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REVIEW

Nuclease activity: an exploitable biomarker in bacterial infections
Javier Garcia Gonzaleza,b,c and Frank J. Hernandez a,b,c

aDepartment of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden; bWallenberg Centre for Molecular Medicine (WCMM), 
Linköping, Sweden; cNucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden

ABSTRACT
Introduction: In the increasingly challenging field of clinical microbiology, diagnosis is a cornerstone 
whose accuracy and timing are crucial for the successful management, therapy, and outcome of 
infectious diseases. Currently employed biomarkers of infectious diseases define the scope and limita-
tions of diagnostic techniques. As such, expanding the biomarker catalog is crucial to address unmet 
needs and bring about novel diagnostic functionalities and applications.
Areas covered: This review describes the extracellular nucleases of 15 relevant bacterial pathogens and 
discusses the potential use of nuclease activity as a diagnostic biomarker. Articles were searched for in 
PubMed using the terms: ‘nuclease,’ ‘bacteria,’ ‘nuclease activity’ or ‘biomarker.’ For overview sections, 
original and review articles between 2000 and 2019 were searched for using the terms: ‘infections,’ 
‘diagnosis,’ ‘bacterial,’ ‘burden,’ ‘challenges.’ Informative articles were selected.
Expert opinion: Using the catalytic activity of nucleases offers new possibilities compared to estab-
lished biomarkers. Nucleic acid activatable reporters in combination with different transduction plat-
forms and delivery methods can be used to detect disease-associated nuclease activity patterns in vitro 
and in vivo for prognostic and diagnostic applications. Even when these patterns are not obvious or of 
unknown etiology, screening platforms could be used to identify new disease reporters.
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1. Introduction

Despite a continued reduction in the last decades, the global 
burden of infectious diseases is still immense [1–4]. Although 
these epidemiological studies indicate that the biggest pro-
portion of cases, deaths, and burden occur in low-income 
countries, it may be misleading to assume that the impact of 
infectious diseases is inconsequential in more developed and 
higher income countries. In fact, according to data estimates 
in Europe, between 2009 and 2013 almost 38 million cases of 
infectious diseases, 1,38 million Disability-adjusted life years 
(DALYs) and 50,000 fatalities per year were attributable to 31 
different infectious diseases including influenza, tuberculosis, 
HIV/AIDS, invasive pneumococcal disease (IPD), salmonellosis, 
and campylobacteriosis, among others [5].

In addition to the existing burden, new insights into dis-
ease mechanisms and newly arising phenomena raise serious 
concerns regarding the real impact of infectious diseases and 
our ability to battle against them. These include (1) rising 
evidence of causal connections between infectious and non- 
infectious diseases, such as different types of cancer [6–9] or 
chronic conditions [10]; (2) antimicrobial resistance (AMR), 
which menaces to difficult or impede therapeutic efforts, 
increase the burden, especially in clinical settings; and increase 
health-care costs [11–15]; and (3) threats posed by outbreaks, 
epidemics, and pandemics caused by re-emerging or emer-
ging infectious agents.

Considering this grim picture, effective prevention, rapid 
and accurate diagnosis, and adequate therapy are the three 

main available tools to combat infectious diseases and 
reduce their burden. Diagnosis is essential; however, its 
scope is often overlooked. Commonly, the diagnosis of infec-
tious disease refers to the process of identification of disease 
and its etiological agent in individual patients for their man-
agement in clinical settings. This is itself a complex and 
multifactorial process that varies widely across clinical set-
tings and population niches, each demanding specific 
requirements and presenting unique challenges. However, 
infectious disease diagnostics also have a broader range of 
applications in health care beyond individual patient man-
agement, which include antimicrobial stewardship programs; 
control of emerging or re-emerging infectious events during 
outbreaks, epidemics or pandemics; population screening or 
epidemiological surveillance [16].

In essence, diagnosis involves the identification of dis-
ease; however, it may not be self-evident that the accuracy 
and timing of such identification also have profound ramifi-
cations in the subsequent management, therapy, and out-
come of disease. New developments leading to improved 
features in the field of diagnostics, including faster pathogen 
identification and antimicrobial susceptibility evaluation, 
have considerably accelerated times to adequate treatment, 
reduced hospital stays and mortality, and greatly reduced 
health-care associated costs in clinical settings when com-
pared with more traditional methods [17]. Nonclinical appli-
cations, such as industrial microbiological quality control, 
also benefit from the use of these improved diagnostic 
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technologies [18]. As such, the importance of diagnostics 
warrants a continued evolution of diagnostic biomarkers, 
tools and methodologies .

Diagnostic biomarkers of infection of varied nature are 
used in clinical microbiology. For example, diagnostic modal-
ities based on microbial culture and microscopy make use of 
disparate biomarkers depending on the technique, including 
morphology or metabolic demands, while immune or nucleic 
acid-based diagnostics rely on the presence or absence of 
antibodies/antigens or genetic determinants, respectively. 
Ultimately, the choice of biomarker defines the potential and 
features of a diagnostic technology (Table 1).

Nucleases are a diverse family of protein enzymes, present 
across all domains of life, that mediate the degradation of 
nucleic acids by cleaving the phosphodiester bonds that con-
form their backbone [26]. A great number of nucleases have 
been identified and characterized for many different species in 
the domain Bacteria, in many cases playing key roles in their 
associated pathogenesis. The great diversity of bacterial 
nucleases, their capability to degrade natural (DNA or RNA) 
or chemically modified nucleotides (2’-Fluoro, 2’-O-Methyl, 
LNA, etc.) and their varied biochemical and catalytic proper-
ties, such as substrate preference, sequence preference, cation 
dependency or thermostability; make them promising candi-
dates as diagnostic biomarkers. It is known that bacterial and 

Table 1. Current and emerging diagnostic modalities in clinical microbiology. Overview of the main modalities, their advantages and disadvantages, and the 
biomarkers employed.

Modality Biomarker Advantages Disadvantages Refs

Microscopy Varied, including:
● Morphology
● Growth
● Presence or absence of dye

● Rapid
● Sensitive and Specific*

● Low throughput
● Technically demanding
● Elaborate sample preparations**
● Expensive**

[19,20]

Microbial culture Varied, including:
● Growth characteristics
● Morphological characteristics
● Metabolic characteristics
● Biochemical characteristics

● High sensitivity
● High specificity

● Time-consuming
● Costly and cumbersome for intracellular 

pathogens
● Incompatible with certain pathogenic 

organisms
● Contamination risk

[16,19,21]

Immunoassays Antigen-antibody interaction ● High specificity
● Rapid
● Low cost
● High-throughput capability
● Compatible with automation
● Retrospective diagnosis

● Low sensitivity
● Prone to interferences
● No antibiotic susceptibility testing
● Worse diagnostic accuracy than molecular tests
● Accuracy dependent on quality control
● Cost and complexity associated with antibody 

production

[20,22– 
25]

Molecular genetic 
techniques

Genetic determinants ● Rapid*
● High sensitivity and specificity
● Low detection limits
● Provides genotypic antibiotic sus-

ceptibility information
● Multiplexing and absolute quantifica-

tion capabilities
● High-throughput capability
● Compatible with automation

● Overreporting (false positives)
● Requires specialized equipment
● Medium to high costs and complexity
● Differences between genotypic and phenotypic 

antibiotic resistance
● Need for nucleic acid isolation
● Prone to cross-contamination*

[133]

Mass spectrometry Mass spectrum profile or genetic 
determinants

● Very rapid
● High sensitivity and specificity
● Low detection limits*
● Low running costs
● Provides antibiotic susceptibility 

information

● Need for enrichment and amplification steps
● High initial equipment costs

[133]

Biosensors Varied, including:
● Enzymes
● Genetic determinants
● Antigens
● Antibodies
● Growth

● New diagnostic possibilities and 
formats

● Novel functionalities

● Slow adoption
● Calibration methods
● Quality assurance
● High costs
● Low sensitivity and high detection limits**

[18,252]

*Depends on the application. 
**Depends on the technique 

Article highlights

● Timely and accurate diagnosis is fundamental for the successful 
management, therapy and outcome of infectious diseases.

● The nature of the biomarkers used defines the advantages and 
limitations of currently diagnostic techniques in clinical microbiology.

● Extracellular and intracellular nucleases are widespread in bacteria 
and play crucial biological roles, including pathogenesis.

● Readily accessible extracellular nucleases have been described in 
both Gram-positive and Gram-negative bacterial pathogens of 
humans.

● Due to their ubiquity, biochemical and functional diversity and cat-
alytic nature, nucleases postulate themselves as promising biomar-
kers of disease.

● Diagnostic test using nuclease activity as a biomarker have been 
employed in the past to identify and discriminate between bacterial 
species.

● Novel technologies and approaches are expanding the scope nucle-
ase activity-based diagnostic tests and show promise to become 
successful alternatives to gold standard techniques and to address 
unmet needs in clinical microbiology.
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human nucleases can be distinguished based on their nucle-
ase activity profile [26], and both bacterial nuclease activity 
[27] and nuclease patterns [28] have already been used and 
proposed, respectively, to identify and discriminate between 
bacterial species. The use of bacterial nuclease activity blue-
prints as novel diagnostic biomarkers is particularly promising, 
and novel approaches are expanding its potential for the 
successful identification and characterization of clinically rele-
vant bacterial pathogens. Several methodologies to analyze 
nuclease activity have been reported , including Fluorescence 
Resonance Energy Transfer (FRET) systems, which report the 
oligonucleotide cleavage [29]; mass spectrometry [30] or capil-
lary electrophoresis [31], which provide oligonucleotide frag-
mentation profiles. Based on some of these methodologies 
biosensing systems that exploit bacterial nuclease activity as 
a biomarker have already shown promise when complement-
ing existing diagnostic technologies [32], addressing unmet 
diagnostic needs in clinical settings [33] and setting the basis 
for new diagnostic avenues and methodologies [29].

In this context, due to their readily accessibility in living 
bacteria, extracellular (membrane-associated, cell wall- 
anchored and secreted) nucleases represent more propitious 
candidates than intracellular nucleases for their use as diag-
nostic makers.

In this review, we briefly overview the immense repertoire 
of bacterial nucleases and present relevant examples from the 
literature of how they have been used and how could they be 
used as diagnostic biomarkers. Finally, we present several 
well-described extracellular nucleases associated with 15 clini-
cally relevant pathogenic bacteria, whose activity blueprints 
could be exploited as clinical diagnostic biomarkers.

2. Nucleases in bacteria

2.1. Intracellular nucleases

A plethora of intracellular nucleases has been identified in 
bacteria, and most of them have been reported and character-
ized using Escherichia coli (E. coli) and Bacillus subtillis 
(B. subtillis) as model organisms. Dozens of RNases and 
DNases possessing different biological roles, catalytic activ-
ities, biochemical properties and regulatory mechanisms 
have been described. Moreover, since the advent of the geno-
mic era, many homologues of some of these known nucleases 
have been identified in silico across all domains of life. Despite 
the fact that nucleases are typically grouped into subfamilies, 
families and superfamilies according to structural and 
sequence-related features for clarity and classification pur-
poses [34], the real scope of their prevalence, biochemical 
diversity and involvement in a wide range of biological pro-
cesses can be hard to grasp. In brief, roles ranging from DNA 
proofreading and repair, maintenance of genome stability or 
virulence-associated genetic recombination [35]; to RNA meta-
bolism (e.g. maturation, turnover or regulation) or toxin- 
mediated growth control [36,37] are performed by a large 
number of nucleases displaying different modes of action 
(hydrolysis or phosphorolysis), types of cleavage (endonu-
cleases, exonucleases or both) and substrate preference 
(DNases, RNases or both) with varying intracellular 

localizations (nucleus, cytosol, inner membrane or periplasm), 
substrate specificities (structure or sequence preferences), pro-
cessivity, polarity (5´to 3´ or 3´to 5´) or co-factor requirements 
(Mg2+, Ni2+or Co2+), among others [38,39].

