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Abstract

In model predictive control an optimization problem is solved in every time step,
which in real-time applications has to be solved within a limited time frame.
When applied on embedded hardware in fast changing systems it is important
to use efficient solvers and crucial to guarantee that the optimization problem
can be solved within the time frame.

In this thesis a path following controller which follows a motion plan given by
a motion planner is implemented to steer a truck and trailer system. To solve
the optimization problems which in this thesis are quadratic programs the three
different solvers DAQP, qpOASES and OSQP are employed. The computational
time of the active-set solvers DAQP, qpOASES and the operator splitting solver
OSQP are compared, where the controller using DAQP was found the fastest
and therefore most suited to use in this application of real-time model predictive
control.

A certification framework for the active-set method is used to give complexity
guarantees on the controller using DAQP. The exact worst-case number of it-
erations when the truck and trailer system is following a straight path is pre-
sented. Furthermore, initial experiments show that given enough computational
time/power the exact iteration complexity can be determined for every possible
quadratic program that can appear in the controller.
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1
Introduction

1.1 Background and motivation

Model predictive control (MPC) is a powerful control strategy that can easily
handle multi-variable system while taking constraints of both system states and
control actions into account. Because of its strengths and conceptual simplicity
MPC has recently become a wide spread control strategy for complex systems
[16]. Also, recent developments in software and hardware has made it possible
to apply MPC on embedded hardware, for example in the automotive industry
[9, 10].

MPC uses a model of the system to predict future states. These predictions are
then used to compute an optimal control signal by solving an optimization prob-
lem, which in this thesis is a quadratic program(QP). This optimization problem
is solved in every time step and in real-time applications this optimization prob-
lem has to be solved within a limited time frame. When implementing the MPC
on embedded hardware the time frame in which the optimization problem can be
reasonably solved is highly dependant on the computational resources available.
Hence, to be able to solve the problem within the time frame, it is not only im-
portant to employ efficient solvers for the optimization but also critical to certify
that it is possible to solve the problem fast enough.

1.2 Problem formulation

In this thesis MPC will be applied to steer a truck and trailer system and the pur-
pose of this thesis is in three parts; implementation of a real-time MPC, applying
efficient QP solvers to solve the MPC problem and, finally, to give guarantees on

1



2 1 Introduction

Figure 1.1: Lego truck

the complexity of the QP problems.

The vehicle in which the MPC is applied is a LEGO-truck including onboard RPi
which will run the MPC and an onboard LEGO EV3 that runs the motor and low
level control of the wheels. The truck can be seen in Figure 1.1.

There exist several different methods and solvers suited for real time MPC, for
example active-set methods [2, 4, 11], interior point methods [12, 23] and gra-
dient projection methods [3, 18]. In this thesis the active-set solvers DAQP [2]
and qpOASES [11] together with the operator splitting method OSQP[22] will be
applied to solve the MPC problem.

For some interior-point and gradient-projection methods it is possible to get bounds
on the computational complexity [13, 19]. However in this thesis the certification
framework [1] will be used to guarantee the exact computational complexity of
the MPC using DAQP.

The investigations that will be performed in this thesis can be summarized with
the following questions.

• Can a real-time MPC be applied to control the the vehicle?

• Which of the solvers DAQP, qpOASES or OSQP are most suited for this
application of real time MPC?

• What is the guaranteed maximum computational complexity of the MPC?

1.3 Delimitations

The focus of this thesis is not to find the best performing MPC design or tuning.
Instead the focus is to apply and compare the performance of the three different
solvers when solving the MPC problem, while also guaranteeing the maximum
computational complexity of the MPC.
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1.4 System overview

There are three main modules which make up the autonomous vehicle system
considered in this thesis, the state estimation, path planning and path following
control. A system overview can be seen in Figure 1.2. The system is build with
the Robot Operating System (ROS) [21] and the modules are created using ROS-
nodes written in C++.

Path following controlller

Path planner

State estimation

Sensor information

Truck

Motion plan

Control signals

Truck states

Localization
Position

Truck states

Figure 1.2: System overview of the autonomous truck and trailer system

The module considered in this thesis is the path following controller (highlighted
in blue in Figure 1.2). The controller receives a motion plan from the path plan-
ner and the controller’s mission is to follow this plan. The path planner takes the
dynamics and constraints of the vehicle in consideration to produce a path that
is feasible for the vehicle to follow.

The motion plan consists of a sequence of desired states, xr , and controls, ur . That
is, the planner produces the optimal feed-forward steering angle of the vehicle,
taking the dynamics of the vehicle into account. Using the path and feed-forward
control, combined with the current state of the truck, the controller produces the
feedback control which stabilizes the vehicle around the path.

1.4.1 Path planner

How the planner creates this motion plan is not within the scope of this thesis
but some knowledge of how the planner works is needed to understand parts
of it. To learn more about the techniques used in the motion planner, see [14]
and [6]. The path planner uses a so-called lattice-planner. Given some goal, the
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lattice planner combines motion primitives to build the motion plan offline before
the vehicle is moving. However, when the vehicle starts moving and follows the
motion plan an improvement step is made to iteratively update and improve the
plan to the controller.

1.5 Outline

The outline of this thesis is

• Chapter 2 - Path following error model for a general 2-trailer with a car-
like tractor describes the vehicle and the path following error model used
in this thesis.

• Chapter 3 - Model predictive control gives an overview of the control
method used to control the vehicle.

• Chapter 4 - Quadratic programming discussed how QPs can be solved.

• Chapter 5 - Implementation takes the vehicle model and techniques pre-
sented in previous chapters and describes the implementation of the MPC
controller used to steer the vehicle.

• Chapter 6 - Results presents the tests and result of the developed con-
troller showing path-following performance, solution performance for the
QP solvers and finally the guaranteed complexity of the MPC.

• Chapter 7 - Conclusions presents future work and conclusions drawn from
the result.



2
Path following error model for a

general 2-trailer with a car-like tractor

This chapter presents the kinematic vehicle model of the truck and describes the
path following error model used to stabilize the vehicle around the planned path.

2.1 Vehicle model

The vehicle has three parts, the car-like tracktor, a dolly and a semitrailer. The
state vector x = [x3 y3 θ3 β3 β2]T is the representation of the configuration of
the vehicle. Where (x3, y3) is the position of the rear axle, θ3 is the orientation of
the trailer, β3 is the joint angle between the semitrailer and the dolly and β3 is
the joint angle between the dolly and the tractor. Finally the control is given by
u(t) = tan(α(t))

L1
, where α is the steering angle, see Figure 2.1.

Figure 2.1: Vehicle model

5



6 2 Path following error model for a general 2-trailer with a car-like tractor

There are four different parameters. L1, L2, L3 and M1, which describe the length
of the different parts of the vehicle and can be used to describe a variety of dif-
ferent 2-trailer vehicles, the specific values used for the vehicle in this thesis are
presented in Table 2.1.

Table 2.1: A description of the different vehicle parameters.

