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A B S T R A C T   

Considerable data relate major depressive disorder (MDD) with aberrant immune system functioning. Pro- 
inflammatory cytokines facilitate metabolism of tryptophan along the kynurenine pathway (KP) putatively 
resulting in reduced neuroprotective and increased neurotoxic KP metabolites in MDD, in addition to modulating 
metabolic and immune function. This central nervous system hypothesis has, however, only been tested in the 
periphery. Here, we measured KP-metabolite levels in both plasma and cerebrospinal fluid (CSF) of depressed 
patients (n = 63/36 respectively) and healthy controls (n = 48/33). Further, we assessed the relation between KP 
abnormalities and brain-structure volumes, as well as body mass index (BMI), an index of metabolic disturbance 
associated with atypical depression. Plasma levels of picolinic acid (PIC), the kynurenic/quinolinic acid ratio 
(KYNA/QUIN), and PIC/QUIN were lower in MDD, but QUIN levels were increased. In the CSF, we found lower 
PIC in MDD. Confirming previous work, MDD patients had lower hippocampal, and amygdalar volumes. Hip-
pocampal and amygdalar volumes were correlated positively with plasma KYNA/QUIN ratio in MDD patients. 
BMI was increased in the MDD group relative to the control group. Moreover, BMI was inversely correlated with 
plasma and CSF PIC and PIC/QUIN, and positively correlated with plasma QUIN levels in MDD. Our results 
partially confirm previous peripheral KP findings and extend them to the CSF in MDD. We present the novel 
finding that abnormalities in KP metabolites are related to metabolic disturbances in depression, but the relation 
between KP metabolites and depression-associated brain atrophy might not be as direct as previously 
hypothesized.   

1. Introduction 

Over the last four decades a considerable body of literature has 
amassed showing an association between major depressive disorder 
(MDD) and immune system dysregulation, particularly in immunome-
tabolic/atypical depression (Lamers et al., 2020; Milaneschi et al., 
2020). Increased circulating pro-inflammatory cytokines are among the 
most reliably observed findings in the biologicalpsychiatry of MDD 
(Dowlati et al., 2010; Enache et al., 2019; Köhler et al., 2017). Moreover, 

a causal link for inflammation in MDD is suggested by the antidepressant 
effects of anti-inflammatory medication (Bai et al., 2020) in addition to 
the normalization of abnormal inflammation following treatment with 
conventional antidepressants (Kohler et al., 2018). A promising 
connection between inflammation and conventional molecular path-
ways in MDD is provided by the finding that pro-inflammatory mes-
sengers can alter the metabolism of the serotonergic precursor 
tryptophan (Dantzer et al., 2011; Myint and Kim, 2003). Tryptophan is 
metabolized along two pathways, the serotonergic pathway, along 
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which serotonin and melatonin are synthesized, and the kynurenine 
pathway, where tryptophan is catabolized to kynurenine and then to 
several neuroactive metabolites including kynurenic acid (KYNA) and 
quinolinic acid (QUIN; Ruddick et al., 2006). 

Pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor 
necrosis factor-alpha (TNF-α) and interferon-gamma, increase the 
degradation of tryptophan along the kynurenine pathway (KP) by acti-
vating the rate-limiting enzymes indoleamine 2,3-dioxygenase 1 (IDO1) 
and tryptophan dioxygenase 2 (TDO2; Guillemin, 2012; Schwarcz et al., 
2012; Schwieler et al., 2015; Sellgren et al., 2016). IDO1 and TDO2 
catabolize tryptophan to N-formylkynurenine, which is then further 
metabolized into L-kynurenine (KYN). KYN can, in turn, either be con-
verted to KYNA, an N-methyl-D-aspartate (NMDA) receptor antagonists, 
or to 3-hydroxy-kynurenine (3-HK), a generator of free radicals. A 
further bifurcation can see 3-HK converted either to picolinic acid (PIC) 
or QUIN, an NMDA receptor agonist with putatively excitotoxic prop-
erties at glutamate receptors (Schwarcz and Stone, 2017). QUIN can 
further be metabolized into nicotinamide (NAM), a precursor of the 
crucial co-factor nicotinamide adenine dinucleotide (Schwarcz and 
Stone, 2017), which possesses putatively neuroprotective properties 
(Harrison et al., 2019). A simplified overview of the KP can be found in 
Supplementary Fig. 1. 