However, the diversity of intracellular nucleases is not lim-
ited to their number. Even between highly conserved bacterial 
nuclease homologues, significant operational differences may 
exist, as reported for RNase E homologues from different 
pathogenic bacterial species [40]. This is also illustrated by 
the differences between the Exonuclease III (Exo III) and 
Endonuclease IV (Endo IV) families of class II apurinic/apyrimi-
dinic (AP) endonucleases. Exo III and Endo IV nucleases have 
a fundamental role in the repair of abasic DNA lesions caused 
by highly oxidative environments, such as the one encoun-
tered by some bacterial pathogens inside macrophages [41], 
and are found in organisms from bacteria to humans. 
However, major differences in the relative activity of Exo III 
and Endo IV between homologues present in bacteria, yeasts 
and humans have been observed. In fact, while Exonuclease III 
is responsible for the bulk of the AP endonuclease activity in 
E. coli and humans (Ape I), Endonuclease IV is the principal AP 
endonuclease in M. tuberculosis (End) and Saccharomyces cer-
evisae (Apn 1) [41,42]. Besides, when comparing in greater 
detail the activities of AP endonucleases between E. coli and 
Mycobacterium tuberculosis (M. tuberculosis), similarities are 
observed as expected by their homology including the ability 
of both nucleases to degrade ssDNA and dsDNA abasic sub-
strates, the display of both exonuclease and endonuclease 
activities, the metal-ion dependency or the differential sensi-
tivity between Exo III and Endo IV to chelating agents (EDTA) 
[41–43]. However, a relevant nuclease property, namely the 
sequence preference of the base opposite to the abasic lesion, 
varies between E. coli and M. tuberculosis [41,44,45]. One more 
example of operational differences between nuclease homo-
logues includes Endonuclease V, a highly conserved nuclease 
from bacteria to humans, that varies its substrate preference 
(DNA to RNA) and function (DNA repair to RNA editing) 
between bacterial and eukaryotic organisms [46].

Furthermore, beyond nuclease homologues, differences in 
nuclease populations among bacterial species have been 
reported that suggest that different bacteria may use non- 
homologous nucleases to fulfill similar biological roles through 
disparate pathways and mechanisms pointing towards the 
existence of yet undescribed novel intracellular nucleases 
across bacterial species. This phenomenon is illustrated by 
nuclease populations identified in two putative model organ-
isms, namely E. coli and B. subtillis. Despite sharing several 
conserved homologous nucleases, an even greater number 
of nucleases are unique for each species. As such, major 
differences in the mode of action between B. subtillis and 
E. coli nuclease populations exist. While 90% of the nucleases 
found in E. coli extracts are hydrolytic, phosphorolysis dom-
inates the nuclease activity in B. subtillis extracts [39]. However, 
as reported before [26], different catalytic mechanisms are 
poorly correlated with biological roles, as exemplified by the 
fact that some of the unique non-homologous nucleases, such 
as RNase E (E. coli) and RNase Y in (B. subtillis) possess equiva-
lent biological roles [47]. Similarly, several exonucleases 
belonging to different protein families share their preference 
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for ssDNA and have seemingly redundant functions, as 
reported for E. coli [38].

2.2. Extracellular nucleases

A great number of extracellular nucleases, including both 
membrane-bound and secreted, with cytotoxic and non- 
cytotoxic roles have been identified in numerous bacterial 
species. In a similar fashion to intracellular nucleases, the 
identified extracellular nucleases display diverse biochemical 
and catalytic properties involving different types of cleavage, 
substrate and sequence preference, catalytic efficiencies, 
cofactor requirements, optimal pH and temperature, ionic 
strength or thermal stability, among others. Even between 
homologous nucleases displaying very high sequence identity 
and similarity, noticeable catalytic and biochemical differences 
exist that allow their distinction, as exemplified by the extra-
cellular nuclease homologues VcEndA/Dns and VsEndA pro-
duced by Vibrio cholera (V. cholera) and Vibrio salmonicida, 
respectively [48,49].

2.2.1. Cytotoxic extracellular nucleases
Bacteria produce an abundance of extracellular effector mole-
cules and toxins that make use of numerous mechanisms for 
their secretion, transfer, and delivery , which in many cases 
involve specialized secretion systems [50,51], into prokaryotic 
or eukaryotic targets, where they participate in bacterial war-
fare or act as virulence factors during host infection. Many of 
these effectors and toxins, as described below, are known to 
possess nuclease activity and rely on it to perform their 
function.

On the one hand, numerous plasmid and chromosomally 
encoded toxins involved in bacterial warfare classified in var-
ious toxin systems have been described. Among others, these 
include experimentally well-characterized classical toxin sys-
tems, such as bacteriocins (e.g colicins, pyocins or klebicins) 
[52–54] as well as a vast array of polymorphic toxin systems 
identified in silico across major bacterial lineages [55–57]. 
Interestingly, both classical bacteriocins and polymorphic tox-
ins are known to share a number of common features. First, 
these toxins share different degrees of domain homology and 
a modular domain structure. N-terminal domains serve regu-
latory functions, such as trafficking, while the C-terminal 
domains contain the active cytotoxic domains, which can dis-
play diverse types of nuclease activity that include DNase, 
mRNase and tRNase. As such, these toxins tend to exert their 
cytotoxic functions by tampering with the flow of information 
inside the target cell, either by degrading nucleic acids 
involved in protein synthesis or by direct destruction of the 
genomic material. Of interest, both of these types of toxins 
possess co-transcribed immunity pair proteins that avoid self- 
intoxication and keep the toxins inactive until their delivery 
into the target [52–54,56].

On the other hand, many pathogenic bacteria are well 
known to use a wide range of effectors of different nature to 
hijack key pathways or induce the death of host´s cells as part 
of their pathogenic strategy [58]. Unsurprisingly, many of 
these host-targeted cytotoxic effectors and toxins found in 
different pathogenic bacterial species exhibit nuclease activity. 

Perhaps one of the best studied examples is the heterotrimeric 
cytolethal distending toxin (CDT), homologues of which are 
encoded by numerous proteobacteria. Upon translocation into 
the cytosol and nuclear targeting, it causes cell cycle arrest 
followed by gross morphological changes and cell death 
[59,60]. The cytotoxicity of this toxin has been attributed to 
the Dnase I-like enzymatic activity of the CdtB subunit that 
induces DNA damage [61–63]. In a similar fashion, AbOmpA, 
a major surface protein of Acinetobacter baumannii that has 
also been shown to be secreted, targets both the mitochon-
dria and the nucleus and induces apoptotic cell death. 
Analogously to CdtB, nuclear localization is dependent on 
a nuclear localization signal (NLS), it exhibits DNase-I like 
activity capable of degrading chromosomal DNA and its cyto-
toxic effect is more prominent in macrophages compared to 
other cell types [64,65]. In a similar fashion, Corynebacterium 
diphtheriae (C. diphtheriae) toxin possesses DNase I-like activity 
and induces internucleosomal degradation and cytolysis [66]. 
In line with these observations, Lee et al. screened for and 
identified 49 proteins with a predicted NLS in Helicobacter 
pylori, and demonstrated that 26 of these proteins were 
indeed localized in the nucleus using a fibroblast (COS-7) 
in vitro cell model [67]. Further investigations by Kim et al. 
characterized one of these proteins (HP0425) as a cytotoxic 
Mn2+-dependent nuclease, capable of degrading supercoiled 
plasmid DNA and genomic DNA [68]. Additionally, Helicobacter 
pylori has been shown to induce contact-dependent genomic 
DNA damage in host´s cells through an unknown mechanism, 
which is known to be independent of (1) DNA synthesis, (2) 
the action of reactive oxygen or nitrogen species or (3) known 
virulence factors, such as cytotoxin associated gene patho-
genicity island , vacuolating cytotoxin A or gamma-glutamyl 
transpeptidases [69].

2.2.2. Non-cytotoxic extracellular nucleases
Membrane-bound or secreted extracellular nucleases with 
non-cytotoxic roles in bacterial pathogenesis, such as nutrient 
scavenging, immune modulation, biofilm remodeling or hor-
izontal gene transfer, have been described for several clinically 
relevant bacterial pathogens (Table 2). These include Gram- 
positive bacteria such as Staphyloccocus aureus, Streptococcus 
pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae 
and Clostridium perfringens; as well as Gram-negative bacteria 
such as E.coli, Neisseria gonorrhoeae, Serratia marcescens, 
Helicobacter pylori, M. tuberculosis, Salmonella enterica, 
Campylobacter jejuni and V. cholera (Section 5). However, the 
aforementioned list is not exclusive and other clinically rele-
vant bacteria not considered in this review are also known to 
possess non-cytotoxic extracellular nucleases.

For example, two extracellular secreted nucleases (EddB and 
EndA) have been identified in Pseudomonas aeruginosa capable 
of degrading extracellular genomic DNA, which is in line with 
previously reported unassigned extracellular DNase activity in 
several typed and untyped strains from clinical isolates [70,71]. 
EddB is a metal-ion-dependent nuclease, whose expression is 
increased in hyperdispersive biofilms and induced by phosphate 
limiting conditions in a dose-dependent manner and extracellu-
lar DNA, such as neutrophil extracellular traps (NET) DNA. 
Unsurprisingly, it participates in nutrient scavenging during 
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starvation, immune evasion by degrading NETs and biofilm 
remodeling. Meanwhile, EndA bares sequence identity with 
E. coli´s Endonuclease I or V. cholera´s Dns and plays 
a fundamental role in biofilm remodeling [71–73]. Analogously, 
NTHI (non-typeable Haemophilus influenzae)-Nuc, a metal-ion- 
dependent nuclease homologous to micrococcal nuclease (MN) 
and involved in biofilm remodeling has been identified in silico in 
several annotated genomes of NTHI. It has been reported that 
NTHI-Nuc is capable of degrading both ssDNA and dsDNA, exhi-
bits much faster kinetics than DNase I and it is inhibited by EDTA 
(4 mM) [74].

Unassigned extracellular nuclease activity blueprints have 
also been reported in numerous anaerobic bacteria. These 
include Gram-positive anaerobes, including pathogenic pep-
tostreptococci and Clostridium spp, such as 
Peptostreptococcus anaerobius or the aforementioned 
C. perfringens respectively; and Gram-negative anaerobes, 
including pathogenic fusobacteria or bacteroides, such as 
Fusobacterium necrophorum or Bacteroides fragilis, respec-
tively [75]. Similar unassigned activity has been reported in 
members of the corynebacteria, including Corynebacterium 
ulcerans and C. diphtheriae, the activity of the latter species 
being independent of the activity of its toxin [76]. 
Membrane-associated and secreted extracellular nuclease 
activity of unassigned origin has also been described for 
numerous pathogenic species and strains of mycoplasma 
[28], some of which have been shown to induce immortali-
zation and malignant transformation of different human 
cells in vitro [77,78] and have been associated with the 
development of malignancies in humans [79–82].

In fact, recent studies have identified membrane- 
associated extracellular nucleases in Mycoplasma meleagridis 
(Mm19) [83] and Mycoplasma hyopneumoniae (mhp379) [84], 
common animal pathogens, as well as in species isolated 
from humans, such as Mycoplasma pneumoniae 
(M. pneumoniae) (Mpn133) [85], Mycoplasma genitalium 
(MG-168) [86] or Mycoplasma penetrans (P40) [87,88]. 
Interestingly, mhp379, MG-168 and Mpn133 are Ca2+- 
dependent nuclease homologues with broad substrate spe-
cificity belonging to the MN cluster of orthologous proteins 
(COG1525) that are encoded upstream of genes encoding 
for homologous ABC transport systems, which is in line with 
the previously proposed nutrient scavenging roles of myco-
plasma nucleases [28]. This hypothesis is further supported 
by the ability of other mycoplasmas to use undegraded 
DNA and RNA as a nutrient source [89] and the observed 
reduction of the cytotoxic effects of M. pneumoniae in the 
presence of adenine supplement [90]. However, their ability 
to induce internucleosomal DNA degradation [86,91,92] and 
observations in in vitro models of human-derived cell of 
membrane binding, internalization, reduction of viability 
and induction of apoptosis [85,88], also suggest a role of 
mycoplasmas´ extracellular nucleases as pathogenic 
determinants.

