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Abstract

This thesis presents how Tikhonov’s regularization can be used to solve an in-
verse problem of Helmholtz equation inside of a rectangle. The rectangle will
be met with both Neumann and Dirichlet boundary conditions. A linear op-
erator containing a Fourier series will be derived from the Helmholtz equation.
Using this linear operator, an expression for the inverse operator can be formu-
lated to solve the inverse problem. However, the inverse problem will be found
to be ill-posed according to Hadamard’s definition. The regularization used
to overcome this ill-posedness (in this thesis) is Tikhonov’s regularization. To
compare the efficiency of this inverse operator with Tikhonov’s regularization,
another inverse operator will be derived from Helmholtz equation in the partial
frequency domain. The inverse operator from the frequency domain will also
be regularized with Tikhonov’s regularization. Plots and error measurements
will be given to understand how accurate the Tikhonov’s regularization is for
both inverse operators. The main focus in this thesis is the inverse operator
containing the Fourier series.

A series of examples will also be given to strengthen the definitions, theorems
and proofs that are made in this work.
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Sammanfattning

Denna uppsats presenterar hur Tikhonovs regulariseringsmetod kan användas
för att lösa ett inverst problem från Helmholtz ekvation i en rektangel. Rek-
tangeln besitter randvillkor av både Neumann och Dirichlet. En linjär opera-
tor som innehåller en Fourier Serie kommer erhållas från Helmholtz ekvation.
Genom denna linjära operator kan ett uttryck formas för att lösa det inversa
problemet. Dock, är det inversa problemet illa-ställt enligt Hadamards defini-
tion. För att överkomma illa-ställdheten (i denna uppsats) kommer Tikhonovs
regulariseringsmetod att användas. För att jämföra effektiviteten för den re-
gulariserade inversoperatorn, kommer även en annan inversoperator härledas
från Helmholtz ekvation ifrån den partiella frekvensdomänen. Även den inver-
soperatorn kommer att regulariseras med Tikhonovs regularisering. Grafer och
feluppskattningar kommer studeras för att få en förståelse om hur ackurat Tik-
honovs regularisering är för de både. Huvudfokuset i denna uppsats är för den
regulariserade inversoperatorn som innehåller en Fourier Serie.

Ett antal exempel kommer ges för att förstärka alla definitioner, satser och
bevis som görs i denna uppsatts.

Nyckelord:
Inversa Problem, Illa-ställda problem, Tikhonov’s regularisering, Fourier
serier, Helmholtz ekvation

URL för elektronisk version:
Theurltothethesis

Singh, 2021. v

The url to the thesis




Acknowledgements

This bachelor’s work in mathematical analysis would be impossible if it wasn’t
for my supervisor, Johan Thim, working during the summer of 2021. His in-
structive answers to my many questions made the flow of this work smooth and
sound. Another person worth of mention is my examiner, Fredrik Berntsson,
for suggesting me to do a bachelor’s work in mathematics. So I would like to
send my sincerest gratitude and appreciation to my supervisor and my examiner.

I’d also like to thank my mother, Parmjeet Kaur, for her continuous support in
all my endeavours throughout my life.

Singh, 2021. vii





Contents

1 Introduction and Concepts 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Inverse Problems and Ill-posed Problems . . . . . . . . . . . . . . 4
1.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . 14

2 Solving an Inverse Problem With Regularization 17
2.1 An Example Involving Fourier Series . . . . . . . . . . . . . . . . 17

3 Solving Helmholtz Equation in a Rectangle 29
3.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Solution to Helmholtz Equation . . . . . . . . . . . . . . . . . . . 31
3.3 Expansion of a Solution Using Fourier Series . . . . . . . . . . . 32
3.4 The Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 The Inverse Operator . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Tikhonov’s Regularization . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Operator From Partial Fourier Transform . . . . . . . . . . . . . 40
3.8 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Conclusion 49

A Proving Divergence With Maclaurin Expansion 53

B Applying Boundary Conditions 55

Singh, 2021. ix





Chapter 1

Introduction and Concepts

In this chapter we will develop the mathematical theory needed for solving the
inverse problem of Helmholtz equation in a rectangle, in which a linear operator
will be extracted, so relevant definitions and theorems of linear operators will
also be presented. The last section of this Chapter provides a brief explanation
of regularization. The complete definition of Tikhonov’s regularization will be
presented in Chapter 3.

1.1 Introduction
As the title of this thesis reveals, this work is about using Tikhonov’s regular-
ization to solve ill-posed problems. More specifically, Helmholtz equation will
be solved in a rectangle with both Neumann and Dirichlet boundary conditions.
The direct problem in this thesis is to determine the Dirichlet data of the bot-
tomside of the rectangle caused by the Dirichlet data inserted in the topside
of the rectangle. Solving this problem yields a linear operator in the form of
a Fourier series. Then, by using this linear operator, we can get an expression
for the inverse operator and try to solve the inverse problem. It turns out that
this inverse problem is ill-posed and thereby justifying the use of Tikhonov’s
regularization to solve the problem.

The work of this thesis is similiar to the work of [6], where an inverse problem
for an elliptic equation is solved using a Fourier-sine series, and of [7], where an
ill-posed problem is solved with mollification.

Singh, 2021. 1
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1.2 Normed Vector Spaces
When someone hears the word “space,” they might think of the space between
two objects, the space-bar on your keyboard, some might even think of outer
space. In mathematics, a space represents a set of elements with some added
structures. Some spaces are function spaces where each element is a function,
sequential spaces where each element is a sequence and vector spaces where each
element is a vector. Since the solution of Helmholtz equation will be in a vector
space it seems fit to define what a vector space truely is.

Definition 1.2.1. A vector space or (linear space) over a field K is a nonempty
set X of elements x,y,...(called vectors) together with two algebraic operations.1
These operations are called vector addition and multiplication of vectors by
scalars, that is, by elements of K.

The following examples defines the operations of vector addition and scalar
multiplication:

• Vector addition has the following properties for summation of vectors
x, y and z:

x+ y = y + x (1.1)

and
(x+ y) + z = x+ (y + z). (1.2)

In mathematics, these properties are formally known as commutive and
associative laws.

• Multiplication by scalars is defined such that for every vector x, y and
scalar α, β, the following properties must be valid:

α(x+ y) = αx+ αy (1.3)

and
(α+ β)x = αx+ βx. (1.4)

In mathematics, these properties are formally known as distributive laws.

Furthermore, there must exist a zero vector such that when x and −x
are added together, the zero vector emerges:

x+ (−x) = 0. (1.5)
1The definition involves a general field K, where K can either be R or C.
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In order to interpret the length of elements in a vector space a norm must be
defined on it. A norm essentially transforms a vector from the space X to a
scalar.2 The norm has the following definition (according to [5]).

Definition 1.2.2. A normed vector space X is a vector space with a norm
defined on it. A Banach space is a complete normed space (complete in the
metric defined by the norm). Here a norm on a (real or complex) vector space
X is a real-valued function on X whose value at x ∈ X is denoted by

‖x‖ (1.6)

and which has the following properties:

1.
‖x‖ ≥ 0 (1.7)

2.
‖x‖ = 0 ⇐⇒ x = 0 (1.8)

3.
‖αx‖ = |α| ‖x‖ (1.9)

4.
‖x+ y‖ ≤ ‖x‖+ ‖y‖ . (1.10)

Here x and y are arbitrary vectors in X and α is any scalar.

Remark 1.2.1. A normed vector space is also referred to as a normed space
or normed linear space.

Remark 1.2.2. Not all vector spaces allow a norm, when a topology has been
choosen.

For more information regarding the subjects in this chapter, see [5].

2Scalar: rather than a vector is a real number and is always bigger or equal to 0.
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1.3 Inverse Problems and Ill-posed Problems
Imagine you have a bow and arrow, and you are given instructions to shoot
the arrow with the intial velocity, v0, and with the intial angle, α, at position,
(x0, y0). There is no air resistance present.

Figure 1.1: A representation of the bow and arrow problem where the arrow is
shot from the intial position (x0, y0) with velocity v0 and with the angle α0.

You are asked to solve the problem of finding out where the arrow would land
before verifying it by shooting the arrow. Since there only exists one unique
solution to this problem we can solve it by laws of mechanics. A small change
in the angle or velocity yields a small change to the arrows landing. These types
of problems are referred to as direct problems and are commonly known to be
well-posed.

Imagine now that you are in world which is not properly idealized and you’re
shooting an arrow over a surface which is both impenetrable and rough. Since
the arrow won’t be able to penetrate the surface, the arrow would hit the sur-
face and glide away from the initial hit, see Figure 1.2. In other words we can’t
guarantee that a small change in intial angle, α0, yields a small change in the
arrows placement on the field. This breaks the uniqueness and continuity from
the direct problem.
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Figure 1.2: A visualization of the multiple ways an arrow could theortically land,
making it impossible to know from which position it was shot from.

Now, consider the following. The only information you know is the initial ve-
locity v0 and the angle α the arrow had. You are now asked to find out at what
point, (x0, y0), the arrow was shot from by just studying the arrow’s orientation
and placement on the field. Since there exists multiple ways this arrow could
have gotten to this position, (see Figure 1.2), the initial point is nearly impos-
sible to find out. This problem is called an inverse problem and happens to be
ill-posed because no unique solution exists to this problem.