State Description Length [m]
L1 The length of the wheelbase of the truck. 0.19
L2 The length of the dolly. 0.135
L3 The length of the trailer. 0.3
M1 The length between the truck’s rear wheels and the dolly’s

off axle hitch connection.
0.05

A kinematic model which describes the vehicle during low-speed maneuvers, pre-
sented in [15], is given by

ẋ3 = v3 cos θ3 (2.1a)

ẏ3 = v3 sin θ3 (2.1b)

θ̇3 = v3
tan β3

L3
(2.1c)

β̇3 = v3

(
sin β2 −M1 cos β2u

L2C1 (β2, β3, u)
−

tan β3

L3

)
(2.1d)

β̇2 = v3

(
L2u − sin β2 + M1 cos β2u

L2C1 (β2, β3, u)

)
(2.1e)

where C1 (β2, β3, u) = cos β3(cos β2 + M1 sin β2u), which is used to describe the
relationship of the velocity of the semitrailers axle, v3 and the velocity of the
trackor, v, v3 = vC1 (β2, β3, u).

The model (2.1) assumes that the wheels roll without slipping and assumes that
the vehicle is driving on a flat surface.

The stability of the system is highly dependant on the direction of travel, that
is, if the vehicle is reversing (v < 0) or driving forward (v > 0). When reversing
the joint-angles kinematic are unstable and there is a high risk of jack-knifing [15],
which is when the tractor or dolly and the semitrailer fold over like a jack-knife.
Conversely the system is stable when driving forward.

In short the kinematic model is represented as

ẋ = v3f (x, u). (2.2)
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2.2 Path-following control

The objective of the path-following controller is to stabilize the vehicle around
the path computed by the motion planner. That is, given a path (xr (s), ur (s)), the
controller should minimize the path-following error x̃ = x(t)− xr (s(t)), where the
parameter s(t) is the progression along the path. The nominal path is the obtained
reference from the motion planner, which consists of a sequence of states xr (s)
and control inputs ur (s)

2.3 Path-following error model

In order to be able to minimize the path following error, a path following error
model is used. This section will present this model. For a derivation of the model
from (2.1) and details, see [15].

To describe the system as deviation from the nominal path an error state x̃ =
[z̃3 θ̃3 β̃3 β̃2]T is used. Given the path (xr (s), ur (s)), which can be seen as a se-
quence of nominal vehicle configurations, the error state is the errors of the vehi-
cle with respect to the corresponding nominal vehicle, see Figure 2.2.

The first state is the signed lateral distance z̃3. The orientation error of the trailer
is θ̃3 = θ3(t) − θ3r (s(t)). The joint angle error between the truck and dolly β̃2 =
β2(t)− β2r (s(t)) and β̃3 = β3(t)− β3r (s(t)) is the joint angle error between the dolly
and semitrailer. The control is defined as the curvature deviation ũ = u(t) −
ur (s(t)), where ur (s(t)) = tan(αr (s(t)))

L1
.

Figure 2.2: Nominal and perturbed vehicle configuration
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Now the deviation from the nominal path is modeled as

dz̃3

ds
= v̄3(1 − κ3r z̃3) tan(θ̃3) (2.3a)

dθ̃3

ds
= v̄3

(
(1 − z̃3κ3r )

tan (β̃3 + β3r )

L3 cos (θ̃3)
− κ3r

)
(2.3b)

dβ̃3

ds
=
v̄3(1 − κ3r z̃3)

cos (θ̃3)

sin (β̃2 + β2r ) −M1(ũ + uref ) cos (β̃2 + β2r )

C1L2
−

tan (β̃3 + β3r )
L3

 − dβ3r

ds

(2.3c)

dβ̃2

ds
=
v̄3(1 − κ3r z̃3)

cos (θ̃3)

 (L2 −M1)(ũ + uref ) cos (β̃2 + β2r ) + sin (β̃2 + β2r )

L2C1

 − dβ2r

ds
,

(2.3d)

where

κ3r =
tan(β3r )
L3

.

Here v̄3 = sign(v). Importantly the model (2.3) does not depend on the velocity
(assuming the velocity is constants).

In short the error model in (2.3) is represented as

dx̃
ds

= f̃ (x̃, ũ, s). (2.4)

2.4 Linearized model

In this thesis the control problem is an MPC problem that is converted into a QP
problem. To be able to do the conversion into a QP problem the model needs to
be linear. The path-following error model (2.3) is therefore linearized around the
origin (x̃, ũ) = (0, 0), giving the linear system

dx̃
ds

= A(s)x̃ + B(s)ũ, (2.5)

with the reference-dependant matrices

A(s) =
∂f̃ (0, 0, s)

∂x̃
= v̄3


0 1 0 0
a21 0 a23 0
a31 0 a33 a34
a41 0 a43 a44

 , B(s) =
∂f̃ (0, 0, s)

∂ũ
= v̄3


0
0
b3
b4

 . (2.6)
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The matrix coefficients are given by

a21 =
tan2 β3r

L2
3

(2.7a)

a23 =
1

(L3 cos2(β3r )
(2.7b)

a31 =
(tan β3r )(urM1 cos β3r − sin β3r )

L3L2 cos β3r (cos β3r + urM1 sin β3r )
+

tan2 β3r

L2
3

(2.7c)

a33 =
(sin β3r )(sin β3r ) − urM1 cos β3r ))

(L2 cos(β3r )2(cos(β3r ) + urM1 sin(β3r )))
− 1
L3 cos(β3r )2 (2.7d)

a34 =
1 + u2

rM
2
1

L2 cos(β3r )(cos(β3r ) + urM1 sin(β3r ))2 (2.7e)

a41 = −
tan(β3r )
L3L2

(urL2 − sin(β3r ) + M1 cos(β3rur ))
(cos(β3r )(cos(β3r ) + M1ur sin(β3r )))

(2.7f)

a43 =
tan(β3r )
L2

(urL2 + urM1 cos(β3r ) − sin(β3r ))
cos(β3r )(cos(β3r ) + M1ur sin(β3r ))

(2.7g)

a44 =
−(1 + u2

rM
2
1 + u2

r )L2M1 cos(β3r ) − urL2 sin(β3r )
L2 cos(β3r )(cos(β3r ) + urM1sin(β3r ))2 (2.7h)

b3 = − M1

L2 cos (β3r ) (M1ur sin (β2r ) + cos (β2r ))
2 (2.7i)

b4 =
L2 cos (β2r ) + M1

L2 cos (β3r ) (M1ur sin (β2r ) + cos (β2r ))
2 . (2.7j)

The MPC formulation that we will consider also requires discrete system dynam-
ics. Therefore the linear system matrices are discretized through Euler forward
approximation

Fk = I + ∆sAk (2.8a)

Gk = ∆sBk . (2.8b)

The discrete time dynamics of the vehicle is now given by

x̃k+1 = Fk x̃k + Gk ũk . (2.9)

The dynamics can be used iteratively to describe any state

x̃1 = F0x̃0 + G0ũ0

x̃2 = F1x̃1 + G1ũ1 = F1F0x̃0 + F1G0ũ0 + G1ũ1

...

x̃k =
k−1∏
i=0

Fi x̃0 +
k−1∑
j=0

k−1−j∏
i=0

FiGj ũj
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To describe all states in a more condensed way the states and controls are stacked
into vectors

x̃ =


x̃0
x̃1
...
x̃N

 , ũ =


ũ0
ũ1
...