3. Nuclease activity as a diagnostic biomarker

As early as the 1950s, the production of extracellular deoxyribo-
nuclease activity was proposed as a useful phenotypic trait to aid 

in the biochemical identification, characterization, and discrimi-
nation of bacterial species in clinical microbiology. As such, 
different assays, referred to collectively as DNase test, have 
been developed over the last decades for the detection of nucle-
ase activity [93–95] and are still in use today [96]. The use of the 
DNase test has been proposed as a means to discriminate 
Serratia spp from other species of the Enterobacteriaceae family 
based on the presence or absence of extracellular nuclease 
activity [97–99]. Similarly, the DNase test has been postulated 
as a cost-effective and simple screening tool for C. diphteria, for 
its ability to discriminate between diphterial and non-diphterial 
corynebacteria with high sensitivity (100%) and specificity 
(93,9%) [76]. Ultimately, the DNase test has most commonly 
been used to specifically identify Staphylococcus aureus 
(S. aureus). However, to overcome the specificity issues posed 
by the production of thermolabile extracellular nucleases by 
micrococci and coagulase-negative Staphylococci, such as 
Staphylococcus epidermidis [100], a derivative of the DNase test, 
known as the thermonuclease (TNase) test, that exploits the 
thermostability of MN was developed. TNase is not only more 
specific than the DNase test, but its accuracy has been shown to 
match that of the tube coagulase test (TCT) for the identification 
of S. aureus in food and clinical isolates of Gram-positive cocci 
[27,101–103]. Moreover, it represents a simple, rapid (~ 2,5 hours) 
and inexpensive methodology for the detection at very low 
concentrations (5–10 ng/g – approx. 10–3 units/g) directly from 
food samples of MN, which is a good indicator of S. aureus 
contamination, even when viable bacteria are no longer avail-
able after food processing [104,105]. Unsurprisingly, the TNase 
test has and continues to be proposed as a very accurate, rapid 
(1 -4 hours), simple and inexpensive alternative to molecular 
methods for the identification of S. aureus bacteremia from 
positive blood cultures that exhibit Gram-positive cocci on 
a direct Gram stain [96,106–108]. However, the production of 
thermostable nucleases by typical bacteremia suspects like 
Enterococcus faecalis and coagulase-negative staphylococci, 
amid with much lower prevalence and different thermostability 
profiles [109], may occasionally lead to the misidentification of 
the causative agent. It is also worth mentioning that nuc, the 
gene coding for S. aureus putative nuclease (MN), has been 
employed as a targeted genetic determinant in different diag-
nostic NAATs for its identification in food and clinical isolates, 
such as positive blood cultures [110–115]. However, concerns 
have been raised about the risks of using nuc as a sole genetic 
determinant, due to the appearance of strains with marked gene 
sequence heterogeneity that may lead to false negatives. 
Importantly, all the identified genetic alterations involved same 
sense mutations [116], and therefore, do not affect the applic-
ability and the accuracy of the DNase/TNase test.

The scope of the approaches that take advantage of the 
catalytic activity of MN as a biomarker for the identification 
of S. aureus has been expanded of late. Some recently 
reported biosensing platforms utilize nucleic acid-based 
recognition elements in combination with fluorescence- 
based transduction mechanisms to detect the enzymatic 
activity of MN both qualitatively and quantitatively with 
high selectivity and very low reported limits of detection, 
ranging from 2,9x10−3 to 2,7x10−5 unit/ml (approx. 0,1 ng/ 
ml) in a reproducible manner. However, in most cases their 
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performance in complex matrices remains to be validated, 
which limits their applicability to the detection of S. aureus´s 
nuclease solely from pure cultures [117–119]. Similar 
approaches have also been adopted for other nucleases, 
such as DNase I, while adding new features like real-time 
monitoring of enzymatic activity [120]. One of the most 
explored and flexible biosensing platforms to detect the 
catalytic activity of bacterial nucleases is based on the use 
of short, chemically modified self-quenched fluorescent oli-
gonucleotide probes that can be easily tuned to serve as 
their specific substrates, allowing bacterial identification 
in vitro in complex clinical specimens, such as urine or 
plasma, as well as in vivo. Specific examples of the use of 
nuclease activity as biomarkers for the detection and iden-
tification of both Gram positive [29] and Gram negative 
[32,33] bacteria have been reported. Hernandez et al. 
could image a S. aureus infection in vivo by taking advan-
tage of the catalytic properties of its secreted nuclease (MN) 
in a murine model of pyomyositis [29]. Based on an analo-
gous but optimized platform; a cost-effective, ultrasensitive 
and highly specific assay for the rapid (3 hours) identifica-
tion of S. aureus bacteremia directly from non-enriched 
blood plasma has also been reported [121]. Flenker et al. 
also exploited this platform to develop a rapid (3 hours), 
cost-effective and simple assay, based on the detection of 
the dominant activity of E. coli´s chromosomally encoded 
endonuclease I, for the diagnosis of urinary tract infection 
(UTI) caused by this bacterium directly from urine speci-
mens with minimal processing and reportedly equivalent 
or higher sensitivity (S) and negative predictive values 
(NPV) for both E. coli UTI (S: 97%; NPV: 98%) and general 
UTI (S: 95,3% NPV: 87,5%) than rapid dipstick-based urina-
lysis. Furthermore, it holds promise to provide accurate 
pathogen identification and quantification while being pli-
able to automation and multiplexing [33]. Yet again, 
Machado et al. used the same biosensing platform to 
rapidly (8 hours) and accurately detect Salmonella enterica 
ser. Typhimurium from pure cultures and cultured homoge-
nates of fattening-pigs mesenteric lymph nodes by exploit-
ing the nuclease blueprint associated with the bacterium. By 
using a screening approach to identify the oligonucleotide 
probes that are preferentially catalyzed by Salmonella enter-
ica ser. Typhimurium´s nuclease blueprint, pathogen identi-
fication with matching accuracy levels to the gold standard 
methods is attained, without the need to be versed in the 
etiology of the enzymatic activity [32]. In addition to patho-
gen identification, the same biosensing platform has been 
employed for antimicrobial susceptibility testing based on 
two seemingly opposing strategies: growth-associated 
nuclease production and lysis associated nuclease release. 
However, both have proven more rapid (3–6 hours) and 
equally as accurate as classical phenotypic methods (e.g. 
broth microdilution method) to obtain quantitative antimi-
crobial susceptibility information from bacterial suspensions 
derived from purified colonies for both Gram-positive and 
Gram-negative bacterial species, respectively [122,123].

Recently, a variation of the fluorescent detection platform 
has also been used for the detection and identification of 
bacteria based on the catalytic activity (cleavage of 

oligonucleotide probe) of bacterial nucleases. However, the 
transduction mechanisms in these variations were based on 
magnetic resonance imaging [124] and lateral flow 
assays [125].

4. Significance, current diagnostics, and nuclease 
candidates as potential diagnostic biomarkers of 15 
clinically relevant bacterial pathogens

4.1. Staphylococcus aureus (S. aureus)

4.1.1. Significance and current diagnostic methods
S. aureus is one of the most common and burdensome human 
pathogens, being responsible for a multitude of clinical infec-
tions including (1) bacteremia; (2) skin and soft tissue condi-
tions, such as cutaneous abscesses or impetigo; (3) 
osteoarticular infections, such as osteomyelitis or septic arthri-
tis; (4) pulmonary infections, such as ventilator-associated 
pneumonia; and to a lesser extend (5) toxic shock syndrome 
(TSS), (6) meningitis and, in rare cases, (7) UTI [126]. The 
appearance of antimicrobial resistant strains to penicillin, 
which were already observed in 1942; methicillin, quinolone 
and vancomycin complicates the clinical picture and entails 
a huge economical and medical burden. In fact, annual deaths 
attributable to nosocomial methicillin-resistant S. aureus 
(MRSA) infections have surpassed HIV/AIDS in the United 
States [127].

The diagnosis of S. aureus usually involves time-consuming, 
culture-based sample enrichment and colony isolation, fol-
lowed by identification and characterization methods. Gram 
stains and/or colony morphology evaluations can provide pre-
sumptive pathogen identification [128]. For definitive identifi-
cation different methods are available. These include different 
biochemical assays, which range from rapid, accurate, and 
inexpensive tests that are well adapted to low resource set-
tings, such as the coagulase test [129], to automated panel- 
based commercial platforms that offer phenotypic identifica-
tion and susceptibility information [130]. Immunological 
assays, such as ELISA and latex agglutination, identify 
S. aureus based on the detection of characteristic virulence 
factors, such as secreted toxins, and are especially important 
to identify contaminated food in the absence of bacteria 
[131,132]. Numerous commercial platforms based on molecu-
lar diagnostic methodologies, such as NAATs or mass spectro-
metry (MS), are also available which provide identification and 
antimicrobial susceptibility testing [133,134]. These platforms 
exhibit different requirements relating to specimen type, pro-
cessing steps and sample purity, while some offer rapid results 
with minimal sample processing, others require extensive 
manual processing for sample preparation or culturing steps 
to obtain pure colonies.

4.1.2. Nuclease candidates
S. aureus produces Nuc, also known as micrococcal nuclease 
(MN) and Nuc2. On the one hand, MN is a well characterized 
secreted exo-endonuclease that can degrade both single- 
stranded (ss) and double-stranded (ds) RNA and DNA, with 
a higher preference toward ssDNA. Its main cofactor is Ca2+, 
though it retains DNase activity in the presence of Sr2+. It can 
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operate in a wide range of pH values, with an optimal Ca2+ - 
dependent activity at basic pH levels (9 to 10), it is remarkably 
thermostable and its catalytic activity varies depending on pH 
levels, Ca2+ concentration and substrate nature. Additionally, 
MN activity displays both nucleotide preference towards ade-
nine and thymine and sequence preference [135–137]. Apart 
from being a key regulator in biofilm formation [138], there is 
strong evidence, both from in vitro and in vivo models that 
S. aureus uses MN as a virulence factor to escape neutrophil 
action by degrading their extracellular traps [139]. 
Furthermore, MN degradation of NETs promotes a chain of 
events that leads to the generation of toxic nucleotide deri-
vates that induce macrophage apoptosis [140]. This realization 
has even led to the pursue of therapeutic approaches that 
target MN, like inhibiting its catalytic activity [141]. On the 
other hand, Nuc2 is an extracellular facing surface attached 
nuclease with similar biochemical characteristics to MN, but 
with a considerably diminished level of activity. Importantly, 
Nuc2 has been reported to be expressed and functional dur-
ing infection using a murine in vivo model [142]. Additionally, 
S. aureus uses a specialized secretion system to release 
a DNase effector (EssD) into the extracellular environment 
that has been shown to contribute to its pathogenic strategy 
by inducing a nuclease dependent proinflammatory response 
in a bloodstream infection mouse model [143].

4.2. Streptococcus pneumoniae (S. pneumoniae)

4.2.1. Significance and current diagnostic methods
S. pneumoniae is an extracellular bacterium whose main habi-
tat is the human upper respiratory tract (UPT) [128]. 
Colonization of the UPT is more common among children 
(20–50%) and can be asymptomatic and self-resolved, leading 
to temporary serotype-specific immunity, or it can evolve into 
highly burdensome invasive disease in the form of pneumo-
nia, bacteremia, meningitis, middle-ear infection, mastoiditis, 
or sinusitis. In fact, just the lower respiratory infections attri-
butable to S. pneumoniae were estimated to cause the death 
of over a million people globally in 2016 [144]. Airborne or 
contact-dependent transmission occur upon close contact 
with colonized or infected individuals or fomites, and the 
rate of transmission is enhanced by inflammatory events, 
such as viral co-infection. Co-infection also increases the risk 
of invasive disease and mortality [145,146]. Since the introduc-
tion of the serotype-specific pneumococcal vaccines, the bur-
den of disease has significantly decreased. However, the rising 
incidence of non-vaccine serotypes and the appearance of 
multidrug resistance in a typically penicillin-susceptible spe-
cies represent new challenges [147].

A presumptive diagnosis of pneumococcal disease is typi-
cally done based on clinical symptoms and unspecific infec-
tious markers, which in some cases leads to false positives and 
antibiotic overuse [148]. Phenotypic assays used for identifica-
tion, such as bile solubility or optochin susceptibility testing, 
are based on time-consuming microbial culture, whose sensi-
tivity is negatively affected by prior empirical antibiotic treat-
ment. Furthermore, the presence of similar characteristics in 
other Streptococcus spp and S. pneumoniae strains reduce the 
specificity of these tests. Molecular methods have been 

proposed based on PCR, RT-qPCR and mass spectrometry 
(MALDI-TOF). However, due to genetic similarity between 
S. pneumoniae and the viridians group of streptococci, PCR- 
based methods lack specificity when used on upper respira-
tory tract or sputum specimens. Direct assessment of whole 
blood using PCR-based methods exhibits high specificity, but 
poor sensitivity. Although rarely used in clinical settings due to 
the marginal sensitivity, it has proven more rapid and sensitive 
than blood culture in pediatric patients with pneumonia. 
However, it is slower and less accurate than the urinary anti-
gen testing in adult patients with bacteremia or pneumonia 
[148,149], a culture-free method based on the detection of 
S. pneumoniae´s capsular polysaccharide in urine. The precise 
identification and serotyping of S. pneumoniae are also impor-
tant to reduce antimicrobial resistance and develop effective 
vaccines. Some of the methods used for species serotyping 
include multilocus sequence typing, sequential multiplex PCR 
and whole-genome sequencing [145,148,150].