Now we shall mathematically define every important term that was used. Ac-
cording to [2], the mathmatical definition of a well-posed problem is given by
the following.

Definition 1.3.1. Hadamard’s definition of well-posedness occurs if and only
if a problem has the following characteristics:

1. For all admissible data, a solution exists.

2. For all admissible data, the solution is unique.

3. The solution depend continuously on the data.
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To understand this definition, we must further examine the well-posedness char-
acteristics. Suppose a linear operator, T , is given in the form

Tx = y (1.11)

where T : X → Y is a bounded linear operator between the normed vector
spaces X and Y . The first condition is met if all y ∈ Y are also in R(T ). The
second condition is met if and only if N (T ) = {0}. In other words we need to
provide sufficient evidence that the solution is unique. Suppose that y1−y2 = 0.
By equation (1.11) we get Tx1 − Tx2 = 0 and through linearity we obtain,

T (x1 − x2) = 0⇐⇒ x1 = x2. (1.12)

Thus the solution is unique if N (T ) = {0}.

Remark 1.3.1. If the linear operator, T , satisfies both condition one and con-
dition two of Hadamard’s condition, then T−1 exists.

In order to comprenhend condition three we need to define continuity. A defi-
nition and theorem from [5] states the following.

Definition 1.3.2. Let X = (X, ‖·‖) and Y = (Y, | · |) be normed vector spaces.
A mapping T : X → Y is said to be continuous at a point x0 ∈ X if for every
ε > 0 there is a δ > 0 such that

|(Tx− Tx0)| < ε, ∀x ∈ ‖x− x0‖ < δ. (1.13)

T is said to be continuous if it is continuous at every point of X.

Definition 1.3.3. The Euclidean norm of a vector u, where u ∈ Cn, and of an
L2-function, f , are given by:

‖u‖2 =
√
u2

1 + u2
2 + ...+ u2

n

and

‖f‖2 =

(ˆ ∞
−∞
|f(x)|2dx

) 1
2

.
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Definition 1.3.4. The Uniform norm of a vector, u ∈ Cn, and of an L∞-
function, f , are given by:

‖u‖∞ = max
1≤k≤n

|uk|

and
‖f‖∞ = ess supx∈D |f(x)|, (1.14)

respectively, where D is the domain of f .

Theorem 1.3.1. (Continuity and boundedness) Let T : D(T ) −→ Y be a
linear operator, where D(T ) ⊂ X and X,Y are normed vector spaces. Then it
follows that:

1. T is continuous if and only if T is bounded.

2. If T is continuous at a single point, it is continuous.

From (1) in Theorem 1.3.1 we understand that proving a linear operators con-
tinuity is the same as proving it’s boundedness. Hence we need to show that
the linear operator T is bounded. The definition of a bounded linear operator
is given by the following,

Definition 1.3.5. Let X and Y be normed vector spaces and T : D(T ) −→ Y a
linear operator, where D(T ) ⊂ X. The operator T is said to be bounded if there
is a real number, c, such that for all x ∈ D(T ),

‖Tx‖ ≤ c ‖x‖ . (1.15)

To deepen our understanding of this concept and well-posedness in general, a
demonstration through an example seems appropriate.

Example 1.3.1. Suppose a linear operator is given on Rn as a matrix trans-
formation, T : n× n where n ∈ N+, and satisfies the following relations:

Tx = y, (1.16)

where x, y ∈ Rn. Then,
‖Tx‖ ≤ c ‖x‖ (1.17)

where c ∈ R. The problem is to find out if the inverse problem,

x = T−1y (1.18)

is well-posed.
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The first and second condition is met if the solution is unique. In order to have
uniqueness, the condition N (T ) = {0} must be valid. If N (T ) = {0} is true
then it follows that T−1 exists (Tx = 0⇐⇒ x = 0).

If the solution is unique this would satisfy Hadamard’s first and second con-
dition. Because T consists of n × n elements and n < ∞, this means that T
is bounded in every norm. If T is bounded and Tx = 0 ⇐⇒ x = 0 is true
then it follows that T−1 exists and is bounded as well. (Since also T−1 is given
by an n × n matrix.) This notion implies that T−1 is continuous and thereby
validating Hadamard’s third condition for the inverse problem.

In conclusion, if T−1 exists the problem is well-posed and if T−1 does not exist
the problem becomes ill-posed.

Example 1.3.1 introduces the concept that a problem can be found to be ill-
posed. To completely understand what ill-posedness means, a definition will be
given to explain it, followed by examples to demonstrate it.

Definition 1.3.6. A problem is ill-posed if one, or more, of the conditions
for well-posedness are not satisfied, that is, a problem is ill-posed if it is not
well-posed.

Example 1.3.2. The dot product with one factor kept fixed defines a functional
on R3. Let � be this dot products functional, � : R3 → R,

�(x) = 〈x̄, λ̄〉 = 3x1 + 4x2 + 5x3, (1.19)

where λ̄ =

3
4
5

.
The problem is to explain why the equation, �(x) = S : S ∈ R, is found as
ill-posed rather than well-posed.

Firstly, we shall investigate whether this functional is bounded or not. By
Cauchy’s inequality,

| � (x̄)| = |〈x̄, λ̄〉| ≤ ‖x̄‖
∥∥λ̄∥∥ . (1.20)

Let c =
∥∥λ̄∥∥ and use the following definition for the norm:

‖�‖ = sup
x∈D(�)
‖x‖=1

| � (x̄)|
‖x̄‖

. (1.21)
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By applying this definition of the norm we get the following inequality:

‖�‖ ≤ c. (1.22)

Thus the operator can be concluded to be bounded, yielding that the third
condition of Definition 1.3.1 is met. For the first- and the second conditions to
be met, a unique solution to equation (1.23) must exist. Let the scalar product
be denoted as the real constant, S. In order to have uniquesness the functional
equation must have one unique solution:

3x1 + 4x2 + 5x3 = S. (1.23)

In linear algebra this equation represents a plane in R3. It is well known that a
plane has infinitely many points, which means there are an infinite amount of
solutions. This satisfies Hadamard’s first condition but not Hadamard’s second
condition, thus this problem can be concluded to be ill-posed.

To further strengthen our understanding of well-posedness two more examples
are given.

Example 1.3.3. In this example we will define an operator, T , as a convolution
integral T : C0[0, 1]→ G by

Tf(t) =

ˆ t

0

f(τ)(t− τ) dτ (1.24)

where
g = Tf (1.25)

and G is defined as

G ∈ {g ∈ C2[0, 1] : g(0) = g′(0) = 0}. (1.26)

Proof. Let F (t) be a primitive function of f(t) and let F(t) be a primitive
function of F (t). Then

g(t) =

ˆ t

0

f(τ)(t− τ) dτ

=
[
F (τ)(t− τ)

]t
0
−
ˆ t

0

F (τ) dτ

= −F [0]t−
[
F(τ)

]t
0

= −F [0]t− F(t) + F(0).

(1.27)
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Since the double derivative of F(t) yields the C0[0, 1]-function f(t), it’s clear that
g ∈ C2[0, 1]. Through equation (1.27) we also see that g(0) = g′(0) = 0.

The problem is now to show that this example, g = Tf , is well-posed.

Remark 1.3.2. In this example, finding R(T ) is easy. However, for many
other operators’ it can be incredibly difficult to find R(T ).

According to Hadamard’s first and second condition, we need to provide evi-
dence that a unique solution exists. To show this, the Laplace transform will
be used. We shall use the uniqueness for the unilateral Laplace transform,
which states that for every continuous function in the t-domain there exists a
transform of it in the s-domain if the integral in equation (1.28) is absolutely
convergent. Furthermore, if u and v are continuous and absolutely integrable
with L+u = L+v for Re(s) > a > 0, then u = v for t ≥ 0.

From [1], the unilateral Laplace transform has the following definition:

f̂(s) = (L+f)(s) =

ˆ ∞
0

f(t)e−st dt, (1.28)

where f ∈ C(R) and whose domain consists of s ∈ C for which the integral is
absolutely convergent. We shall now reformulate the problem with the unilateral
Laplace transform. We write

g(t) =

ˆ t

0

f(τ)(t− τ) dτ = f(t) ∗ t (1.29)

and the unilateral Laplace transform becomes:

(L+g)(s) = L+((f ∗ t))(s)⇐⇒ ĝ(s) = f̂(s)
1

s2
, (1.30)

so
f̂(s) = ĝ(s)s2 (1.31)

and since g(0) = g′(0) = 0 the inverse Laplace transform f(t) is given by:

L+
−1(f̂(s)) = L+

−1(ĝ(s)s2)⇐⇒ f(t) =
d2

dt2
g(t). (1.32)

From equation (1.32) we see that f(t) is unique for every g ∈ G for the unilat-
eral Laplace operator. This ensures that the inverse of the unilateral Laplace
operator exists for the space R(L+). Since the derivate of a function yields one
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and only one answer the conclusion could be drawn that this operator equation
has a unique solution, thereby satisfying Hadamard’s first and second condition.
Since we know that t and f(t) are continuous fucntions on [0,1], the norms are
given by:

‖t‖∞ = max
0≤t≤1

|t| = 1 (1.33)

and
‖f(t)‖ = max

0≤t≤1
|f(t)| = ‖f‖∞ . (1.34)

Hence

‖g(t)‖ = ‖Tf(t)‖ = max
0≤t≤1

∣∣∣∣ˆ t

0

f(τ)(t− τ) dτ

∣∣∣∣
≤ max

0≤t≤1

ˆ t

0

|f(τ)||(t− τ)| dτ

≤ ‖f‖∞
ˆ 1

0

dτ

≤ ‖f‖∞ .

