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Abstract: The high-density microneedle array patch (HD-MAP) is a promising alternative vaccine
delivery system device with broad application in disease, including SARS-CoV-2. Skin reactivity to
HD-MAP applications has been extensively studied in young individuals, but not in the >65 years
population, a risk group often requiring higher dose vaccines to produce protective immune responses.
The primary aims of the present study were to characterise local inflammatory responses and barrier
recovery to HD-MAPs in elderly skin. In twelve volunteers aged 69–84 years, HD-MAPs were applied
to the forearm and deltoid regions. Measurements of transepidermal water loss (TEWL), dielectric
permittivity and erythema were performed before and after HD-MAP application at t = 10 min,
30 min, 48 h, and 7 days. At all sites, TEWL (barrier damage), dielectric permittivity (superficial
water);, and erythema measurements rapidly increased after HD-MAP application. After 7 days, the
mean measures had recovered toward pre-application values. The fact that the degree and chronology
of skin reactivity and recovery after HD-MAP was similar in elderly skin to that previously reported
in younger adults suggests that the reactivity basis for physical immune enhancement observed in
younger adults will also be achievable in the older population.

Keywords: microneedles; vaccination; skin barrier integrity; evaporimetry; skin reactivity; polarisa-
tion spectroscopy; dielectric permittivity

1. Introduction

As the world enters the third year of the COVID-19-pandemic, the emergence of
new SARS-CoV-2 variants such as Omicron are expected to cause the continued need for
additional vaccine boosters to protect risk groups [1]. At the beginning of the COVID-19
pandemic, age was quickly identified as a prominent risk factor [2], making vaccination
of the elderly a priority. Typically, most vaccines are administered via subcutaneous or
intramuscular routes [3]. However, these vaccine delivery methods have disadvantages
linked to the requirement of administration by health care professionals, the generation
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of contaminated sharp waste, and the risk of local side effects related to injection [4]. An
alternative route of vaccination is by microneedles, which aims at the intradermal delivery
of the vaccine. We have experience with a high-density microarray patch (HD-MAP)
vaccine delivery platform. The HD-MAP applied to the skin provides practical advantages,
including the absence of sharps, a reduced dependence or total removal from the cold chain,
and the possibility for self-application through the use of a disposable applicator [5–7].
The HD-MAP delivers the vaccine antigen to the epidermal and dermal layers of the skin
containing a high density of dendritic cells. As a function of this targeted vaccine delivery,
our group and other researchers have demonstrated that enhanced immune responses with
lower doses of vaccine are achievable as compared to traditional needle-based vaccination
methods [8,9]. Previous studies have demonstrated the broad utility of the HD-MAP
delivery platform, which has shown promising results against the dengue virus [10–12],
influenza [13,14], West Nile virus, Chikungunya virus [15], Japanese encephalitis [16],
and poliovirus [17,18]. Recently, pre-clinical studies using the HD-MAP have shown
promising results producing broadly high titre neutralizing antibody responses against the
SARS-CoV-2 ancestral virus and variants of concerns [19].

To date, previously reported clinical studies evaluating microneedle vaccinations
have been performed in young adults in whom the skin is relatively reactive to external
stimulus/provocation resulting in adaptive and innate immune reactivity [20–22]. Previous
experience of vaccination in the elderly, for instance against influenza, has shown that it
is necessary to apply an increased dose of the vaccine to maintain efficacy [23,24]. The
kinetics of skin barrier recovery following penetration by HD-MAP is relevant for subject
acceptability. Quantification of transepidermal water loss (TEWL) by evaporimetry is
a classic method for assessing the barrier function in the skin. While there is always a
background level of water vapour escaping the surface, once the HD-MAP punctures the
skin, the integrity of the stratum corneum is lost and the rate of water loss from the viable
epidermis increases markedly. Thus, measurements of TEWL can serve as an indicator of
successful HD-MAP engagement as well as being per se an illustration of the induction of
an innate reactivity and of an individual’s wound healing kinetics after the minor trauma
caused by the HD-MAP application. In younger individuals, we have previously observed
skin barrier recovery within 48 h observed by TEWL [20], and the resistance to topical
histamine application after the same time period [25]. Non-invasive methodology allows
documentation of skin barrier penetration/damage, induction of reactive inflammation,
and the possibility to follow changes over time, which are the advantageous attributes of
microneedle vaccine administration, without the discomfort and possible minor side events
of the skin biopsy technique.