4.2.2. Nuclease candidates
EndA is the major extracellular nuclease of S. pneumoniae, 
which is expressed at different levels by multiple 
S. pneumoniae strains and plays a key role as a virulence factor. 
EndA is a metal-ion-dependent endonuclease capable of 
degrading both DNA and RNA, which similarly to other bacter-
ial nucleases, like Serratia marcescens´s nuclease, belongs to 
the family of nucleases containing a ββα-metal finger motif 
and possesses an N-terminal signal sequence and an active 
catalytic site characterized by the presence of a DRGH motif. 
Despite these common features, the sequence and structural 
similarities are minimal, and EndA presents differential struc-
tural features among its family members, like the presence of 
a ‘finger-loop’ interrupting the α-helix D, whose function is 
unknown. Both Mg2+ and Mn2+ can act as cofactors, while 
other divalent metal-ions, like Ca2+ and Zn2+, fail to support 
maximal nuclease activity. Mutagenesis analysis has identified 
several critical residues for EndA activity, including His160, 
Glu205 or Arg127/128, which are fundamental for nucleic 
acid binding and catalysis [151]. EndA is an extracellular nucle-
ase that can be membrane-associated or secreted, in line with 
its signal peptide, and its production varies in vitro according 
to the growth rate. It plays a fundamental role in genetic 
transformation by degrading extracellular DNA and therefore 
facilitating its uptake. However, EndA activity is not dependent 
on the competence status. While competence-dependent 
activity is rapid but weak and transient, competence- 
independent activity has been shown to be involved in 
immune evasion during infection by degrading NETs. In this 
manner, EndA acts as a virulence factor that increases inva-
siveness and leads to reduced survival in murine models 
[152,153].

4.3. Streptococcus pyogenes (S. pyogenes)

4.3.1. Significance and current diagnostic methods
S. pyogenes, also known as group A streptococcus (GAS), 
colonizes epithelial surfaces of the skin, throat, vagina and 
rectum. Transmission is either airborne, foodborne or through 
direct contact with infected or colonized individuals. It is 
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responsible for a wide range of human diseases that range 
from uncomplicated infections, such as pharyngitis or impet-
igo, to life-threatening invasive diseases, including cellulitis, 
bacteremia, streptococcal toxic shock syndrome, pneumonia, 
necrotizing fasciitis, meningitis, septic arthritis or osteomyelitis 
[128,154]. Additionally, it also triggers severe post-infectious 
immune sequelae, including acute glomerulonephritis or 
acute rheumatic fever, which can develop into rheumatic 
heart disease (RHD). It is therefore not surprising that the 
global burden of GAS disease is substantial. For reference, 
global death estimates of invasive GAS and RHD amount to 
163,000 and 233,000 deaths per year, respectively, while the 
global prevalence of pyoderma in children and the global 
annual incidence of pharyngitis are 111 million and over 
600 million, respectively [155]. A vaccine is not yet available 
despite continued efforts [154].

Rapid and accurate identification that allows prompt and 
adequate treatment is key to reducing immune sequelae and 
mortality associated with invasive disease. Like S. pneumonia, 
the identification of GAS relies heavily on microbial culture, 
which involves lengthy incubation times (24 to 48 hours), is 
highly dependent on specimen collection and incubation con-
ditions; is prone to interferences from contaminating flora and 
does not allow discrimination between colonizing and invad-
ing organisms. Traditional phenotypic identification tests 
using different traits such as morphology, Gram staining, beta- 
hemolysis, Lancefield group (serologic test), bacitracin sus-
ceptibility or presence of pyrrolidonyl aminopeptidase (PYR 
test) need to be used in combination to avoid misidentifica-
tion [156].

Fortunately, existing non-culture-based rapid and specific 
antigen test for the detection of S. pyogenes from throat swabs 
help to guide treatment and reduce antimicrobial misuse. 
However, culture-based confirmation in case of a negative 
result is necessary due to low sensitivities. Moreover, false 
positives may occur in colonized or previously infected 
patients. Rapid molecular methods based on probe hybridiza-
tion and PCR techniques offer similar accuracy to culture- 
based diagnosis while providing same-day results. However, 
they cannot differentiate viable from non-viable or colonizing 
from invading organisms and some of them are not true POCT. 
In general, rapid tests are also highly dependent on sampling 
quality and disease severity and cannot provide antimicrobial 
susceptibility information [157–159]. At the same time, com-
mercial automated platforms using a suit of physiologic tests, 
mass spectrometry or PCR offer accurate identification of 
S. pyogenes from other specimen types, such as positive 
blood cultures or culture isolated organisms. In the case of 
immune sequelae, diagnosis relies on monitoring, through 
neutralization assays, the antibody response toward streptoly-
sin O and DNase B, the latter being a more specific marker of 
S. pyogenes infection [156].

4.3.2. Nuclease candidates
S. pyogenes is a prolific producer of extracellular nucleases. To 
date, 8 nucleases have been identified [160]. On the one hand, 
SpdB and SpnA are chromosomally encoded nucleases. SpdB, 
which is also known as DnaseB, MF, SdaB or SpeF, is a secreted 

nuclease and is monocistronically encoded by the mf gene. 
Catalytically, SpdB is a metal-ion-dependent, thermostable 
endonuclease capable of degrading both ssDNA and dsDNA 
as well as RNA. The type of cleavage is analogous to the one 
displayed by DNase I, rendering oligonucleotide products with 
5´- phosphorylated terminus. Activity is supported by a wide 
range of cofactors, including Mg2+, Ca2+, Mn2+, Sr2+, Cd2+, 
Cu2+, Co2+, Ni2+, Zn2+ and Fe2+. It optimally operates at 
a very narrow pH level range of around 9,5, and its activity is 
both inhibited by EDTA and ionic salts, including NaCl and KCl. 
The thermal stability is biphasic, as the activity decreases at 
60°C, but is restored at 80°C, and it persists after prolonged 
thermal stress at 100°C (up to 1 hour). SpdB is specific to GAS, 
being present across hundreds of clinical isolates of 
S. pyogenes. Interestingly, antibodies against SpdB have been 
detected in patients suffering invasive GAS infections. 
However, despite antibodies raised against SpdB neutralize 
nuclease activity, no difference in virulence was detected in 
an in vivo murine model of sepsis between infection with 
a wild type and a nuclease deficient S. pyogenes strain [161– 
163]. SpnA is the only cell wall-anchored nuclease of S.pyo-
genes, despite it has also been reported to be secreted, that 
has been detected in a multitude of S. pyogenes strains 
belonging to different M types and displaying varying clinical 
features. Structurally, SpnA is a 910 amino acid (aa) nuclease 
possessing both an N-terminal signal peptide and a C-terminal 
cell wall-anchoring domain containing a LPXTG motif. 
Additionally, it contains three N-terminal OB-folds of which 
at least two of them are required for its nuclease activity. In 
silico analysis and directed mutagenesis analysis have identi-
fied critical amino acids involved in catalysis, like Asp810/D810 
and cofactor binding, like Glu592/E592. In a similar fashion to 
SpdB, SpnA is a metal-ion nuclease capable of degrading RNA 
and both ssDNA and dsDNA, including both plasmid and 
chromosomal forms, like NETs. However, SpnA can operate 
in a wider range of pH (5 to 7,5) and its activity is dependent 
on the presence of both Mg2+ and Ca2+ cofactors. The latter 
has also been shown to increase its structural integrity, enhan-
cing the resistance to protease degradation. Activity neutraliz-
ing antibodies against SpnA can also be found in patients´ 
convalescent plasma at higher frequencies compared to 
healthy donors, potentially serving as serological markers for 
acute rheumatic fever [164]. However, opposite to SpdB, SpnA 
has been reported as a key virulence factor, which promotes 
bacterial survival and helps to evade extracellular responses of 
the innate immune system, like NETs, during infection. Yet, 
Chalmers et al. recently reported that the nuclease activity of 
SpnA, despite necessary, is not the only factor contributing to 
the the SpnA associated virulence of S. pyogenes [164–166].

On the other hand, Spd1/MF2, Spd3/MF3 [167], Spd4/MF4, 
Sda1, Sda2/SdaD/DnaseD and Sdn/Sdα are homologous 
secreted extracellular nucleases of chimeric nature encoded 
by prophage-like elements integrated into the bacterial chro-
mosome, of which the most abundant among S. pyogenes 
strains are Spd1 and Spd3 [160,167]. Spd1 is a divalent metal- 
ion-dependent nuclease, belonging to the family of nucleases 
containing a ββα-metal finger motif, capable of degrading 
ssDNA, dsDNA and RNA in the presence of Mg2+ and Ca2+, 
that shares more than 50% sequence identity with Spd3 and 
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structural homology with EndA, with which it even shares the 
characteristic ‘finger loop’ interruption feature, apart from the 
conserved DRGH motif [168]. Spd1 is co-transcribed with SpeC, 
which codes for a known superantigen, and their expression is 
associated with lysogenic prophage induction and it is stimu-
lated by a yet unknown factor derived from pharyngeal cells. 
Indeed, it has been suggested that Spd1 activity could 
enhance the fitness of both the bacteria and the phage 
[169]. However, the expression of prophage encoded 
nucleases is not necessarily accompanied by phage induction 
and can be regulated by chromosomally encoded regulators, 
such as the Rgg transcriptional regulator, as it is the case for 
Spd3 [170]. Functionally, Spd1 has been connected to 
enhanced bacterial shedding upon infection, but not to 
increase invasiveness, despite the discovery of a significant 
association between an unusual upsurge in invasive disease 
and a S. pyogenes emm3 lineage characterized by the gain of 
the prophage element coding for Spd1 and SpeC [171,172]. 
The other nucleases are only present in specific emm/M types. 
For example, Spd4 has only been identified in S. pyogenes 
strains of emm3 and emm5 types [160]. Sdn (Sdα), a divalent 
metal-ion-dependent DNase sharing 97% sequence identity to 
the putative Dnase of S.equisimilis (SdC), is slightly more pro-
lific being present across strains belonging to 11 different 
emm/M types and isolates associated with different clinical 
manifestations [160,173]. The exact contribution, if any, of 
most of these prophage-encoded nucleases to S. pyogenes 
pathogenesis remains unclear. Different studies have shed 
some light on the topic, but further research is due. For 
example, the presence of Sda2-specific antibodies in patient 
´s sera indicates its production during infection, suggesting 
a role in virulence [174]. Furthermore, the nuclease activity of 
Sda1, a potent ββα-metal, ion-dependent DNase that shares 
homology with SdaD, Sdn, EndA and NucA among others, is 
one of three nucleases (SpdB and Spd3) produced by the 
globally distributed, highly virulent M1T1 S. pyogenes clone 
[175,176], and it has been reported to contribute to its 
immune evasion by promoting escape from NET and eluding 
TLR9-dependent production of proinflammatory cytokines and 
macrophage-mediated killing [177,178].

4.4. Streptococcus agalactiae (S. agalactiae)

4.4.1. Significance and current diagnostic methods
S. agalactiae, also known as group B streptococcus (GBS), is 
a pathobiont that typically colonizes the gastrointestinal and 
genitourinary tracts and may cause invasive disease in the 
form of soft tissue and skin infections, pneumonia, urinary 
tract infections, bacteremia, endocarditis, osteomyelitis, septic 
arthritis or meningitis. Increasing incidence among non- 
pregnant adults has been reported, with immunocompro-
mised and elderly populations being the most susceptible. 
However, GBS is best known for its role in fetal, neonatal, 
and maternal invasive disease. In fact, 57,000 stillbirths, 
319,000 cases of neonatal disease, 33,000 cases of maternal 
disease and up to 3,5 million preterm births were estimated to 
be attributable to GBS in 2015 [179]. Colonization, which can 
be transient, intermittent, or persistent is a pre-requisite for 
invasive GBS disease and 18% of women are estimated to be 

asymptomatically colonized, although the rates and serotype 
prevalence vary geographically. Intravenous intrapartum anti-
biotic prophylaxis in colonized women has dramatically 
reduced the incidence of early onset neonatal disease, but 
late onset neonatal disease remains refractive to it. 
Interestingly, reduced odds of maternal colonization by GBS 
during pregnancy has been associated with higher antibody 
titers against immunogenic surface proteins [180]. As such, the 
ongoing development of high coverage vaccines holds pro-
mise to protect against maternal, fetal and both types of 
neonatal disease [179,181,182].

Diagnosis of GBS also relies heavily on culture-dependent 
methodologies impeding rapid diagnosis, which compromises 
the adequate management of severe invasive infections and 
limits preventive screening efforts in pre-partum pregnant 
women. In the latter case, collection of vaginal and rectal 
swabs is typically followed by broth enrichment and colony 
isolation in agar and subsequent identification. Traditional 
phenotypic methods are based on the detection of beta- 
hemolysis, granadaene pigment or specific enzyme systems 
using specialized agar media; the detection of CAMP factor 
(CAMP test) or the detection of sodium hippurate hydrolysis. 
However, the existence of non-hemolytic, non-pigmented iso-
lates and the existence of CAMP positive GAS, compromise 
their specificity. Immunoassays based on the determination of 
the Lancefield B group are highly specific. Rapid antigen 
detection tests have been developed but lack clinical impact 
due to their low sensitivity. Aiming to increase diagnostic 
speed while maintaining high accuracy, different molecular 
methods based on MALDI-TOF MS and PCR have been devel-
oped. In fact, PCR-based POCT exist, amid associated with 
excessive costs, that in combination with intrapartum prophy-
laxis could help further reduce the incidence of GBS disease in 
neonates [183,184].