ũN−1

 . (2.10)

Now the controls can be used to express the states in matrix form.

x̃ = Fx̃0 + Gũ (2.11)

with the matrices

F =



I
F0
F1F0
F2F1F0

...
FN−1 . . . F1F0


,G =



0 0 . . . 0
G0 0 . . . 0
F1G0 G1 . . . 0
...

...
. . .

FN−1 . . . F0 G0 FN−2 . . . F0 G1 . . . GN−1


. (2.12)

In Chapter 3 these matrices will be used to create a quadratic program from the
MPC problem.

2.4.1 Straight-path linear model

A special case of (2.6) is the straight-path reference configuration, that is, when
β3,r = 0, β2,r = 0 and ur = 0. The linear model matrices are then given by

A = v̄3


0 1 0 0
0 0 1

L3
0

0 0 − 1
L3

1
L2

0 0 0 − 1
L2

 , B = v̄3


0
0
−M1
L2

L2+M1
L2

 , v̄3 ∈ {−1, 1}. (2.13)

Now, the discrete model matrices are constant

F = I + ∆sA (2.14a)

G = ∆sB (2.14b)

and we get the dynamics

x̃k+1 = Fx̃k + Gũk . (2.15)

Again, using the linear model recursively the state at time step k can be expressed
as

x̃k = Fk x̃0 +
k−1∑
i=0

Fk−1−iGũi . (2.16)
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Now the matrices in (2.12) are instead

F =



I
F
F2

...
FN


,G =



0 0 . . . 0
G 0 . . . 0
F G G . . . 0
...

. . .
FN−1 G FN−2 G . . . G


. (2.17)

Note that F and G are constant, which is of significance since they only have to be
calculated once. In contrast to (2.12) which depends on the reference and, hence,
needs to be computed at each time-step.





3
Model Predictive Control

The control strategy used in this thesis is model predictive control (MPC). As the
name suggests, the core of MPC is to use a model to predict the future states of
the system and thereafter choose the control. MPC is an optimal control strat-
egy where the control is the solution to an optimization problem. This chapter
introduces optimal control, presents the control strategy used in this thesis (dis-
crete linear model predictive control) and concludes with showing how the MPC
formulation can be cast as a quadratic program.

3.1 Optimal control

Often in practice, as is the case in this thesis, the states of a system is constrained
by the system dynamics. Moreover the controls can not be chosen freely when
the system states and control actions are constrained. Optimal control is a con-
trol strategy where the system dynamics, together with the state and control con-
straints, can be taken into consideration to produce an optimal control action, in
some sense.

With the discrete time dynamics

xk+1 = fd(xk , uk), (3.1)

and the constraints of the states and controls,

u ∈ U, x ∈ X. (3.2)

13



14 3 Model Predictive Control

The discrete time optimal control problem is

min
x,u

V (x,u) = VN (xN ) +
N−1∑
k=0

l(xk , uk) (3.3a)

subject to xk+1 = fd(xk , uk), k = 0, ..., N − 1 (3.3b)

uk ∈ U, k = 0, ..., N − 1 (3.3c)

xk ∈ X, k = 1, ..., N (3.3d)

x0 = x. (3.3e)

Hence, the objective is to minimize the so-called objective function V (x,u) with
the state and control sequences x and u. Choosing the objective function is the
users way of defining what states and controls are desirable. V (x,u) is also known
as the cost function and as often done in practice the cost function in decomposed
into a terminal cost VN (xN ) and a stage cost l(xk , uk). The integer N is called the
prediction horizon which is a design variable that decides how many steps into the
future the states are predicted.

3.2 Linear MPC

In this thesis an optimal control problem (OCP) in the form of (3.3a) is solved
in every time instance. After the optimal control problem is solved only the first
control u0 in the sequence u is used as the control action. By recurrently solving
the OCP, consequences beyond the horizon can be accounted for in later itera-
tions. Secondly, model errors or disturbances can lead to deviations from the
desired state trajectory, which can be counteracted when re-solving the OCP and
the control is recomputed, leading to robust feedback behaviour. This strategy is
what makes MPC powerful.

The focus of this thesis is to use linear discrete time dynamics.

xk+1 = fd(xk , uk) = Fxk + Guk , F ∈ Rnx×nx and G ∈ Rnx×nu . (3.4)

A common way to design the cost function is to use a quadratic cost [7]. That is

VN (xN ) = ||xN ||PN = xTN PN xN , (3.5a)

l(xk , uk) = ||xk ||2Q + ||uk ||2R = xTk Qxk + uTk Ruk , (3.5b)

where PN � 0, Q � 0 and R � 0 are design matrices enabling tuning of which
states are more or less important and which controls are more or less expensive.

It is also common to use polyhedral constraints [7]. That is we assume the con-
straints on states and controls have the polyhedral form

Azxk + Auuk ≤ b, k = 0, . . . , N − 1 (3.6a)

AzxN ≤ bN . (3.6b)
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Now, using (3.4), (3.5) and (3.6) the linear discrete time MPC problem is formulated
as

min
x,u

VN (xN ) = xTN PN xN +
N−1∑
k=0

xTk Qxk + uTk Ruk (3.7a)

subject to xk+1 = Fxk + Guk , k = 0, . . . , N − 1 (3.7b)

Azxk + Auuk ≤ b, k = 0, . . . , N − 1 (3.7c)

AzxN ≤ bN , (3.7d)

x0 = x. (3.7e)

Important to note is that the initial state in the MPC x0 is constrained to the
current state x. Hence, the MPC is dependent on the current state and MPC can
be seen as a map from the current state to optimal control u∗0(x).

3.2.1 Designing terminal cost

Ideally the horizon N would be chosen such that N → ∞. This is obviously not
possible in practice. However, by choosing PN wisely, it is possible to emulate
infinite horizon cost by approximating the remaining running cost after the hori-
zon. Choosing PN as the solution to the discrete-time algebraic Riccati equation
(DARE):

P = FT P F − (FT P G)(R + GT P G)−1(GT P F) + Q,

that is, the optimal cost of the infinite horizon Linear Quadratic problem, approx-
imates the remaining running cost after the horizon with the optimal cost for the
infinite horizon Linear Quadratic problem [14].

3.2.2 MPC algorithm

The MPC strategy presented thus far can be summarized into Algorithm 1, which
describes how MPC is implemented.

Algorithm 1 Model predictive control
1: Measure or estimate x0
2: Compute u by solving (3.7)
3: Use first element u0 of sequence u as the control action
4: Time update, k = k + 1
5: Go to 1:

3.3 MPC as a quadratic program

What remains to address is how the OCP in Step 2 in Algorithm 1 is solved. This
is done by first casting (3.7) as a Quadratic Programming problem also known as
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a Quadratic Program(QP). Using the design choices that were made in Section 3.2,
that is, using linear time discrete dynamics xk+1 = Fxk +Guk and using quadratic
cost with matrices PN � 0, Q � and R � 0 the MPC can be formulated as a QP.
This section will derive how to do this.

