. Deep learning for example could affect privacy of people.
One of the applications of deep learning is Deepfake, which can create fake images and videos
that cannot be distinguished from real ones [45]. Moreover, deep learning models are becoming

1https://en.wikipedia.org/wiki/Geohash, 2022, Dec.

35

5.2. Social and Environmental Consideration

more ubiquitous and human beings are increasingly depending on them for their day to day
life. However, training deep learning models requires not negligible amount of energy, which
may contribute to global warming and climate change.

36

Bibliography

[1] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. “Spatio-Temporal Data Mining:
A Survey of Problems and Methods.” In: ACM Comput. Surv. 51.4 (Aug. 2018). issn:
0360-0300. doi: 10.1145/3161602. url: https://doi.org/10.1145/3161602.

[2] Vaibhav Kulkarni, Natasa Tagasovska, Thibault Vatter, and Benoı̂t Garbinato. “Gen-
erative Models for Simulating Mobility Trajectories.” In: CoRR abs/1811.12801 (2018).
arXiv: 1811.12801. url: http://arxiv.org/abs/1811.12801.

[3] Nan Gao, Hao Xue, Wei Shao, Sichen Zhao, Kyle Kai Qin, Arian Prabowo, Mohammad
Saiedur Rahaman, and Flora D. Salim. “Generative Adversarial Networks for Spatio-
temporal Data: A Survey.” In: CoRR abs/2008.08903 (2020). arXiv: 2008.08903. url:
https://arxiv.org/abs/2008.08903.

[4] Divya Saxena and Jiannong Cao. “D-GAN: Deep Generative Adversarial Nets for Spatio-
Temporal Prediction.” In: CoRR abs/1907.08556 (2019). arXiv: 1907.08556. url: http:
//arxiv.org/abs/1907.08556.

[5] Harshvardhan GM, Mahendra Kumar Gourisaria, Manjusha Pandey, and Siddharth
Swarup Rautaray. “A comprehensive survey and analysis of generative models in ma-
chine learning.” In: Computer Science Review 38 (2020). issn: 1574-0137. doi: https:
//doi.org/10.1016/j.cosrev.2020.100285.

[6] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes.” In: 2nd In-
ternational Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings. 2014. arXiv: http://arxiv.org/abs/
1312.6114v10 [stat.ML].

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets.”
In: Advances in Neural Information Processing Systems. Ed. by Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger. Vol. 27. Curran Asso-
ciates, Inc., 2014. url: https : / / proceedings . neurips . cc / paper / 2014 / file /
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

37

https://doi.org/10.1145/3161602
https://doi.org/10.1145/3161602
https://arxiv.org/abs/1811.12801
http://arxiv.org/abs/1811.12801
https://arxiv.org/abs/2008.08903
https://arxiv.org/abs/2008.08903
https://arxiv.org/abs/1907.08556
http://arxiv.org/abs/1907.08556
http://arxiv.org/abs/1907.08556
https://doi.org/https://doi.org/10.1016/j.cosrev.2020.100285
https://doi.org/https://doi.org/10.1016/j.cosrev.2020.100285
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Bibliography

[8] Ian J. Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks.” In: CoRR
abs/1701.00160 (2017). arXiv: 1701.00160. url: http://arxiv.org/abs/1701.00160.

[9] Abdul Jabbar, Xi Li, and Bourahla Omar. “A Survey on Generative Adversarial Net-
works: Variants, Applications, and Training.” In: ACM Comput. Surv. 54.8 (Oct. 2021).
issn: 0360-0300. doi: 10.1145/3463475. url: https://doi.org/10.1145/3463475.

[10] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Ale-
jandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wen-
zhe Shi. “Photo-Realistic Single Image Super-Resolution Using a Generative Adversar-
ial Network.” In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 105–114. doi: 10.1109/CVPR.2017.19.

[11] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. “ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.”
In: Computer Vision – ECCV 2018 Workshops. Ed. by Laura Leal-Taixé and Stefan Roth.
Cham: Springer International Publishing, 2019, pp. 63–79. isbn: 978-3-030-11021-5.

[12] Alceu Bissoto andEduardo Valle and Sandra Avila. “The Six Fronts of the Generative
Adversarial Networks.” In: CoRR abs/1910.13076 (2019). arXiv: 1910.13076. url: http:
//arxiv.org/abs/1910.13076.

[13] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. “Time-series Generative
Adversarial Networks.” In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett.
Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper/
2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.

[14] Olof Mogren. “C-RNN-GAN: A continuous recurrent neural network with adversarial
training.” In: Constructive Machine Learning Workshop (CML) at NIPS 2016. 2016,
p. 1.

[15] Alex Graves. “Generating Sequences With Recurrent Neural Networks.” In: CoRR
abs/1308.0850 (2013). arXiv: 1308.0850. url: http://arxiv.org/abs/1308.0850.