(1.35)

The result is that ‖Tf‖ ≤ ‖f‖∞. Thus the linear operator is bounded. If it’s
bounded, it’s continuous and thereby satisfying Hadamard’s third condition.
Thus this problem is well-posed.

For more information regarding the subject, see [4] and [5].
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1.4 Regularization

Recall the “bow and arrow” problem in the previous section. Imagine now that
we try to transform this ill-posed problem into a well-posed problem. To do
this we must adjust the problem itself. Let’s say we introduce an adjustable
constant that makes the impenetrable surface more rough as the constant gets
larger. It is still the same problem, only now when the arrow hits the surface
it will reveal the direction from whence it came. By doing so the problem has
potentially become well-posed.

Figure 1.3: This figure demonstrates how the problem becomes well-posed, when
the surface friction changes. By calculating the arrrow’s angle with the xy-plane,
one can understand from which direction it was shot from.

This type of idea, where an adjustment can make ill-posed problems become
well-posed is what we are trying to do in this thesis by applying Tikhonov’s reg-
ularization to the inverse operator for the inverse problem of Helmholtz equation
with certain boundary data.

Lets say we have the inverse problem, T−1f = g, where the first- and sec-
ond conditions of Hadamard’s definition (Definition 1.3.1) are met but the third
condition is not. In other words the inverse operator, T−1, is unbounded, mak-
ing the problem ill-posed. We shall now introduce the functional Jα as an
approximation to T−1. The α in Jα is a quantity measurement of how accurate
the approximation is. According to [2], Jα has the following definition:
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Definition 1.4.1. Let T : F → G be a bounded linear operator between the
normed vector spaces F and G, and let α0 ∈]0,∞[. For every α ∈]0, α0[, let

Jα : G→ F (1.36)

be a continuous operator. The family {Jα} is called a regularization or a regu-
larization operator if, for all g ∈ D(T−1), there exists a parameter choice rule
α = α(δ, gδ) such that

lim
δ→0

sup{
∥∥Jα(δ,gδ)g

δ − T−1g
∥∥ : gδ ∈ G,

∥∥gδ − g∥∥ ≤ δ} = 0 (1.37)

holds. Here,
α : R+ ×G→]0, α0[ (1.38)

is such that
lim
δ→0

sup{α(δ, gδ) : gδ ∈ G,
∥∥gδ − g∥∥ ≤ δ} = 0. (1.39)

For a specific g ∈ D(T−1), a pair (Jα, α) is called a (convergent) regularization
method (for solving Tf = g) if (1.37) and (1.39) hold.

Note that α is dependent on both δ and gδ. From [2], we can describe when
α strictly depenedes only on δ:

Definition 1.4.2. Let α be a parameter choice rule according to Definition
1.4.1. If α does not depend on gδ, but only on δ, then we call α an a-priori
parameter choice rule and write α = α(δ). Otherwise, we call α an a-posteriori
parameter choice rule.

To understand how we can use these definitions in practice, see Chapter 2
where an inverse problem is solved using a regularization method that satisfies
Definition 1.4.1 and 1.4.2.
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1.5 Helmholtz Equation

Ever since Isaac Newton introduced the idea of creating a descriptive method
to study the nature through mathematical models, e.g. differential equations,
ideas have continued to evole and later even becoming fundemental laws in sci-
ence. These mathematical models are the foundation of the future, they give an
explaination to the previously thought as unexplainable. One of these mathe-
matical models that changed the world was formed by Hermann von Helmholtz
and was called the Helmholtz equation:

∇2ψ(r̄) + k2ψ(r̄) = 0 (1.40)

where the Laplacian3 is defined as ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and r̄ =

xy
z

.
The reason why this equation has been fascinating for many scientists is be-
cause this equation appears naturally from conservation laws in physics and can
even be used to interpret the wave equation for monochromatic waves4. When
Schrödinger first heard of the concept of wave–particle dualism, that all quan-
tum particles possess both wave and particle properties, he created his famous
Schrödinger’s equation:

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (1.41)

It turns out that by even studying this equation, the Helmholtz equation could
still be derived from it. However one of the most famous examples of the
Helmholtz equation are Maxwell’s equations.

1.5.1 Maxwell’s equations

In this section we will understand how Maxwell’s equations could be derived
through Helmholtz equation (1.40).

Suppose we have a medium where no free charge exists nor are any imposed
currents present then we get the following Maxwell’s equations:

∇× E = −µ∂H
∂t

(1.42)

3The Laplacian is also known as the laplace operator.
4Generally when talking about wave equation for monochromatic waves we’re talking about

wave equations in the frequency domain.
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∇×H = ε
∂E

∂t
(1.43)

∇ · E = 0 (1.44)

∇ ·H = 0 (1.45)

Where H and E are magnetic- and electric field vectors and the electric permit-
tivity and magnetic permeability are denoted as ε and µ. We have the following
relationships in vaccuum:

µ = µ0, ε = ε0, c = (ε0µ0)−1/2 (1.46)

where c ' 3× 108 m/s.

With equation (1.42),(1.43),(1.44) and (1.45) we obtain the identity:

∇2E = ∇(∇ · E)−∇×∇× E = −∇×∇× E. (1.47)

By taking the curl of equation (1.42) we get the following equations:

∇×∇× E = −µ ∂
∂t
∇×H (1.48)

−∇2E = −εµ∂
2E

∂t2
(1.49)

∇2E =
1

c2
∂2E

∂t2
(1.50)

∇2E − 1

c2
∂2E

∂t2
= 0 (1.51)

Similary we obtain H as:

∇2H − 1

c2
∂2H

∂t2
= 0 (1.52)

The relevancy of the Helmholtz equation in many branches of physics is
astonishing.





Chapter 2

Solving an Inverse Problem
With Regularization

This section offers an instructive and comprehensible example where an inverse
problem is first proved to be ill-posed and later becomes well-posed through
regularization. It should be noted that the regularization in this example will
not be of Tikhonov’s kind.

2.1 An Example Involving Fourier Series
Example 2.1.1.
Suppose a linear operator, T , transforms a C1[0, π]-function into a sine series.
If the given function is denoted as f then (Tf) produces a sine series (whose
index goes from 1 to ∞) multiplied with the Fourier coefficient of f divided by
the index. Since the Fourier coefficient will be divided by the index, the series
won’t reproduce f instead it gives rise to a new C2[0, π]-function. Let’s call this
function g.

The problem in this example is to figure out what f is, if we can only measure g,
and does f depend continuously on g? Is this inverse problem well-posed? If the
inverse problem is ill-posed then can we regularize the problem? How good is a
truncated Fourier series as a regularization method?

Singh, 2021. 17
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Definition 2.1.1. Let the linear operator, T : W → W, have the following
definition:

(Tf)(x) =

∞∑
n=1

2 sin(nx)

nπ

ˆ π

0

f(τ) sin(τn) dτ (2.1)

where
W ∈ {w ∈ C1[0, π] : w(0) = w(π) = 0}. (2.2)

We will show that:
R(T ) ⊂ C2[0, π], (2.3)

where R(T ) is the range of the operator. Mathematically our problem is con-
sidered as,

(Tf)(x) = g(x), (2.4)

where f , g ∈ W.

Now we shall show that the linear operator, T , is bounded in L2 and L∞.
We can substitute the mean value integral with the inner product:

2

π

ˆ π

0

f(τ) sin(τn) dτ = 〈f, sn〉; sn = {sin(τn)}∞n=1. (2.5)

Then we get:

Tf(x) =

∞∑
n=1

〈f, sn〉 ·
sin(nx)

n
(2.6)

so

|Tf | ≤
∞∑
n=1

|〈f, sn〉| ·
1

n
. (2.7)

By the Cauchy–Schwarz inequality:

|Tf | ≤

√√√√ ∞∑
n=1

| 〈f, sn〉|2 ·

√√√√ ∞∑
n=1

1

n2
. (2.8)

By applying Bessel’s inequality for the left factor of the right hand side of
equation (2.8) we get:

∞∑
n=1

|〈f, sn〉|2 ≤ ‖f‖22 . (2.9)
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Thus the sum can be concluded to be bounded. The right factor of equation
(2.8) is known as the Basel problem in the math community, and

∞∑
n=1

1

n2
=
π2

6
. (2.10)

A fact formulated in the 1644 by Pietro Mengoli and solved by Leonard Euler
in the 1734. By applying these equalities and inequailties to equation (2.8), we
get the following inequality:

‖Tf‖∞ ≤
√
‖f‖22 ·

√
π2

6

= ‖f‖2 ·
π√
6

(2.11)

which gives the final expression,

‖Tf‖∞ ≤
1√
6

ˆ π

0

|f(x)|2 dx. (2.12)