A typical QP problem formulation and the formulation used is

min
x

1
2
xTHx + f T x (3.8a)

subject to Ax ≤ b. (3.8b)

Starting with the MPC objective function. Using (2.11) the objective function can
be expressed in a condensed way

xTN PN xN +
N−1∑
k=0

xTk Qxk + uTk Ruk = (3.9)

= xTQx + uTRu (3.10)

= (Fx0 + Gu)TQ(Fx0 + Gu) + uTRu (3.11)

= xT0 F
TQFx0 + 2xT0 F

TQGu + uTGTQGu + uTRu, (3.12)

where Q and R are block-diagonal matrices containing the design matrices, Q =
diag(Q, ..., Q, PN ) and R = diag(R, ..., R).

The term xT0 F
TQFx0 does not depend on u and hence can be excluded. Now

dividing by 2 the MPC objective function can now be expressed in the form of
(3.8a).

min
u

1
2
uT (GTQG + R)u + xT0 F

TQGu (3.13)

Now consider the constraints

Azxk + Auuk ≤ b, k = 0, . . . , N − 1 (3.14)

AzxN ≤ b. (3.15)

Again, with the states x and controls u from (2.10), these can be expressed in
matrix form.

Azx + Auu ≤ b

where

Az = diag(Az , ..., Az , Az), Au =
[
diag(Au , ..., Au)

0

]
.
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Moreover (2.11) is used to express the constraints in a condensed way.

Azx + Auu =

Az(Fx0 + Gu) + Auu =

AzFx0 + AzGu + Auu ≤ b
⇔

(AzG + Au)u ≤ b −AzFx0.

Now the complete QP problem can be expressed as

min
u

1
2
uT (GTQG + R)u + xT0 F

TQGu (3.16a)

subject to (AzG + Au)u ≤ b −AzFx0 (3.16b)

and it is possible to identify the QP matrices

H = (GTQG + R), (3.17a)

f T = xT0 F
TQG, (3.17b)

A = (AzG + Au) (3.17c)

b = b −AzFx0 (3.17d)

3.3.1 Soft constraints

To ensure that the QP is always feasible, the state constraints are usually softened
[24]. This is done by adding the optimization variable εs to the constraints as

Ax ≤ b→ Ax ≤ b + Sεs,

where S is a selection matrix deciding to which rows εs is added, that is, which
constraints are softened. Then, to minimize the violation of the constraints the
term ρεs is added to the objective function, where ρ is its weight. The QP be-
comes

min
x,εs

[
x
εs

]T [
H 0
0 ρ

] [
x
εs

]
+

[
f
0

]T [
x
εs

]
subject to

[
A −S

] [ x
εs

]
≤ b.





4
Quadratic Programming

In Chapter 3 we saw how the linear discrete time MPC problem could be cast as
a QP. This chapter will present methods on how to solve this QP, although the
methods will not be described in detail. Initially the Karush-Kuhn-Tucker (KKT)
conditions will be presented, followed by overviews of the active-set method and
the operator splitting method which are the methods the solvers used in this
thesis use. Finally how the complexity of active-set algorithms can be certified is
presented.

4.1 Karush-Kuhn-Tucker conditions

Necessary conditions for optimally in nonlinear optimization are the Karush-
Khun-Tucker (KKT) conditions. Assuming x∗ is the solution to (3.8), the KKT-
conditions are

Hx∗ + AT λ = −f (4.1a)

Ax∗ ≤ b (4.1b)

λ ≥ 0 (4.1c)

([b]i − [A]ix
∗)[λ]i = 0,∀i ∈ Nm, (4.1d)

where λ is the dual variables, also known as the Lagrange multipliers, and [ · ]i
denotes the ith row in respective matrix or vector. By using quadratic cost and
positive definite design matrices in the MPC, as done in Section 3.2 the created
QP is convex, and for convex problems the KKT-conditions are also sufficient for
optimality [8]. The conditions (4.1a), (4.1b) and (4.1c) ensure that the negative
gradient at x∗ is perpendicular to the feasible set and are called stationary-, dual

19
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feasibility -, and complementary slackness condition. (4.1b) is called the primal
feasibility condition because it ensures primal feasibility.

So, when the QP is convex, finding x∗ that satisfies the KKT conditions means the
optimal solution to the QP has been found. However, since (4.1d) is nonlinear,
finding this x∗ is non-trivial.

4.2 Active-set method

An easier problem to solve would be solving the equality constrained quadratic
program (EQP)

min
x

1
2
xTHx + f T x (4.2a)

subject to Ex = d, (4.2b)

This is easier because if all constraints are equalities the complementary slack-
ness condition (4.1d) can be considered trivially satisfied. This means that only a
linear system of equations [

H ET

E 0

] [
x∗

λ

]
=

[
−f
d

]
, (4.3)

has to be solved [8]. Active-set methods exploit this and instead of solving (3.8)
directly, they solve a sequence of problems in the form (4.2a).

Let A(x) be the set of all inequality constraints in (3.8b) that hold with equality
at x, also known as active constraints. That is, all rows i where [A]ix = [b]i , or
stacking all rows together [A]Ax = [b]A. This set A(x) is known as the active set
at x. Furthermore assuming x∗ is a solution to (3.8) it is also a solution to

min
x

1
2
xTHx + f T x (4.4a)

subject to [A]ix = [b]i , ∀i ∈ A(x∗). (4.4b)

This can be confirmed by the KKT conditions. The complementary slackness
gives [λ]i = 0,∀i < A(x∗), hence,

Hx∗ + [A]TA(x∗)[λ]A(x∗) = −f . (4.5)

By definition

[A]A(x∗)x
∗ = [b]A(x∗).

and (4.1d) is automatically fulfilled. We then get the linear system[
H [A]TA(x∗)

[A]A(x∗) 0

] [
x∗

λ

]
=

[
−f
d

]
, (4.6)
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which is the solution to the EQP. Hence, if A(x∗) is found it is only necessary to
solve (4.6) to find the optimal solution x∗. Therefore the goal of an active-set
method is to find the active set A(x∗).

In these methods, A(x∗) is found by iteratively updating a "guess" of the active set
called the working set,W . There are several different ways to updateW , however
this will not be covered in detail in this thesis. For details see [2] and [11].

4.2.1 Active-set algorithm

The active-set method can be summarised by a prototypical algorithm

Algorithm 2 Active-set method
1: While true do
2: (x,λ)← Solve KKT system (4.3)
3 : if(x, λ) is primal and dual feasible then
4 : return(x∗, λ∗, A∗)← (x, λ,W )
5 : else
6 : UpdateW based on primal and/or dual violation, i.e., Ax ≤ b or λ ≥ 0

In the last step in Algorithm 2 constraints are added or removed toW , which can
be done in different ways. In this thesis two methods are covered; DAQP uses the
dual method [2] and qpOASES the parametric method [11].