The aim of this study was therefore to study the reactive capability of elderly skin to the
application of uncoated (not containing vaccine) HD-MAPs to the skin of the volar forearm
and deltoid region, quantifying reactivity by measuring transepidermal waterloss as an
indicator of both barrier penetration and reactivity as well as superficial skin hydration
and erythema as indicators of inflammatory response.

2. Materials and Methods
2.1. Volunteers

Twelve volunteers, with a mean age ± standard deviation (range min to max) of 75 ± 5
(69 to 84) years and a body mass index of 27 ± 5 (21 to 37) kg/m2, were recruited and
gave their written informed consent. The volunteers were asked to refrain from drinking
coffee, tea, or alcohol and from exercise on the day of each measurement. The volunteers
were seated comfortably in a semi-supine position during the measurements, which started
after 20 min of acclimatization. Provocations and measurements were undertaken at
the forearm and deltoid regions. Lighting conditions in the room were kept constant
by closing window blinds and turning off ambient lights during measurements with the
polarisation spectroscopy device. The room temperature was maintained at 21 ± 1 ◦C.
The non-invasive nature of the assessment methods facilitated the study of individual
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phenotype, variability due to the presence or severity of disease as well as the possible
influence of interactivity between therapeutic agents and vaccine effectiveness. The study
was approved by the Regional Ethics Committee at Linköping University Hospital (Dnr.
MB 2017-409-31, 18 October 2017).

2.2. Procedure

Participants received one HD-MAP applied to the volar forearm and one applied to the
deltoid region on the non-dominant arm (Figure 1), as previously described by Muller et al.
(2020) [20]. The application sites were free from hair, tattoos, scars, and visible veins. All
areas were cleaned with an alcohol swab prior to application. Before application, the sites
were compressed with a pre-calibrated skin conditioning ring (Vaxxas Pty Ltd., Brisbane,
Australia) at a force of 30 N, to equalise the resistance of the skin between volunteers. A
preloaded applicator device (Vaxxas Pty Ltd., Brisbane, Australia) was then docked into a
skin conditioning ring. The applicator was triggered to apply the HD-MAP at a speed of
20 m/s. Once applied, HD-MAPs were left in place for 2 min. Immediately after removal,
pain and local signs, erythema, oedema, and the presence of minimal breakthrough or
minor “wet” bleeding were assessed clinically by trained staff, and skin physiological
measurements were performed. Wet bleeding was defined as the presence, immediately
after patch removal, of multiple pinpoint blood spotting on an applied tissue paper. Per-
ceived pain on a scale from 0 (no pain) to 10 (worst imaginable pain) was reported by the
volunteers at 10- and 30-min post-HD-MAP application. Measurements were recorded in
the order of transepidermal water loss (evaporimetry), dielectric permittivity, erythema
(polarisation spectroscopy), and by regular, high-resolution photography (dermoscopy).
Dermatoscopic and dielectric permittivity images were subsequently assessed at the study’s
time points for the grading of the occurrence and degree of petechia, “black dots” (thought
to be oxidation products in puncture points), scaling (dry flaking skin), and change in the
hydration of dielectric permittivity image brightness at the HD-MAP site [20,26]. Skin
physiological measurements were performed in the same order at 10 min and 30 min after
application and at return visits at 48 h and 7 days.
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Figure 1. Schedule of the application sites of high-density microneedle array patches (HD-MAP).
One HD-MAP applied to the volar forearm and one HD-MAP applied to the lateral deltoid region.
Underline showing timepoints for measurements after the application of HD-MAP.
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2.3. Equipment
2.3.1. High-Density Microarray Patches (HD-MAP)

The HD-MAP is a 1 × 1 cm patch containing 3136 conically shaped, from 120 µm at the
bottom to 25 µm at the top, solid microprojections with a length of 250 µm. It is constituted
by a non-dissolvable liquid crystal polymer and has a max penetration depth of 150 µm
but an average penetration of around 100 µm. The HD-MAPs used were non-coated and
applied as described in the procedure section.

2.3.2. Evaporimetry

Transepidermal water loss was used to indicate penetration of the epidermal barrier.
The measurement was performed by a Tewameter-300 probe (Courage + Khazaka electronic
GmbH, Köln, Germany) at each application site. Evaporimetry measures transepidermal
water loss as an indirect measure of barrier integrity. An increase in TEWL is expected
when the barrier is compromised. At each measurement, the Tewameter probe was placed
over the HD-MAP application site, and measurements were collected every second for
30 s and stabilised values selected for analysis. Collected data were analysed by CK-MPA-
Multi-Probe-AdapterFB, v2.4.2.1/207-11-10 (Courage + Khazaka electronic GmbH, Köln,
Germany).