From Definition 1.3.3 and Definition 1.3.4 we see that ‖f‖2 ≤ ‖f‖∞ so,

‖Tf‖∞ ≤
π√
6
· ‖f‖∞ . (2.13)

Let cn
n denote the Fourier coefficients of Tf , where cn is the Fourier coefficients

of f . Then, by Parseval’s theorem, we get,

1

π

ˆ π

0

|Tf(x)|2 dx =

∞∑
n=1

∣∣∣cn
n

∣∣∣2 ≤ ∞∑
n=1

|cn|2 =
1

π

ˆ π

0

|f(x)|2 dx. (2.14)

Thus,
‖Tf‖2 ≤ ‖f‖2 . (2.15)

Therefore the operator can be concluded as L2- and L∞-bounded. Thereby
satisfying Hadamard’s third condition in both spaces.
Now we need to show that the direct problem Tf = g has a unique solution.
To demonstrate Hadamard’s first and second condition we shall use Dirchlet
convergence theorem. If Theorem 4.16 from [1] gets adjusted to our problem we
get the following formula for Dirichlet’s convergence theorem:

∞∑
n=1

û(n) sin(nΩa) =
u(a+) + u(a−)

2
= u(a) (2.16)
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where û(n) represents the Fourier series coefficients. Here we see that for every
a the series will converge. Since the functions f and g are continuous, the values
from g(a+) and g(a−) can easily be generalized. To prove its uniqueness more
direct we need to show that,

Tf = 0 =⇒ f = 0.

Lemma 2.1.1. The operator T is injective.

Proof. Let’s consider the complex form of,

(Real) Tf(x) = u(x) =

∞∑
n=1

sin(nx)

nπ

ˆ π

0

f(τ) sin(nτ) dτ,

that is,

(Complex) Tf(x) = u(x) =

∞∑
n=−∞

einx

2nπ

ˆ π

−π
f(τ)einτ dτ, n 6= 0.

(2.17)

Let Cn = 1
2π

´ π
−π f(τ)einτ dτ . Then the complex form can be simplified to,

u(x) =

∞∑
n=−∞

Cn
einx

n
, n 6= 0. (2.18)

By differentiation we get,

du(x)

dx
=

∞∑
n=−∞

i · Cneinx, n 6= 0, (2.19)

where the Fourier coefficient, Cn, can be expressed as,

Cn =
1

2π

ˆ π

−π

du(τ)

dτ
einτ dτ, (C0 = 0) . (2.20)

By identification of (2.20) and Cn in (2.18), we get the following equality,

du(τ)

dτ
= f(τ) =⇒ u(x) =

ˆ x

0

f(τ) dτ, (2.21)

since u is smooth enough. Thus,

Tf(x) =

ˆ x

0

f(τ) dτ (2.22)

where its apparent that Tf(x) = 0 for all x if and only if f(x) = 0 for all x.
Hence the operator is injective.
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This essentially means that if two functions have the same Fourier coeffi-
cients, they are the same function. Thus the operator T is unique and thereby
satisfying all of Hadamard’s conditions and making the direct problem well-
posed.

In order to find out that there is a solution f to Tf = g, we need to define
the inverse operator, T−1. If

Tf = g (2.23)

reasonably makes every Fourier coefficient of f be divided by n,

Tf(x) =

∞∑
n=1

2 sin(nx)

nπ

ˆ π

0

f(τ) sin(τn) dτ = g(x), (2.24)

then that means that
T−1g = f, (2.25)

reasonably must mulitply every Fourier coefficent with n, where the odd function
g(x) ∈ C2[0, π] satisfies

(Real) T−1g(x) =

∞∑
n=1

2n sin(nx)

π

ˆ π

0

g(τ) sin(τn) dτ = f(x),

(Complex) T−1g(x) =

∞∑
n=−∞

neinx

π

ˆ π

−π
g(τ)eiτn dτ = f(x).

(2.26)

Theorem 2.1.1. Let T be as in Definition 2.1.1, then the inverse operator,
T−1, can be expressed as:

T−1g =

∞∑
n=1

2n sin(nx)

π

ˆ π

0

g(τ) sin(τn) dτ = f, (2.27)

where
W ∈ {w ∈ C2[0, π] : w(0) = w(π) = 0}, (2.28)

R(T ) ⊂W (2.29)

and g ∈ R(T ), where R(T ) is the range of the operator.

By studying equation (2.26) and (2.24), we see that the inverse, T−1, and
the linear operator, T , have many similarities between each other. The only
difference being that one multiplies each Fourier coefficient with n and the other
divides them by n. So many properties of T is shared by T−1 as well. One of
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these properties is the uniqueness demonstrated in equation (2.16). That means
that T−1 also satisfies Hadamard’s first and second condition. Equation (2.26)
gives a mathematical description of how the inverse linear operator, T−1, acts
when given a function g. We shall return to this expression later on, but for
now consider we have g with it’s corresponding real and complex Fourier series:

(Real) g(x) =

∞∑
n=1

2

π

ˆ π

0

g(τ) sin(nτ) dτ · sin(nx)

(Complex) g(x) =

∞∑
n=−∞

1

2π

ˆ π

−π
g(τ)einτ dτ · einx

(2.30)

We shall now take a closer look at the complex series’ and show that the deriva-
tive of g(x) basically yields our inverse operation T−1g. Furthermore showing
that our inverse operator is actually the differential operator d

dx .

Proof. Consider that g ∈ C3[0, π] is an odd function in C3[−π, π] and therefore

g(x) =

∞∑
n=−∞

1

2π

ˆ π

−π
g(τ)einτ dτ · einx, (2.31)

so

dg(x)

dx
=

∞∑
n=−∞

1

2π

ˆ π

−π
g(τ)einτ dτ · ineinx

= i

∞∑
n=−∞

1

2π

ˆ π

−π
g(τ)einτ dτ · neinx

(2.32)

where we are allowed to differentiate term-wise since g ∈ C3. Now inserting
equation (2.30) we get:

T−1g =
1

i

dg(x)

dx
. (2.33)

The differential operator, D, is unbounded. To support this claim we let
hk ∈ C3[0, π] be a succession of functions such that hk(0) = hk(π) = 0 and
‖D(hk)‖∞
‖hk‖∞

→∞ when k →∞.
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Proof. Suppose that
hk(x) = sin(kx) (2.34)

where the first- and second derivative of hk(x) becomes:

D(hk(x)) = k cos(kx)

D2(hk(x)) = −k2 sin(kx).
(2.35)

The norm of hk is given by:

‖hk‖∞ = ‖sin(kx)‖∞ = 1. (2.36)

Now to calculate the norm for D(hk), we put the second derivative to zero:

0 = −k2 sin(kx)

=⇒ 0 = sin(kx)

=⇒ x =
πm

k
, m ∈ Z.

(2.37)

Through equation (2.37) we get the norm of D(hk) as:

‖D(hk)‖∞ =
∣∣∣D(hk(

πm

k
))
∣∣∣ = |k cos(πm)| = k, ∀m ∈ Z, (2.38)

Hence we get if k > 0,
‖D(hk)‖∞
‖hk‖∞

= k. (2.39)

Thus the fraction in equation (2.39) diverges when k → ∞, thus showing that
the operator is unbounded.

Hence T−1 is unbounded and therefore Hadamard’s third condition does
not hold. Which according to Definition 1.3.6 makes this problem ill-posed. It
turns out that this example qualifies for regularization according to Definition
1.4.1(see the proof below). In other words, we can approximate T−1 with Jα
where α is an a-priori parameter; see Definition 1.4.2.

Lemma 2.1.2. The inverse operator, T−1, can be regularized.

Proof. Suppose the noisy data, gδ, has the following form:

gδ(x) = g(x) + δ(x), x ∈ [0, π], (2.40)
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where g ∈ C2[0, π], meaning that the approximation data, fδ, gets the following
formal expression:

fδ(x) = T−1gδ(x)

=

∞∑
n=1

2n sin(nx)

π

ˆ π

0

gδ(τ) sin(τn) dτ

=

∞∑
n=1

2n sin(nx)

π

ˆ π

0

g(τ) sin(τn) dτ +

∞∑
n=1

2n sin(nx)

π

ˆ π

0

δ(x) sin(τn) dτ

=

∞∑
n=1

n sin(nx) · 〈g, sn〉+

∞∑
n=1

2n sin(nx)

π

ˆ π

0

δ(x) sin(τn) dτ

= f(x) + δ̃(x).

(2.41)

The error in the approximation will lie in δ̃ =
∑∞
n=1

2n sin(nx)
π

´ π
0
δ(x) sin(τn)dτ

so we need to prove that this tends to zero when δ → 0. First we shall simplify
the inner product in equation (2.41) to get the following representation:

〈g, sn〉 =
2

π

ˆ π

0

g(τ) sin(nτ)dτ

=
2

π

[
−g(τ) cos(τn)

n

]π
0

+
2

π

ˆ π

0

g′(τ) cos(τn)

n
dτ.

