
A Genetic Algorithm for Personnel Scheduling in

Vacation Seasons

Department of Mathematics, Linköping University

Martin Fakt

LiTH-MAT-EX�2021/11�SE

Credits: 30 hp

Level: A

Supervisors: Björn Morén,
Department of Mathematics, Linköping University

Emil Jönsson,
Schemagi AB

Examiner: Torbjörn Larsson,
Department of Mathematics, Linköping University

Linköping: March 2022

Abstract

For workplaces with a preference or need for sta�ng around the clock, employees
commonly work in shifts, which are work sessions that span di�erent parts of
the day. The scheduling of these shifts is a multi-objective optimization problem
with both hard and soft constraints. The reduction in the available workforce
when employees go on vacation makes the problem especially constrained. We
describe a method that uses a genetic algorithm to generate shift schedules, for
teams of employees and time periods with vacations. The method supports a
sta�ng demand that can be met with one of multiple combinations of shifts.
The genetic algorithm features specialized crossovers, together with a repair
step aimed at maintaining sta�ng that ful�ls the sta�ng requirements. A
software implementation of the method is evaluated on three real-life problem
instances. For two of them, it can produce schedules that are feasible, but
subpar to those constructed manually by an experienced personnel scheduling
professional. Several ideas to improve the program are presented.

Keywords:

Personnel scheduling, Personnel rostering, Vacation, Optimization, Ge-
netic Algorithm

URL for electronic version:

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-183332

Fakt, 2022. iii

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-183332

Acknowledgements

I am highly grateful to my supervisor Björn Morén and my examiner Torbjörn
Larsson for their guidance and dedication throughout the project. I felt espe-
cially privileged to receive assistance even during the weekends and summer. I
would also like to express my appreciation for the friendly employees at Schemagi
AB and the many resources the company shared with me.

I would additionally like to thank my opponent Michael Littunen for his
constructive feedback on this report and on a presentation of the work. Finally,
I would like to thank my family and friends for their strong encouragement.

Fakt, 2022. v

Contents

1 Introduction 1

2 Problem Description 3

2.1 De�nitions . 3
2.2 Constraints . 4
2.3 Input Parameters . 5

3 Background 7

3.1 Literature . 7
3.2 Metaheuristics . 9

3.2.1 Genetic Algorithm . 10
3.2.2 Large Neighbourhood Search 11

4 Modelling Approach 13

4.1 Penalties . 13
4.2 Multi-Objective Considerations 19

5 Genetic Algorithm 21

5.1 Initial Population . 21
5.2 Crossovers . 24

5.2.1 Balanced Team Crossover 24
5.2.2 Single Date Crossover . 25
5.2.3 Vacation Crossover . 25
5.2.4 Uniform Partial Team Crossover 26

5.3 Large Neighbourhood Search . 26
5.4 Mutations . 27
5.5 Selection . 28
5.6 Elitism . 28

6 Studied Problem Instances 29

Fakt, 2022. vii

viii Contents

7 Results 31

7.1 Chosen Parameter Values . 31
7.2 Solution Quality . 32
7.3 Program Performance . 38

8 Discussion 41

9 Conclusion and Future Work 45

List of Tables

6.1 Problem instances. 30

8.1 Penalties for a schedule produced by the program and for a man-
ually constructed one. 43

Fakt, 2022. ix

List of Figures

3.1 Example of a cyclic roster with (D)ay, (E)vening and (N)ight shifts. 8

4.1 Examples of calculation of penalty violation. 14

5.1 Standard genetic algorithm. 22
5.2 Implemented genetic algorithm. 22
5.3 Example child solutions produced by the crossovers. 24

7.1 The minimum, maximum, mean and interquartile range of the
sta�ng penalty during a run on P1. 33

7.2 The minimum, maximum, mean and interquartile range of the
sta�ng penalty during a run on P2. 34

7.3 Schedule produced by the program on P2. 35
7.4 Solution front with a strong sample correlation between block

length penalty and block placement penalty. 36
7.5 Solution front with a strong sample correlation between block

length penalty and fairness penalty. 37
7.6 Relative runtime of di�erent parts of the program. 39

8.1 Manually constructed schedule for P1/P2. 42

Fakt, 2022. xi

Chapter 1

Introduction

Shift-based work is employed in �elds where around-the-clock sta�ng is required
or bene�cial. Such workplaces in Sweden typically have three shifts on workdays:
a day shift, an evening shift and a night shift. These span roughly eight hours
each, together covering the 24 hours in a day. Employees are commonly divided
into teams, such that the employees of a team share the same shift schedule.
During the weekend, two longer shifts are usually used: a long day shift and a
long night shift. Since this combination requires one team less, the employees
gain additional weekends o�. Shifts of this kind are also considered in Jaumard
et al. [1].

During the season with vacations, the vacation period, which normally falls
in the summer, the available workforce is reduced as teams go on vacation. This
can be compensated for in two di�erent ways. Some companies hire substitute
workers to cover the shortages, while others intensify the workload for the em-
ployees who are not on vacation, utilizing a higher number of consecutive days
on, fewer days o�, and/or long shifts. This master thesis deals with the latter
option.

The scheduling of the vacation period is often heavily constrained, which can
make it di�cult to �nd even a single feasible schedule by hand. Even when one
can be found, the scheduling work is time-consuming and requires gauging which
wishes from the sta� to prioritize. It is therefore desirable to have a computer
program that can generate several schedules with di�erent characteristics, which
allows the management to understand the necessary trade-o�s and to pick the
most suitable among them.

Such a program is developed in this master thesis project, for use by the
company Schemagi AB. The program predominantly uses a genetic algorithm,
which is a general method presented in Section 3.2.1. The purpose of the project

Fakt, 2022. 1

2 Chapter 1. Introduction

is to determine how a genetic algorithm can be used to produce feasible personnel
schedules for the vacation period, with the goal to produce schedules of high
quality, comparable to those constructed by hand by an expert at the company.
A genetic algorithm is chosen because it is robust [2], prominent [3, 4] and
population-based [5]. Therefore it has a high likelihood of achieving the goal
and allows for quick production of multiple schedules at once.

Like other optimization methods, the genetic algorithm can, in the �nal or
in an intermediate step, generate solutions that are either feasible or infeasi-
ble. A feasible solution is one that ful�ls every hard constraint, which are the
constraints that would render a �nal solution unacceptable if any of them are
violated. The remaining constraints are soft, and violations of them should be
avoided as much as possible. The solutions are constructed and modi�ed in
such ways that some hard constraints are never violated, and each solution is
assigned a penalty for every other constraint. These penalties are used to judge
the quality and potential of the solutions during the execution of the program.
While it might at �rst seem reasonable to dismiss every infeasible solution, they
are vital for two main reasons. Firstly, in our work the genetic algorithm has to
iterate through many infeasible solutions before it �nds a feasible one. Secondly,
the genetic algorithm can make use of good sections of infeasible solutions to
create less infeasible � and eventually, feasible � solutions. For these reasons,
there are penalties for soft and hard constraints alike.

Chapter 2

Problem Description

A description of the problem is given in the following section.

2.1 De�nitions

The following terms are used throughout the article:

� A shift is a continuous timespan of work, only interrupted by short breaks.
A shift belongs to the date on which it starts, even if the larger part of a
shift takes place on the next date.

� A team is a set of employees. A team can only work one shift per day.