2.3.3. Dielectric Permittivity

An Epsilon™ device (Epsilon Modell E100, Biox, London, UK) was used to estimate
the presence of water in the superficial layer, stratum corneum, of the skin. The measurement
principle has previously been well described [27]. Briefly, the system utilises the measure-
ment of the dielectric constant of the upper 5 µm of the skin to create a two-dimensional
hydration image of the skin surface. Due to 76,800 sensors within the sensing area of
12.8 × 15 mm, skin surface hydration can be mapped. We used the standardised “burst
mode” option with a 5 s delay after the first skin contact, a frame interval of 1 s, and a total
measurement period of 30 s.

2.3.4. Polarisation Spectroscopy

Tissue Viability Imaging (TiVi, WheelsBridge AB, Linköping, Sweden) was used to
estimate erythema (rubor). The measurement principle has previously been described in
detail [28]. Briefly, based on the wavelength-dependent absorption properties of red blood
cells (RBCs) and imaging-processing algorithms, a TiVi-value (in arbitrary units, AU) that
is linearly proportional to the local RBC concentration in the skin is calculated for each
pixel. Image analysis and the calculation of TiVi values were made using WheelsBridge
AB Software, v1.2.20, November 2018, Linköping, Sweden. The TiVi system was set to
single photo mode and a medium resolution and positioned approximately 25 cm above
the observed site.

2.3.5. Dermoscopy

Photographic documentation of the application sites was performed using a dermato-
scope (iC1, Heine Optotechnik GmbH & Co., Gilching, Germany) attached to a mobile
telephone (iPhone 6, Apple, Cupertino, CA, USA). Dermoscopy refers to the examina-
tion of the skin using skin surface microscopy. Dermoscopy is mainly used to evaluate
pigmented skin lesions but is also used for detailed analysis and documentation of inflam-
matory events.

2.3.6. Statistical Analysis

Data are presented in terms of mean ± SD. One way ANOVA with Šidák’s multiple
comparison test was used to compare changes between pre-application values and values
at 10 min, 30 min, 48 h, and 7 days. Differences between the forearm and deltoid regions
were tested with the Student’s t-test. The alpha level for statistical significance was set
at 0.05. All statistical analyses were made with the aid of GraphPad Prism v9.1.2 for



Vaccines 2022, 10, 583 5 of 11

Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com (accessed on
1 March 2022)).

3. Results

HD-MAP applications caused minimal discomfort. Perceived pain on a scale from 0
(no pain) to 10 (worst imaginable pain) was reported by the volunteers at 10- and 30-min
post-HD-MAP application. At 10 min, no volunteer reported perceived pain values higher
than 3. At 30 min, all volunteers, except one that reported 2, reported 0 perceived pain
(Supplementary Materials, Table S1). Minor wet bleeding was seen in 12 of the 24 HD-MAP
applications immediately upon removal of the HD-MAP (Table 1). Petechiae were seen
in most images at 10 and 30 min to be virtually absent at later time points. Black dots
at skin puncture points had developed in about half the cases by 48 h and 7 days. The
dermatoscopic images showed uneven dry and flaking skin in the pre-application images
in 9 of 24 cases and almost twice as many at later time points (Table 1). A representative
series of dermatoscopic images can be seen in Figure 2.

Table 1. The number of HD-MAP application sites with petechia, black dots, flaking, and minor
wet-bleeding at different observations. Each individual received two HD-MAPs. Only data from 4 of
the 12 volunteers were available at the 7 days follow up. Reactions grades as 1 = mild, 2 = moderate,
3 = severe, = not observed.

Petechiae Black Dots Flaking Wet Bleeding

Grade 1 2 3 0 1 2 3 0 1 2 3 0 1 0

Pre-treatment - - - 24 - - - 24 7 2 - 15 - 24
10 min 13 9 - 2 - - - 24 13 1 - 10 12 12
30 min 12 8 - 4 1 - - 23 13 2 - 9 - 24

48 h 1 1 - 22 10 3 - 11 14 2 - 8 - 24
7 days - - - 8 7 - - 1 7 - - 1 - 8
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Figure 2. Typical dermatoscopic images from each time point ((a) pre-application, (b) 10 min after
application of HD-MAP, (c) after 30 min, (d) 48 h and (e) 7 days). Note that petechiae are prominent
after 10 and 30 min, and black dots are observed after 48 h and 7 days. The black circle displays areas
with petechiae. Red circles display areas with black dots.