Abnormalities of KP metabolites have been observed in MDD. Plasma 
levels of KYNA, NAM, and PIC, all associated with neuroprotective ef-
fects (Müller and Schwarz, 2008; Stone, 2000; Guillemin et al., 2007; 
Beninger et al., 1994; Grant et al., 2009; Kalisch et al., 1994), are 
reduced in patients with MDD (Ogyu et al., 2018; Colle et al., 2020; Ryan 
et al., 2020), while plasma levels of QUIN, associated with neurotoxic 
properties (Beninger et al., 1994; Grant et al., 2009; Kalisch et al., 1994; 
Lovelace et al., 2016, 2017), are elevated in depression (Doolin et al., 
2018). Moreover, neuroprotective to neurotoxic metabolite ratios 
(KYNA/QUIN, KYNA/3-HK, and PIC/QUIN) are reliably reduced in the 
periphery in depression (Ogyu et al., 2018; Ryan et al., 2020; Meier 
et al., 2016; Savitz et al., 2015). While KP abnormalities have only been 
assessed in the periphery in MDD, these metabolites are assumed to act 
in the central nervous system (CNS) to produce depressogenic effects 
(Dantzer et al., 2011; Dantzer et al., 2008). For example, a study by 
Savitz and colleagues (Savitz et al., 2015), assessed the relation between 
peripherally measured KYNA/QUIN ratio (a neuroprotective index) and 
hippocampal and amygdalar volumes in MDD patients and controls. 
While MDD patients and controls assessed in this study did not differ in 
peripheral KYNA/QUIN ratios, nor with respect to amygdalar or hip-
pocampal volumes once adjusted for potential noise covariates, these 
structure volumes were, nonetheless, found to be positively related to 
this neuroprotective index in MDD patients only. This finding suggests a 
potential role for kynurenine metabolism in neurotoxic and neuro-
trophic processes in MDD (Campbell et al., 2004; Hamilton et al., 2008; 
Videbech and Ravnkilde, 2004) Given that abnormalities in KP metab-
olites are hypothesized to exert depressogenic effects in the brain and 
that within kynurenine’s metabolic pathway only some metabolites 
(KYN, 3-Hydroxyanthranilic acid and 3-HK) can pass the blood–brain 
barrier (Fukui et al., 1991), we propose that a necessary step in the 
development of the kynurenine-depression literature is to compare 
depressed and healthy samples with regard to central levels of KP me-
tabolites. A recent study has assessed KP metabolites in the cerebro-
spinal fluid (CSF) in a cohort of depressed patients and found a strong 
association between plasma and CSF levels of KYN and QUIN, but not 
other metabolites (Haroon et al., 2020). A previous study compared CSF 
levels of KYNA and QUIN in suicide attempters, some of whom met DSM 
criteria for depression, and healthy control (HC) participants and found 
increased central levels of QUIN in suicide attempting MDD patients 
compared to controls (Erhardt et al., 2013). Similarly, CSF KP metabo-
lite levels have been assessed in a wide range of neurological disorders, 
such as Alzheimer’s disease (Jacobs et al., 2019), Parkinson’s disease 
(Iwaoka et al., 2020), amyotrophic lateral sclerosis (Tan and Guillemin, 
2019), and in response to physical exercise in healthy participants 

(Isung et al., 2021), but data on MDD patients compared to healthy 
participants is missing. 

Recent meta-analyses showed that effect sizes vary greatly between 
studies assessing kynurenine pathway metabolites in mood disorders 
(Ogyu et al., 2018; Arnone et al., 2018; Marx et al., 2020). This vari-
ability is reasonably explained in terms of the heterogeneous manifes-
tation of MDD. It has been postulated recently that one subtype of 
depression is best characterized in terms of a constellation of abnormal 
inflammatory and metabolic factors (Lamers et al., 2020; Milaneschi 
et al., 2020). In terms of the conventional nosology of MDD, this subtype 
has been linked most closely with atypical depression (American Psy-
chiatric Association, 2013). Given that increased IDO1 activity and 
changes in kynurenine metabolite levels are associated with metabolic 
syndrome (Oxenkrug et al., 2017; Oxenkrug, 2010), it is of interest in the 
context of MDD to examine the association between kynurenine me-
tabolites and measures of metabolic syndrome, such as body mass index 
(BMI). 

In the present study, we conducted a broad, multi-level assessment of 
abnormalities in the kynurenine pathway in the periphery as well as the 
CNS in a general, non-subtyped MDD sample. To do this we used ultra- 
performance liquid chromatography – tandem mass spectrometry 
(UPLC-MS/MS) to assay blood plasma and CSF for several components 
of the KP in patients with MDD and in HC participants. Next, given that 
KP metabolites have been characterized in terms of their neurotoxic and 
neurotrophic effects, we examined the relation between levels of pe-
ripheral and central KP metabolites and volumes of the amygdala and 
hippocampus, which reliably show volumetric reduction in depression 
(Campbell et al., 2004; Hamilton et al., 2008; Videbech and Ravnkilde, 
2004). Further, we assessed whether abnormal levels of KP metabolites 
in MDD were related to BMI, an index of metabolic disturbance. Finally, 
we estimated the relation between peripheral and central KP metabo-
lites in depression and healthy control samples to attempt to replicate 
and extend — by assessing a broader array of KP metabolites — previous 
findings (Haroon et al., 2020). Based on previous research, we hypoth-
esize that the primarily neuroprotective metabolites, KYNA, PIC, and 
NAM, the ratios of KYNA/QUIN, KYNA/3-HK and PIC/QUIN, as well as 
KYN, which has reliably been found to be reduced in MDD, will be 
decreased in depression, while the primarily neurotoxic metabolites 3- 
HK and QUIN will be increased. We further hypothesize a positive 
relation between neuroprotective KP metabolites as well as neuro-
protective/neurotoxic ratios with brain volumes/BMI and a negative 
relation between neurotoxic KP metabolites and brain volumes/BMI. 