4.4.2. Nuclease candidates
In silico analysis of S. agalactiae genome reveals the pre-
sence of 7 genes encoding secreted DNases [185]. One of 
these genes, gbs0661, codes for NucA, the major extracellu-
lar secreted nuclease of S. agalactiae. NucA sequence bares 
a high degree of identity with the nucleases from 
S. pneumoniae (EndA), S. pyogenes (Sda1) and Serratia mar-
cescens (NucA). Similarly to other extracellular nucleases, it 
possesses a signal peptide sequence. In its mature, secreted 
form, NucA is a 25 kDa metal-ion-dependent nuclease cap-
able of degrading ssDNA and dsDNA PCR products, close 
and open forms of plasmid DNA, chromosomal DNA, and 
RNA. The nuclease activity can be activated by different 
divalent cations, such as Mg2+, Mn2+, Zn2+, Ni2+ or Cu2 
+, and it is both thermostable and pH-stable, with activity 
observed in a wide range of temperatures (4°C and 95°C) 
and pH levels (5–8). NucA belongs to the family of 
nucleases containing a ββα-metal finger motif. It also pos-
sesses a H-N-N motif, whose histidine residue is fundamen-
tal for the nuclease activity, which incidentally is inhibited 
by the presence of chelating agents. Interestingly, extracel-
lular nuclease activity is enhanced in the absence of glucose 
and during respiration permissive growth. It has also been 
shown using both in vitro and in vivo models that NucA 
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protects S. agalactiae from NETs, prevents immune clear-
ance during the early stages of infection and enhances its 
virulence, playing a role in persistence and dissemination in 
later stages of infection [185].

4.5. Escherichia coli (E. coli)

4.5.1. Significance and current diagnostic methods
Pathogenic E. coli can be subdivided into intestinal pathogenic 
E. coli (IPEC) and extra-intestinal pathogenic E. coli (ExPEC) 
[186]. IPEC are classified into different pathotypes according 
to phenotypic and genotypic traits and include: enteropatho-
genic E. coli (EPEC), shiga toxin-producing E. coli (STEC), enter-
oaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), 
shigella/Enteroinvasive E. coli (EIEC), diffusely adherent E. coli 
(DAEC) and adherent invasive E. coli (AIED). IPEC are the 
causative agent of enteric infections and are prone to cause 
epidemics or pandemics. Generally, they manifest as self- 
limiting diarrheas with different levels of severity that may 
develop into complications such as persistent diarrhea (e.g. 
EPEC), hemolytic-uremic syndrome (e.g. STEC/shigella), growth 
abnormalities in children (e.g. ETEC), intestinal perforations 
(e.g. STEC) or increase risk for inflammatory intestinal diseases 
(e.g. EAEC, DAEC and AIEC), among others [186,187].

Clinical guidelines for diarrheagenic diseases recommend 
the use of routine culturing techniques or NAATs for pathogen 
identification, or the use of exploratory panel-based multiplex 
RT-qPCR assays when enteric fever or bacteremia is suspected 
[188]. Biochemical identification is still commonly used, 
though sometimes it may lack specificity (e.g. Shigella vs 
EIEC), differential sensitivity (e.g. O157 STEC vs SFO157:NM 
STEC) or the ability to distinguish pathogenic from commensal 
bacteria (e.g. ETEC). Rapid probe hybridization or PCR-based 
pathogen identification for pathotype-specific identification is 
becoming common. However, the genomic variability of E. coli 
may affect the accuracy, due to the lack of genetic determi-
nants (AIEC), loss of determinants in vivo (e.g. STEC) or in vitro 
(e.g. ETEC), between-strain cross reactivity or inability to dis-
tinguish pathogenic from non-pathogenic strains (e.g. EAEC/ 
DAEC). Immunological assays based on EIA and LFA are used 
for the rapid detection of toxins in ETEC or STEC, such as stx1 
and stx2. In general, these rapid techniques tend to require 
specimen enrichment to reach acceptable sensitivity levels. 
Subspecies typing is important in the control of outbreaks 
and the gold standard technique is pulse-field gel electrophor-
esis (PFGE), though approaches based on sequencing, immu-
noassays, NAAT or MALDI-TOF, exist both for clinical and food 
samples [187,189].

ExPEC pathotypes include uropathogenic (UPEC), meningi-
tis associated (MNEC) and septicemia associated (SEPEC) 
E. coli. Strains belonging to these groups are responsible for 
UTI, sepsis and meningitis, skin infections, myositis, osteomye-
litis, surgical site infections and hospital-acquired pneumonias, 
among others. In fact, E. coli is one of the most prevalent 
causes of both complicated and uncomplicated UTI, neonatal 
sepsis and meningitis. E. coli can rapidly modify their patho-
genic phenotype, even during infections, and incorporate new 
features, such as antibiotic resistance plasmids, which make 
the diagnosis and treatment challenging [190–192].

Pathogen identification and characterization in ExPEC infec-
tions, such as UTI or bacteremias, rely heavily on culture-based 
enrichment that ranges from 24 h in urine cultures to ≥ 5 days 
for blood cultures. For UTI, cumbersome and insensitive micro-
scopic techniques as well as rapid, insensitive biochemical 
urinalysis tests with low positive predictive values and unable 
to provide pathogen identification exist. After enrichment, 
urine culture results are interpreted based on culture-isolated 
microorganisms and colony counts. Identification and AST 
from positive blood cultures or isolated colonies can be per-
formed within hours using commercially available platforms 
based on rapid molecular methods, such as microarrays, probe 
hybridization assays, automated panel-based RT-qPCR systems 
or MALDI-TOF [134,193,194].

4.5.2. Nuclease candidates
Endonuclease I is a 26,7 kDa, 235 aa long, chromosomally 
encoded, metal-ion-dependent (Mg2+), periplasmic nuclease 
expressed by E. coli under the control of a weak promoter. It 
can cleave both ssDNA and dsDNA and displays sequence 
specificity [195]. It has a 22 aa signal peptide, in line with its 
periplasmic localization, and bares sequence similarity with 
the endonuclease from V. cholera (see below) and 
Aeromonas hydrophila, which also belong to the EndA/NucM 
nuclease family [196]. Interestingly, Endonuclease I is compe-
titively inhibited by different RNA species, such as tRNA, which 
upon complexing with the nuclease and in high salt concen-
trations shifts its endonucleolytic activity profile, from 
a double-strand break activity to a single-strand nicking activ-
ity [197].

4.6. Neisseria gonorrhoeae (N. gonorrhoeae)

4.6.1. Significance and current diagnostic methods
N. gonorrhoeae causes infections in the mucosal epithelia of 
the urogenital tract, rectum, pharynx and conjunctiva. The 
most common manifestations are urethritis in men and cervi-
citis and urethritis in women. N. gonorrhoeae infections 
increase the risk for sexually transmitted infections, like HIV, 
and increase the risk of suffering serious complications in 
women, such as chronic pelvic pain, ectopic pregnancy, and 
infertility. Unfortunately, 66% of men and 50% of infected 
women are asymptomatic at any given time which facilitates 
unwilling horizontal and vertical transmission [198–200]. Data 
estimates from 2016, indicate that the global prevalence var-
ied between 0.9% for women and 0.7% for men aged 15 to 49, 
and it was higher in lower income countries. Meanwhile, the 
incidence was estimated at 86.9 million, a noticeable increase 
over the estimated 78 million in an identical study from 2012 
[201,202]. Despite its high incidence and prevalence, there is 
no available vaccine and the appearance of fit multi-resistant 
strains have literally dried out treatment options [198].

Currently, microscopic examination of Gram-stained smears 
is the method of choice for low resource settings due to their 
low cost. However, their application is limited to urogenital 
specimens, due to low sensitivities when using oral and rectal 
specimens. Even then, their sensitivity varies depending on 
the type of specimens and is significantly reduced in asympto-
matic patients, which is likely due to low bacterial loads. 
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NAATs have become the new gold standard and have become 
a mainstay in high-income countries, with numerous commer-
cially available options. NAATs offer rapid turnaround times 
and consistently high sensitivities and specificities across spe-
cimen types. However, detection of non-viable organisms after 
treatment, high costs and inability to determine antibiotic 
susceptibility are the main drawbacks. Culture is necessary 
for AST and is frequently used in combination with biochem-
ical tests, immunological assays, NAATs or mass spectrometry 
to offer definitive pathogen identification. However, its accu-
racy depends on the time of collection after exposure, trans-
port conditions or specimen type. Low cost, rapid, sensitive 
and specific POCT, which are capable of accurately diagnosing 
asymptomatic patients are desired for screening efforts. LFA or 
optical-based POCT exist but suffer from very poor sensitivity. 
NAAT-based POCT have been developed and continue to be 
improved [199].

4.6.2. Nuclease candidates
N. gonorrhoeae produces a divalent metal-ion-dependent ther-
monuclease, denoted Nuc, that bares 25% identity and 40% 
similarity with S. aureus´s MN. The enzyme is coded by the nuc 
gene, which is contained within a 7 gene operon. Nuc is 
capable of degrading ssDNA, supercoiled plasmid DNA and 
eukaryotic and prokaryotic genomic DNA; and its activity is 
inhibited by chelators (EDTA 4 mM). Interestingly, the nuclease 
shows significantly diminished activity towards methylated 
DNA, which suggest a regulatory role of methylation in its 
catalytic action. This is in line with observations that Nuc, 
similarly to MN, is involved in the remodeling and degradation 
of N. gonorrhoeae biofilms, which are densely packed with 
highly methylated DNA when compared to biofilms from 
other bacteria such as Lactobacillus spp. Nuclease activity has 
been detected both in association with the bacterial cell (e.g. 
bacterial lysates) and as part of the secreted proteome (e.g. 
conditioned media), the latter being in line with the identifica-
tion of a predicted 34 aa secretion signal peptide in its open 
reading frame. Furthermore, among the many strategies used 
by N. gonorrhoeae to evade the innate and adaptative immune 
action [198], Nuc is used as a key virulent factor that increases 
bacterial survival upon colonization by degrading NETs 
[203,204].

4.7. Serratia marcescens (S. marcescens)

4.7.1. Significance and current diagnostic methods
S. marcescens causes a wide range of infections including 
urinary, respiratory, bloodstream and ocular infections [205]. 
S. marcescens thrives in acute care center environments (e.g. 
hospitals), helped by its ability to survive in disinfectants, such 
as chlorhexidine, for long periods and to easily contaminate 
sterilized plastic surfaces in the presence of water [206,207]. 
Numerous nosocomial outbreaks have been described in the 
literature, such as in neonatal, pediatric or neurosurgical wards 
[208,209], which in conjunction with antimicrobial resistant 
strains can render mortality of up to 40% [210]. In fact, accord-
ing to the 2014 annual epidemiological report from the 
European Centre for Disease Prevention and Control, Serratia 
spp were the 10th most frequent cause of intensive care unit- 

acquired pneumonia and bloodstream infections, with similar 
levels to Enterobacter spp and Acinetobacter spp, respectively 
[211]. Additionally, high levels of S. marcescens infections with 
a community onset have also been described [212].

Clinical diagnosis of Serratia spp relies heavily on phenoty-
pic assays. Serratia spp members are easily grown in culture 
from clinical specimens. Biochemical characterization is used 
to distinguish them from other species of the 
Enterobacteriacea family and can also be used for sub-species 
identification. Different panel-based automated commercial 
systems capable of identification and AST exist. Molecular 
methodologies, such as PFGE or sequencing, can be used for 
typing, which is important for monitoring nosocomial out-
breaks [205,210].

4.7.2. Nuclease candidates
A trademark of S. marcescens, and of the Serratia spp in gen-
eral, is the production of an extracellular nuclease, known as 
Sm nuclease or NucA, which is used for different biotechnolo-
gical applications (e.g. DNA and RNA decontamination) and 
has even been proposed for therapeutic approaches [213,214]. 
Unsurprisingly, it has been thoroughly characterized [215–218] 
and comprehensively reviewed elsewhere [213]. In brief, Sm is 
a divalent metal-ion-dependent homodimeric nuclease that 
specifically cleaves the 3´end of a phosphodiester bond and 
is active in a wide range of pH levels (6 to 10) and tempera-
tures (35 to 44°C). It degrades both ss/dsDNA and ss/dsRNA 
substrates at similar rates. As long as the substrates are longer 
than 5-mer, it has a high catalytic efficiency which is approxi-
mately 4 and 34 times higher than that of MN and DNase I, 
respectively. Moreover, it displays sequence preference 
towards d(G).d(C)-tracts versus d(A).d(T)-tracts in dsDNA sub-
strates that diminishes in ssDNA substrates. The two isoforms 
of Sm nuclease (Sm1 and Sm2) are encoded by the nucA gene, 
whose transcription is regulated by the growth phase and by 
environmental cues through the bacterial SOS system. Both 
nucA and nucC, which codes for nucA´s transcriptional regula-
tor NucC, are regulated by the growth phase. At the same 
time, both genes are regulated by the SOS system through the 
repression of LexA. Thus, nuclease production is regulated by 
the environment and directly proportional to growth. Both 
isoforms are structurally almost identical with Sm1 differing 
only in the length of their N-terminal tail by 3 aas in favor of 
Sm2. Despite this high degree of similarity small differences in 
sequence preference have been observed. Moreover, the Sm2 
isoform is produced during exponential growth and immedi-
ately secreted extracellularly, while the Sm1 isoform is pro-
duced during logarithmic growth and stays longer in the 
periplasm before being secreted. Independently of the iso-
form, the oxidizing environment of the periplasm is needed 
to stabilize and activate the nuclease.