[16] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. “Modeling Trajec-
tories with Recurrent Neural Networks.” In: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-17. 2017, pp. 3083–3090. doi:
10.24963/ijcai.2017/430. url: https://doi.org/10.24963/ijcai.2017/430.

[17] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Tech-
niques. 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011. isbn:
0123814790.

[18] Martin Werner. Difference Between Trajectory Computing and Time Series Analytics.
July 2016. url: https://www.martinwerner.de/news/2016/07/05/difference-
between-trajectory-computing-and-time-series-analysis.html.

[19] Yu Zheng. “Trajectory Data Mining: An Overview.” In: ACM Trans. Intell. Syst. Technol.
6.3 (May 2015). issn: 2157-6904. doi: 10.1145/2743025. url: https://doi.org/10.
1145/2743025.

38

https://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
https://doi.org/10.1145/3463475
https://doi.org/10.1145/3463475
https://doi.org/10.1109/CVPR.2017.19
https://arxiv.org/abs/1910.13076
http://arxiv.org/abs/1910.13076
http://arxiv.org/abs/1910.13076
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://doi.org/10.24963/ijcai.2017/430
https://doi.org/10.24963/ijcai.2017/430
https://www.martinwerner.de/news/2016/07/05/difference-between-trajectory-computing-and-time-series-analysis.html
https://www.martinwerner.de/news/2016/07/05/difference-between-trajectory-computing-and-time-series-analysis.html
https://doi.org/10.1145/2743025
https://doi.org/10.1145/2743025
https://doi.org/10.1145/2743025

Bibliography

[20] Xuefei Li, Hongyun Cai, Zi Huang, Yang Yang, and Xiaofang Zhou. “Spatio-temporal
Event Modeling and Ranking.” In: Web Information Systems Engineering – WISE 2013.
Ed. by Xuemin Lin, Yannis Manolopoulos, Divesh Srivastava, and Guangyan Huang.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 361–374. isbn: 978-3-642-41154-
0.

[21] Shakir Mohamed and Balaji Lakshminarayanan. “Learning in Implicit Generative Mod-
els.” In: CoRR abs/1610.03483 (2016). arXiv: 1610.03483. url: http://arxiv.org/
abs/1610.03483.

[22] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity.” In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

[23] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and
Organization in The Brain.” In: Psychological Review (1958), pp. 65–386.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[25] Sebastian Ruder. “An overview of gradient descent optimization algorithms.” In: CoRR
abs/1609.04747 (2016). arXiv: 1609.04747. url: http://arxiv.org/abs/1609.04747.

[26] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning represen-
tations by back-propagating errors.” In: Nature 323 (1986), pp. 533–536.

[27] Atefeh Shahroudnejad. “A Survey on Understanding, Visualizations, and Explanation
of Deep Neural Networks.” In: CoRR abs/2102.01792 (2021). arXiv: 2102.01792. url:
https://arxiv.org/abs/2102.01792.

[28] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. “Sequence
Level Training with Recurrent Neural Networks.” In: 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Con-
ference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. url: http:
//arxiv.org/abs/1511.06732.

[29] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory.” In: Neural com-
putation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

[30] Mike Schuster and Kuldip Paliwal. “Bidirectional recurrent neural networks.” In: Signal
Processing, IEEE Transactions on 45 (Dec. 1997), pp. 2673–2681. doi: 10.1109/78.
650093.

[31] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. “Improved Techniques for Training GANs.” In: Advances in Neural Infor-
mation Processing Systems 29: Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona, Spain. Ed. by Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett. 2016,
pp. 2226–2234. url: https : / / proceedings . neurips . cc / paper / 2016 / hash /
8a3363abe792db2d8761d6403605aeb7-Abstract.html.

[32] Eoin Brophy, Zhengwei Wang, Qi She, and Tomás Ward. “Generative adversarial net-
works in time series: A survey and taxonomy.” In: CoRR abs/2107.11098 (2021). arXiv:
2107.11098. url: https://arxiv.org/abs/2107.11098.

39

https://arxiv.org/abs/1610.03483
http://arxiv.org/abs/1610.03483
http://arxiv.org/abs/1610.03483
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://arxiv.org/abs/2102.01792
https://arxiv.org/abs/2102.01792
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7-Abstract.html
https://arxiv.org/abs/2107.11098
https://arxiv.org/abs/2107.11098

Bibliography

[33] Ali Borji. “Pros and cons of GAN evaluation measures.” In: Comput. Vis. Image Underst.
179 (2019), pp. 41–65. doi: 10.1016/j.cviu.2018.10.009. url: https://doi.org/
10.1016/j.cviu.2018.10.009.

[34] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note on the evaluation
of generative models.” In: 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed.
by Yoshua Bengio and Yann LeCun. 2016. url: http://arxiv.org/abs/1511.01844.

[35] Ali Borji. “Pros and Cons of GAN Evaluation Measures: New Developments.” In: CoRR
abs/2103.09396 (2021). arXiv: 2103.09396. url: https://arxiv.org/abs/2103.09396.