(2.42)

From equation (3.37) we can see that g(0) = g(π) = 0. Therefore,

2

π

ˆ π

0

g′(τ) cos(τn)

n
dτ =

2

π

[
g′(τ) sin(τn)

n2

]π
0

− 2

π

ˆ π

0

g′′(τ) sin(τn)

n2
dτ (2.43)

and since sin(nπ) = sin(0) = 0 for all n ∈ N+ we get the following identity,

〈g, sn〉 = −〈g
′′, sn〉
n2

, n ∈ N+. (2.44)

The regularization in this example is the truncation of the series:

Jαg
δ(x) =

N(α)∑
n=1

〈gδ, sn〉 · n sin(xn) = fδα(x). (2.45)

Let α be a a-priori parameter choice rule according to Definition (1.4.2), where
N(α) = 1

α(δ) . The parameter, α(δ), shall be chosen as such that
√
δ

α(δ) → 0 when
δ → 0.
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Now to prove that
∥∥T−1g − Jαgδ

∥∥→ 0, δ → 0 in Definition 1.4.1 holds, we
note that ∥∥T−1g − Jαgδ

∥∥ =
∥∥f − fδα∥∥ , (2.46)

where the L2-norm will be used. So,

∥∥f − fδα∥∥ =

∥∥∥∥∥∥
∞∑
n=1

〈g, sn〉 · n sin(xn)−
N(α)∑
n=1

〈gδ, sn〉 · n sin(xn)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑

n=N(α)+1

〈g, sn〉 · n sin(xn)−
N(α)∑
n=1

2n sin(nx)

π

ˆ π

0

δ(x) sin(nτ) dτ

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑

n=N(α)+1

−〈g
′′, sn〉
n

· sin(xn) +

N(α)∑
n=1

2n sin(nx)

π

ˆ π

0

δ(x) sin(nτ) dτ

∥∥∥∥∥∥ .
(2.47)

By the triangle inequality we get:

∥∥f − fδα∥∥ ≤
∥∥∥∥∥∥

∞∑
n=N(α)+1

−〈g
′′, sn〉
n

· sin(xn)

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(α)∑
n=1

2n sin(nx)

π

ˆ π

0

δ(x) sin(nτ) dτ

∥∥∥∥∥∥
(2.48)

Remember that α is a a-priori. Let α be an arbitrary function of δ that satisfies
the following conditions:

• α(δ)→ 0 when δ → 0.

• Let α be chosen as such that
√
δ

α(δ) → 0 when δ → 0.

This gives us the following expression for the right term in equation (2.48).∥∥∥∥∥∥
N(α)∑
n=1

2n sin(nx)

π

ˆ π

0

δ(x) sin(nτ) dτ

∥∥∥∥∥∥ ≤
N(α)∑
n=1

∥∥∥∥2n sin(nx)

π

∥∥∥∥ · ∥∥∥∥ˆ π

0

δ(x) sin(nτ) dτ

∥∥∥∥
≤
N(α)∑
n=1

2n

π
δ

≤ 2

π
δ
N(α)(N(α) + 1)

2

≤ δ · (N2(α) +N(α))

π
(2.49)
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Since N(α) = 1
α(δ) we get the final inequality as,∥∥∥∥∥∥

N(α)∑
n=1

2n sin(nx)

π

ˆ π

0

δ(x) sin(nτ) dτ

∥∥∥∥∥∥ ≤ 1

π

(
δ

α(δ)
+

δ

α2(δ)

)
. (2.50)

This ensures that the condition in Definition 1.4.1 is met. Here we can see that
1
π

(
δ

α(δ) + δ
α2(δ)

)
will converge to 0 when δ(x) → 0. Through the left term in

equation (2.48),
∥∥∥∑∞n=N(α)+1−

〈g′′,sn〉
n · sin(xn)

∥∥∥ we get;∥∥∥∥∥∥
∞∑

n=N(α)+1

−〈g′′, sn〉 ·
sin(xn)

n

∥∥∥∥∥∥
∞

≤
∞∑

n=N(α)+1

∣∣∣∣〈g′′, sn〉 · 1

n

∣∣∣∣ (2.51)

and applying Cauchy–Schwartz inequality,∣∣∣∣∣∣
∞∑

n=N(α)+1

−〈g′′, sn〉 ·
1

n

∣∣∣∣∣∣ ≤
√√√√ ∞∑
n=N(α)+1

|〈g′′, sn〉|2 ·

√√√√ ∞∑
N(α)+1

1

n2

≤

√√√√ ∞∑
n=1

|〈g′′, sn〉|2 ·

√√√√ ∞∑
n=1

1

n2

(2.52)

with Bessels inequality and the Basel problem we get,∣∣∣∣∣∣
∞∑

n=N(α)+1

−〈g′′, sn〉 ·
1

n

∣∣∣∣∣∣ ≤ ‖g
′′‖∞ π√

6
(2.53)

So the series is convergent and therefore the tail tends to zero. Thus this problem
can be regularized.

As mentioned before, the regularization will truncate the infinite series into a
finite sum. Thereby making the problem itself well-posed. By doing so we ensure
a unique solution exists. Though it might not be exact it’s still considered a
solution. Suppose we have an odd function fodd and where f ∈W such that,

fodd =

{
−f(x), x ∈ [−π, 0]

f(x), x ∈ [0, π]
(2.54)

In order to find the optimal solution, the truncation number N(α) will be
choosen through studying the error estimates below.
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(a) This figure illustrates the function f(x). (b) This figure illustrates the function fodd(x).

Figure 2.1: This will be the value of fodd(x) thorughout this regularization.

(a) Illustration of the error estimation as
the truncation number, N(α), increases.

(b) Illustration of the error estimation as the
noise level, δ, increases.

Figure 2.2: Error estimation

From the error estimation, in Figure 2.2a1, it’s understood that the error
increases almost proportional to the noise level. However the error estimation,
in Figure 2.2b, proves that N(α) = 17 is the minimum error the function can
get. In other words the optimal solution becomes the expansion of Fourier series

1Correction: The x-axis in this figure is N(α) and not α.
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to the 17:th term.

Figure 2.3: A plot comparing the true function, f(x), with fδ40 and fδ17.

Here we can visually see how N(α) = 17 is a far better approximation than
N(α) = 40. In theory the more Fourier coeffiecients one uses the higher the
accuracy of the approximation. The Fourier coeffiecients converges to zero fast
making the last few terms in the sum unimportant. However in our case the
more Fourier coefficients used the more noise is retrived. One need to find the
perfect balence between noise and accuracy, in this example the balence was
found at N(α) = 17. We have now demonstrated how an inverse problem which
is ill-posed can be solved by transforming the problem into a well-posed one
through regularization.

For more information regarding the subject see [4] and [5].



Chapter 3

Solving Helmholtz Equation
in a Rectangle

This chapter will produce a solution for Helmholtz equation. The problem
will be met with complete boundary conditions, this to ensure that a unique
solution exists. The aim with this chapter is to demonstrate how ill-posed
problems can turn into well-posed ones through Tikhonov’s regularization. The
main problem can be seen as two problems. The first, a direct problem, where
given Dirichlet data on Λ1 shall predict the Dirichlet data on Λ2. The second,
an inverse problem, that estimates the Dirichlet data on Λ1 by only observing
the Dirichlet data on Λ2. In both cases, Neumann data will be given on Λ2 and
Dirichlet data on Λ1.

x

y

u(x,y)

b

1

u(1, y) = 0u(0, y) = 0

Λ1 : u(x, b) = f(x)

Λ2 : ∇u(x, 0) ·
[

0
−1

]
= 0

Figure 3.1: This figure illustrates the boundary conditions of the problem.

Singh, 2021. 29
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3.1 Boundary Conditions
Before a complete and proper solution can be given for a problem, the conditions
must be examined. Let U ⊂ C1([0, 1] × [0, 1]) be a normed vector space where
u ∈ U and where the following conditions for u are met:

u(x, b) = f(x) (Dirichlet Condition) (3.1)

u(0, y) = 0 (Dirichlet Condition) (3.2)

u(1, y) = 0 (Dirichlet Condition) (3.3)

∇u(x, 0) ·
[

0
−1

]
= 0 (Neumann Condition) (3.4)

Remark 3.1.1. If an equation has both Neumann and Dirichlet boundary con-
ditions, the conditions are denoted as Cauchy’s boundary conditions.

The Helmholtz equation to solve is given as:

∇2u(x, y) + k2u(x, y) = 0 (3.5)

where k ∈ R.
An efficient way to find solutions to partial differential equations is to seper-

ate the variables into two distinct functions,

u(x, y) = X(x)Y (y) (3.6)

when this is reasonable. By seperation of variables the boundary conditions
becomes more precise:

Condition 2.1
u(x, b) = X(x)Y (b) = f(x), (3.7)

Condition 2.2

u(0, y) = X(0)Y (y) = 0 =⇒ X(0) = 0, (3.8)

Condition 2.3

u(1, y) = X(1)Y (y) = 0 =⇒ X(1) = 0, (3.9)

Condition 2.4

∇u(x, 0) ·
[

0
−1

]
=

[
X ′(x)Y (0)
X(x)Y ′(0)

]
·
[

0
−1

]
= 0 =⇒ Y ′(0) = 0. (3.10)
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Now we shall apply the conditions (3.31), (3.32), (3.33), (3.34) to u(x, y) once
a complete and proper expression is given to it.