� A sta�ng option is a set of shifts that exactly covers the workplace's need
of manpower for the day. As mentioned in the introduction, the type of
workplaces under consideration generally has two sta�ng options.

� A schedule is a matrix of teams and dates, where each element corresponds
to the shift worked, if any, by a team at a certain date.

� A block is a group of consecutively worked shifts for a team, with no days
o� in between. Each block is preceded and followed by either vacation or
days o� (unless it lies at the absolute beginning or end of the schedule).
While not technically a block, a "block of days o�" is used to refer to
consecutive days o�. A "block" can also refer to a combination of a block
and its starting date. Block length refers to the number of shifts the block
contains.

Fakt, 2022. 3

4 Chapter 2. Problem Description

� If any of the shifts in a block is taxing, the block is taxing as well. A
taxing block must by default be followed by two days o�.

� Each shift is assigned a weight value, referred to as corresponding fulltime
days, that depends on its duration and time of day. This value indirectly
controls how many such shifts may exist in a block, possibly in combination
with other shifts, see Section 2.2. As the name implies, a regular day shift
typically has a corresponding fulltime days value of 1.0. The corresponding
fulltime days for a block is the sum of its shifts' corresponding fulltime
days.

In addition, a number of sets are de�ned:

� D is the set of days {dstart, dstart + 1, ..., dstart + 97} (14 weeks).

� Dwd ⊂ D is the set of weekdays.

� Dwe ⊂ D is the set of weekend days.

� W is the set of weekends.

� S is the set of shifts.

� O is the set of sta�ng options.

� B is the set of blocks for all teams in any given schedule.

2.2 Constraints

Based on common desired and required properties in real-life cases, the following
constraints are formulated:

(i) Sta�ng: A schedule is feasible only if its sta�ng for all dates exactly
matches the sta�ng demand.

(ii) Minimal block length: Very short blocks are undesirable, because this
results in a team having to work more blocks � and therefore, more fre-
quently. As a consequence, their blocks of days o� can not be as long.

(iii) Maximal corresponding fulltime days: On the other hand, lengthy blocks
are not desired either. Instead of block length, the corresponding fulltime
days is the deciding variable, since a block of short shifts is much gentler
to work than a block of long shifts.

2.3. Input Parameters 5

(iv) Minimal days o�, non-taxing block: It is preferable or required that a team
has two days o� after such a block. This constraint can be either soft or
hard.

(v) Minimal days o�, taxing block: It is preferable or required that a team
has three days o� after such a block. This constraint can be either soft or
hard.

(vi) Maximal consecutive worked weekends: A team should not work more
than a certain number of weekends (Saturday and Sunday) in a row.

(vii) Weekend cohesion: A team should either work two identical shifts on both
days of a weekend, or work none of them. Concentrating the weekend
shifts gives the employees more weekends where they do not work at all.

(viii) Allowed shift transitions: Worked shifts on two consecutive days may only
be combined according to a given binary shift transition matrix. Transi-
tions can be disallowed due to an unacceptably short time o� between the
shifts, or because they would overly disrupt the circadian rhythm.

(ix) Fair summer work distribution: The time worked for a team during the
summer period should not deviate by too many hours from the intended
average of all teams.

Some of these constraints are taken into account by a penalty, as described in
Section 4.1. Others are never violated at any point during the execution of the
program, so there is no need for a penalty.

2.3 Input Parameters

The following parameters are de�ned by the user for each problem instance:

� The number of teams, |T|.

� Starting date, dstart.

� Starting and ending date for the summer period, spstart and spend.

� Starting and ending date for each team's vacation, vsn and ven, n =
1, 2, ..., |T |.

� Whether teams that have an evening/night shift before the vacation should
be considered to have had one fewer days of vacation, esv (eve shortens

vacation).

6 Chapter 2. Problem Description

� The minimal possible and the shortest desired block length, blhard and
blsoft.

� The maximal possible and the highest desired number of corresponding
fulltime days per block, cfdhard and cfdsoft.

� The maximal possible and the highest desired number of consecutive
worked weekends, cwhard and cwsoft.

� Allowed margin for summer work time [hours], sm.

� The penalty coe�cients used in Section 4.1, cn, n = 1, 2, ..., 12.

� Whether constraints (iv) and (v) should be hard constraints, ph4 and ph5

(in which case the respective penalties and penalty coe�cients are not
used).

� The shifts sn, n = 1, 2, ..., |S|, along with all of their properties:

� Family sfn, n = 1, 2, ..., |S|. Shifts should belong to the same family
if their time spans greatly overlap.

� Whether the shift is taxing, stn, n = 1, 2, ..., |S|.
� Corresponding fulltime days, scn, n = 1, 2, ..., |S|.
� Whether it is an evening/night shift, sen, n = 1, 2, ..., |S|.

� The sta�ng options on, n = 1, 2, ..., |O|, and their desirability on each day
odn,δ, n = 1, 2, ..., |O|, δ ∈ D.

� The matrix of consecutively allowed shifts, cas(i,j); i, j = 1, 2, ..., |S|, with
elements that state whether shift j can directly follow shift i.

All parameters describing whether something holds, or not, can clearly be de-
scribed by binary values.

Chapter 3

Background

In this chapter, the relevant literature is discussed, and the necessary informa-
tion on metaheuristics is provided.

3.1 Literature

Six articles were used as a starting point [3, 4, 6, 7, 8, 9]. Many of their backward
and forward references were studied, after which Google Scholar was searched
for the following keywords:

� Scheduling summer

� Scheduling vacation

� Scheduling holiday

� Nurse Scheduling Problem summer

� Nurse Scheduling Problem vacation

� Nurse Scheduling Problem holiday

� Genetic Scheduling summer

� Genetic Scheduling vacation

� Genetic Scheduling holiday

� Rostering summer

Fakt, 2022. 7

8 Chapter 3. Background

� Rostering vacation

� Rostering holiday

The �eld of personnel scheduling has seen works that take many di�erent
elements into consideration since its introduction in the 1950s [3, 4]. This in-
cludes personnel demand that is unknown in advance, the assignment of tasks
that should be performed within a shift, sta� preferences, di�erent quali�cations
among workers, the displacement of personnel in travel and transportation busi-
nesses, and more. The goal can for example be to optimize worker satisfaction,
determine the minimal number of workers required, or to make the schedule
resilient to disruptions, such as sick leaves.

Fortunately, there are a number of literature reviews available within this
�eld. Ernst et al. [3] conducted a comprehensive review over various scheduling
works, and Van den Bergh et al. [4] more recently performed a categorization.
The most recent studied literature review was written last year by Özder et al.
[10].

Personnel scheduling can be done for a team of employees or speci�c indi-
viduals. The former has the advantage of lower dimensionality, which improves
solution times and/or quality. The small number of teams under consideration
(instead of a larger number of employees) also makes fairness easier to achieve.
However, it cannot account for sta� preferences for certain shifts, shift patterns
or days o�.

Many works on personnel scheduling (see, for instance, the references in [3])
make use of a cyclic roster, also called rotating workforce scheduling. In a cyclic
roster, every team or employee has the same schedule, but time shifted, thereby
inheriting the schedule of another team or employee after a certain time. The
schedule is often represented as in Figure 3.1.

Figure 3.1: Example of a cyclic roster with (D)ay, (E)vening and (N)ight shifts.