[36] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and
Alexander J. Smola. “A Kernel Method for the Two-Sample-Problem.” In: Advances in
Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Confer-
ence on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 4-7, 2006. Ed. by Bernhard Schölkopf, John C. Platt, and Thomas Hofmann.
MIT Press, 2006, pp. 513–520. url: https://proceedings.neurips.cc/paper/2006/
hash/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Abstract.html.

[37] Minkyong Kim, David Kotz, and Songkuk Kim. “Extracting a Mobility Model from
Real User Traces.” In: INFOCOM 2006. 25th IEEE International Conference on Com-
puter Communications, Joint Conference of the IEEE Computer and Communications
Societies, 23-29 April 2006, Barcelona, Catalunya, Spain. IEEE, 2006. doi: 10.1109/
INFOCOM.2006.173. url: https://doi.org/10.1109/INFOCOM.2006.173.

[38] Vaibhav Kulkarni and Benoı̂t Garbinato. “Generating synthetic mobility traffic using
RNNs.” In: Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning
for Geographic Knowledge Discovery, GeoAI@SIGSPATIAL 2017, Redondo Beach, CA,
USA, November 7-10, 2017. Ed. by Huina Mao, Yingjie Hu, Bandana Kar, Song Gao,
and Grant McKenzie. ACM, 2017, pp. 1–4. doi: 10.1145/3149808.3149809. url:
https://doi.org/10.1145/3149808.3149809.

[39] Kun Ouyang, Reza Shokri, David S. Rosenblum, and Wenzhuo Yang. “A Non-Parametric
Generative Model for Human Trajectories.” In: Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org, 2018, pp. 3812–3817. doi: 10.24963/
ijcai.2018/530. url: https://doi.org/10.24963/ijcai.2018/530.

[40] Xingrui Wang, Xinyu Liu, Ziteng Lu, and Hanfang Yang. “Large Scale GPS Trajectory
Generation Using Map Based on Two Stage GAN.” In: Journal of Data Science 19.1
(2021), pp. 126–141. issn: 1680-743X. doi: 10.6339/21-JDS1004.

[41] Andreas Eckner. “A framework for the analysis of unevenly spaced
time series data.” In: Preprint. Available at: http://www. eckner.
com/papers/unevenly_spaced_time_series_analysis (2012), p. 93.

[42] Xi Wang and Chen Wang. Time Series Data Cleaning with Regular and Irregular Time
Intervals. 2020. arXiv: 2004.08284 [cs.DB].

40

https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1016/j.cviu.2018.10.009
http://arxiv.org/abs/1511.01844
https://arxiv.org/abs/2103.09396
https://arxiv.org/abs/2103.09396
https://proceedings.neurips.cc/paper/2006/hash/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Abstract.html
https://doi.org/10.1109/INFOCOM.2006.173
https://doi.org/10.1109/INFOCOM.2006.173
https://doi.org/10.1109/INFOCOM.2006.173
https://doi.org/10.1145/3149808.3149809
https://doi.org/10.1145/3149808.3149809
https://doi.org/10.24963/ijcai.2018/530
https://doi.org/10.24963/ijcai.2018/530
https://doi.org/10.24963/ijcai.2018/530
https://doi.org/10.6339/21-JDS1004
https://arxiv.org/abs/2004.08284

Bibliography

[43] Philip B. Weerakody, Kok Wai Wong, Guanjin Wang, and Wendell Ela. “A review of
irregular time series data handling with gated recurrent neural networks.” In: Neurocom-
puting 441 (2021), pp. 161–178. doi: 10.1016/j.neucom.2021.02.046. url: https:
//doi.org/10.1016/j.neucom.2021.02.046.

[44] Martı́n Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN.” In: CoRR
abs/1701.07875 (2017). arXiv: 1701.07875. url: http://arxiv.org/abs/1701.07875.

[45] Swathi P and Saritha Sk. “DeepFake Creation and Detection:A Survey.” In: 2021 Third
International Conference on Inventive Research in Computing Applications (ICIRCA).
2021, pp. 584–588. doi: 10.1109/ICIRCA51532.2021.9544522.

41

https://doi.org/10.1016/j.neucom.2021.02.046
https://doi.org/10.1016/j.neucom.2021.02.046
https://doi.org/10.1016/j.neucom.2021.02.046
https://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://doi.org/10.1109/ICIRCA51532.2021.9544522

	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Aim
	Research questions

	Theory
	Spatio-Temporal Data
	Generative Models
	Neural Networks
	Training
	Activation Functions
	Optimizers

	Recurrent Neural Networks
	LSTM
	Bidirectional LSTM

	Generative Adversarial Networks
	Training

	Evaluation
	Maximum Mean Discrepancy

	Related Work

	Method
	Data Pre-Processing
	Baseline Model
	Main Model
	Evaluation

	Results and Discussion
	Baseline Model
	GAN
	Hyperparameter Tuning
	Main Model

	Conclusion
	Future work
	Social and Environmental Consideration

	Bibliography