3.1. Quantification of Transepidermal Waterloss

Skin barrier integrity was indirectly assessed as TEWL (g/hm2) as measured by
evaporimetry. Mean pre-application TEWL values did not differ significantly between
regions (forearm; 6.65 ± 1.08 g/hm2, deltoid; 6.63 ± 2.19 g/hm2, p = 0.42). At the 10-
and 30-min observations, TEWL was significantly increased compared to respective pre-
application values (p < 0.0001) at both the forearm and deltoid (Figure 3A,B). The highest
mean TEWL values were observed at 10 min, 67.50 ± 13.49 g/hm2 at the forearm and
66.01 ± 10.95 g/hm2 at the deltoid. At 7 days there was no significant difference compared
to pre-application values at either region (forearm; p = 0.99, deltoid; p > 0.99).

www.graphpad.com
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Figure 3. Graphs of mean values and standard deviation after measurement by evaporimetry
(transepidermal water loss (TEWL)), dielectric permittivity, and polarisation spectroscopy (TiVi
values) during the timepoints; pre-application, 10 min (n = 12), 30 min (n = 12), 48 h (n = 12),
and 7 days (n = 4) after HD-MAP application. Explanations for subfigures: (A)—Forearm TEWL,
(B)—Deltoid TEWL, (C)—Forearm polarisation spectroscopy, (D)—Deltoid polarisation spectroscopy,
(E)—Forearm dielectric permittivity, (F)—Deltoid dielectric permittivity. * Shows significant differ-
ence with pre-application values.

3.2. Quantification of Superficial Skin Hydration

Superficial skin hydration, i.e., the presence of water in the stratum corneum, was
assessed as dielectric permittivity. Mean pre-application values for dielectric permittiv-
ity did not differ significantly between the application sites (forearm; 5.86 ± 2.05 F/m,
deltoid; 5.31 ± 2.42 F/m; p = 0.11). The dielectric permittivity increased significantly
(increased stratum corneum hydration) during the first 30 min at both sites (24 of 24 HD-
MAPs) compared to respective pre-application values (forearm; pre-application vs. 10
min, p < 0.0001, pre-application vs. 30 min, p < 0.0001; deltoid; pre-application vs. 10 min
p < 0.0001, pre-application vs. 30 min p < 0.0001) (Figure 3C,D). The highest values for
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dielectric permittivity were observed at 10 min, 34.00 ± 12.23 F/m at the forearm, and
39.08 ± 18.53 F/m at the deltoid. At 48 h there were no significant differences between the
pre-application values (forearm; pre-application vs. 48 h p > 0.99; deltoid; pre-application
vs. 48 h, p = 0.99). There was no significant difference compared to the respective pre-
application values at 7 days for either site (forearm; p = 0.76, deltoid; p = 0.88). However,
decreased signals (decreased hydration) compared to pre-application values at both sites
were observed in slightly less than half of the images at both 48 h and at 7 days (forearm;
pre-application mean dielectric permittivity value 5.87 ± 2.054 F/m, 48 h; 6.15 ± 0.56 F/m;
7 days, 2.16 ± 0.56 F/m; deltoid; pre-application 5.31 ± 2.42 F/m; 48 h, 5.70 ± 2.3 F/m,
7 days 1.86 ± 0.45 F/m) (Figure 4).

Vaccines 2022, 9, x FOR PEER REVIEW 7 of 11 
 

 

Superficial skin hydration, i.e., the presence of water in the stratum corneum, was as-

sessed as dielectric permittivity. Mean pre-application values for dielectric permittivity 

did not differ significantly between the application sites (forearm; 5.86 ± 2.05 F/m, deltoid; 

5.31 ± 2.42 F/m; p = 0.11). The dielectric permittivity increased significantly (increased stra-

tum corneum hydration) during the first 30 min at both sites (24 of 24 HD-MAPs) compared 

to respective pre-application values (forearm; pre-application vs. 10 min, p < 0.0001, pre-

application vs. 30 min, p < 0.0001; deltoid; pre-application vs. 10 min p < 0.0001, pre-appli-

cation vs. 30 min p < 0.0001) (Figures 3C–D). The highest values for dielectric permittivity 

were observed at 10 min, 34.00 ± 12.23 F/m at the forearm, and 39.08 ± 18.53 F/m at the 

deltoid. At 48 h there were no significant differences between the pre-application values 