3.2 Solution to Helmholtz Equation
By inserting the seperation functions, X(x) and Y (y), into Helmholtz equation
we get:

X ′′(x)Y (y) +X(x)Y ′′(y) = −k2X(x)Y (y), (3.11)

so

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= −k2 ⇐⇒ X ′′(x)

X(x)
= − 1

Y (y)
(Y ′′(y) + k2Y (y)). (3.12)

Both sides in equation (3.12) need to be equal to each other for a solution to
exist and since the left hand side is a function of x and the right hand side is a
function of y, they must be equal to a constant. We shall now denote −λ2 as
our seperation constant, so

X ′′(x)

X(x)
= − 1

Y (y)
(Y ′′(y) + k2Y (y)) = −λ2, (3.13)

where λ ∈ R. Therefore, we can write,{
X ′′(x) + λ2X(x) = 0

Y ′′(y)− (λ2 − k2)Y (y) = 0.
(3.14)

These equations are ordinary differential equations that have the following so-
lutions: {

X(x) = Sx sin(λx) + Cx cos(λx)

Y (y) = Sy sinh(dy) + Cy cosh(dy) k ≤ λ,
(3.15)

where Sx, Sy, Cx, Cy ∈ R and d2 = λ2 − k2, with 0 ≤ d.
Without any boundary conditions applied to equation (3.15), we get the

solution:

u(x, y) = (Sx sin(λx) + Cx cos(λx)) · (Sy sinh(dy) + Cy cosh(dy)). (3.16)

By applying the boundary conditions (3.31), (3.32), (3.33) given in section 3.1,
the expression for u(x, y) can be reduced to:

u(x, y) = Γ sin(λnx) cosh(dny), (3.17)
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where λn = nπ and dn =
√
λ2
n − k2. Here we require that k ≤ π for all n ∈ N+,

and Γ ∈ R. The full derivation of this equation can be found in Appendix B.
Now we have found a concrete expression for u(x, y). Observably there are

an infinte amount of solutions to u(x, y). Depending on the n value, a different
frequency with a different amplitude is given. Since they’re all valid solutions
we form a linear combination. In order to excute this we need to use Fourier
series.

3.3 Expansion of a Solution Using Fourier Series
According to [1] the Fourier coefficients can be derived with this theorem.

Theorem 3.3.1. The Fourier series for u ∈ L1
T is the trignometric series,

u(t) =

∞∑
n=−∞

Wne
inΩt, t ∈ R, (3.18)

where Wn ∈ C and the real part of u is given by:

u(t) =
C0

2
+

∞∑
n=1

Sn sin(nΩt) + Cn cos(nΩt), (3.19)

where
Sn = 2

 
T

u(t) sin(nΩt) dt (3.20)

and
Cn = 2

 
T

u(t) cos(nΩt) dt (3.21)

Equation (3.17) suggests that all the trigonometric functions satisfying the
equation are needed to form u(x, y). The series will contain all the possible
frequencies with their corresponding amplitudes:

u(x, y) =

∞∑
n=1

Γn sin(λnx) cosh(dny). (3.22)

Remark 3.3.1. If the period goes instead from x : 0 → 1 to x : 0 → π the
equations would become slightly more pleasent to work with,

λn = n, (3.23)

and
dn =

√
n2 − k2, k ≤ 1 (3.24)

where n ∈ N+.



3.3. Expansion of a Solution Using Fourier Series 33

By applying Condition 3.31 to the function we get

u(x, b) = f(x) =

∞∑
n=1

Γn sin(λnx) cosh(dnb) (3.25)

=⇒ f(x) =

∞∑
n=1

Γ′n sin(λnx) (3.26)

where Γ′n = Γn cosh(dnb).

From Theorem 3.3.1 it’s understood that the Fourier coeffcients, Γ′n, can be
expressed with equation (3.20), and f(x) is chosen as an odd function, thereby
yielding,

Γ′n = 2

 
T

f(x) sin(λnx) dx =

ˆ 1

0

f(x) sin(λnx) dx. (3.27)

Thus we get u(x, y) as:

u(x, y) =

∞∑
n=1

Γn sin(λnx) cosh(dny)

=

∞∑
n=1

Γ′n
sin(λnx) cosh(dny)

cosh(dnb)

=

∞∑
n=1

[
sin(λnx) cosh(dny)

cosh(dnb)

ˆ 1

0

f(x) sin(λnx) dx

]
.

(3.28)

An expression for u(x, y) has been created for every point inside the rectangle,
[0, 1] × [0, b]. The second problem is to decide what value is recieved at the
opposite side of f(x) in the rectangle. Since f(x) = u(x, b), we get the other
side as g(x) = u(x, 0). The complete solution to the direct problem is:

u(x, 0) =

∞∑
n=1

[
sin(λnx)

cosh(dnb)

ˆ 1

0

f(x) sin(λnx) dx

]
= g(x). (3.29)

Now we have an expression for the linear operator, T :

(Tf)(x) =

∞∑
n=1

[
sin(λnx)

cosh(dnb)

ˆ 1

0

f(x) sin(λnx) dx

]

=

∞∑
n=1

〈f, sn〉 ·
sin(λnx)

cosh(bdn)
.

(3.30)
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Remark 3.3.2. If there exist another solution, unrelated to our solution, it
indicates that the problem does not have a unique solution. To prove that
Hadamard’s first and second condition are also satisfied for some values of k,
one need to study the homogeneous solutions for the Helmholtz equation.

A Theorem is given to strengthen the uniqueness of our solution.

Theorem 3.3.2. If k = nπ, then equation (3.5) has infinitely many solutions
with Dirichlet data equal to zero.

Proof. To find the homogeneous solutions to Helmholtz equation the boundary
conditions are set to zero,

x

y

uh(x, y)

b

1

uh(1, y) = 0uh(0, y) = 0

uh(x, b) = 0

uh(x, 0) = 0

The boundary conditions therefore becomes:
Condition 3.4

uh(x, b) = X(x)Y (b) =⇒ Y (b) = 0 (3.31)

Condition 3.2

uh(0, y) = X(0)Y (y) = 0 =⇒ X(0) = 0 (3.32)

Condition 3.3

uh(1, y) = X(1)Y (y) = 0 =⇒ X(1) = 0 (3.33)

Condition 3.4

uh(x, 0) = X(x)Y (0) = 0 =⇒ Y (0) = 0 (3.34)

The seperations solutions to Helmholtz equation becomes:

=⇒

{
X(x) = Sx sin(λx) + Cx cos(λx)

Y (y) = Sy sinh(dy) + Cy cosh(dy) k ≤ λ
(3.35)
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Applying the boundary condition yields the complete solution:

u(x, y) =

{
Γ sin(λx) sinh(dy), k = nπ

0, k 6= nπ
(3.36)

Which means if k = nπ then the solution cannot be unique and thereby do not
satisfy Hadamard’s second condition.

If k 6= nπ (say if k is close to zero), the Helmholtz equation with our con-
ditions is known to have a unique solution. This means in particular that our
representation of T is the unique operator mapping Dirichlet data from Λ1 to Λ2.

Now we shall show that this linear operator, (3.30), satisfies all of Hadamard’s
conditions.

3.4 The Linear Operator
Similarily with Chapter 2, we shall show that the linear operator, T , that was
derived from Helmholtz equation satisfies all of Hadamard’s conditions. To do
this, we must first give a brief definition of our linear operator:

Definition 3.4.1. Let the linear operator, T : P → P, have the following defi-
nition:

Tf(x) =

∞∑
n=1

〈f, sn〉 ·
sin(λnx)

cosh(bdn)
(3.37)

where
P ∈ {p ∈ C1[0, 1] : p(0) = p(1) = 0} (3.38)

and f ∈ P.

Considering that the linear operator is expressed as a Fourier series, we can
use an analogous proof of uniqueness as the one in Chapter 2. In other words,
to show that Hadamard’s first and second condition of well-posedness are valid,
we can use Dirchlet’s convergence theorem, see equation (2.16). According to
our linear operator definition, f and g ought to be continuous on [0,1], thereby
easily expressing the values from g(a+) and g(a−) as g(a). Thus proving that
the problem Tf = g has a unique solution.
Hadamard’s third condition states that the operator needs to be continuous.
Similarily as the proof showed in Chapter 2 we shall prove its continuity through
its boundedness.
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Lemma 3.4.1. The linear operator T defined in 3.4.1 is L∞- and L2-bounded
for all p ∈ P.

There are many ways to prove this lemma. In this proof we shall use the
Maclaurin Expansion of cosh(dnb), since it is defined over the whole R.

Proof.

|Tf | ≤
∞∑
n=1

|〈f, sn〉| ·
| sin(nx)|
cosh(dnb)

≤
∞∑
n=1

|〈f, sn〉| ·
1

cosh(dnb)
(3.39)

the Maclaurin Expansion of cosh(x):

cosh(x) =

∞∑
k=0

x2k

(2k)!
= 1 +

x2

2!
+
x4

4!
+ · · · (x ∈ R) (3.40)

so

1

cosh(x)
=

1

1 + x2

2! + x4

4! + · · ·

≤ 1

1 + x2

2!