Like scheduling for teams, cyclic rosters reduce the dimensionality, while the
common schedule guarantees complete fairness. They also share the disadvan-

3.2. Metaheuristics 9

tage of not being able to consider personal preferences, and might therefore seem
like a clear choice when scheduling for teams instead of individual workers, since
that downside is already incurred. However, cyclic rosters can generally not be
used during the vacation period, as the vacations would rupture the cyclicity.

Only two articles that took vacations into special consideration were found,
and they are described below. Neither of these works rely on a genetic algorithm
or seem to be nearly as drastically a�ected by the teams' vacations. The rarity
of these articles is indicated by the fact that two of the three studied literature
reviews [3, 10] do not mention �vacation�, �holiday� or �summer� in the text, and
� in the relevant context � only once in the references. Note that most articles
use the term �holiday� to signify single days o�, or national holidays.

Azmat et al. [11] use mixed integer programming to solve a single-shift
scheduling problem with vacations. They observe that letting the employees
choose their vacations themselves results in higher overtime than when the de-
cision falls upon the MIP model. Since mixed integer programming is used
to solve the problem, the vacations do not necessitate changes in the solution
method, but only result in the addition of the corresponding constraints.

Azmat andWidmer [12] developed a three-step method for single-shift schedul-
ing, which ensures that the shift demand can be covered, as part of one of the
steps. They only rarely have as many as two out of seven workers on vacation
simultaneously in their case study. Therefore, the e�ect on the entire schedule
is assumed to be mild, since the remaining workers can more easily cover for
the absent ones during such short periods. In contrast, as can be most clearly
seen in Figure 7.3, our work typically deals with an average of two out of six
teams being absent, with brief periods when as much as half the workforce is
on vacation.

3.2 Metaheuristics

Many optimization problems are too complex to be solved exactly for all but
the smallest instances. For this class of problems, metaheuristics can be used to
�nd an adequate solution within an acceptable time frame. A metaheuristic is
a general method that partly constructs or improves one or many solutions in
each iteration, and can be used for a wide range of problem types [5, p. xvii].
Two metaheuristics are used in the produced program. The genetic algorithm

is used predominantly, assisted by a modi�ed version of the large neighbourhood
search.

10 Chapter 3. Background

3.2.1 Genetic Algorithm

The presentation in this section is primarily based on Chapter 3 in Metaheuris-

tics: From Design to Implementation by Talbi [5].
Genetic algorithms have been used to solve various scheduling problems in

the past (see, for example, the references in [3] or [4]). It is a metaheuristic
that draws inspiration from the biological concept of evolution. The algorithm
contains a set, called population, of solutions, called individuals. The variables
each individual consists of are called genes [2]. New individuals, children, are
produced by combining di�erent gene sections of two or more existing individu-
als, parents, by so called crossover, and a number of crossings take place in each
iteration of the algorithm, comprising a generation. The �rst generation, also
called the initial population, can favourably be produced with a simple construc-
tive heuristic. This ensures that the population more quickly reaches solutions
of high quality.

With the classic representation of an individual as a bit string [2, 5], the
standard crossover is single point crossover, where the �rst part of the child is
taken from one parent and the second part from another parent. Depending on
how the representation of an individual is structured, di�erent crossovers can
be possible and suitable. Certain crossovers need a repair step to restore a type
of pattern or section of the solution that was destroyed during the crossover.

After crossing, there is a chance that a mutation takes place, during which
part of the individual is slightly altered. Without mutations (or a repair step), it
would be impossible for genes to take on a certain value if none of the instances
of that gene in the initial population had that value. Mutations also help with
maintaining diversity in the population.

In order to guide the metaheuristic towards good solutions, there is a need to
measure the �tness of an individual. The �tness is generally the negative or in-
verse of a penalty which describes the de�ciencies of the corresponding solution.
Individuals with high �tness can have a greater chance of surviving to the next
generation, or to be selected as a parent. For multi-objective problems, one can
also measure an individual's dominance rank over the rest of the population.
This value is equal to the number of individuals the individual is dominated
by. An individual dominates another if it is at least as good in all respects of
a multi-objective penalty function, and better in at least one of the objectives.
Similar methods to the dominance rank also exist.

There are many other ways to make a genetic algorithm more sophisticated,
such as elitism, which is the practise of preserving the best parent solutions.
This prevents permanent loss of the best solutions between generations. One
way to incorporate elitism is to carry over the best parent solutions between
generations, treating them as children. Another is to maintain a separate popu-

3.2. Metaheuristics 11

lation of the best found solutions, and potentially let them act as parents when
creating new solutions.

3.2.2 Large Neighbourhood Search

Single-solution based metaheuristics generally search for a new solution in a
neighbourhood around the current solution. A neighbourhood is the set of so-
lutions that are di�erent in a certain way, up to some extent, from the current
solution. Some single-solution based metaheuristics rely on the principle that
by searching a large neighbourhood, there is generally a better improvement
found in each iteration than for a small neighbourhood. This also reduces the
risk of getting trapped in local optima. Large Neighbourhood Search (LNS) is
one such metaheuristic, which improves the solution by destroying a part of it
and then repairing it [13].

Chapter 4

Modelling Approach

One of the key strengths of a genetic algorithm is that considerations for the
soft constraints, apart from the calculation of penalties, are not required. The
penalties and the selection of solutions based upon them are what guides the
population towards good solutions, since schedules that happen to score poorly
are disregarded. The program uses the penalties described in the following
section, though many other penalties could be used, even ones that only apply
for a certain team or date. This �exibility also makes the genetic algorithm
robust to changes in the parameters.

4.1 Penalties

Let the violation of a soft limit be a measure of how relatively close to h in
the interval [min(s, h), max(s, h)] the value v lies, where s and h are the soft
and hard limit of the respective constraint. Violation is de�ned by the following
function, and clarifying examples are provided in Figure 4.1.

V (v, s, h) =

v − s

h− s
, min(s, h) ≤ v ≤ max(s, h)

0, otherwise.

Let ch be a penalty coe�cient for a violation against hard constraints. The
partial penalties pn, n = 1, 2, ..., 12, are calculated in the following manner:

(i) Sta�ng, as described in Algorithm 1. Sta�ng that does not match any
sta�ng option, or that matches an undesired one, is penalized.

Fakt, 2022. 13

14 Chapter 4. Modelling Approach

Figure 4.1: Examples of calculation of penalty violation.

Algorithm 1 Sta�ng
m← [1, 1.2, 0.8]
p1 ← 0
for δ ∈ D do

for o ∈ O do

a← the number of shift additions needed to reach o
r ← the number of shift removals needed to reach o

▷ Extract the number of shift changes, where a shift change is the
pair of an addition and a removal

c← min(a, r)
a← a− c
r ← r − c
p1o ← ch(m1c+m2a+m3r) + odo,δ

end for

p1 ← p1 +mino∈O(p1o)
end for

4.1. Penalties 15

(ii) Minimal block length:

p2 =
∑
β∈B

V (blβ , blsoft, blhard).

Here, blβ is the block length for block β.

(iii) Maximal corresponding fulltime days:

p3 =
∑
β∈B

V (cfdβ , cfdsoft, cfdhard).

Here, cfdβ is the consecutive fulltime days for block β.

(iv) Minimal days o� (if ph4 = 0):

p4 =
∑
β∈B′

{
1, doβ < 2

0, otherwise.

Here, B′ is the set of blocks of days o�, that are directly preceded by a
non-taxing block and followed by work, and doβ is the number of days o�
in β.

(v) Minimal days o� after taxing block (if ph5 = 0):

p5 =
∑
β∈B′

{
1, doβ < 3

0, otherwise.