2. Methods and materials 

2.1. Participants 

Participants were 63 treatment-seeking, formally diagnosed MDD 
patients and 48 age- and sex-matched HCs. Participant demographics 
and clinical information are presented in Table 1. Treatment-seeking 
depressed participants were recruited via the adult psychiatric clinic 
at Linköping University Hospital, Sweden, through referral from general 
practitioners, and advertisements in local newspapers and social media. 
HC participants were recruited through advertisements in social media 
and posters in public spaces. 

Trained interviewers assessed eligibility using the Mini-International 
Neuropsychiatric Interview (MINI) (Sheehan et al., 1998), a validated 
clinical tool for diagnosis of psychiatric disorders according to the DSM- 
5 (American Psychiatric Association, 2013) and ICD-10 (World Health 
Organization WHO, 2004) criteria. Prospective participants in the MDD 
group had to suffer from a current unipolar depression that was not 
accounted for by other medical conditions (e.g. hypothyroidism). Par-
ticipants from the HC group had to be free of any current or previous 
severe psychopathologies as defined by DSM-5, determined by the MINI. 
Exclusion criteria specific for the MDD group were: a current DSM-5 
diagnosis of substance use disorder, except nicotine; a psychotic 
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disorder, except depression with mood-congruent psychotic features; 
new antidepressant medication during the month before study partici-
pation (two months for fluoxetine); change of the dose of psychotropic 
medications over the last month (antidepressant and antipsychotic 
medication) or the last two months (mood stabilizers and anticonvul-
sants). It has been noted that, in response to antidepressant / 
mood-stabilizing drugs, mood remains in flux and side effects emerge 
and then either stabilize or remit over the course of about a month for 
antidepressants and two months for mood stabilizers. Excluding 
depressed persons in this phase of pharmacological response both re-
duces noise and removes one class of potential confounds associated 
with this state of medication-induced neuro-affective change due. 
General inclusion criteria were: age 18 – 65; working knowledge of 
Swedish; willingness and ability to provide informed consent. General 
exclusion criteria included: standard magnetic resonance imaging (MRI) 
contraindications (e.g. implanted ferrous metal, claustrophobia); preg-
nancy; medical conditions likely to influence cerebral blood flow or 
brain anatomy; standard clinical contraindications for a lumbar punc-
ture (e.g. increased intracranial pressure); ongoing use of 
immune-modulators or anti-inflammatory drugs. Prospective partici-
pants were further excluded if they suffered from any medical condition 
that may affect immunological or metabolic function (e.g. diabetes type 
II, liver disease). 

The work described in the present study was carried out in accor-
dance with the code of ethics of the world medical association (decla-
ration of Helsinki) for experiments including humans: “wma.net/en/ 
30publications/10policies/b3/”. The study was approved by the 
regional ethical review board, Linköping, Sweden, and all participants 
gave written consent to the use of their data for scientific purposes. 
Participants completed two sessions, both taking place in the mornings 
and within a maximum of seven days of one another. During the first 
session, participants underwent a multimodal MRI scanning session. 
During the second session, blood and CSF samples were drawn with the 
latter pending confirmation of absence of elevated intracranial pressure 
as determined by examination of structural MRI data acquired at the 
first session. Finally, participants were asked to fill in a set of self-report 
questionnaires online regarding potential factors of interest (e.g. de-
mographics), including BMI. 

2.2. MRI scan 

Neuroimaging was carried out at the Center for Medical Imaging 
Science and Visualization at Linköping University Hospital, Sweden. A 
whole-head t1-weighted MPRAGE scan was conducted on a 3.0 Tesla 
Siemens MAGNETOM Prisma MR scanner with a 64-channel head coil 
(TR = 2300 ms, TE = 2.34 ms, FOV 250 × 187.2 mm, voxel size = 0.9 ×
0.9 × 0.9 mm, flip angle = 8◦). Participants were instructed to lie still 
during the 280-second scan and to close their eyes or look at soothing 
pictures on an in-scanner display. 