4.3 Conversion to the dual problem

The dual method involves solving the so called dual problem

min
λ

1
2
λTMMT λ + dT λ (4.7a)

subject to λ ≥ 0, (4.7b)

where the conversion from the primal problem (3.8) is made by solving the equa-
tion systems

RTMT = AT , RT v = f (4.8)

for M and v, and then calculating

d = b + Mv (4.9)

where R is the upper Cholesky factor of H , i.e. H = RT R. When the optimal
dual solution to (4.7a), λ∗, has been found the primal solution can be acquired by
solving the triangular system

Rx∗ = −(λ∗ + v). (4.10)

Since R is a triangular matrix the equation systems in (4.8) and (4.10) can be
solved efficiently [20].
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4.4 Warm starts

Often in linear MPC, the neighboring MPC problems from one iteration to the
next are very similar. For example, this is the case when using the straight path
model since H and A are constant and only the vectors f and b need to be up-
dated. This means that the solutions to the corresponding QPs often are close. So,
when solving every QP except the first one, some QP solvers can be initialized
with the previous solution, which often reduces the computations needed [17].

4.5 Complexity certification

Recall the important insight from Section 3.2 that the MPC can be seen as a map
from the current state x = x0 to the optimal solution u∗(x0). This map is evaluated
by the optimization algorithm that solves the QP that is made from the MPC
problem. Hence, from every possible initial state we get a different QP. Defining
Θ0 as the space of all possible initial states and introducing the parameter θ ∈ Θ0,
we get a so called multi-parametric quadratic program (mpQP)

min
x

1
2
xTHx + θT f Tθ x (4.11a)

subject to Ax ≤ b + Wθ. (4.11b)

As shown in [1] solutions to the KKT-system that appear in iteration k using the
active set algorithm are affine in this parameter θ, that is,

x∗k = F∗kθ + G∗k . (4.12)

For details how F∗k and G∗k are calculated, see [1]. This affine structure is exploited
in explicit MPC [5] to pre-compute all solutions u∗(θ) offline, and can also be used
to certify the complexity of active-set algorithms[1].

An interpretation of the complexity certification method in [1] is that, using the
affine property, iterations of the active-set algorithm are executed parametrically
and the parameter space Θ0 is recursively partitioned into a finite number of
regions. The working set changes made for each region are saved and all parame-
ters θ in the same region signify that they produce the same working-set changes
before finding A(x∗). Since the exact sequence of working set changes for all θ is
determined, we know exactly which EQPs are solved. This means that the exact
behaviour, in terms of iterations and/or floating point operations, of the active-
set method can be determined.

4.6 Parametric quadratic programming method

The method qpOASES uses is sometimes called the parametric quadratic program-
ming method, this section will explain the core concept, for details see [11]. Sim-
ilarly to Section 4.5 the parametric method uses a parameterized QP. The QP is
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parameterized with the parameter τ ∈ [0, 1] and the QP is

min
x

1
2
x(τ)THx(τ) + f (τ)T x (4.13a)

subject to Ax(τ) ≤ b(τ). (4.13b)

The main idea is to trace the primal-dual solution z∗(τ) = (x∗(τ), λ∗(τ)) from a QP
with known optimal solution z∗(0) to the optimal solution of the QP that needs
to be solved z∗(1) using a linear homotopy.

4.7 Operator splitting method

The solver OSQP unlike qpOASES and DAQP does not use the active-set algo-
rithm, it uses a operator splitting method. This section will only explain the core
concept, for a thorough explanation read [22]. OSQP iteratively, i.a, solves a lin-
ear system [

H + σI AT

A −ρ−1I

] [
xk+1

νk+1

]
=

[
σxk − f
zk − ρ−1yk

]
. (4.14)

to each iteration obtain a tuple (xk , zk , yk) until the residuals

rkprim = AxK − zk , rkdual = Hxk + f + AT yk , (4.15)

converge to specified tolerance levels

||rkprim|| ≤ εprim, ||rkdual|| ≤ εdual. (4.16)





5
Implementation

Using the MPC design from Chapter 3 together with the path-following error
model presented in Chapter 2, the implemented MPC controller can now be
presented. The MPC formulation is presented in Section 5.1 with the imposed
constraints discussed in Section 5.2. Finally the mpQP for the certification is
identified in Section 5.3.

5.1 Control problem formulation

The goal of the MPC is to follow the path given by the planner. For this the path-
following error model is convenient since the reference in built into the error
model and the MPC only needs to minimize the error state x̃ = [z̃3 θ̃3 β̃3 β̃2]T .
That is, the MPC minimizes the sequence of error states and controls within the
horizon N , that is, the vectors

x̃ =


x̃0
x̃1
...
x̃N

 , ũ =


ũ0
ũ1
...

ũN−1

 . (5.1)

25
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The MPC can now be formulated as

minimize
x̃,ũ,εβ

VN (x̃, ũ) = x̃TN PN x̃N +
N−1∑
k=0

x̃Tk Qx̃k + ũTk ũk + ρε2
β (5.2a)

subject to x̃k+1 = Fk x̃k + Gk ũk , k = 0, 1, ..., N − 1 (5.2b)

|β̃2,k + β2,r,k | ≤ β2,max + εβ , k = 1, ..., N (5.2c)

|β̃3,k + β3,r,k | ≤ β3,max + εβ , k = 1, ..., N (5.2d)

|ũk + ur,k | ≤ umax, k = 0, 1, ..., N − 1 (5.2e)

x̃0 = x̃(s(t)) given. (5.2f)

where the linear dynamics in (5.2b) are either the straight-path model (2.14) or
the linearized model (2.8). If the straight-path model is used, (5.2b) is

x̃k+1 = Fx̃k + Gũk

To transform (5.2a) into the QP objective function, see Section 3.3.

5.1.1 Terminal cost

As discussed in Section 3.2.1 the terminal weight matrix PN is selected to be the
solution to the DARE. However, because the DARE can take a long time to solve,
the straight-path model with matrices F = I + ∆sA and G = ∆sB are used in both
cases. That is, even when (5.2b) uses Fk and Gk the straight-path matrices are
used to solve the DARE. This means that PN can be computed offline because F
and G are constant. Important to remember is that A and B change sign with the
direction of the vehicle and therefore two versions of PN need to be computed.

5.1.2 Penalizing rate-of-chance

To reduce the rate-of-change in the steering of the truck, and to reduce erratic
movements of the wheels, additional structure needs to be added. To reduce
the speed, the change in steering angle is penalized. For every k the difference
(ũk − ũk−1), hence, needs to be minimized. That is, the vector

u0 − u−1
u1 − u0

...
uN−1 − uN−2

 =


1
−1 1

. . .
. . .
−1 1

︸                 ︷︷                 ︸
Ω

u −


u−1
0
...
0

︸︷︷︸
δ

(5.3)

needs to be minimized, where u−1 is the control action from the MPC problem
solved in the previous iteration. Using quadratic cost this can be done by adding
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the stage cost

N−1∑
k=0

(ũk − ũk−1)T (ũk − ũk−1) (5.4)

= (Ωu − δ)T (Ωu − δ) (5.5)

= uTΩTΩu − δTΩu + δT δ, (5.6)

to the objective function. Hence, (5.6) added to the QP objective function (3.13)
gives

min
u

1
2
uT (GTQG + R + ΩTRΩ)u + 2(θT FTQG − δTRΩ)u. (5.7)

5.2 Constraints

There are some constraints that have to be taken into consideration when control-
ling the vehicle. First and foremost it is assumed that there are physical limita-
tions on the steering angle α. This is taken into consideration by constraining the
steering angle.

|αk | ≤ αmax → |u| ≤ umax → |ũk + ur,k | ≤ umax, umax =
tanαmax

L1
.