Here, B′ is the set of blocks of days o�, that are directly preceded by a
taxing block and followed by work, and doβ is the number of days o� in β.

(vi) Maximal consecutive worked weekends, as described in Algorithm 2. A
sequence of consecutive worked weekends is penalized if its length exceeds
cwsoft.

(vii) Friday-inclusive weekends: p7 is equal to the number of times any team
works an evening/night shift the Friday before a weekend o�. This is
penalized because the employees can feel like a part of the weekend is
infringed upon.

16 Chapter 4. Modelling Approach

Algorithm 2 Maximal consecutive worked weekends
p6 ← 0
for t ∈ T do

Ω← (0)
for w ∈W do

if team t works on weekend w then

increase the last element of Ω by 1
else

append 1 to Ω
end if

end for

v ← 0
for ω ∈ Ω do

if ω > cwsoft then

v ← v + 1
if ω > cwhard then

p6 ← p6 + ch(ω − cwhard)
else

p6 ← p6 + V (ω, cwsoft, cwhard)v
2

end if

end if

end for

end for

4.1. Penalties 17

Algorithm 3 Shift variety
for t ∈ T do

δlastworked ← 0
f ′ ← null ▷ Previous family
n← 0 ▷ Number of previous consecutive blocks of the current family
for δ = 0 to 97 do

if δ − δlastworked == 8 then ▷ Reset after a week of days o�
f ′ ← null
n← 0

end if

if t works on δ then
f ← the family of the block on δ
δlastworked ← the last date of the block
δ ← δlastworked + 1

end if

if f ̸= null then
if f = f ′ then

n← n+ 1
p8 ← p8 + n2

else

n← 0
f ′ ← f

end if

end if

end for

end for

18 Chapter 4. Modelling Approach

(viii) Shift variety, as described in Algorithm 3. Let the family of a block be
de�ned as the most common family of its shifts (null in case of ties).
Consecutive blocks are penalized if they are of the same family.

(ix) Fair summer work distribution:

p9 =
∑
t∈T

{
|st − s′| − sm, |st − s′| > sm

0, otherwise.

Here, st is the number of worked hours during the summer period for team
t, and s′ is the average number of summer hours worked over all teams,
given that the sta�ng is optimal. The parameter s' is used in place of
the actual average (as in penalties p10, p11 and p12) for slightly improved
e�ciency in the repair step (see Section 5.3).

(x) Fair shift distribution:

p10 =
∑
s∈S

∑
t∈T

(Qts −Qs)
2.

Here, Qts is the number of times team t works shift s, and Qs is the average
for that shift over all teams. The aim of the quadratic terms is to prevent
large di�erences from the average.

(xi) Vacation lengths:

p11 =
∑
t∈T

(Qt −Q)2.

Here, Qt is the vacation length for team t, which includes possible days o�
before and after the vacation shifts, and Q is the average over all teams.

(xii) Fair weekend distribution:

p12 =
∑
t∈T

(Qt −Q)2.

Here, Qt is the number of worked weekends for team t, and Q is the average
over all teams.

4.2. Multi-Objective Considerations 19

4.2 Multi-Objective Considerations

As described in Section 3.2.1, there is a need for a metric to compare solutions.
The program uses a version of dominance rank for this when possible; the ex-
ception is during the large neighbourhood search described in Section 5.3. LNS
cannot use dominance rank as it is a single-solution based metaheuristic, and
thus does not compare a population of solutions.

Comparing solutions in possibly as many as twelve dimensions, as there are
twelve partial penalties, would be excessive, since a solution has a very slight
chance of dominating another solution in all of these dimensions. This would
lead to a high proportion of solutions that have dominance rank 1, and would
then be considered equally good. Therefore, the partial penalties are divided
into four categories: sta�ng (comprised by p1), block length (comprised by p2
to p5), block placement (comprised by p6 to p8), and fairness (comprised by p9
to p12).

Sta�ng is the penalty that by far mostly governs whether a solution is
feasible. If solutions are only compared using dominance rank, the populations
contain plenty of very poor solutions with respect to sta�ng, that merely appear
desirable due to scoring well in the other three dominance rank dimensions.
Because of this, solutions are �rst compared using their sta�ng penalty. If
their sta�ng penalty is equal, they are then compared using their dominance
rank. For conciseness, whenever "dominates" or a related term � except for
"dominance rank" � is used in the following chapters, it refers to this two-step
comparison.

Chapter 5

Genetic Algorithm

The implemented genetic algorithm borrows heavily from the literature, but has
a few unconventional modi�cations. Instead of a selection step before crossing
to determine suitable parents, and a step of discarding all parents (or possibly
all but the best ones) after crossing, the implemented genetic algorithm lets all
solutions act as parents for two child solutions each, and uses the selection to
discard poor solutions after the crossover step. Parents and children are treated
the same after crossing, so the selection step discards parents and children alike.
The intermediate mutation step also mutates parent solutions. This noticeably
increases the time required for each generation, since mutated parents need to
have their penalties reevaluated. However, it helps counteracting a problem
commonly plaguing genetic algorithms: convergence of the population, so that
all individuals become increasingly alike. There is no risk of permanently ruining
the population by mutating the best parent solutions, because of the method of
elitism used, described in Section 5.6.

A graphic comparison between the standard and implemented genetic algo-
rithms can be seen in Figures 5.1 and 5.2. Both �gures ignore the inclusion of
elitism. The genetic algorithm runs for a predetermined number of generations
and maintains a �xed population size.

5.1 Initial Population

Since the genetic algorithm �nds good solutions by combining di�erent parts
of existing ones, it does so more quickly when initialized with decent initial
solutions, the initial population. These do not have to be feasible or near-
feasible, but be comprised of good gene sections, that is, it should be possible

Fakt, 2022. 21

22 Chapter 5. Genetic Algorithm

Figure 5.1: Standard genetic algorithm.

Figure 5.2: Implemented genetic algorithm.

5.1. Initial Population 23

to create near-feasible schedules by combining parts of the initial solutions.

The function that generates the initial population begins by creating a ma-
trix describing which of the teams, here referred to as candidates, that can
work which weekends. This matrix is kept updated with respect to constraint
(vi) as teams are assigned to weekends throughout the process described below.
Initially, every team can work every weekend.

Candidates are �rst removed from weekends during which they are on va-
cation. Next follows an iterative process, shown in Algorithm 4. It should be
noted that for problems where there is no feasible assignment of weekends, the
early return statement always triggers, eventually, for each schedule. If there is
a very low success rate after a number of attempts, the program terminates with
an error message. Normally, the return statement triggers so infrequently that
an attempt to repair the initial schedule is not required; hence it can simply be
discarded.

Algorithm 4 Assignment of weekends for initial solutions

while there are unassigned weekends do
w ← the weekend with the fewest candidates
S ← sta�ng options that both are allowed during w, and have at most as

many shifts as there are candidates in w
if S = ∅ then return

end if

s← the most desirable sta�ng option in S
T ← ∅
while size(T) < the number of shifts in s do

Cfew ← the candidates of w that work the fewest number of weekends
and are not in T

add a random candidate of Cfew to T
end while

end while

This process ensures that all weekends have feasible sta�ng, while also keep-
ing the initial solutions diverse because of the random assignment of work. The
weekend blocks are then extended both backwards and forwards for a random
number of days, with respect to the constraints.