2.3. MRI analyses 

We obtained estimates of hippocampal, amygdalar, and cerebellar 
cortex volumes using automatic segmentation from FreeSurfer version 7 
(http://surfer.nmr.mgh.harvard.edu/). GRIN2B encodes the protein of 
the GluN2B subunit of the NMDA receptor, through which the neuro-
toxic effects of QUIN are hypothesized to occur (Stone, 1993). High 
expression of GRIN2B is found in hippocampus and amygdala, while low 
GRIN2B expression occurs in the cerebellum (gtexportal.org/home/ 
gene/GRIN2B). The cerebellum was chosen, therefore, as a control re-
gion. We reasoned that if there is a volumetric abnormality in MDD in 

the hippocampus and amygdala, but not the cerebellum, than we can 
proceed with the assertion that QUIN excitotoxicity could play a role in 
volumetric reduction in hippocampus and amygdala. Segmentations 
were inspected visually to confirm their accuracy. Hippocampal and 
amygdalar volumes were obtained by summing volume estimates from 
left and right sides from subfield segmentations. Cerebellar cortex vol-
umes were obtained by summing estimates from left and right cerebellar 
cortex from whole brain segmentations. 

2.4. Blood and CSF sampling 

Blood and CSF samples were obtained between 0800 and 1200 h. 
While blood was acquired from every participant, CSF was not, given 
that some participants did not consent to a lumbar puncture and some 
lumbar punctures were not successful. This resulted in fewer CSF sam-
ples in each group (MDD: n = 36, HC : n = 33). Venipuncture plasma 
samples were collected using BD Vacutainer EDTA tubes, immediately 
centrifuged for 10 min at 1500 g, 4 ◦C, apportioned into aliquots, and 
stored at − 80 ◦C. A lumbar puncture was performed to obtain CSF as 
described in (Umhau et al., 2010). Briefly, following local anesthesia, a 
volume of up to 20 ml of CSF from the L3/L4 or L4/L5 interspace was 
collected in a silicone-coated tube and gently mixed to avoid gradient 
effects. Samples were then centrifuged at 2000 g, 8 ◦C, for 10 min to 
remove cells and other insoluble material, apportioned into aliquots and 
stored at − 80 ◦C until further analyses. 

2.5. Ultra performance liquid chromatography – Tandem mass 
spectrometry (UPLC-MS/MS) 

KYN, KYNA, QUIN, PIC, 3-HK, NAM and nicotinic acid were quan-
tified in CSF and plasma by UPLC-MS/MS system using a Xevo TQ-XS 
triple-quadrupole mass spectrometer (Waters, Manchester, UK) equip-
ped with a Z-spray electrospray interface and a Waters Acquity UPLC I- 
Class FTN system (Waters, MA, USA). Full description of the CSF and 
plasma UPLC-MS/MS method, sample preparation and stability test of 
all metabolites can be found in (Schwieler et al., 2020; Trepci et al., 
2020). In brief, the MS was operated in electrospray-positive multiple 
reaction monitoring (MRM) mode with a source temperature of 150 ◦C, 
capillary voltage of + 3.0 kV, desolvation temperature 650 ◦C, des-
olvation gas flow rate 1000 l/h and detector gain 1. Used column was 
Acquity HSS T3 2.1 × 150 mm, 1.8 µm (Waters, Product Number [PN]: 
186,003,540) in a temperature of 50 ◦C. The two mobile phases were 
composed of A: 0.6% formic acid in water and B: 0.6% formic acid in 
methanol (UPLC grade). An isolator column (Waters, 2.1 × 50 mm 
column, PN: 186,004,476) was installed to retain contaminants from the 
mobile phase. The flow rate was set at 0.3 ml/min and the run time for 
each sample was 13.0 min. The m/z for the MRM transitions of each 
individual analyte were: KYN, 209 > 94; KYNA, 190 > 116; QUIN, 168 
> 78; PIC, 124 > 78; NAM, 123 > 78; 3-HK, 225 > 110; Nicotinic acid, 
124 > 80 and for the internal standards (IS): KYN-d4, 213 > 94; QUIN- 
d3, 171 > 81; KYNA-d5, 195 > 121; PIC-d4, 128 > 82; NAM-[13C6], 129 
> 101; 3-HK- d3, 228 > 163 and Nicotinic acid-[13C6], 130 > 85. 
Nicotinic acid was detected in less than 50% of all samples and was 
included in the method to make sure we could distinguish it from the 
isomer PIC. 

All metabolites measured in CSF and plasma samples were detected 
in higher concentrations than lowest level of quantification (LOQ, KYN, 
0.25 nM; KYNA, 0.1 nM; QUIN, 5 nM; PIC, 3 nM; 3-HK, 1 nM; NAM, 10 
nM). The variation (%CV) of quality controls within a run (intra-assay, n 
= 6, during 15 h) were less than 5% for all metabolites measured. The 
variation between two different experiments running over 2 days 
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(interassay n = 12) were less than 5% with an exception for NAM and 
PIC that had less than 10% variation. 