4.8. Helicobacter pylori (H. pylori)

4.8.1. Significance and current diagnostics methods
H. pylori has co-evolved with humans and it has developed 
strategies to cause chronic infections of the gastric mucosa and 
survive in such a harsh environment [219]. It is estimated that 
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around 50% of the human population is positive for H. pylori, 
with levels as high as 80% in developing countries. Infection with 
H. pylori is characterized by a rarely symptomatic gastritis, that if 
symptomatic typically manifests as dyspepsia. Depending on 
several factors including genetic susceptibility, immune 
response, level of acid production and type of strain; infections 
may develop into a chronic gastritis, ulcers, and if not eradicated, 
significant risk of developing progressive tissue atrophy and 
gastric cancer [220]. In fact, H. pylori has been labelled as 
a type I carcinogen and it was estimated to be responsible for 
89% of all non-cardia gastric cancers worldwide in 2012 [9]. 
Despite combinatorial antibiotic therapies for eradication are 
available, resistance is becoming worrying, with a recent sys-
tematic review reporting estimated primary and secondary resis-
tance rates higher than 15% for most antibiotics, and a worrying 
upwards trend [221]. Additionally, recent associations between 
H. pylori and impaired cognitive function in adults [222], as well 
as a suggested role of the infection in the pathophysiology of 
Alzheimer’s disease and patients’ outcomes have been reported 
[223–225], though contradictory reports exist [226].

Several diagnostic methodologies are available, and their 
implementation depends on the clinical presentation and 
health-care setting. Serology and endoscopy, which are fol-
lowed by biopsy culture and rapid urease test or histological 
evaluation, are used in acute care centers. Endoscopy has 
great sensitivity and specificity, and it is able to provide ancil-
lary information on disease status. Narrow band imaging or 
confocal laser endomicroscopy facilitate targeted biopsies and 
lesion grading. The most common and accurate non-invasive 
methods are based on detecting the bacteria´s urease activity 
(urea breath test) or specific antigens in stool specimens 
(immunoassays). Serology is sometimes used, but it is not 
recommended due to poor sensitivity derived from variable 
rates of seroconversion and inaccuracy in confirming eradica-
tion. Molecular tests allow pathogen detection from cultures, 
biopsies or stool specimens and display higher rates of posi-
tivity than culture. Real-time PCR targeting 23S ribosomal RNA 
is a commonly employed method and allows pathogen detec-
tion from biopsies with low bacterial loads, though detection 
of non-viable organisms (false positives) is always a concern. 
The use of isothermal amplification and digital PCR has been 
explored and offer simpler and quantitative assays, respec-
tively. Molecular tests are also becoming a suitable alternative 
to traditional phenotypic AST due to their high sensitivity and 
rapid turnaround times (hours). These include PCR-based and 
in-situ hybridization methods for the identification of muta-
tions associated with resistance directly from biopsy speci-
mens. However, in some cases, they suffer from lack of 
standardization [220,227,228].

4.8.2. Nuclease candidates
Nuclease activity has previously been reported for 50 different 
strains of H. pylori [229]; however, O´Rourke et al. was the first 
to identify, purify and characterize NucT, the main H. pylori 
nuclease, as shown by a 200-fold reduction in the activity of 
bacterial extracts from insertional mutants. NucT belongs to 
the phospholipase D nuclease sub-family and it is a 17.75 kDa 
membrane-associated thermostable endonuclease that shares 

high structural homology with its family counterparts Nuc 
(Salmonella enterica serovar Thyphimurium) and Zucchini 
endonucleases. NucT is encoded by the monocistronically 
transcribed hp0323 gene, which also codes for a 23 aa peri-
plasmic peptide signal sequence. NucT shows optimal catalytic 
activity at 80°C and pH 8, though it can work at body tem-
perature (37°C), albeit with a > 20-fold reduction in activity. It 
is not inhibited by chelating agents (10 mM EDTA) and it is 
enhanced by reducing agents (DTT or β-mercaptoethanol), 
inhibited by oxidizing agents (glutathione) and neither depen-
dent nor inhibited by divalent cations at 1 mM (data reported 
but not shown). Structurally it consists of a homodimer that 
conforms a deep and narrow positively charged groove that 
binds with high affinity and catalyzes the degradation of RNA, 
ssDNA, dsDNA and different forms (supercoiled, circular or 
linear) of plasmid DNA, showing a clear preference toward 
DNA over RNA and for ssDNA over dsDNA substrates. 
Catalytic activity is entirely dependent on the H124 aa and 
possesses a positively charged loop that is not shared by its 
nuclease sub-family counterparts. This loop represents 
a variable region among the identified NucT homologues in 
the Helicobacteraceae family, suggesting differential substrate 
affinities among them. NucT has been shown to be involved in 
the natural state of competence for transformation, with 10 
and 100-fold reductions in plasmid and chromosomal DNA 
transformation efficiency, respectively, in hp0323 mutants. 
Moreover, NucT is also fundamental for bacterial nutrition 
and growth thanks to the nuclease’s ability to scavenge and 
process environmental DNA into purines [230–232].

4.9. Mycobacterium tuberculosis (M. tuberculosis)

4.9.1. Significance and Current diagnostic methods
M. tuberculosis is the causative agent of tuberculosis (TB), an 
airborne, not highly infectious, treatable disease that primarily 
affects the lungs, though lymphatic or hematogenous spread 
of M. tuberculosis can cause infections in other tissues and 
organs (extrapulmonary TB), such as bones or kidneys [233]. 
Despite a decreasing trend, the global burden of TB is mighty, 
especially in infants and immunocompromised patients. In 
fact, it became the 6th and 4th cause of death in 2013 
among young adults aged 15 to 19 and 20 to 24, respectively, 
and it was responsible for 1,3 million deaths in 2016 [1,3]. 
Moreover, the increasing prevalence of antibiotic resistance, 
especially in India and China, limits the therapeutic options 
and, in some cases, it renders the disease incurable [234,235]. 
TB is a capricious disease as it can disproportionately manifest 
as an innate or adaptative immune-system-cleared asympto-
matic infection; as a non-transmissible, latent infection; or as 
an asymptomatic, mildly symptomatic or symptomatic trans-
missible active infection that may develop into a life- 
threatening condition if untreated. Preventive strategies are 
currently limited to the unreliable BCG vaccine [236].

On the one hand, the tuberculin skin tests (TST) and the 
interferon-γ release assay (IGRA) are used to identify TB during 
the latent phase of the disease. These assays can identify 
current infection or previous exposure by measuring cell- 
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mediated immune responses to tuberculin or region-of- 
difference 1 encoded antigens. They are widely used, espe-
cially in low resource settings, due to their few requirements 
in terms of equipment, expertise and costs. Limitations include 
the inability to distinguish between past and present infection 
or between latent and active disease, low predictive value for 
progression, low levels of reproducibility that deems them 
unfit for screening purposes, and reduced sensitivity in immu-
nocompromised patients. Moreover, in the case of TST, speci-
ficity is compromised in patients having received the Bacillus- 
Calmette-Guerin vaccine and in patients having infections 
caused by non-tuberculous mycobacteria [237].

On the other hand, diagnostic tools for the identification of 
active TB include imaging modalities such as X-ray or PET-CT, 
microscopic examination of sputum smears, culturing meth-
ods, LFA for antigen detection in urine and isothermal or PCR- 
based NAATs that allow sensitive and specific diagnosis and 
resistance determination from sputum specimens. Due to the 
very low sensitivity and specificity of microscopic examina-
tions, the high costs and low specificity of imaging modalities, 
the lack of sensitivity of immunoassays and the prolonged 
waiting times associated with culturing methods, qPCR- 
based NAATs are currently recommended as the first-line 
diagnostic test, despite high costs and complexity, the inabil-
ity to monitor treatment efficacy and the reliance on genoty-
pic resistance [236].

4.9.2. Nuclease candidates
Recently, Rv0888 has been described as the first extracellular 
nuclease produced by M. tuberculosis. Rv0888 had been pre-
viously described as an outer membrane-associated extracel-
lular sphingomyelinase, whose expression is highly 
upregulated in the presence of sphingomyelin, a lipid found 
in eukaryotic cells; with roles in M. tuberculosis nutrition and 
intracellular persistence in macrophages [238]. Dang et al. 
further characterized Rv0888 as a divalent metal-ion- 
dependent nuclease encoded by rv0888, with a predicted 31 
aa signal sequence and whose D438 residue is fundamental 
for its catalytic activity. Despite its ability to degrade both 
circular, linear and chromosomal DNA, it shows higher sub-
strate preference towards RNA. Rv0888 operates optimally at 
41°C and pH of 6,5 in the presence of Mn2+ and Ca2+, though 
its relative activity remains higher than 50% when operating at 
different ranges of temperature (39°C to 45°C) and pH levels 
(6,0 to 8,0) and with the presence of different ions (Mg2+ + 
Mn2+; Ca2++ Mg2+; Mn+2 or Ca+2). A possible key role of this 
nuclease in the pathogenesis of M. tuberculosis has been 
suggested. Using a murine model of lung infection, Dang 
et al. showed that rv0888-expressing Mycobacterium smegma-
tis significantly increased persistence of infection and induced 
noticeable pathological changes in the lung tissue compared 
to controls [239]. However, these results oppose the observa-
tions by Speer et al. of an unaltered persistence of both wild 
type M. tuberculosis and a mutant lacking rv0888 in an in vivo 
murine model of lung infection. These differences are most 
likely due to variations in the model, such as the mouse strains 
(C57BL/6 and BALB/c), the bacterial species used 

(M. tuberculosis versus M. smegmatis) and the levels of 
Rv0888 expression (wild-type expression versus overexpres-
sion), respectively [238,239].

4.10. Foodborne bacterial pathogens

4.10.1. Significance and current diagnostic methods
Salmonella enterica (S. enterica), Campylobacter jejuni (C. jejuni), 
V. cholera, Yersinia enterocolitica (Y. enterocolitica) and 
Clostridium perfringens (C. perfringens) are some of the most 
frequent bacterial agents causing enteric disease. S. enterica 
generally causes self-limited gastroenteritis and in some cases 
self-promoted phagocytosis by macrophages leads to sys-
temic infections. The emergence of antibiotic resistance in 
common serotypes (serovar Typhimirium and Enteriditis) not 
only complicates treatment but leads to more severe presen-
tations [240–242]. C. jejuni can invade the lower intestinal tract 
causing enterocolitis and very rarely sepsis. However, it 
increases the risk for inflammatory bowel disease, and it may 
lead to extraintestinal manifestations, including immune dis-
orders, such as Guillain-Barré syndrome or reactive arthritis 
[128,243,244]. V. cholera´s serotypes (O1 and O139) are the 
causative agents of cholera, an enterotoxin-mediated profuse 
watery diarrhea that can be life-threatening if left untreated 
[128,245]. Y. enterocolitica typically causes enterocolitis by 
invading the proximal colon, from where it can invade the 
lymph nodes or spread to other organs (blood, lungs or heart) 
[246]. C. perfringens causes enterotoxin-associated, self-limiting 
food poisoning. It is also known to cause toxin-α-mediated 
myonecrosis (gas gangrene) in deep wounds [247]. Despite 
typically causing mildly symptomatic self-limiting disease, 
these are some of the most burdensome, deadly and wide-
spread waterborne and foodborne pathogens both in low- 
and high-income countries due to their epidemiological status 
[5,248,249].

Traditional methodologies both in the clinic and in industry 
have typically relied on amplification techniques based on 
culturing methods. These consist of pre-enrichment and 
enrichment steps using specialized culturing media to isolate 
the pathogens in vitro, which are then followed by biochem-
ical, morphological and serological characterization for identi-
fication. These traditional methodologies may suffer from low 
sensitivity depending on the pathogen and specimen matrix 
and are laborious and time-consuming, usually requiring days 
for preliminary results and up to a week for confirmation. 
Despite their drawbacks, these methods are still considered 
the gold standard due their low cost and high selectivity, 
among other variables. In fact, clinical diagnostic guidelines 
for enteric pathogens (S. enterica, Campylobacter spp or 
Yersinia spp) [188], as well as different international standard 
methodologies for the detection of foodborne pathogens, 
such as ISO 10273:2003 (Y. enterocolitica) [250] or ISO 
6579:2002/Amd 1:2007 (Salmonella spp) [251], are heavily 
based on culture-based methods.