Finally, new blocks are inserted randomly where possible, until the total
working hours of the team exceeds a threshold close to the number of desired
hours per team, which is the average number of worked hours per team at full
sta�ng.

24 Chapter 5. Genetic Algorithm

Figure 5.3: Example child solutions produced by balanced team crossover, single
date crossover, vacation crossover, and uniform partial team crossover, respec-
tively. The colours signify the inheritance of the di�erent schedule regions.

5.2 Crossovers

Four di�erent crossovers were implemented and tested. Some are designed for
intensi�cation and can produce feasible solutions when used separately, while
others have diversi�cation as their purpose and require complementary use of
other crossovers.

As is usual [5, p. 201], all four crossovers have in common that two parents
always produce two children. The schedule elements that are not chosen when
generating the �rst child are instead chosen for the second child. For simplicity,
the following sections only describe how the crossovers produce the �rst child.

A graphic comparison of the four crossovers can be seen in Figure 5.3.

5.2.1 Balanced Team Crossover

One of the most intuitive possible crossovers combines half of the teams from
each parent. The teams are not necessarily contiguous. Instead, half of them
are chosen with equal probability from one parent, and the rest from the other
parent.

Recall that for most constraints, a schedule's corresponding penalty is cal-
culated as the sum of the penalties from its teams. In addition, many penalties
that concern the fairness of teams can, for feasible solutions, be reformulated
to function in the same manner. Penalty (xii) is one such example (as long
as all sta�ng options allowed during the weekend have the same number of
shifts). The average number of worked weekends would then be equal to the 14
weekends of the schedule times the proportion of teams that work during any
weekend (the number of shifts in the sta�ng option(s) divided by the number
of teams).

Since balanced team crossover preserves the teams, it provides diversi�cation

5.2. Crossovers 25

without deteriorating the schedule structures that comprise these constraints.
Its drawback is that few dates will have feasible sta�ng. Since this constraint
is the vital one for producing feasible schedules, balanced team crossover alone
can not be used to this end.

5.2.2 Single Date Crossover

Single date crossover is designed with the property that balanced team crossover
lacks in mind. For this crossover, each child inherits all shifts up to a certain
date from one parent, from which date it inherits from the other parent. By
this method, the sta�ng for all dates is maintained, whether feasible or not.

Single date crossover, as described above, has a signi�cant �aw. Nothing
can be guaranteed about the feasibility of the schedule near the crossover date.
Almost every constraint can be locally violated. To remedy this, a repair step
is introduced, which identi�es sections close to the crossover date that give rise
to a violation and removes nearby blocks so that the violation is lifted. It
then performs block insertions close to the crossover date according to the large
neighbourhood search, see Section 5.3.

The repair step is not guaranteed to achieve feasible sta�ng on all a�ected
days. Neither does it ensure that constraint (vi) holds. As the schedule elements
that lead to a violation of that constraint can be far away from the crossover
date, we erroneously believed � throughout the development of the program �
that the schedule would have to be modi�ed far from the crossover date in order
to prevent a violation. In fact, if a violation occurs, it would su�ce to remove
the sta�ng for that team on the weekend closest to the crossover date. This
would result in fewer consecutive worked weekends than in one of the parent
schedules on the corresponding side of the crossover date, and an equal number
as in the other parent on the other side.

5.2.3 Vacation Crossover

When the crossover date for single date crossover overlaps with a team's vaca-
tion, there are plenty of days o� between the shifts inherited from each parent.
This removes the need for a repair step for that team, a property which is ex-
ploited in vacation crossover. It uses a separate crossover date for each team,
�xed to an arbitrary date during the vacation of that team.

Let common parent dates be the dates in a child for which the shifts of all
teams are inherited from a common parent. Among all possible crossovers that
lack a repair step, vacation crossover maximizes the number of common parent
dates. As shown in Figure 5.3, these dates occur in the beginning and end of

26 Chapter 5. Genetic Algorithm

the schedule. Vacation crossover can maintain feasible sta�ng for these regions,
but not for the region in-between.

Another limitation of vacation crossover is due to its rigid crossover points.
The other crossovers can, over many generations, result in schedules with genetic
material from a large number of ancestors. However, descendants produced
solely by vacation crossover can only have genetic material from two ancestors
� the upper triangular part and the lower triangular part. This would make a
genetic algorithm that only relies on vacation crossover extremely limited, but
this is no issue when vacation crossover is used alongside other crossovers.

5.2.4 Uniform Partial Team Crossover

For uniform partial team crossover, each region belonging to one team and lying
on one side of the vacation of that team, has an equal chance to be inherited
from either parent. This crossover o�ers the highest number of possible children
while still guaranteeing that there is no need for a repair step after a crossing.
It is analogous to uniform crossover described in [5, p. 214], where each gene
has an equal chance to be inherited from either parent.

Uniform partial team crossover can be seen as a generalization of both bal-
anced team crossover and vacation crossover, as it has a chance to mimic either
of them.

5.3 Large Neighbourhood Search

Large Neighbourhood Search is used in the repair step after single date crossover.
In each step of LNS, it performs the best possible insertion of a block within a
selected portion of the schedule; it is thus a greedy algorithm. There are a few
ways "best" can be de�ned in this context:

1. The most straightforward de�nition is the improvement in schedule penalty
that the insertion results in. However, long blocks are able to improve the
coverage penalty over a larger number of days. The coverage penalty is
one of only two penalties that are a�ected by the penalty coe�cient for
hard constraints, and is as such predominant in the improvement. Such a
measure would therefore result in a bias towards long blocks.

2. To remedy this, the most straightforward adjustment would be to measure
the improvement divided by the number of days in the block. However,
that measure has the opposite problem of favouring short blocks. Con-
sidering the situation where the �rst or last shift in a block has a smaller
contribution towards the improvement than the average shift in the block,

5.4. Mutations 27

that shift would always be discarded in favour of the corresponding shorter
block, even if its contribution is high.

3. A compromise solution was therefore implemented, with another denom-
inator. The denominator is instead the number of days in the block plus
the number of required days o� afterwards. The denominator can there-
fore be seen as the number of days that cannot be worked because of this
insertion. This is an inaccurate denominator in situations where the days
after the block cannot be worked anyway, such as when they are vacations,
but has proven adequate. An e�cient function that correctly calculates
the number of days that cannot be worked was deemed too convoluted
because of the many special cases that would have to be considered.

The performance of LNS in our initially intended role for it, replacing an
entire team, has not been thoroughly investigated. Because of its long runtime
and O(n2) complexity, where n is the number of days times teams under con-
sideration, even mildly frequent usage of it in the genetic algorithm would lead
to a noticeable slowdown.

5.4 Mutations

The classic recommendation is a mutation rate of one mutation per new indi-
vidual, on average. Instead of the common strategy of mutating each gene with
a probability of 1

k , where k is the number of genes [5, p. 208], a slightly more
e�cient approach is used. There is a 1

|T | chance that each team is mutated, and
if so, the mutation date is randomized. If the team works on the mutation date,
one of these four mutations is selected:

� Extension � the block spanning the date is extended by one day.

� Shortening � the block spanning the date is shortened by one day.

� Translation � the block spanning the date is translated by one day.

� Replacement � the shift on the mutation date is replaced with another
shift.

The choice of mutation, direction (if any), and shift (if any) are all uniformly
random. All mutations ensure that the hard constraints are not violated. If the
mutation would have no choice but to violate them, it does not complete and
the team remains unchanged.