2.6. Statistical analyses 

Statistical analyses were conducted using RStudio (R Development 
Core Team, 2021) (including packages poolr (Cinar and PoolR, 2016), 
rcompanion (Mangiafico, 2016), and ggplot2(Wickham, 2016)). Data 
were visually inspected for measurement outliers and data distributions 
were assessed using Shapiro-Wilk tests. Given the non-normal distribu-
tion of the majority of KP metabolites, non-parametric statistical tests 
were conducted for all metabolites. Given strong a priori hypothesis 
regarding the directionality of the effects (Ogyu et al., 2018; Arnone 
et al., 2018; Marx et al., 2020), we conducted one-sided tests; given that 
the analyses conducted were not, however, direct replications of pre-
viously reported findings, we also present two-sided probabilities of our 
results. Using Mann-Whitney U tests, we compared KP metabolite levels 
and brain region volumes between MDD and HC groups. For the group 
comparison of KP metabolite levels we further, to account for multiple 
comparisons of potentially correlated dependent variables, calculated 
the number of effective tests, Meff (Nyholt, 2004; Derringer, 2018), for 
plasma and CSF separately and adjusted statistical significance thresh-
olds accordingly using Bonferroni correction. The effective number of 
tests, Meff, was estimated to be 7 for both plasma and CSF KP metabolite 
levels, rendering a Bonferroni-corrected α = 0.007. The Meff method is 
explained further in the supplementary methods section. Group com-
parison p-values reported are accordingly adjusted to account for the 
family-wise error rate. Effect sizes were calculated using the non- 

parametric effect size estimate r, where r = Z/√N (Rosenthal et al., 
1994). 

To better understand the implications of KP metabolite abnormal-
ities in MDD, we computed correlations of levels of KP metabolites that 
differed significantly between groups in either plasma or CSF against 
hippocampal, amygdalar, and cerebellar volumes as well as BMI using 
Spearman’s rank correlation. Lastly, we assessed the relation between 
all peripheral and central KP metabolites in the two groups separately 
using Spearman’s rank correlation. 

Here, we assessed levels of KYN, KYNA, 3-HK, PIC, QUIN and NAM, 
as well as neuroprotective/neurotoxic ratios of KYNA/QUIN, KYNA/3- 
HK and PIC/QUIN in plasma and CSF. 

2.6.1. Supplementary analyses 
In the supplement, we present demographic and clinical character-

istics of participants who did not consent to undergo a lumbar puncture, 
participants who had a successful lumbar puncture, and participants for 
whom the lumbar puncture was not successful. The latter two groups 
were compared statistically, with no significant differences observed (all 
p > 0.10; Supplementary Table 1. In addition, given that about half of 

Table 1 
Participant demographics.  

Note. P-values are based on Chi-square test (Gender) and Mann-Whitney-U test 
(Age, BMI). CSF was not available for all participants, resulting in smaller group 
sizes (36/33). BMI data of one MDD participant is missing and therefore based 
on 62/35 participants respectively. MDD: major depressive disorder, MADRS: 
Montgomery-Åsberg Depression Rating Scale. 1p < .05 

Fig. 1. A) Scatterplots and boxplots showing the distributions of kynurenine 
metabolite levels (nM) that differed significantly between patients with major 
depressive disorder (green) and healthy controls (blue). 1) plasma picolinic acid 
2) plasma quinolinic acid, 3) plasma kynurenic / quinolinic acid ratio, 4) 
plasma picolinic / quinolinic ratio, and 5) cerebrospinal fluid (CSF) picolinic 
acid; B) Median and interquartile range (IQR) of all kynurenine pathway me-
tabolites levels in plasma and CSF of major depressive disorder (MDD) and 
healthy control (HC) participants. P-values are based on Mann-Whitney U tests. 
NAM: nicotinamide, PIC: picolinic acid, QUIN: quinolinic acid, KYNA: kynur-
enic acid, KYN: L-kynurenine, 3-HK: 3-hydroxy-kynurenine. CSF: cerebrospinal 
fluid (Lamers et al., 2020)p < .05. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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our MDD sample was taking antidepressant medication at the time of 
testing, we assessed associations between antidepressant use and KP 
metabolites (Supplementary Table 2). Further, for KP metabolites that 
differed significantly between groups, we assessed the relation to 
depression severity as measured using the Montgomery-Åsberg 
Depression Rating Scale (Montgomery and Åsberg, 1979) (Supplemen-
tary Fig. 2). In addition, we examined group differences in plasma 
markers of inflammation (IL-6 and TNF-α) and related those to KP me-
tabolites (Supplementary Table 3). We further conducted parametric 
group comparisons, using age and gender as covariates (Supplementary 
Table 4). For KP metabolite ratios that correlated significantly with 
brain volumes, and for which individual KP-metabolite-by-brain- 
structure volume correlations were not presented, we tested if these 
correlations were driven by one of the KP metabolites by computing the 
correlation between individual KP metabolites and brain-structure vol-
ume (Supplementary Table 5). For our assessment of relations between 
levels of KP metabolites that differed between groups and brain- 
structure volumes, we ran an ancillary analysis controlling regional 
brain-structure volumes for total intracranial volume. We did this by 
correlating KP metabolites with ratios of hippocampal, amygdalar, and 
cerebellar volume relative to total intracranial volume (Supplementary 
Table 6). Lastly, we present analyses testing if BMI or depression severity 
(measured with the Montgomery-Åsberg Depression Rating Scale) 
mediate or moderate significant relations between KP metabolites and 
brain structure volumes (Supplementary Table 7). 