Furthermore the joint angles also need to be constrained and there are two rea-
sons for this. First, the region where the joint angle states can be estimated accu-
rately can in practice be limited [15]. Secondly, if the joint angles get too large it
is also highly probable that the truck will jack-knife when reversing. Therefore it
is beneficial to constrain the joint angles

|β̃2,k + β2,r,k | ≤ β2,max

|β̃3,k + β3,r,k | ≤ β3,max.

The constraints on steering angle and joint angles are also considered in the mo-
tion planner. Despite that, deviations from the plan can occur during execution
of the plan and these constraints are therefore also important to consider in the
controller.

The values chosen for umax, β3,max and β2,max are

umax = 3.6

β3,max = 0.7

β2,max = 0.7.

The value of umax = 3.6 mean the maximum steering angle is 0.6 rad and was
chosen to be the same value as in the planner. β3,max, β2,max = 0.7 is an inner
approximation of the region used in [15]. Whether β3,max, β2,max = 0.7 guarantees
that the vehicle does not jack-knife has not been tested.
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5.2.1 Constraints in QP form

To be able to transform the constraints (5.2c) - (5.2e) into the QP constraints
as in (3.16a) the matrices Az and Au need to be identified. The absolute-value
constraints can be written as

− β2,max ≤ β̃2,k + β2,r,k ≤ β2,max,

− β3,max ≤ β̃3,k + β3,r,k ≤ β3,max,

− umax ≤ ũk + ur,k ≤ umax.

First, the right hand side is

β̃2,k ≤ β2,max − β2,r,k

β̃3,k ≤ β3,max − β3,r,k

ũk ≤ umax − ur,k

which is the same as0 0 0 1
0 0 1 0
0 0 0 0

︸           ︷︷           ︸
A+
z

x̃k +

00
1

︸︷︷︸
A+
u

ũk ≤

β2,max − β2,r,k
β3,max − β3,r,k
umax − ur,k

︸             ︷︷             ︸
b+

. (5.8)

Similarly, the left hand side is

− β̃2,k ≤ β2,max + β2,r,k

− β̃3,k ≤ β3,max + β3,r,k

− ũk ≤ umax + ur,k

which is the same as0 0 0 −1
0 0 −1 0
0 0 0 0

︸               ︷︷               ︸
A−z

x̃k +

 0
0
−1

︸︷︷︸
A−z

ũk ≤

β2,max + β2,r,k
β3,max + β3,r,k
umax + ur,k

︸             ︷︷             ︸
b−

. (5.9)

Now we just need to stack the matrices found as

Az =
[
A+
z

A−z

]
, Au =

[
A+
u

A−u

]
, b =

[
b+

b−

]
.

With Az , Au and b the QP constraints can be formed as in Section 3.3.
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5.3 Creating mpQP for certification

To be able to certify the complexity of the MPC the mpQP in the form of (4.13a)
needs to be identified. Hence, we need to find fθ and W . However, since u−1 is
introduced in the objective function the parameter θ is not only the initial state
x0, but

θ =
[
x̃0
ũ−1

]
. (5.10)

Using the objective function (5.7) we have

f T = (x̃T0 F
TQG − δTRΩ) = θT (s1F

TQG − s2IT0 RΩ) = θT f Tθ (5.11)

and with the introduced selection matrices

I0 =


1
0
...
0

 , s1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , s2 =


0
0
0
0
1

 , (5.12)

fθ is identified as fθ = s1FQG − s2IT0 RΩ. Furthermore, using (3.17d)

b −AzFx0 = b −AzFsT1 θ = b + Wθ. (5.13)

from which it follows that W = −AzFsT1 .

Next we define the space of all possible θ, Θ0. This space is defined as all values
where θlb ≤ θ ≤ θub, where the lower and upper bounds are

θlb =
[
−0.2 −π/4 β3,min β3,min u−1,min

]T
(5.14)

θub =
[
0.2 π/4 β3,max β3,max u−1,max

]T
. (5.15)

To include all feasible initial states the values β3,min/max, β2,min/max and u−1,min/max
are the values used to constrain the states:

β3,min = −β3,max − β3,r,max

β2,min = −β2,max − β2,r,max

β3,max = β3,max − β3,r,max

β2,max = β2,max − β2,r,max

u−1,min = −umax − ur,max

u−1,max = umax − ur,max.

β3,r,max, β2,r,max and ur,max are the maximum reference within the horizon, that is

β3,r,max = max
k

β2,r,k , k = 0, ..., N

β2,r,max = max
k

β3,r,k , k = 0, ..., N

u−1,max = max
k

ur,k , k = 0, ..., N .
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As for the lateral distance z̃3 and the orientation error θ̃, which are not con-
strained in the MPC problem, the values 0.2 and π/4 where deemed sufficiently
large for scenarios occurring in practice.

Important to note is that for this MPC all possible QPs can not be expressed only
with the parameter θ. Because b in (5.8) and (5.9) contain the reference, b in
the mpQP (5.13) depends on the reference sequence given by the planner. This
means that for every reference sequence (β3r,k , β2r,k , ur,k), k = 0, ..., N , we will
have a different mpQP.

Also worth noting is that similar to u−1, it is possible use the reference sequence
(β3r,k , β2r,k , ur,k), k = 0, ..., N as a parameters by appending them to θ and intro-
duce structure in W to add them to the constraints in a proper way. However, the
reference sequence is created in the path planner using the non-linear vehicle
model and the reference points are constrained with non-linear constraints, so if
this is a good idea and how Θ0 is to be defined would need investigation. Also,
since this would significantly increase the dimension of the parameter space, the
certification would be significantly more computationally demanding.



6
Results

To test the MPC controller and the QP solvers two missions, shown in Figure
6.1 and 6.2 where performed. Due to problems with the state estimation which
were not investigated in this thesis and due to time constraints the test where
performed in simulation. On these mission both the controller performance and
the solver performance are measured. The controller performance is measured
by how well the vehicle states follow the planned reference. For the QP solvers,
the computational time indicates the performance. Lastly the complexity certifi-
cation of the active-set solver DAQP will be presented.
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Figure 6.1: First mission. Starting
at right-hand side and reversing to
the left.
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Figure 6.2: Second mission. Start-
ing forward at the left-hand side
and then changing to reverse.

Unless specified the test were performed with the design parameter values seen
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in Table 6.1.

Parameter Value
Horizon N 20

Sampling distance ∆S 0.01 m
Controller frequency 20 Hz

Weight matrix Q diag(1,1,1,1)
Weight ρ 100000

Table 6.1: MPC design parameters.

6.1 Comparing linearization model and straight-path
model

To compare the different linearization models presented in Section 2.4 that are
used to create the QP two missions were performed and the distance from the
path to the rear axle of the vehicle was measured. The path-following error for
the first and the second mission is seen in Figure 6.3 and 6.4.
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Figure 6.3: Path-following error for
the first mission comparing the two
models.
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Figure 6.4: Path-following error for
the second mission comparing the
two models.