(forearm; pre-application vs. 48 h p > 0.99; deltoid; pre-application vs. 48 h, p = 0.99). There 

was no significant difference compared to the respective pre-application values at 7 days 

for either site (forearm; p = 0.76, deltoid; p = 0.88). However, decreased signals (decreased 

hydration) compared to pre-application values at both sites were observed in slightly less 

than half of the images at both 48 h and at 7 days (forearm; pre-application mean dielectric 

permittivity value 5.87 ± 2.054 F/m, 48 h; 6.15 ± 0.56 F/m; 7 days, 2.16 ± 0.56 F/m; deltoid; 

pre-application 5.31 ± 2.42 F/m; 48 h, 5.70 ± 2.3 F/m, 7 days 1.86 ± 0.45 F/m) (Figure 4). 

 

Figure 4. Typical dielectric permittivity images of one individual from each time point ((a) pre-ap-

plication, (b) 10 min after application of HD-MAP, (c) after 30 min, (d) 48 h, and (e) 7 days). Note 

that an initial increased response is observed within 30 min after application, followed by a de-

creased response compared to pre-application after 48 h and 7 days. 

3.3. Quantification of Red Blood Cell Concentration 

The kinetics of the erythema reaction to HD-MAP application was quantified by TiVi. 

The mean TiVi value was 128.75 ± 43.51 AU at the forearm site and 126.08 ± 35.32 AU at 

the deltoid site and did not vary significantly between (p = 0.84). TiVi values at 10 min and 

48 h were significantly increased (p ≤ 0.0001)️ at the forearm and deltoid sites compared to 

the respective pre-application values (Figures 3E–F). TiVi values returned to pre-applica-

tion levels for both test sites at 7 days (forearm; p = 0.45, deltoid p = 0.99). TiVi values 

peaked at 30 min (275.1 ± 66.45 AU at the forearm site and 240.2 ± 63.19 AU at the deltoid 

site) with slightly lower values at 10 min (forearm; 260.6 ± 57.96 AU, deltoid; 233.3 ± 56.58 

AU). 

4. Discussion 

Here, we reported the innate reactivity and recovery of the skin in older adults fol-

lowing the application of HD-MAPs. The kinetics of the reaction were similar to those 

previously reported in younger skin [20]. Using a range of complementary skin physio-

logical methods of investigation, we found that HD-MAP application was associated with 

an instant loss of barrier integrity as measured by transepidermal water loss, which im-

plies capacity for vaccine delivery. HD-MAP application also triggered a rapid increase 

in erythema and surface hydration, which indicates the inflammatory provocation of the 

skin as a result of direct cell damage or the axon reflex mechanism [20,29]. The application 

of the HD-MAP resulted in erythema at 48 h, indicating tissue reactivity at a later time 

point than the rapid, direct cellular damage or axon-reflex mediated reaction. Evaporim-

etry and surface hydration values began by 48 h to approach pre-application values with 

near complete recovery within a week, except for surface hydration which fell to lower 

levels than at the outset. Decreased hydration fits with the dermoscopy images showing 

Figure 4. Typical dielectric permittivity images of one individual from each time point ((a) pre-
application, (b) 10 min after application of HD-MAP, (c) after 30 min, (d) 48 h, and (e) 7 days). Note
that an initial increased response is observed within 30 min after application, followed by a decreased
response compared to pre-application after 48 h and 7 days.

3.3. Quantification of Red Blood Cell Concentration

The kinetics of the erythema reaction to HD-MAP application was quantified by TiVi.
The mean TiVi value was 128.75 ± 43.51 AU at the forearm site and 126.08 ± 35.32 AU at
the deltoid site and did not vary significantly between (p = 0.84). TiVi values at 10 min and
48 h were significantly increased (p ≤ 0.0001) at the forearm and deltoid sites compared to
the respective pre-application values (Figure 3E,F). TiVi values returned to pre-application
levels for both test sites at 7 days (forearm; p = 0.45, deltoid p = 0.99). TiVi values peaked at
30 min (275.1 ± 66.45 AU at the forearm site and 240.2 ± 63.19 AU at the deltoid site) with
slightly lower values at 10 min (forearm; 260.6 ± 57.96 AU, deltoid; 233.3 ± 56.58 AU).