28 Chapter 5. Genetic Algorithm

5.5 Selection

Two selection operators were considered: tournament selection [5, p. 206] and
roulette wheel selection [5, p. 207]. Both of them can compare solutions using
various metrics, such as �tness or dominance rank. For simplicity, �tness will be
the only one mentioned in the paragraphs below. Both procedures are repeated
until the desired number of solutions have been selected.

For roulette wheel selection, each solution is given a probability weight equal
to its �tness. A solution is selected by generating a random number up to the
sum of the probability weights, and subtracting probability weights from it, in
order, until a subtraction would result in a negative number. The interrupted
subtraction corresponds to the selected solution. This procedure can be thought
of as a biased round of Roulette, hence the name.

In tournament selection, the best solution out of k random solutions is se-
lected. A higher tournament size k creates a stronger bias towards good solu-
tions, as a solution must outclass k − 1 other solutions in order to be selected.

Tournament selection was chosen for the produced program due to its higher
speed; k = 3 was decided on after testing both this choice and k = 2.

5.6 Elitism

Before selection, every solution in the population (both parents and children)
is potentially added into the solution front. A solution is added if it is not
dominated by any solution that already exists in the solution front. On entry,
solutions in the front that are dominated by the new solution are removed.
In this manner, the solution front stores all non-dominated solutions found
throughout the run. All schedules in the solution front act as parents when
creating new solutions, but are never added to the population (and are therefore
not mutated or part of the selection step). After the genetic algorithm �nishes,
all schedules in the solution front are saved as separate �les, together with a �le
that contains a table of their penalties and related statistics.

Chapter 6

Studied Problem Instances

Three problem instances, P1, P2 and P3, are studied and shown in Table 6.1.
P1 is typical for a customer with a long vacation, a common case that was
deemed important to automate. P2 is identical to P1 except for only allowing
long shifts, and the necessary entailed changes. This problem instance might
seem redundant, as any schedule which is feasible for P2 is also feasible for P1.
However, the signi�cantly smaller domain greatly reduces the time required per
generation, and makes it easier to �nd good solutions within that domain. In
P3, vacation length is sacri�ced for a longer time o� after each block.

The penalty coe�cients happen to be suitable when they are of the same
order of magnitude. Testing to further tune the penalty coe�cients has not
been carried out, so they have in all cases but one retained their default value
of 1. The reason for the higher penalty coe�cient in P1, c1 = 10, is explained
in Section 7.2.

Fakt, 2022. 29

30 Chapter 6. Studied Problem Instances

Table 6.1: Problem instances. Entries marked with "*" are the same as the
entry closest to the left. All dates are during the year of 2022 for P1 and P2,
and during 2021 for P3.

Problem P1 P2 P3
|T| 6 * *

dstart 30/5 * 31/5
spstart 1/6 * 5/6
spend 31/8 * 29/8

vs
(1/6, 4/6, 30/6,
2/7, 30/7, 2/8)

*
(5/6, 15/6, 29/6,
6/7, 24/7, 3/8)

ve
(30/6, 3/7, 29/7,
31/7, 28/8, 31/8)

*
(27/6, 7/7, 21/7,
28/7, 15/8, 25/8)

esv 1 * *
blhard 2 * *
blsoft 3 * *
cfdhard 6.0 * *
cfdsoft 5.0 * *
cwhard 2 * *
cwsoft 1 * *
sm 20 * *

cn
10, n = 1,

1, n ∈ {2, ..., 12} 1 ∀n ∈ {1, ..., 12} *

ph4 0 * 1
ph5 0 * 1
s (D, E, N, DL, NL) (DL, NL) *

sf
(Day, Evening, Night,

Day, Night)
(Day, Night) *

st (0, 0, 1, 0, 1) (0, 1) *
sc (1.0, 1.0, 1.1, 1.4, 1.6) (1.4, 1.6) *
se (0, 1, 1, 0, 1) (0, 1) *
o ({D, E, N}, {DL, NL}) ({DL, NL}) *

od1,δ 0 ∀δ ∈ Dwd, -1 otherwise 0 ∀δ ∈ D *
od2,δ 0 ∀δ ∈ Dwe, -1 otherwise n/a *

cas

1 1 0 1 0
0 1 1 0 1
0 0 1 0 1
0 1 0 1 0
0 0 1 0 1

[

1 0
0 1

]
*

Chapter 7

Results

This chapter describes the settings used, as well as the quality of the produced
schedules.

7.1 Chosen Parameter Values

On the studied problem instances, runs that do not utilize single date crossover
do not achieve a feasible sta�ng, as expected. Unfortunately, runs that combine
single date crossover and other crossovers consistently result in infeasible sta�ng
during some weekends. This is a consequence of the other crossovers violating
the weekend sta�ng, which is feasible in the initial solutions. The mutations are
not able to correct this violation of sta�ng, as the constraint regarding weekend
cohesion prevents them from changing the shift on weekend days. Due to this,
single date crossover is the only crossover used in the produced program.

A population size of 300 and the use of 150 generations result in a suit-
able balance between run time and solution quality. Such runs on P2 and P3
take roughly 15 minutes when using a 2.3 GHz processor, while runs on P1
take around two hours. In order to avoid excessive convergence of the popu-
lation, runs with a higher number of generations require the population size
to be increased as well. Signi�cantly reduced improvements were observed for
population sizes over 300 and more than 150 generations. While quick runs are
bene�cial for testing purposes during the development of the program, longer
runs might be preferable for real cases, as the schedules are constructed well in
advance and a computer can be left on for a long run during the night, for an
insigni�cant cost.

A value of 30 was chosen for ch, the penalty coe�cient for hard constraints.

Fakt, 2022. 31

32 Chapter 7. Results

7.2 Solution Quality

As described above, runs on P2 are signi�cantly faster than on P1. This is due
to how LNS (see Section 5.3) attempts insertions of every possible block during
the repair step, and there are several times more possible blocks in P1 than in
P2. Furthermore, as Figures 7.1 and 7.2 demonstrate, P2 also achieves a higher
relative improvement in each generation than P1, as P1 struggles with achieving
feasible sta�ng for each weekday. The chance that an initial solution for P1
happens to be created with feasible sta�ng for any given weekday is minute.
Furthermore, the mutations alone are unlikely to make the sta�ng at any date
feasible, so the program has to rely primarily on LNS, during the repair step.
Since LNS selects an improving block based on the sum of the penalties, P1
is more sensitive to the penalty coe�cients than P2, and is aided by a higher
coe�cient for the sta�ng penalty. Runs on P1 sometimes end with one or two
dates of infeasible sta�ng, while runs on P2 reliably reach feasible sta�ng after
around �fty generations. Figure 7.3 shows a schedule produced on P2, which is
compared with a manually constructed schedule in Chapter 8. Several runs on
P3 have been conducted, with none reaching feasible sta�ng.

Some runs yield a solution front that seems to indicate a clear correlation
between two of the penalty categories, while the other pairs of penalty categories
seem uncorrelated. An example of this can be seen in Figures 7.4 and 7.5, that
show the solution front after two di�erent runs on problem instance P2. Here,
the correlation seems to exist in two di�erent pairs of penalty categories.

7.2. Solution Quality 33

Figure 7.1: The minimum, maximum, mean and interquartile range of the
sta�ng penalty of the population during a run on P1. Feasible sta�ng has
been reached (and is maintained) after 75 generations.