3. Results 

3.1. Group comparison of kynurenine pathway metabolites 

Medians, interquartile ranges, and inferential statistics for all KP 
metabolites are presented in Fig. 1. In plasma, lower levels of PIC (one- 
sided p = .005, two-sided p = .011, r = 0.30), higher levels of QUIN (one- 
sided p = .020, two-sided p = .041, r = 0.26) and reduced levels of 
neuroprotective to neurotoxic metabolite ratios (KYNA/QUIN: one- 
sided p = .003, two-sided p = .006, r = 0.32; PIC/QUIN: one-sided p 
= 2.45e-04, two-sided p = 4.90e-04, r = 0.38) were found in MDD 
compared to HCs. In CSF, a significantly lower level of PIC (one-sided p 
= .049, two-sided p = .098, r = 0.23) was found in MDD compared to 
HCs. Importantly, none of these differences are attributable to psycho-
tropic medication use in the MDD group (Supplementary Table 2). 

3.2. MRI 

We lacked MRI data for two MDD patients; analyses were therefore 
conducted on data from 61 MDD patients with plasma samples, and 32 
with CSF. All HC participants provided MRI data. In the MDD group we 
observed significantly smaller hippocampal volume (one-sided p = .023, 
two-sided p = .046), and smaller amygdalar volume (one-sided p = .034, 
two-sided p = .069). We also observed in the MDD group a significant 
positive relation between plasma KYNA/QUIN ratio and hippocampal 
volume (ρ = 0.28, one-sided p = .016, two-sided p p = .031), as well as 
amygdalar volume (ρ = 0.35, one-sided p = .003, two-sided p = .006), 
indicating that as peripheral KYNA/QUIN ratios decrease in MDD, hip-
pocampal and amygdalar volumes are reduced. In the HC group we did 
not observe any significant KP metabolite-by-brain-structure-volume 
correlations. Importantly, in spite of the proposed neuroprotective 
properties of PIC in addition to the CSF PIC reduction we observed in 
MDD, we did not observe significant correlations between CSF PIC and 
brain-structure volumes in MDD; all one-sided p > 0.27. See Table 2. 

3.3. BMI 

We lacked BMI for one MDD patient; we therefore assessed BMI-KP 
metabolite correlations using 62 plasma samples and 32 CSF samples 
for KP metabolites that significantly differed between MDD and HC 
groups. We observed higher BMI in the MDD relative to the HC group 
(one-sided p = 0.019, two-sided p = .038; see Table 1. BMI correlated 
significantly in MDD with plasma PIC (ρ = -0.22, one-sided p = .043, 
two-sided p = .086), plasma PIC/QUIN (ρ = -0.27, one-sided p = .016, 
two-sided p = .033), and CSF PIC (ρ = -0.32, one-sided p = .030, two- 
sided p = .059). We did not find significant correlations between BMI 
and plasma QUIN or KYNA/QUIN. See Fig. 2. 

3.4. Relation between peripheral and central kynurenine pathway 
metabolites 

In Fig. 3, we summarize the results and compare them to the findings 
of Haroon and colleagues (Haroon et al., 2020). Significant correlations 
between plasma and CSF KP metabolites in MDD patients were found for 
NAM (ρ = 0.44, one-sided p = .003, two-sided p = .007), PIC (ρ = 0.67, 
one-sided p = 3.88e-06, two-sided p = 7.76e-06), QUIN (ρ = 0.40, one- 
sided p = .008, two-sided p = .017), KYN (ρ = 0.46, one-sided p = .003, 
two-sided p = .005), and PIC/QUIN (ρ = 0.52, one-sided p = 6.37e-04, 
two-sided p = .001). In HCs, significant relations were found for PIC (ρ 
= 0.82, one-sided p = 2.14e-07, two-sided p = 5.75e-09), QUIN (ρ =
0.33, one-sided p = .032, two-sided p = .063), KYNA/3-HK (ρ = 0.30, 

Table 2 
A) Group comparison of volumetric brain data and B) correlations between 
volumetric data and kynurenine metabolite levels for depressed and healthy 
samples.  

Note. Correlations were computed only for kynurenine metabolites that differed 
significantly between MDD and HC samples. MDD: Major depressive disorder, 
HC: healthy control, QUIN: quinolinic acid, PIC: picolinic acid, KYNA: kynurenic 
acid, CSF: cerebrospinal fluid. 1p < .05. 
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one-sided p = .044, two-sided p = .089), and PIC/QUIN (ρ = 0.79, one- 
sided p = 3.39e-07, two-sided p = 4.26e-08). 