=
2

2 + x2

≤ 2

x( 2
x + x)

≤ 2

x
,

(3.41)

where x > 0. By letting k ≤
√
π2 − 1, the inequality from equation (3.39)

becomes:

|Tf | ≤
∞∑
n=1

|〈f, sn〉| ·
2

bdn
=

∞∑
n=1

|〈f, sn〉| ·
2

b
√

(π2n2 − k2)

≤
∞∑
n=1

|〈f, sn〉| ·
2

bn
√

(π2 − k2

n2 )
,

≤
∞∑
n=1

|〈f, sn〉| ·
2

bn
.

(3.42)

By the Cauchy–Schwartz inequality:

|Tf | ≤

√√√√ ∞∑
n=1

|〈f, sn〉|2 ·

√√√√ ∞∑
n=1

4

b2n2
(3.43)
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and applying Bessel’s inequality for the left factor in equation (3.43):

∞∑
n=1

|〈f, sn〉|2 ≤ ‖f‖22 . (3.44)

Similarly as in equation (2.10), the right factor of equation (3.43) becomes:

∞∑
n=1

4

b2n2
=

4

b2

∞∑
n=1

1

n2
=

2π2

3b2
. (3.45)

This gives us the following inequality,

‖Tf‖∞ ≤ ‖f‖2 ·
√

2π2

3b2

≤ ‖f‖2 ·
√

2

3

π

b
.

(3.46)

By Parseval’s identity,

‖f‖2 =

∞∑
n=1

|cn|2 =

ˆ 1

0

|f(x)|2 dx, (3.47)

which gives the final expression,

‖Tf‖∞ ≤
√

2

3

π

b

ˆ 1

0

|f(x)|2 dx. (3.48)

Since ‖f‖2 ≤ ‖f‖∞, we get the final inequality,

‖Tf‖∞ ≤
√

2

3

π

b
· ‖f‖∞ . (3.49)

Thus proving that this operator is L2-bounded and L∞-bounded, thereby T is
continuous.

We have proved that the linear operator, T , is continuous and that the
problem Tf = g has unique solution. The operator satisfies all of Hadamard’s
conditions. However just because the linear operator satisfies them doesn’t mean
the inverse operator, T−1, will.
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3.5 The Inverse Operator
In this section we present the proof that the inverse operator is unbounded,
making the whole problem ill-posed.

Recall that the linear operator divided each Fourier coefficient with cosh(bdn),
so by applying the same reasoning as in Chapter 2, the inverse operator is found
when each Fourier coefficient is multiplied by cosh(bdn). Due to how large the
function space P is, it exceeds R(T ). For more on this claim, see Appendix A.
This give us the following Theorem:

Theorem 3.5.1. Let T be as in Definition 3.4.1, then the inverse operator can
be expressed as:

T−1g(x) =

∞∑
n=1

〈g, sn〉 · sin(λnx) cosh(bdn) (3.50)

where
P ∈ {p ∈ C1[0, 1] : p(0) = p(1) = 0}, (3.51)

R(T ) ⊂ P, (3.52)

and g ∈ R(T ), where R(T ) is the range of the operator.

The inverse operator does not satisfy Hadamard’s third condition and there-
fore the inverse problem is ill-posed.

Lemma 3.5.1. The inverse operator T−1 defined in Theorem 3.5.1 is un-
bounded on R(T ).

Proof. Firstly, let z be a C3[0, 1]-function. Then the complex Fourier series is
given as

z(x) =

∞∑
n=−∞

〈z, en〉 · einπx (3.53)

and let

〈z, en〉 =
1

2

ˆ 1

−1

z(t)einπtdt = Φn. (3.54)

Then the derivitive of z becomes,

dz

dx
= iπ

∞∑
n=−∞

Φn · neinπx. (3.55)
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From [8] we understand that if z is of class C3 then Φn tends to zero faster than
|n|−3 as n → ±∞. We shall return to equation (3.55) later. For now, consider
a function g ∈ R(T ) such that,

〈g, en〉 =
n · Φn

cosh(bdn)
. (3.56)

This is a reasonable sequence of Fourier coefficients, considering that both Φn →
0 and n

cosh(bdn) → 0 rapidly when n→ ±∞.
The inverse operation in complex form is given as,

T−1g =

∞∑
n=−∞

〈g, en〉 · einπx cosh(bdn)

=

∞∑
n=−∞

n · Φn
cosh(bdn)

· einπx

=

∞∑
n=−∞

Φn · neinπx.

(3.57)

Inserting equation (3.55) in equation (3.57),

T−1g =
1

iπ

dz

dx
(3.58)

This suggests that the inverse operator performs a differential operation on z.
Similarly as Proof 2.1, one can show that the differential operator is unbounded
on C∞. Therefore it can be concluded that this operator, T−1, is unbounded
yielding that the inverse problem is ill-posed.

Acknowledging that the inverse operator is unbounded point us to the di-
rection of regularization, more specifically Tikhonov’s regularization.

3.6 Tikhonov’s Regularization
Inverse problems are generally unstable, which poses significant challenges to
their accurate and stable numerical solution. That’s why specialized techniques
are required. One of the strongest regularization techniques was proposed by
Andrey Tikhonov, hence the name Tikhonov’s regularization. Since this is a well
known regularization method, it should be understood that this regularization
method yields methods satisfying Definition 1.4.1. In the search for sufficient
evidence for this claim see [4].
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Now, we shall introduce Tikhonov’s functional, Jα(Note that this J is differ-
ent from the J in Definition 1.4.1), and find the function that minimizes this
functional:

min
f∈P
{Jα(f) =

∥∥Tf − gδ∥∥2

2
+ α2 ‖f‖22} (3.59)

where it’s minimizer, denoted by fδα, is the final solution. By equation (3.59)
the following value for the minimizer, fδα could be obtained,

fδα = (T ∗T + α2I)−1T ∗gδ. (3.60)

Through a matrix discretization perspective, we understand that the right side,
TT gδ is bounded and the left side T ∗T + α2I could be written as TTT + α2I
since the TTT yields a positive semidefinite matrix we get that the norm of the
inverse is bounded by 1

α . Hence g → f is a bounded operation. Thereby satis-
fying Hadamard’s third condition. If all the boundary condition of Helmholtz
equation in a rectangle are set to zero (Dirichlet Condition), the Dirichlet data
from f(x) to g(x) won’t be altered. Before numerically testing this we will
consider a different approach for comparison.

3.7 Operator From Partial Fourier Transform
In this section we shall present the partial Fourier transform operator which will
be compared with our Fourier series operator.

To find this operator we shall first construct the Helmholtz equation in the
frequency domain. The boundary conditions of the problem will also be trans-
formed for the partial frequency domain. Rather than as a variable, y will
be considered as a constant thus making the equation into an ordinary dif-
ferential equation. Let the partial Fourier transform of u(x, y) be denoted as
U(ωn, y) = U . Then the Helmholtz equation in the partial frequency domain
becomes:

∇2u(x, y) + k2u(x, y) = 0 =⇒ −ω2
nU +

d2U

dy2
+ k2U = 0 (3.61)

so
d2U

dy2
= (ω2

n − k2)U, k < ωn. (3.62)

This gives us the following solution,

U(ωn, y) = S(ωn) sinh(
√
ω2
n − k2y) + C(ωn) cosh(

√
ω2
n − k2y) (3.63)
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where C and S are functions of ω. The boundary conditions in the frequency
domain becomes,

u(x, b) = f(x) =⇒ û(ωn, b) = F (ωn)

u(x, 0) = g(x) =⇒ û(ωn, 0) = G(ωn)

∇u(x, 0) ·
[

0
−1

]
= 0 =⇒ û′y(ωn, 0) = 0

(3.64)

and applying these conditions we get the following:

U ′y(ωn, 0) = 0 =⇒ S(ωn) = 0. (3.65)

Then it follows that

F (ωn) = û(ωn, b) = C(ωn) cosh(
√
ω2
n − k2b),

G(ωn) = û(ωn, 0) = C(ωn).
(3.66)

Recall that in the direct problem we wanted to determine G(ωn) through only
F (ωn), so

G(ωn) =
F (ωn)

cosh(
√
ω2
n − k2b)

(3.67)

vice versa the inverse problem is given by the following.

F (ωn) = G(ωn) cosh(
√
ω2
n − k2b). (3.68)

Now that the expression for the linear operator and it’s inverse has been ex-
pressed, we shall give them a proper definition. The linear operator is defined
as follows.

Definition 3.7.1. The linear operator,

T : `2(N)→ `2(N)

is defined by

(TF )(ωn) =
F (ωn)

cosh(b
√
ω2
n − k2)

(3.69)

where F is a `2-function and where ωn = nπ, n ∈ N+.

The uniqueness in Fourier Transform still applies here, and satisfies Hadamard’s
first and second conditions.

Lemma 3.7.1. The operator T defined in (3.7.1) is bounded, satisfying the
Hadamard’s third condition.
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Proof.

‖TF (ωn)‖2 =

∥∥∥∥∥ F (ωn)

cosh(b
√
ω2
n − k2)

∥∥∥∥∥
2

≤ ‖F‖2 . (3.70)

Using the formulation made in equation (3.68), the inverse gets the following
definition.

Definition 3.7.2. The inverse operator,

T−1 : `2(N)→ `2(N),

this gives us,
(T−1G)(ωn) = cosh(b

√
ω2
n − k2) ·G(ωn) (3.71)

where G is an `2-function.