The development of rapid molecular and immune-based 
methodologies, and their commercial implementation, have 
advanced the field. qPCR-based NAATs or DNA microarrays 
are now capable of rapid and, in some cases, multiplexed 
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detection of foodborne pathogens with low detection limits 
from pure cultures; identification of multiple serotypes; or 
evaluation of antibiotic susceptibility. Similarly, immune 
assays, such as EIA and LFA, despite their lower sensitivity, 
offer low cost, rapid and specific detection of pathogen- 
associated toxins in different food matrices. Furthermore, 
a small number of biosensor devices based on optical and 
electrochemical transduction techniques have passed agency 
validation and are now being commercialized for the detec-
tion of Salmonella spp or Campylobacter spp, promising very 
low detection limits without sample pre-treatment or enrich-
ment. However, the inconvenient truth is that most of these 
rapid techniques still rely on culture-dependent enrichment 
and isolation ranging from 6 h to 48 h depending on the 
specimen matrix, pathogen or technique. Furthermore, other 
drawbacks include high costs, complexity and high rate of 
false positives for NAATs, or high cross reactivity and elevated 
false-negative rates for immune-based assays. New 
approaches based on the flexibility of biosensing techniques, 
including one using the activity of nucleases as a biomarker 
[32], have been explored and are reviewed elsewhere [18,252– 
255]. However, a reduced level of industry adoption of biosen-
sing techniques due to issues with quality assurance, stability 
and calibration is a concern [18,132,256].

4.10.2. Candidate nucleases
4.10.2.1. Salmonella enterica serovar Typhimurium 
(S. enterica ser. Typhimurium). . Salmonellas´s Nuc nuclease 
is a member of the phospholipase D (PLD) family of proteins, 
and despite a low sequence identity, it bears a predicted 
strong structural homology with NucT nuclease from 
H. pylori [232]. Nuc, however, is one of the few proteins of 
the PLD family to only possess a single copy of the invariant 
motif (HxK(x)4D(x)6GSxN) that characterizes the family. Nuc is 
encoded by the drug resistance pKM101 plasmid, which has 
roles in mutagenesis and survival, as well as by mutant plas-
mid derivatives (pGW12, pGW21 and pGW46) present in dif-
ferent strains of S. enterica ser. Typhimurium. Like NucT, Nuc 
possesses a 23 aa signal sequence [257,258]. Characterization 
of its activity first by Lackey et al. [257] and then by Zhao et al. 
[258], describe Nuc as a periplasmic associated endonuclease 
that can cleave both ssDNA and dsDNA to render 3’-OH/5’-P 
products, equally to Serratia nuclease. Interestingly, it exhibits 
different optimal pH conditions for catalysis depending on the 
nature of the substrate (ssDNA or dsDNA). However, some 
discrepancies exist between the reported catalytic activity. 
Lackey et al. observed a total dependence on divalent cations, 
including Mg2+, Ca2+, Zn2+ and Co2+, with optimal condi-
tions requiring 10 mM of Mg2+, which is consistent with the 
identified roles of Mg2+, Ca2+ and Mn2+ as essential cofactors 
of S. enterica ser. Typhimurium´s global nuclease activity by 
Machado et al. [32]. However, Zhao et al. claimed (not showing 
the data) that divalent cations have no influence in the cata-
lytic process and added that activity is not inhibited by the 
presence of chelating agents (1 mM EDTA), paralleling its 
homologue NucT. Discrepancies aside, Lackey et al. reported 
a slight sequence preference towards adenine nucleobases, 
which matches the purine salvage function attributed to 
NucT [231]. In this line, Machado et al. also observed 

a sequence preference of S. enterica ser. Typhimurium´s global 
extracellular nuclease blueprint for purine nucleobases, espe-
cially adenine bases, as well as a lack of inhibition by chelating 
agents, like EGTA and NTA (5 mM), but not for 5 mM EDTA. 
Overall, these observations suggest that the nuclease blue-
print of S. enterica ser. Typhimurium may be dominated by 
the activity of the Nuc endonuclease and that NucT and Nuc 
share very similar catalytic properties, as already reported 
[232].

4.10.2.2. Campylobacter jejuni (C. jejuni). Lior et al. 
reported abundant DNase activity among Campylobacter spp, 
including C.jejuni and C.coli. In particular, 137 out of 272 different 
strains of C. jejuni demonstrated DNase activity [229], as assessed 
by using toluidine blue DNA agar [94]. This is harmonious with 
the fundamental role of DNases in the natural competence for 
transformation of C. jejuni strains. Gaasbeek et al. showed that 
DNase activity is inversely correlated with transformation effi-
ciency. Three extracellular nucleases encoded by the prophage 
integrated elements CJIE1 (dns), CJIE2 and CJIE4 (CJE0566 and 
CJE1441) were found to be responsible for this activity in differ-
ent C. jejuni strains. Dns displays sequence similarity to other 
nucleases such as EndA (E. coli) or Dns/VcEndA (V. cholera) and it 
is also predicted to possess a typical endonuclease I domain. 
CJE0566 and CJE1441 nucleases contain a NUC superfamily 
domain and a DRGH motif and show structural similarity to the 
ββα-metal nuclease NucA from Anabaena spp, which is itself 
structurally homologous to NucA from S. marcescens [259,260]. 
All three nucleases contain a signal sequence, and their activity 
has been measured in enriched periplasmic fractions (Dns) and 
live bacteria treated with polymyxin B (CJE0566 and CJE1441), 
suggesting a periplasmic or secreted localization [259,261].

4.10.2.3. Vibrio cholera (V. cholera). . V. cholera possesses 
two well-known nucleases (Dns and Xds) initially reported by 
Newland et al. [262] and Focareta et al. [263,264]. Since then 
both proteins have been crystallized and comprehensively 
characterized. In brief, Dns (also known as VcEndA) is a 24,7 
kDa extracellular metal-ion-dependent endonuclease belong-
ing to the Endonuclease I superfamily and encoded by the 
endA gene. Its monomeric structure is stabilized by NaCl [49] 
and exhibits a Mg2+ binding site (Glu79) with pH-dependent 
affinity within the characteristic ββα-metal finger motif and 
next to the catalytic residue (Gly 80) [265]. Consequently, in 
low pH (< 6), the nuclease activity is absent due to the lack of 
Mg2+ binding [266]. Dns shows good thermostability, preser-
ving up to 50% of its activity after incubation at 70°C for 
30 minutes. It shows very poor activity toward RNA substrates, 
especially at higher NaCl concentrations. However, it is cap-
able of degrading dsDNA in linear and circular forms and 
ssDNA. It exhibits optimal activity at 50°C, pH level of 7,5 to 
8 and in the presence of NaCl (175 mM) [48]. Meanwhile, Xds 
is a 94,3 kDa extracellular metal-ion-dependent strict exonu-
clease that possesses a 28 aa signal sequence and three 
characteristic domains (LTD, OB and EEP), with the OB domain 
being indispensable for nuclease activity. It shows optimal 
activity at low temperatures (<25°C), low NaCl concentrations 
(0 to 100 mM), neutral pH levels (7 to 8) and in the presence of 
Mg2+ (10 mM) and Ca2+ (20 mM), the latter being 
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a requirement for its activity. Activity is unaffected in reducing 
conditions (1,4 dithiotreitol (DTT)). Being a strict exonuclease, 
it can only degrade linear forms of DNA, and it has been 
shown to preferentially cleave AT-rich over GC-rich dsDNA 
substrates [267]. These two extracellular nucleases act coop-
eratively to regulate and control natural transformation and 
biofilm formation, the latter having important roles in the 
colonization efficiency. They are also involved in immune eva-
sion through NET degradation, and phosphate sourcing by 
degradation of extracellular DNA. In all these functions Dns 
has a more prominent role than Xds, which usually presents 
a more residual, but nevertheless complementary role. 
Expression of both nucleases, though at different levels, is 
induced by phosphate limiting conditions and by extracellular 
DNA, including DNA from NETs. Interestingly, their transcrip-
tion is governed by different regulatory mechanisms. While 
Dns has been shown to be under the transcriptional control of 
the quorum sensing regulator HapR, which not only represses 
the transcription of Dns but also acts as a negative regulator 
of the exopolysaccharide (VPS) synthesis required for biofilm 
formation; Xds is independent of HapR. This may explain the 
differences in temporal expression patterns during biofilm 
formation and it is in line with the cell density-dependent 
Dns expression that controls transformability [268–270].

4.10.2.4. Yersinia enterocolitica (Y. enterocolitica). 
Nakajima et al. observed the degradation of PCR products in 
crude-boiled bacterial extracts of both pathogenic and non- 
pathogenic clinical and environmental isolates of 
Y. enterocolitica, but not in extracts of Y. pseudotuberculosis 
isolates. This observations suggested the presence of 
a thermoresistant DNase activity associated to 
Y. enterocolitica that could persist at 4°C and was inhibited 
by EDTA and proteinase K [271]. Nakajima´s reported DNase 
activity could have been attributed to the action of 
a thermonuclease identified and characterized by Shi´s group 
in Y. enterocolitica subspecies palearctica, a common food-
borne pathogen [272]. Bioinformatic analysis showed that 
this 283 aa nuclease, referred to as YNSN, is a homologue of 
the nuclease produced by Y. enterocolitica subps. enterocolitica 
8081 and it contains two functional domains with high homol-
ogy to the NUC superfamily and Endonuclease_NS family, 
respectively. It has been reported to possess activity towards 
both DNA and RNA substrates, it has a predicted binding site 
for a divalent cofactor and it can operate in a wide range of 
temperature (reported activity at 37°C and 55°C) and resist 
thermal shock (30 min at 80°C). Experimentally, it displays 
equivalent levels of DNase activity to Serratia marcescens 
nuclease, but dissimilar to its homologous nuclease in 
Y. enterocolitica subspecies enterocolitica 8081. Its activity and 
thermostability depend on three key residues (Glu202, Ile203 
and Asp264). The only predicted transmembrane domain of 
the protein coincides with its signal peptide, for which 
a cleavage site has also been predicted, which suggest 
a membrane-associated or secreted extracellular localization 
[273–275].

4.10.2.5. Clostridium perfringens (C. perfringens). DNase 
activity has been reported in human clinical isolates [75] and 

in a high percentage of C. perfringens isolates collected from 
mammals and birds. Interestingly, DNase activity was most 
prevalent among animals presenting disease manifestations, 
suggesting a role of DNase as a virulence factor [276]. 
Okumura et al. identified a 193 kDa cell wall-anchored endo-
nuclease (CadA) encoded by CPE1368 gene (cadA) under the 
transcriptional control of the VirR/VisS-VR-RNA system, which 
is a system known to control the expression of several viru-
lence-related and toxin genes [277]. CadA possesses 
a characteristic cell wall anchoring motif characteristic of sev-
eral streptococcal nucleases, such as SpnA from S. pyogenes, 
SsnA from Streptococcus suis or SWAN from Streptococcus 
sanguinis [160,277,278]. CadA shows metal-ion dependency 
(tested only in the presence or absence of Mg2+ and Ca2+) 
when degrading both plasmid and chromosomal DNA, how-
ever, it preserves nicking activity for plasmid DNA in their 
absence [277]. Besides, the reported existence of a CadA- 
unrelated, cell surface associated nuclease activity and the 
presence of detectable activity in culture supernatants are 
consistent with the existence of other extracellular nucleases 
[277].

5. Conclusions

To combat existing and arising challenges in infectious dis-
eases advances in the field of diagnostics are key. The nature 
of biomarkers and the existing technology define the scope 
and the limitations of currently employed diagnostic tools. As 
such, the addition of new members to the catalog of available 
biomarkers that allow the development of diagnostic tools 
with the ability to complement, substitute or add new func-
tionalities to the existing crop are likely to be welcomed by 
physicians and clinical microbiologists.

Nucleases are a diverse group of enzymatic proteins pre-
sent across all domains of life that degrade nucleic acids. Due 
to their abundance, biochemical and catalytic diversity and 
involvement in fundamental biological roles, including patho-
genesis; their activity shows promise as a novel diagnostic 
biomarker in bacterial infections. In fact, using different 
approaches, nuclease activity has already been shown to be 
a useful diagnostic biomarker for a limited number of patho-
gens that are bound to be further expanded.