4. Discussion 

In this investigation we compared diagnosed depressed patients and 
HC samples with respect to KP metabolites assessed at both peripheral 
and CNS levels. We further assessed the relations of abnormal KP 
metabolite levels in MDD to brain volumes and BMI, to better under-
stand the implications of the primary findings in terms of neurotrophic 
and neurotoxic effects, as well as metabolic disturbances in MDD. We 
replicated some previous findings of elevated neurotoxic and reduced 
neurotrophic KP metabolites in the blood in depression. Indicating that 
at least some of these abnormalities also occur at the CNS level, we 
present the novel finding of reduced PIC concentrations in MDD. While 
decreased peripheral KYNA/QUIN ratios predicted decreased brain 
volumes in MDD, we observed no such relation between reductions in 
central levels of PIC and brain-structure volume reduction in depression. 
We also describe the additional novel finding that the extent of kynur-
enine metabolite abnormality both peripherally and centrally correlates 
in the directions predicted with the extent of general metabolic distur-
bance in depression as assessed with BMI. Finally, we observed signifi-
cant correlations between some, but not all KP metabolite levels in the 
peripheral and central nervous system. 

Our partial replication of findings of alterations in KP metabolite 
levels in the blood in depression strengthens the hypothesis that me-
tabolites of the kynurenine pathway play a consistent role in the path-
ophysiology of MDD. While the design of our study does not afford 

testing causal hypotheses, we point out here that among a large array of 
serotonergic and inflammation- and stress-related genes that could have 
been implicated in a recent genome-wide association study of MDD, only 
the KYNU gene—which codes for the enzyme kynureninase—was 
identified (Howard et al., 2019). 

While recent meta-analyses of peripheral KP metabolite levels in 
MDD have shown robust reductions of KYN, KYNA, and KYNA/3-HK 
ratios (Ogyu et al., 2018; Arnone et al., 2018; Marx et al., 2020), we 
did not replicate these findings. Previous research has shown that an-
tidepressant medication increases KYNA and KYNA/3-HK ratio levels in 
astroglial cells in a time-dependent manner (Kocki et al., 2012) and is 
further related to increases of central levels of KYN and KYNA in bipolar 
patients. In this study, approximately half of the MDD participants were 
stably medicated. While this is speculative, we found near-significant 
lower levels of plasma KYNA in antidepressant-free MDD patients 
(Supplementary Table 2). Our inclusion of MDD patients using antide-
pressant medications potentially rendered the MDD-HC comparison 
insensitive. Nonetheless, the treatment effect detected provides a partial 
replication of previous pre-clinical work (Kocki et al., 2012) and does so 
in a clinical sample. The effect detected in our currently depressed MDD 
sample also indicates that putative modulation of kynurenine pathway 
metabolites by antidepressant medication is insufficient to bring about 
remission of depressive episodes in some cases. 

The reductions of PIC in the periphery that we observe here have been 
previously seen in MDD patients (Colle et al., 2020; Ryan et al., 2020); our 
CNS-level findings converge with those observed in patients showing 
suicidal behavior (Brundin et al., 2016). It has been shown in preclinical 
models that PIC attenuates the neurotoxic effects of QUIN without 

Fig. 2. Scatterplots showing distributions of BMI versus A) plasma picolinic acid, B) plasma quinolinic acid, C) plasma kynurenic /quinolinic acid ratio, D) plasma 
picolinic / quinolinic ratio, and E) cerebrospinal fluid picolinic acid. Spearman rho values with one-sided and two-sided significance levels shown. PIC: picolinic acid, 
QUIN: quinolinic acid, and KYNA: kynurenic acid. 
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affecting its neuroexcitant properties (Beninger et al., 1994; Kalisch et al., 
1994), which leaves the underlying mechanism of the neuroprotective 
effects of PIC unclear (Jhamandas et al., 2000; Vrooman et al., 1993). 
Given the protective effects of PIC in relation to QUIN and, more broadly, 
in the context of intracerebral infection (Blasi et al., 1993) we advocate 
for additional inquiry into the pathways underlying these effects. 

Among the novel findings presented here, the most consequential is 
likely that both peripheral and central changes in KP metabolite levels in 
MDD were found to be associated with metabolic disturbance, as oper-
ationalized by elevated BMI in depression. This is important when 
considered in relation to the case for reconceptualizing vegetative, 
atypical depression as a metabolic-inflammatory subtype of MDD 
(Lamers et al., 2020; Milaneschi et al., 2020). This subtype has greater 
heritability and familial aggregation than the melancholic subtype and 
is characterized by elevated metabolic and inflammatory signaling, 
whereas melancholic depression is associated with a greater stress 
response (Lamers et al., 2013). While connections between stress- 
related, melancholic MDD and neural-level dysfunction have been 
identified and widely discussed (Sapolsky, 1996), the present findings 
could help bridge the gap between a putative metabolic-inflammatory 
subtype and abnormal brain function. While our cross-sectional inves-
tigation does not allow us to specify the directionality of the relation 
between metabolic and inflammatory factors in MDD, future experi-
mental studies assessing the metabolic effects of inflammatory chal-
lenges and vice-versa can identify critical causal factors in what is 
currently considered an aggregate immuno-metabolic syndrome. 