In Chapter 2 of [6] it’s proven that this inverse operator is unbounded. Ac-
knowledging that the inverse operator is unbounded, yields that the inverse
problem is ill-posed. Now, to solve this we shall implement Tikhonov’s regu-
larization to this inverse problem as well. However since the inverse operator
in this case is just a multiplication of cosh(b

√
ω2
n − k2), the equation (3.60)

becomes

F δα =
cosh(b

√
ω2
n − k2)

cosh2(b
√
ω2
n − k2) + α2

·Gδ. (3.72)

Now all the necessary theory needed to regularize this inverse problem has been
provided. A representation of the accuracy of each inverse operator will be
presented in the next section.
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3.8 Error Estimation
This section provides a series of figures demonstrating the stability of each
operator. It should be noted that the operators of interest are as follows.

• The Partial Fourier Transform with Tikhonov’s regularization, PFT-T,
from section (3.7).

• The Complete Fourier Series with Tikhonov’s regularization, CFS-T, from
Section (3.5).

• The Truncated Fourier Series, TFS, from Section (2.1.1).

All of the operators stability will be demonstrated by plotting each operators
predicted Dirichlet data on Λ1 as the noise of the measured Dirichlet data on
Λ2 increases. Furthermore the real Dirichlet data on Λ1 will be plotted before
hand in order to know what the solution should look like and to decide the best
operator, see Figure (3.2).

Figure 3.2: This figure illustrates how the real Dirichlet data of f(x).

Additional noise from a normally distributed source will be added to the Dirich-
let data of Λ2. The following plots contains the operators predicted Dirichlet
data of Λ1 from the measured Dirichlet data of Λ2. The noise level will be
presented in each plots.
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Figure 3.3: Predicted f(x) from all the operators. The red graph is CFS-T,
blue dotted one is PFT-T and the black dotted one is TFS.

When the noise level is 0 the operator’s predictions are pretty accurate. How-
ever, in the left corner of this plot and on the right top corner we find a difference.

(a) The left corner of Figure 3.3. (b) The right top corner of Figure 3.3

Figure 3.4: Two zoomed in sections of interest, from Figure 3.3
.
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Observably the TFS is far better than the other two. We can also conclude that
the CFS-T operator is slightly better than PFT-T operator at the noise level 0.

Figure 3.5: This figure illustrates how the three operators predicted the data of
f(x) with noise level 4 · 10−6.

Figure 3.6: A zoomed in section of Figure 3.5. More specifically at 0.4 < x < 0.8
and 5.5 < y < 9.5.
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In Figure 3.5 we can see that all the operators manage to reproduce the expected
Dirichlet data with the noise level set at 4 · 10−6. This suggests that they’re all
reasonable operators to use at this level of noise. However the biggest difference
between the operators is found in the middle section of Figure 3.5. A bigger
version of that zoomed in section is found in Figure 3.6.

In Figure 3.6 we can see that the CFT-T is closer to the true function in the left
section and TFS is closer in the right section. In the middle they’re both pretty
close to eachother. The only conclusion is that PFT-T is slight worse than the
other two at the noise level 4 · 10−6.

Figure 3.7: This figure illustrates how the three operators predicted the data of
f(x) with noise level 4 · 10−4.

In Figure 3.7, we can visually see how instable the PFT-T truely is. It shall be
noted that the amplitudes have increased 5 times as the noise has increased by
a factor 100. In order to differentiatate between the operators CFT-T and TFS
we shall look at a more zoomed in version of this Figure.
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Figure 3.8: A zoomed in section of Figure 3.7 adjusted to the true data.

In Figure 3.8 we can see that both operators are still functioning and are stable
in the sense that the amplitudes are still reasonably close to the true data. The
TFS is more stable and closer to the true data than PFT-T is at the noise level
4 · 10−4.

(a) Illustration of all three operators. (b) This figure ignores PFT-T:s plot.

Figure 3.9: Illustration of the prediction with noise level: 4 · 10−2.
.
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Figure 3.9a shows the instability of PFT-T. Here the amplitudes have increased
by factor 100 compared to Figure 3.7. From Figure 3.9b, we can see that the
CFT-T operator is far closer to the real data than the operator of TFS. This
suggests that CFT-T might be the most robust operator with the given Dirichlet
data, f(x), on Λ1.
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Conclusion

Many problems in real life are ill-posed. Our measurement equipment are not
perfect either, there is always some noise lurking around. Regularization tech-
niques are of extreme importance in these areas. Tikhonov’s regularization can
be found in many forms (L2-space was used in this paper), and therefore quali-
fying it as a powerful regularization technique.

In this work its demonstrated how powerful and robust the Tikhonov’s reg-
ularization (in L2) method really is. The implementation of this technique
requires a large matrix, which can make some problems numerically expensive.
The PFT-T and TFS are very cheap regularization techniques compared to it.

The conclusion from the error estimation with our given Dirichlet data f(x)
in (3.2) is: if the noise level is at the interval of [0, 4·10−6] then PFT-T is the best
option due to how cheap it is. If the noise rises to interval of [4 · 10−6, 4 · 10−4]
then TFS shall be in consideration due to the accuracy and cheapness. If the
noise gets any larger than that then CFT-T should be considered. Overall CFT-
T is the most robust operator amongst them.

Many times the noise level is unknown and therefore having an operator which
is robust at high levels of noise just as it is robust at low levels of noise is essen-
tial for an accurate result. That is one reason why Tikhonov’s regularization is
a powerful technique, which is demonstrated in this paper.
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Appendix A

Proving Divergence With
Maclaurin Expansion

Proof. Suppose the function g ∈ P has the following definition,

g(x) = x(1− x), (A.1)

this gives us the corresponding Fourier coefficients as

〈g, sn〉 =
2(1− cos(πn))

π3n3
, n ∈ N+. (A.2)

The inverse operation becomes:

T−1g =

∞∑
n=1

2(1− cos(πn))

π3n3
sin(nπx) cosh(bdn). (A.3)

Since all the even values of n becomes zero and all the odd values on n becomes 4,
the summation simplifies to,

T−1g =

∞∑
n=1

4

π3(2n− 1)3
sin((2n− 1)πx) cosh(bd2n−1). (A.4)

Now, in order to show its unboundedness, we’ll use uniform norm:

∥∥T−1g
∥∥
∞ =

∥∥∥∥∥
∞∑
n=1

4

π3(2n− 1)3
sin((2n− 1)πx) cosh(bd2n−1)

∥∥∥∥∥
∞

. (A.5)
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Now a divergence test seems appropriate. Let aN be denoted as the n:th element
in the series and let x be such that sin((2N − 1)πx) is nonzero, then we get
following equations,

aN =
4

π3(2N − 1)3
sin((2N − 1)πx) cosh(bd2N−1). (A.6)

and applying the Maclaurin expansion to cosh(bdn):

aN =
4 sin((2N − 1)

π3(2N − 1)3

∞∑
i=0

b2i[(πN)2 − k2]i

(2i)!
. (A.7)

When n→∞, we get

lim
N→∞

aN = lim
N→∞

4 sin(2N − 1)

π3(2N − 1)3

∞∑
i=0

b2i[(πN)2 − k2]i

(2i)!
(A.8)

By analyzing equation (A.8) we understand that R(sin((2N − 1)) ∈ [−1, 1] and
if N →∞ the expression sin((2N−1)x) becomes undefined while the Maclaurin
expansion will consume the expanding denominator and diverge. According to
the Defintion (10.1) in [3] “ if the limit is either infinity or does not
exist, the series is defined as divergent. ” . Thus aN can be concluded as
divergent resulting in that the inverse operator can be concluded as unbounded.

In conclusion the function space P seems to be too large for this operator
and thereby strengthening the use of R(T ) in Theorem 3.5.1.



Appendix B

Applying Boundary
Conditions

Condition 3.32
Applying,

X(0) = 0 (B.1)

to the solution,
X(x) = Sx sin(λx) + Cx cos(λx), (B.2)

we get
X(0) = Cx = 0. (B.3)

Thus we get X(x) as:
X(x) = Sx sin(λx) (B.4)

Condition 3.33
Similarly,

X(1) = 0 (B.5)

gives the solution,
X(x) = Sx sin(λx), (B.6)

as,

X(1) = Sx sin(λ) = 0

=⇒ λ = λn = πn
(B.7)

where n ∈ N+.
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Considering that d is a function of λ, d(λ) and λ is a function of n, we need
to redefine d as function of n. From equation (3.15) d is expressed as:

d2 = k2 − λ2 =⇒ d2
n = k2 − λ2 (B.8)

we choose
dn =

√
k2 − λ2

n (B.9)

For dn to exist the following inequality must be true for all n ∈ N+: k ≤ π.
(Since all λ ≥ π)
Condition 3.34 Applying,

Y ′(0) = 0, (B.10)

yields the following,

Y ′(x) = Sy cosh(dny) + Cy sinh(dny). (B.11)

Here we can see that,
Y ′(0) = Sy = 0 (B.12)

Thus we get Y(y) as:
Y (x) = Cy cosh(dny). (B.13)

Now we have simplified the expression as far as it goes and we get the
following equation for u(x, y) as:

u(x, y) = X(x)Y (x) = Γ sin(λnx) cos(dny) (B.14)

where Γ is defined as Γ = SxCy.
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