The difference in computation time for solving the MPC problem was also com-
pared, including time to create/calculate the matrices needed to make the QP
problem, here called MPC solution time. These solution times are shown in Fig-
ure 6.5.
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Figure 6.5: Computation time to create and solve the entire MPC problem
for the linearization model compared with the straight-path model. The test
was executed on a laptop.

Figures 6.3 and 6.4 illustrate that with current design and tuning of the MPC
there is not much difference between the straight-path model and linearization
model in regards to path-following performance. In both cases the terminal cost,
PN , in the MPC is calculated by solving the DARE with the straight-path matrices.
The similar performance between the models may therefore indicate that a signif-
icant portion on the control performance may be the result of approximating the
remaining cost-to-go after the horizon with the optimal LQ cost.

Since the H and A matrices in the QP needs to computed online the computation
time when using the linearized model is significantly slower compared to when
using the straight-path model, as shown in Figure 6.5. Even though this was
tested on a laptop, we see the linearized model MPC breaking the 20 Hz loop
rate. This would become even more critical on embedded hardware.

Since there is not a lot of difference in the path-following performance, but that
the computation time is much slower for the linearization model, the test that
follow are made with only the straight-path model.

6.2 Performance

This section will show further tests for MPC with the selected straight-path model,
starting with path-following performance for different horizons and then display-
ing the QP solution performance for different solvers.

6.2.1 Distance from reference

To further test the path-following performance and the effect of varying the hori-
zon in the MPC, the performance of four MPCs with different horizons were mea-
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sured when performing the first mission. The distance from the reference path
is seen in Figure 6.6. We see that the path-following performance only differs
slightly between the MPCs.
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Figure 6.6: Comparison of performance for different horizons.

6.2.2 Joint angles

How well the MPC was able to follow the Joing angle references can be seen in
Figure 6.7.
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Figure 6.7: Joint angles for the first mission.
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Worth noting is that the joint angles values are far from the constrained value
of βmax = 0.7, which is outside the plotted area in Figure 6.7. Also this is while
reversing along the sharpest curves the current planner produces. Hence the
constraints are usually not hit during regular missions.

That the constraints are not usually active gives insight into why the performance
of the MPC with different horizons are similar. Because the remaining cost-to-go
after the horizon is approximated with the optimal infinite horizon LQ cost, the
MPCs tested in Figure 6.6 are all essentially infinite horizon LQ controllers. The
only difference between them is that the difference (ũk − ũk−1) for the first N con-
trols are minimized. So for this application with this specific planner an LQ con-
troller would have been sufficient to control the vehicle. However, disturbances
might lead to deviations from the plan, and thus constraints are still important.
Also, there are other constraints that could be beneficial or interesting to impose.
For example:

• The change in steering angle could be constrained |(ũk − ũk−1) − (ur,k −
ur,k−1)| ≤ cmax,k , k = 0, 1, ..., N − 1 to guarantee that the change in steer-
ing angle is not too high. For example to reduce the stress of actuators and
prolong their lifespan.

• Constraining the lateral distance from the path, |z̃| ≤ zmax, could also be
needed if, e.g., the vehicle is to drive in narrow or tight environments where
obstacles need to be avoided.

6.2.3 Solver performance

To test and compare the performance of the three different solvers DAQP, qpOASES
and OSQP the computational time were measured. The first mission was exe-
cuted with all solvers. To give a fair comparison between the solvers, all input
to the controller was recorded during a execution of the mission using one of the
solvers. The MPC was then run with the other solvers while the recorded input
data was played back. This ensured that the QP problems which were created
and solved were exactly the same for all solvers. The time it takes to solve the
QPs, here called QP solution time, for the three solvers can be seen in Figure 6.8
and the MPC solution time using the different solvers in Figure 6.9. The mean
value of the solution times can be seen in Table 6.2.
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for solving the QP-problem. Test
was executed on a RPi.
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Table 6.2: Means of MPC solution times using the different solvers.

Solver Mean MPC solution time [ms] Mean QP solution time [ms]
qpOASES 5.3 0.75

OSQP 4.6 0.54
DAQP 4.3 0.0071

We see that the DAQP manages to solve the QP problem much faster than both
OSQP and qpOASES. But when measuring the MPC solution time the difference
is much smaller and the MPC solution time when usign DAQP is only slightly
faster then when using OSQP. Hence, the time gained by using DAQP is in part
lost when converting the primal problem into the dual problem. But there are
still time which could be gained to improve the MPC solution time using DAQP.
Instead of solving

Rx∗ = −(λ∗ + v),

for x∗ it is possible to calculate

x∗ = −R−1(λ∗ + v).

Since R is constant (H is constant and H = RT R) and is calculated offline, R−1

can also be calculated offline. Also, only the first control is used to steer the
vehicle. Hence, not the whole matrix multiplication in x∗ = −R−1(λ∗ + v) needs to
be calculated. Only the first row in −R−1 times first column in (λ∗ + v) is needed
to get x∗0.

Another factor which could improve the MPC solution time when using DAQP
would be implementing the conversion from the primal problem to the dual prob-
lem, that is, solving (4.8) and (4.10), in pure C-code. Currently the creation of
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the primal problem and conversion to the dual problem is made with two differ-
ent C++ libraries. Hence, even though efforts have been made to reuse memory
and keeping the triangular properties of R in mind when solving the system of
equations there may be some overhead time costs. These would disappear in a
C-implementation which would improve the solution time.

6.2.4 Cost difference

To ensure that the solvers give the same solution the objective value was calcu-
lated for every QP in the entire mission. The objective value is the value from
inserting the solution into the objective function (5.7). The objective value for
the solvers was then compared. The difference between qpOASES and DAQP can
be seen in Figure 6.10 and between qpOASES and OSQP in Figure 6.11.
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Figure 6.10: Difference in objective
value for an entire mission, compar-
ing the active-set solvers qpOASES
and DAQP.
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Figure 6.11: Difference in objective
value for an entire mission, compar-
ing the active-set solver qpOASES
with the operator splitting solver
OSQP.

The objective value difference between qpOASES and DAQP is in the magnitude
of 10−15 and between qpOASES and OSQP it is of magnitude 10−8. That the
difference is this small makes sense because the condition number for H is low
(0.1311), which indicates good numerics.

6.2.5 Warm starts

To show the benefits of warm starting the solver with the previous solution three
test where made where the three solvers ran a mission with and without warm
starting, seen in Figure 6.12-6.14. Significant improvement can be seen in all
cases.
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start for DAQP.

6.3 Performance with tighter constraints

The results in Section 6.2 showed that during a regular execution of a mission the
constrains are not active. To show the performance of the MPC and the perfor-
mance of the solvers in more challenging situations, the constraints on the joint
angles were tightened to βmax = 0.4.

6.3.1 Joint angles

To see how the MPC handled the lowered constraint the first mission was exe-
cuted with varying horizons, see Figure 6.15. Important to keep in mind for this
test is that the constraint can be lower than the joint-angle reference. The system
is not designed to be able to handle this situation and the controller is not able
to follow the reference. Still it is interesting to see if the MPC is able to keep the
joint angles within the constraints.
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Figure 6.15: 2D plot of β-angles for the first mission run with lowered con-
straints βmax = 0.4 for different horizons in the MPC.