34 Chapter 7. Results

Figure 7.2: The minimum, maximum, mean and interquartile range of the
sta�ng penalty of the population during a run on P2. Feasible sta�ng has
been reached (and is maintained) after 50 generations.

7.2. Solution Quality 35

Figure 7.3: Schedule produced by the program on P2.

36 Chapter 7. Results

Figure 7.4: Solution front with a strong sample correlation between block length
penalty and block placement penalty.

7.2. Solution Quality 37

Figure 7.5: Solution front with a strong sample correlation between block length
penalty and fairness penalty.

38 Chapter 7. Results

7.3 Program Performance

The runtime of various parts of the program is shown in Figure 7.6. Crossover,
repair and penalty calculation clearly dominate. There is a big room for im-
provement in the repair step, since all combinations of a block and starting date
are tested, and the change in penalty is calculated. While the penalty calcula-
tion in this step is adapted to the insertion of a block, and is therefore far faster
than the regular penalty calculation, its much more frequent usage results in
a total time comparable to that of the regular penalty calculation. Since the
sta�ng penalty is the most prominent one for a single block insertion, a check
could �rst be made by calculating if it is the best or near-best improvement
found so far, when only considering that penalty. If not, the calculation of all
the other penalties can be skipped and the next combination of a block and
starting date tested.

Dominance ranks are updated using the naive approach of comparing each
solution with every other solution, which has an O(n2) time complexity, where
n is the size of the population. Algorithms with lower complexity have been de-
vised. JaJa et al. [14] present an advanced approach with O(n(logn/log logn)2)
complexity for three dimensions, which might be faster than the naive approach
for n ≈ 600, the population size before the selection step.

Because the time taken for the selection step is negligible, roulette wheel
selection might have been the better choice due to its supposedly better perfor-
mance per generation. Even a sizable relative slowdown compared to tourna-
ment selection would not make the program signi�cantly slower overall.

7.3. Program Performance 39

Repair: penalty calculation

Repair: misc.

Crossover

Penalty calculation (outside repair)

Updating dominance ranks

Misc.

Figure 7.6: Relative runtime of di�erent parts of the program on P2, using
the parameter values from Section 7.1. The miscellaneous portion includes the
creation of the initial population, mutation, selection and updating the solution
front.

Chapter 8

Discussion

For unsuccessful runs on P1, only a few manual changes are required for at-
taining a feasible sta�ng. This indicates the potential bene�t of using a local
search between (some) generations of the genetic algorithm, with the purpose
of adjusting the sta�ng on and around dates where it is infeasible. For runs on
P3, the sta�ng penalty decreases at a similar pace as for P2 during the �rst
dozens of generations, but the last few days of infeasible sta�ng cannot easily
be corrected by the program or by hand. Not only would this hinder a local
search, it is also a relevant disadvantage because the convergence of the popu-
lation might have caused all of the population's schedules to be equal around
a given date with infeasible sta�ng. At that point, crossover can no longer re-
sult in child solutions without this infeasibility, either directly or via the repair
step. Therefore, the only step that can remove the infeasibility is the mutations,
which can be compared to manual changes. It is believed that this observation
indicates that P3 is more constrained than P1 and P2, and is the reason why
feasible sta�ng was never attained for P3.

Figure 8.1 shows a schedule constructed by hand on P2. The observant
reader might notice that its vacations do not start or end at the speci�ed dates
(though they have the desired length). This is because these dates are adjusted
during the manual scheduling process, and not truly inherent to the problem
instance. The program initially supported undetermined starting and ending
dates for the vacation, but saw a massive improvement in the progression of the
sta�ng penalty when �xing the dates. It is deemed that an experienced user
can enter suitable dates as part of the input.

Fakt, 2022. 41

42 Chapter 8. Discussion

Figure 8.1: Manually constructed schedule for P1/P2.

43

Table 8.1: Penalties for a schedule produced by the program and for a manually
constructed one. Penalties marked with "*" have been edited as appropriate to
allow for a fair comparison. p1 is edited as though long shifts are not undesired
during the summer period, to match P2. The �rst and last week are ignored for
p9 and p10, as they are part of a cyclic schedule that covers most of the rest of
the year.

Penalty By program By hand
p1, Sta�ng 0 0*

p2, Minimal block length 39 44
p3, Maximal corresponding fulltime days 2.4 3.0

p4, Minimal days o� 4 0
p5, Minimal days o� after taxing block 20 16

p6, Maximal consecutive worked weekends 12 4
p7, Friday-inclusive weekends 9 10

p8, Shift variety 58 128
p9, Fair summer work distribution 8 0*

p10, Fair shift distribution 26.7 12.0*
p11, Vacation lengths 14.0 1.5

p12, Fair weekend distribution 5.3 1.3

The penalties for the manually constructed schedule are calculated as though
it were produced by the program, and are compared in Table 8.1 to those of the
schedule in Figure 7.3. The schedule from the program is competitive in the
block length penalties, but su�ers in other penalties.

Penalty p4 might seem critical as the relative di�erence to the manual sched-
ule is in�nite (while the absolute di�erence is only 4). However, it indicates that
a mere four occurrences of short rest after a non-taxing block exist. Further-
more, the fact that NL is classed as a taxing shift means that all of those rests
start after a DL shift. Since DL is the earliest shift, this ensures that the �rst
shift after the day o� does not start earlier than the shift before the day o�. A
one-day rest would be much worse if it followed an NL shift and came before a
DL shift.

Penalty p6 is likely higher for the schedule produced by the program because,
just as with the initial population in the genetic algorithm, the manual method
starts with the weekend shifts. A minimal number of consecutive worked week-
ends exist initially, and is increased only as required.

The schedule produced by the program outperforms the manual one mostly
in terms of p8. The reason for the higher penalty in the manual schedule is
primarily the two occurrences of four related consecutive (NL) blocks, once in

44 Chapter 8. Discussion

Team 1 and once in Team 2 (see Figure 8.1). However, note that in both cases,
three out of the four blocks have a block length of just 2, resulting in a modest
9 NL shifts in a row. The penalty does not take this into account, but could be
adjusted to do so. The manual schedule also has a quite higher number of three
related consecutive blocks. This, together with p8 being the highest penalty for
both schedules, indicates that c8 might be too high. Lowering c8 would make
the program favour other penalties more, especially the other block placement
penalties. While the purpose of p8 is to avoid repetition and disperse shifts that
might be undesirable for an individual, instances of two related consecutive
blocks can actually be desired, in order to not disrupt the circadian rhythm.
Another improvement would therefore be to only penalize related consecutive
blocks that consist of at least three blocks.

Penalty p9 indicates that the schedule produced by the program is actually
slightly infeasible. Moving a shift from Team 4 into another team is enough
to �x this, and there are multiple ways to do so that do not require additional
modi�cations to make the schedule feasible.

The vacation of all teams in the manual schedule are surrounded by work.
p11 and the small di�erence in vacation length is caused by the NL shifts that
lie before some vacations. There is a manual practise of usually placing work
before and after the vacations. Having teams relieve each other as soon as they
are available makes it easier to place the remaining blocks. As a side e�ect, fair
vacation length is ensured. The program might bene�t from a similar approach,
where each team is required to have a block of work directly before and after the
vacation. These blocks would be placed prior to the distribution of weekends
for the initial population, and the repair step and mutations would need to be
modi�ed to ensure that they do not remove or move these blocks.