4. Discussion

Here, we reported the innate reactivity and recovery of the skin in older adults fol-
lowing the application of HD-MAPs. The kinetics of the reaction were similar to those
previously reported in younger skin [20]. Using a range of complementary skin physi-
ological methods of investigation, we found that HD-MAP application was associated
with an instant loss of barrier integrity as measured by transepidermal water loss, which
implies capacity for vaccine delivery. HD-MAP application also triggered a rapid increase
in erythema and surface hydration, which indicates the inflammatory provocation of the
skin as a result of direct cell damage or the axon reflex mechanism [20,29]. The application
of the HD-MAP resulted in erythema at 48 h, indicating tissue reactivity at a later time
point than the rapid, direct cellular damage or axon-reflex mediated reaction. Evaporime-
try and surface hydration values began by 48 h to approach pre-application values with
near complete recovery within a week, except for surface hydration which fell to lower
levels than at the outset. Decreased hydration fits with the dermoscopy images showing
flaking skin, and we interpreted this as post inflammatory desquamation, a phenomenon
not observed in younger skin. With the exception of the flaking skin, the results were
similar chronologically and in absolute values to previously observed data in the younger
individuals. The present findings support the capacity for HD-MAP application to cause in-
flammatory reactivity in the skin, thought to be one of the primary drivers of the enhanced
immune response observed following microneedle vaccination, even in elderly individuals.
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These findings suggest that the immune-enhancing phenomena associated with HD-MAP
vaccine delivery will likely be seen also in the older age group.

The elderly skin did show some differences to the results seen in younger skin. The
minor and transitory pinpoint wet bleedings observed after HD-MAP application in 50%
of the present study’s volunteers was more than the 28% observed in a previously pub-
lished younger population [20] after HD-MAP application. Likewise, petechiae were more
common at early time points in this older group. The appearance at later time points of
flaking, dry skin caused, we believe, some subtle changes in the development of the black
dots, which indicate points of microneedle penetration. This is likely due to structural
changes in older skin [30,31] which may also result in mechanical factors of relevance to
the HD-MAP application. The measurement of the inflammatory component erythema
(rubor) by reflectance spectroscopy showed a similar reactivity to that previously observed
in younger skin. In fact, the reactive erythema observed by reflectance spectroscopy in
our aged group distributed itself above the mean values for the younger group previously
studied. The fact that the occurrence of petechiae was more frequent in the older group
may have contributed to the higher TiVi signal since the method quantitates total blood
concentration in the tissue. In addition to the structural changes of elderly skin, a low-grade
increase in the basal inflammatory state in aging skin, “inflammaging” is a hypothesised
characteristic of elderly skin, which could be a functional etiological explanation [32–34].
Other groups have studied different aspects of the effects of microneedle application, often
with devices of differing attributes to our HD-MAP. Points of focus have been micropunc-
ture attributes and chronology of closure. Other delivery platforms such as microneedle
patches [22] or dissolving microneedle patches [21] have likewise shown promising results
regarding safety and tolerability. In our study, evaporimetry, dielectric permittivity, and
polarisation spectroscopy were applied to observe different aspects of HD-MAP application.
We chose evaporimetry because of its ability to observe epidermal penetration resulting
in water loss. An alternative would have been OCT [35,36]. In our future work, we plan
to perform direct comparative studies of young and old skin to better understand this
matter further.

This study was limited by the fact that indirect physiological signs of inflammation
were measured instead of direct molecular markers. Non-invasive methodologies facilitate,
however, the performance of studies on both healthy individuals and individuals with
disease or on specific medication, without the need for invasive methods for the direct
measurement of biomarkers. The possibility exists for the combination of skin physiological
techniques with minimally invasive techniques such as biopsy or other sampling methods
with a view to establishing a robust relationship to more convenient and broadly applicable
surrogate skin physiological methods for use in method development and studies of efficacy.
Another limitation is that only 4 of 12 subjects returned on the 7-day revisit. The fact that
our previous study had shown that tissue recovery was obvious by 7 days makes it less
likely that the smaller size of the number of observations we had data on at 7 days would
have hidden a lack of recovery.

5. Conclusions

Since the reactivity to HD-MAP application in this group of elderly volunteers (mean
age 75 years) was similar to that seen in a previously published younger group (mean
age 27 years), we conclude that skin reactivity in the older age group was maintained at
a level which is likely sufficient to induce the physical adjuvance hypothesised to be one
of the positive attributes of HD-MAP vaccination. A further detailed study of how skin
reactivity is influenced by device features and application method, as well as the variability
associated with subject phenotype, disease, or medication, is warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines10040583/s1, Table S1, “Demographics”.
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