Since the constraints are softened lowering βmax the MPC does not completely
manage to keep the states under the limits, however it manages to significantly
lower the joint angles values trying to keep them under the constraints. Inter-
esting to note is that increasing the horizon the MPC notices the upcoming con-
straints earlier, as expected, but all controllers ends up violating the constraint
an equal amount. This is most likely because the model used to predict the fu-
ture states of the system is not only a linearized model, but a special case of a
linearized model, and it can therefore not predict the future states perfectly.

6.3.2 Solution performance

Also interesting is to see how the solution time is affected when the constraints
are encountered. The time it takes to solve the QP problem when βmax = 0.4
compared to when βmax = 0.7 is shown in Figure 6.16 - 6.18.
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Figure 6.16: Comparison of QP so-
lution times when constrains on β
angles are lowered using qpOASES.
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Figure 6.17: Comparison of QP so-
lution times when constrains on β
angles are lowered, using OSQP.
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Figure 6.18: Comparison of QP so-
lution times when constrains on β
angles are lowered, using DAQP.

As shown activating constraints can significantly increase the QP solution time. It
is therefore important to be able to guarantee the worst case complexity in more
complex situations. Just testing the solution time for a restricted set of states can
be highly misleading.

The significant increase in QP solution time is also seen in the OSQP solution
time but for this method of solving QPs exact complexity cannot be guaranteed.
Hence it is beneficial to use active-set methods combined with the certification
framework in [1].

6.4 Certification

The certification framework in [1] was applied to certify the complexity of the
MPC when DAQP is used. In Section 6.4.1 it is applied when the controller fol-
lows a straight path and in Section 6.4.2 it is applied to two different motion
primitives.
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6.4.1 Straight path

For the straight path, i.e, when β3r , β2r , ur = 0, the QP is only dependant on θ.
For this mpQP the maximum guaranteed iteration number has been certified for
different horizons using [1], see Figure 6.19. The maximum guaranteed iteration
number seems to increase, at least up to horizon 20, roughly linearly.
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Figure 6.19: Guaranteed maximum iteration number for the active-set algo-
rithm for different horizons in the MPC, following a straight path in reverse
motion.

Fixing three of the parameters in θ it is possible to get a visualizable 2D slice of
the partitioned space Θ. A 2D slice of the partition where the joint angles are
varied and the other parameters are set to zero can be seen in Figure 6.20.
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Figure 6.20: A 2D plot of the partitioned space Θ showing maximum itera-
tions when varying the joint angles. The other parameters are fixed to zero.
The color bar shows number of iterations.
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In the 2D slice we can see that for small joint angles and when the angles increase
with the same sign we need few iterations to solve the QP. This makes sense be-
cause this is where the truck is easier to control. When the angles have different
signs the truck has a high risk of jack-knifing and is harder to control.

6.4.2 Primitives

The lattice-planner uses a finite amount of motion primitives to create a mission
and in every motion primitive there is a finite amount of reference points. Hence
if that the planner were to run without the improvement step, it is possible to
certify the maximum iteration for every possible QP that can be created from the
references.

The planner used in this thesis uses 800 motion primitives containing 50 ref-
erence points each. All these QPs have not been certified but could easily be
done given enough time. It is also noted that this could be parallelized since the
motion primitives can be considered separately. Below a small selection can be
seen, where it is possible to see how the guaranteed maximum iteration number
changes over a primitive. For a horizon of 5, every fifth QP is certified and the
maximum iteration number for the mpQP is shown at the corresponding location
on the primitive.
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Figure 6.21: Every fifth QP in the primative is certified. The numbers indi-
cate the guaranteed maximum iteration at the given location on the curve.

We see in both Figure 6.21 and 6.22 that when following the a motion plan the
maximum guaranteed iterations can significantly increase from the straight path
case, where the maximum iteration was 13 for a horizon of 5. It can however also
be lower.

A 2D slice for one QP from each primitive can be seen in Figure 6.23 and Figure
6.24. For both primitives the truck would start at the right and reverse to the left
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Figure 6.22: Every fifth QP in the primative is certified. The numbers indi-
cate the guaranteed maximum iteration at the given location on the curve.

in the image. Hence primitive 144 shows a right turn and primitive 208 a left
turn. During a right turn (144) the reference angles are negative and we see that
the cold colors move (comparing with Figure 6.20) to the upper right (positive)
corner. For a left turn (208) they are positive and we see that the cold colors move
to the lower left (negative) corner. This is reasonable since the constraints

− β2,max − β2,r,k ≤ β̃2,k ≤ β2,max − β2,r,k ,

− β3,max − β3,r,k ≤ β̃3,k+ ≤ β3,max − β3,r,k ,

are shifted with the reference.
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Figure 6.23: A 2D slice of the partitioned space Θ showing maximum iter-
ations when varying the joint angles. The color bar shows number of itera-
tions.
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Figure 6.24: Joint angles 2D plot of the partition for horizon 5, The color bar
shows number of iterations.
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Conclusions

7.1 Conclusions

In this thesis a path-following MPC controller has been developed to success-
fully steer a truck and trailer system. A linearized model and a special case of
the linearized model, i.e, the straight-path configuration case, were used to pre-
dict the system in the MPC. MPCs with both models saw similar path-following
performance but the one using a straight-path model was deemed better suited
to real-time applications because it had significantly faster computation time.

Three different QP solvers were successfully applied to solve the QP problems
that were formed from the MPC problems. Of the three solvers DAQP is the
best choice for two reasons. DAQP showed slightly faster solution times than the
other two and the solution time has potential to be even faster. Also, DAQP uses
the active-set method in which the complexity can be exactly certified using the
recently presented certification framework applied in this thesis.

The certification framework [1] was used to certify the iteration complexity for
solving every possible QP that can arise from the MPC controller. Initial experi-
ments show how the exact iteration complexity can be determined by certifying
every possible mpQP that can be created while traversing every motion primi-
tive that is used in the motion planner. However, due to lack of time and com-
putational power every motion primitive have not been considered. How the
guaranteed maximum iterations change along two primitives has been displayed.
Also, how the horizon of the MPC effects the guaranteed maximum number of
iterations when following a straight path has been investigated and the guaran-
teed maximum number of iterations seems to increase roughly linearly with the
horizon. The certification framework gives the exact working set changes used

45
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in the active-set algorithm, however using these and calculating the guaranteed
maximum computational time is still to be done.

7.2 Future work

The natural continuation on this a work would be to calculate the maximum com-
putational time using the working set changes. Obtaining the maximum compu-
tational time would also open interesting avenues. Since the solution time for
the MPC using the straight path model is fast an interesting avenue would be to
guarantee that the MPC could be run on the on board LEGO EV3.

Since all motion primitives can be considered separately certification of every mo-
tion primitive could be parallelized. Thus, another natural continuation to this
work would be to employ a high-performance computer cluster for the certifica-
tion.

Another interesting investigation would be to see how the solution times and
guaranteed maximum complexity would change introducing other constraints,
for example the constraints suggested in Section 6.3.1.

Also investigating how the reference could be used as parameters in the certifi-
cation could yield interesting result since then all the motion primitives do not
need to be certified since we would only have one mpQP.
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