It should be noted that p12 for the manual schedule is optimal. While every
team deviates from the average number of worked weekends, that is because
the average is not an integer. The penalty is fairly low for the schedule pro-
duced by the program, even though Team 3 works twice as many weekends as
Team 2. Despite most produced schedules having a fairer distribution of worked
weekends, this indicates that c12 should be increased.

As in Figures 7.4 and 7.5, it is believed, for two reasons, that there are
correlations between all penalty categories of schedules in the solution front.
Firstly, an improvement of a feasible schedule in some aspect is likely to require
a deterioration in another aspect. Secondly, and more importantly, this has to
be the case when comparing solutions in the solution front, since it only stores
the non-dominated solutions. However, since there are more than two penalty
categories (the dimensions used when checking for dominance), a schedule in the
solution front can be an improvement over another in two categories at once, as
long as it is worse in another category.

Chapter 9

Conclusion and Future Work

In this master thesis project, a genetic algorithm has been used to create feasible
shift schedules for a vacation period, achieving the purpose of the project. The
generated schedules have a good variety in their penalties, showcasing a general
advantage of genetic algorithms. While schedules for P3 remain infeasible, the
garnered insights should be useful for designing an improvement of the program
that can generate feasible schedules for this problem instance as well. Four cus-
tomised crossovers have been devised (although no claim is made that balanced
team crossover and single date crossover have not been used previously in the
�eld, since they are simple and not exclusive to schedules with vacations), and
factors that prevent their use have been determined. It was discovered that the
sta�ng constraint is of particular importance.

The project did not achieve its goal of being able to use the program to
generate schedules of similar quality as those produced by hand by an expert,
mostly in regards to fairness between teams. In spite of this, the program re-
mains useful for constructing schedules of problem instances that are overzealous
in some aspect, such as vacation lengths, to display for the employees the nec-
essary sacri�ces in other aspects. It also holds potential for future development;
there were many ideas that could provide dramatic improvements, but were not
given enough time for both implementation and evaluation. They are described
below.

The method to generate initial solutions was �nalised before it was discov-
ered that sta�ng would be the primary constraint regarding solution quality.
Initial solutions that attempt to have feasible sta�ng on as many dates as pos-
sible could provide the genetic algorithm with a much better starting point. A
modi�ed, much faster version of LNS could be used to this end. Instead of se-
lecting between every possible starting date, LNS could randomize the starting

Fakt, 2022. 45

46 Chapter 9. Conclusion and Future Work

date and insert the most improving block there. Due to its quadratic complexity
with respect to the number of dates, such an LNS would be several dozen times
faster.

New versions of existing mutations could also bene�t sta�ng in particular.
Instead of cancelling when a hard constraint would be violated, these versions
would make sure that their changes take place, and modify the rest of the
schedule as necessary for this. Mutations that create, remove or split a block
could also be very useful.

Feasible schedules for P1 require a high proportion of long shifts. The inabil-
ity of the genetic algorithm to favour long shifts over short ones could be solved
by having the user specify a predicted proportion of short and long shifts in the
produced solutions. All shift-determining functions that now choose between
shifts uniformly, such as mutations, could instead make use of this proportion.

A few methods to alleviate the convergence of the population were consid-
ered. One of them is the ability to load a manually constructed schedule and use
it as an initial solution, along with schedules produced by the program. Since
di�erent runs of the same problem and parameter values can result in solution
fronts that lie in di�erent parts of the solution space, another way to counteract
convergence is the merging of the solution front of multiple runs. This would
present solutions of a greater variety to the user, and could eliminate some so-
lutions that are dominated by solutions from another run. Using this new front
as initial solutions for a �nal run could also yield solutions of higher quality.
These ideas are similar to the island/migration model [5, p. 468], which along
with many other methods for diversity preservation are well worth testing.

Bibliography

[1] B. Jaumard, F. Semet, and T. Vovor. A generalized linear programming
model for nurse scheduling. European Journal of Operational Research,
107(1):1�18, 1998.

[2] U. Aickelin. Genetic Algorithms for Multiple-Choice Optimisation Prob-

lems. PhD dissertation, University of Wales, Swansea, United Kingdom,
1999.

[3] A.T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier. An
annotated bibliography of personnel scheduling and rostering. Annals of

Operations Research, 127:21�144, 2004.

[4] J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and
L. De Boeck. Personnel scheduling: A literature review. European Journal

of Operational Research, 226:367�385, 2013.

[5] E.-G. Talbi. Metaheuristics: From Design to Implementation. John Wiley
& Sons, Inc., New Jersey, 2009.

[6] P. Brucker, R. Qu, and E. Burke. Personnel scheduling: Models and com-
plexity. European Journal of Operational Research, 210:467�473, 2011.

[7] J. O. Brunner, J. F. Bard, and J. M. Köhler. Bounded �exibility in days-on
and days-o� scheduling. Naval Research Logistics, 60(8):678�701, 2013.

[8] R. N. Burns and G. J. Koop. A modular approach to optimal multiple-shift
manpower scheduling. Operations Research, 35(1):100�110, 1987.

[9] R. Hung. A multiple-shift workforce scheduling model under annualized
hours. Naval Research Logistics, 46(6):726�736, 1999.

[10] E. H. Özder, E. Özcan, and T. Eren. A systematic literature review for
personnel scheduling problems. International Journal of Information Tech-

nology & Decision Making, 19(6):1695�1735, 2020.

Fakt, 2022. 47

48 Bibliography

[11] C. S. Azmat, T. Hürlimann, and M. Widmer. Mixed integer programming
to schedule a single-shift workforce under annualized hours. Annals of

Operations Research, 128:199�215, 2004.

[12] C. S. Azmat and M. Widmer. A case study of single shift planning and
scheduling under annualized hours: A simple three-step approach. Euro-

pean Journal of Operational Research, 153(1):148�175, 2004.

[13] D. Pisinger and S. Røpke. Large neighborhood search. Handbook of Meta-

heuristics, (2):399�420, 2010.

[14] J. JaJa, C. W. Mortensen, and Q. Shi. Space-e�cient and fast algorithms
for multidimensional dominance reporting and counting. In Fleischer R.
and Trippen G., editors, Algorithms and Computation, volume 3341, pages
558�568, 2004.

Linköping University Electronic Press

Copyright

The publishers will keep this document online on the Internet � or its possible
replacement � from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for
anyone to read, to download, or to print out single copies for his/her own use
and to use it unchanged for non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional upon the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authentic-
ity, security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its www home page: http://www.ep.liu.se/.

Upphovsrätt

Detta dokument hålls tillgängligt på Internet � eller dess framtida ersättare �
från publiceringsdatum under förutsättning att inga extraordinära omständig-
heter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda
ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten �nns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/.

© 2022, Martin Fakt

http://www.ep.liu.se/
http://www.ep.liu.se/

	Introduction
	Problem Description
	Definitions
	Constraints
	Input Parameters

	Background
	Literature
	Metaheuristics
	Genetic Algorithm
	Large Neighbourhood Search

	Modelling Approach
	Penalties
	Multi-Objective Considerations

	Genetic Algorithm
	Initial Population
	Crossovers
	Balanced Team Crossover
	Single Date Crossover
	Vacation Crossover
	Uniform Partial Team Crossover

	Large Neighbourhood Search
	Mutations
	Selection
	Elitism

	Studied Problem Instances
	Results
	Chosen Parameter Values
	Solution Quality
	Program Performance

	Discussion
	Conclusion and Future Work