6. Expert opinion

Due to nucleases´ vast diversity and their important roles in an 
ample range of bacterial pathogens, their catalytic activity 
could become a multipurpose diagnostic biomarker in clinical 
microbiology allowing to address some of the existing unmet 
needs for different diagnostic applications, including pro-
longed times to diagnosis, diminished accuracy or excessive 
costs and complexity. Additionally, its implementation into 
clinical practice has the potential to drive the development 
of entirely new modalities, such as non-invasive in vivo bacter-
ial identification and visualization.

As mentioned before, any diagnostic modality or assay is 
highly constraint by the characteristics of the biomarkers they 
interrogate (Table 1). The biomarkers at the core of all diag-
nostic immunoassays and molecular genetic methods are 
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antibody–antigen interactions and genetic determinants, 
respectively. As such, these two biomarkers define and set 
the limitations and disadvantages of the assays based on 
them, which include low sensitivity and proneness to inter-
ference in the case of immunoassays; or elevated false posi-
tives rates, inaccurate reporting of antimicrobial susceptibility 
and high complexity in the case of molecular genetic assays. 
For example, the disadvantages associated with the latter 
assays are due to the fact that: i) Genetic determinants can 
be detected even if pathogens are no longer viable leading to 
overreporting of positive results. ii) Genetic determinants of 
resistance are not a guarantee of phenotypic resistance, as 
resistance may depend on unknown or novel mechanisms or 
on gene expression levels [279,280], leading to misreporting. 
iii) Most molecular genetic methods depend on purification/ 
isolation and amplification of the targeted determinants to 
provide adequate levels of sensitivity and specificity. These 
steps increase the risk for cross-contamination of specimens 
and usually involve many reagents and specialized equipment, 
such as thermocyclers, which need to be optimized to perform 
in different applications and matrices, increasing complexity 
and unavoidably impacting costs.

In this respect, the use of nuclease activity as a biomarker 
has several advantages over established diagnostic biomarkers 
in clinical microbiology, including genetic determinants and 
antibody–antigen interactions. Compared to genetic determi-
nants or antibody–antigen interactions, nuclease activity 
represents a phenotypic trait, avoiding issues related to geno-
typic-phenotypic correlation. Moreover, its dynamic nature 
(enzymatic activity) opposes the static nature of nucleic acid 
hybridization or antibody–antigen interactions. Therefore, 
independently of the transduction technology, a single nucle-
ase can interact with more than one reporter, acting as an 
intrinsic signal amplifier. This is not the case for the aforemen-
tioned biomarker counterparts, as a reporter can only interact 
with a single specific target, relying on additional amplification 
methods to enhance the signal. Additionally, both genetic 
determinants and antibody–antigen interactions are at the 
mercy of the genetic variability (e.g. mutations or recombina-
tion), which can lead to diagnostic resistance, requiring con-
stant validation of the targeted biomarkers. Nuclease activity is 
also vulnerable to diagnostic resistance, however, given some 
of the fundamental roles of nucleases in the biology and 
pathogenesis of bacteria, it is likely that their function, and 
therefore their catalytic activities, are preserved despite the 
occurrence of genetic variations. This hypothesis is reinforced 
by the existence of numerous nuclease homologues whose 
most conserved sites are those relating to their catalytically 
active sites and cofactor-binding sites. Further support comes 
from the observation of converging functionalities and cataly-
tic activities of non-homologous bacterial nucleases, as men-
tioned before (section 3).

Diagnostic assays using nuclease activity as a biomarker 
have already been developed, and in some cases clinically 
implemented, for the identification and characterization of 
pathogens, like S. aureus. With this in mind, and due to their 
straightforward accessibility, different extracellular nucleases 

have been proposed in this review as candidate diagnostic 
markers for the identification and characterization of numer-
ous clinically relevant bacterial pathogens (Table 2). It is worth 
noticing that in some bacterial pathogens, such as S. aureus or 
S. marcescens, there exist a dominant extracellular nuclease 
activity of known origin and characteristics, which is readily 
detectable both in vitro and in vivo. However, in other cases. 
several nucleases with similar activity coexist, as is the case in 
S. pyogenes, C. perfringens or C. jejuni. Meanwhile, in other 
bacterial pathogens the origin of the nuclease activity 
detected is unknown. Furthermore, in bacteria whose domi-
nant nuclease activity is produced by non-secreted nucleases, 
as it is the case for the periplasmic endonuclease I from E. coli, 
in vivo diagnostic applications are limited. Moreover, for 
in vitro diagnostic applications extra processing steps, such 
as bacterial lysis or cellular fractionation, may be necessary 
to access their activity, potentially affecting the accuracy and 
increasing the complexity and time to results. For these rea-
sons, in order to utilize the full potential of nuclease activity as 
a diagnostic biomarker in multi-nuclease environments, 
a stepwise targeting approach limited to known and charac-
terized nucleases is flawed. Consequently, a screening strategy 
that can target the unique nuclease activity blueprint of 
pathogens, independently of individual nucleases, and allows 
the selection and simultaneous optimization of sensitive and 
specific diagnostic reporters is necessary. These circumstances 
led Balian et al. [281] to develop a robust and easy to imple-
ment screening platform that takes advantage of the modu-
larity of nucleic acids to iteratively screen oligonucleotide 
libraries for the selection of substrates that serve as highly 
specific/selective reporters of characteristic nuclease activity 
blueprints, even when their etiology is unknown. In this con-
text, the composition of the libraries will therefore be crucial. 
Libraries containing substrates of different natures that are 
capable to question the catalytic properties, such as substrate 
and sequence preference, can be evaluated in a standardized 
way for all pathogens and iteratively re-designed and tested in 
screening rounds to enhance aspects, such as specificity and 
sensitivity levels. Obviously, previous knowledge about the 
catalytic properties of characteristic nucleases or the existence 
of homologues of known nucleases in targeted bacterial 
pathogens is bound to guide the design of libraries, but it is 
not indispensable. Of note, the use of nucleic acid libraries is 
simple, cost-effective and well-established compared to 
libraries of other natures (e.g. peptides and phages). 
Examples of these types of libraries are reported else-
where [32].

Importantly, these screening platforms like the one 
described by Balian et al. can be implemented both in vitro, 
ex vivo or in vivo [281]. When implemented in vitro, once the 
sample matrix is defined (e.g. blood serum, saliva, sputum), 
questioning different catalytic parameters affecting the enzy-
matic activity derived from different relevant pathogens 
towards selected oligonucleotides using a screening approach 
is possible. The parameters that can be tested for include 
temperature, pH level and the presence or absence as well 
as the type, combination and concentration of cofactors, 
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chelators, ionic compounds, oxidizing and reducing agents 
during the enzymatic process. As such, extra screening rounds 
can question an additional set of variables affecting nuclease 
activity to further identify the ideal conditions to maximize 
specificity and sensitivity for already selected reporters. It is 
plausible to imagine that analogous screening platforms could 
set the basis for the development of diagnostic biosensors 
based on activatable reporters, which by benefiting from the 
favorable features associated with the use of nuclease activity 
as a biomarker have the potential to enable accurate, single or 
multiplex identification and characterization of pathogens, 
even in polymicrobial infections, directly from complex clinical 
specimens.

Some of this potential has already been demonstrated for 
some applications ranging from rapid, easy to implement, 
specific and very sensitive assays for the identification of 
S. aureus bacteremia directly from positive blood cultures or 
directly from blood specimens; to quantitative phenotypic 
antimicrobial susceptibility tests for both Gram-positive and 
Gram-negative bacteria that are as accurate, but significantly 
faster than classical gold standard methods, as described in 
section 4. Importantly, the simplicity and rapidity offered by 
any of these methods already promise to be of clinical rele-
vance by reducing the time to diagnosis (days to hours), which 
is an important parameter that impacts patient management, 
outcomes and associated health care costs. However, it is just 
a matter of time that novel and improved diagnostic 
approaches using nuclease activity as a biomarker are devel-
oped for different clinical and industrial applications given the 
abundance and diversity of nucleases in bacterial pathogens, 
the availability of suitable screening platforms and the 
advances in biosensing approaches. In fact, even now, it is 
not difficult to conceive that some of these already reported 
diagnostic approaches could be easily adapted for analogous 
purposes in different pathogens just by switching the specifi-
city of the reporter so that it specifically targets their charac-
teristic nuclease activity blueprints. For example, the screening 
and biosensing approach employed by Machado et al. to 
detect S. enterica ser. Typhimurium rapidly and accurately 
from pig-derived samples for food safety monitory could be 
adapted for the detection of other foodborne pathogens that 
also possess extracellular nuclease activities, such as C. jejuni 
or Y. enterocolitica. It is also conceivable that the approach 
used by Hernandez et al. for the specific identification and 
imaging of S. aureus infections in vivo could be adapted for 
other pathogens. In the case of H. pylori or M. tuberculosis this 
approach could be used to screen, diagnose, and monitor 
infections, while addressing issues related to current 
approaches, such as invasive diagnostic procedures, difficult 
specimen collection and low diagnostic sensitivity and speci-
ficity. However, to adopt such an approach for the aforemen-
tioned pathogens, novel or optimized delivery methods, as 
well as further advances in transduction technology, are due. 
For example, in the case of pulmonary infections, delivery 
methods could take advantage of the concepts already 
explored in pulmonary gene therapy [282–286], while in the 
case of gastric infections, biodegradable liquid gel-like 
matrices could be used as a cost-effective, clinically applicable 

vehicle to deliver reporters to the site of infection (e.g. sto-
mach mucosa), while protecting them from unspecific activa-
tion during the process. Additionally, using activatable 
reporters employing magnetic resonance tuning systems 
[287,288], rather than the near-infrared fluorescence energy 
transfer system employed by Hernandez et al., would allow 
deep tissue detection and imaging using clinically available 
magnetic resonance imaging systems.

The use of nuclease activity as a biomarker is not without 
drawbacks. Perhaps the biggest limitation is the need for the 
existence of a characteristic nuclease activity associated to 
a specific bacterial pathogen. In some cases, different bacterial 
species may present or express the same type of nuclease which 
may hinder diagnostic specificity. For example, both commensal 
and pathogenic Neisseria spp, including Neisseria meningitidis 
and N. gonorrhea possess the complete nuc gene in their gen-
omes [204]. However, if consistent differences in the pattern of 
expression of these nucleases exist between species, these 
would still translate into measurable and useful differences in 
nuclease activity. Strain typing may also be out of reach for 
assays based on nuclease activity, as strain-associated differences 
in nuclease populations seem to be absent in some bacterial 
species, such as Mycoplasma pulmonis [28].

It is also worth noting that nuclease production may be 
subjected to fluctuations associated to intraspecies variations 
[289] or growth conditions (e.g. oxygen tension or pH levels) 
[137]. Furthermore, in vivo there exists the possibility that nucle-
ase production, and therefore activity, could vary during the 
course of infection depending on the functional role of the 
nuclease and the associated regulatory mechanisms. 
Ultimately, these variations could affect diagnostic sensitivity 
and specificity. However, given the participation of nucleases in 
virulence-associated activities, such as biofilm remodeling, 
immune evasion or host cytotoxicity, the quantification and 
evaluation of differences in nuclease activity could open 
a possibility to obtain information related to the stage of infec-
tion or level of virulence of the causative pathogen. This type of 
information could help guide prognosis and treatment.

However, it is likely that this type of evaluations would only 
be feasible in combination with techniques capable of very 
low limits of detection and a large dynamic range. Low limits 
of detection are also desirable in vitro for performing diagnos-
tic assessments directly from complex clinical specimens, 
avoiding time-consuming enrichment and purification steps. 
To lower the detection limits in vitro, antibody-mediated 
nuclease enrichment has already proven successful [121], 
however, it requires previous knowledge of the nuclease activ-
ity being used as a characteristic marker. Another option 
involves the specific inhibition of ubiquitous eukaryotic 
nucleases [290], such as DNase I, to reduce possible sources 
of noise, increasing specificity and reducing the limit of 
detection.

Overall, we envision that the use of nuclease activity as 
a diagnostic biomarker aided by new technological advances 
could become a cornerstone in the development of evolution-
ary and revolutionary diagnostic assays and methodologies 
able to complement and add new features to the available 
arsenal of diagnostic tools in clinical microbiology, addressing 
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unmet needs and opening new avenues for screening, diag-
nosis and prognosis. It is worth mentioning that nucleases are 
also present in non-bacterial infectious agents, such as patho-
genic yeasts [291–293], protozoans and viruses; where they 
also play a role in their virulence [294]. In fact, some of these 
nucleases act as virulence factors by contributing to immune 
evasion in pathogenic plasmodial parasites [295] or corona-
viruses [296,297], including the infamous SARS-Cov-2 
[298,299]. Consequently, the use of nuclease activity as 
a diagnostic biomarker for non-bacterial infections also repre-
sents an attractive option that remains, however, out of the 
scope of this review.
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