In the context of understanding brain-level dysfunction in MDD, the 
present results indicate that pathways connecting kynurenine 

dysfunction to neural dysfunction in MDD are less direct than previously 
hypothesized. We found that only reduced peripheral KYNA/QUIN ratios 
predicted reductions in brain structure volume in MDD. This is unex-
pected, given that the neurotoxic effect of QUIN has been suggested to 
be mediated at the neural level. Since PIC blocks the neurotoxic effects 
of QUIN (Beninger et al., 1994; Grant et al., 2009; Kalisch et al., 1994), 
we expected to find reduced brain-structure volumes in relation to the 
reduced central PIC we observed in MDD patients. Assaying CSF samples 
provides an important and relatively practical means for understanding 
the relation between abnormal KP metabolite levels and neural abnor-
malities in MDD. However, we hasten to point out that, in their best 
light, CSF-derived markers are only general indicators of KP metabolite 
levels in the interstitial spaces of the brain and that, to the best of our 
knowledge, the relation between CSF and brain levels of the KP me-
tabolites has not yet been thoroughly assessed. One study in gerbils 
found that QUIN levels were positively correlated between CSF and 
brain tissue (Heyes and Morrison, 1997); another study in rats, however, 
found that increases in brain levels of KYNA after inhibition of the 
metabolism of KYN to 3-HK were not reflected in CSF (Erhardt and 
Engberg, 2002). More comprehensive analyses of the relation between 
blood, CSF, and brain-tissue levels of all KP metabolites will be required 
before we can determine how well a proxy CSF levels of KP metabolites 
are for levels in their respective loci of action in the brain. 

Finally, our results indicate that levels of some peripheral KP me-
tabolites might serve as proxies for central KP metabolite levels in pa-
tients with MDD (NAM, PIC, QUIN, KYN, and PIC/QUIN) and HCs (PIC, 
QUIN, KYNA/3-HK, and PIC/QUIN). We replicated previously reported 
relations between plasma and CSF levels of all metabolites assessed by 

Fig. 3. Correlations between all plasma and CSF kynurenine pathway metabolites in A) major depressive disorder and B) healthy controls. C) Peripheral to central 
correlations on a per metabolite basis and corresponding one- and two-sided p-values. NAD: nicotinamide, PIC: picolinic acid, QUIN: quinolinic acid, KYNA: 
kynurenic acid, KYN: L-kynurenine, 3-HK: 3-hydroxy-kynurenine. 1p < .05, Ϯ = replication of Haroon et al (Haroon et al., 2020). 
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Haroon et al. (Haroon et al., 2020) in MDD patients, and extended their 
findings by assessing additional metabolites in MDD in addition to the 
relation of peripheral and central metabolite levels in HCs. Differences 
in peripheral-central correlations between patients with MDD and HCs 
could be due to a more permeable blood–brain barrier in MDD. As 
mentioned previously, only some KP metabolites can pass the blood–-
brain barrier. Molecular changes in the blood–brain barrier, such as 
disrupted tight junctions, have been reported in MDD (Dudek et al., 
2020; Greene et al., 2020), and could lead to heightened peripheral- 
central molecular exchange in this disorder. The data presented here 
will be useful for informing future research efforts with respect to 
whether assumptions about peripheral-central correspondences in the 
kynurenine pathway are warranted. 

5. Limitations 

Given that food intake can alter kynurenine pathway metabolite 
levels, a key limitation of the study is that samples were not acquired 
during fasting. Further, the size of the patient and control samples 
assessed prohibited conducting potentially informative subgroup ana-
lyses comparing, for example, associations between sex and KP metab-
olites as a function of diagnostic group. In addition, appropriate 
behavioural measures and a more rigorous assessment of depression 
subtypes would have allowed us to test in this investigation whether 
changes in KP metabolites are related to subtypes of MDD. Furthermore, 
our KP metabolite panel did not include all metabolites along the KP. 
Therefore, associations between MDD and potentially important KP 
metabolites such as xanthurenic and cinnabarinic acid remain unin-
vestigated. Lastly, the number of participants providing CSF in each 
group was small. A post-hoc power analysis assuming a moderate effect 
size using the largest absolute rho value of all correlation analyses (CSF 
PIC × BMI; ρ = 0.32) gave a power of 0.57 (for one-sided tests) and 0.45 
(for two-sided tests). Therefore, strong conclusions on differences be-
tween correlations with peripherally versus centrally measured KP 
metabolite levels and BMI and brain-structure volume are not statisti-
cally warranted 

6. Conclusion 

This study is the first to compare both peripheral and central 
kynurenine pathway markers in diagnosed depressed and never disor-
dered samples. We confirmed previous findings from blood assays and 
show that at least some of these extend to the CSF level. Our observed 
associations between kynurenine pathway abnormalities and brain- 
structure volume require further investigation with larger samples. 
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