
Numerical Algorithms
https://doi.org/10.1007/s11075-022-01303-0

ORIGINAL PAPER

A Krylov-Schur-like method for computing the best
rank-(r1, r2, r3) approximation of large
and sparse tensors

Lars Eldén1 ·Maryam Dehghan2

Received: 21 December 2020 / Accepted: 14 March 2022
© The Author(s) 2022

Abstract
The paper is concerned with methods for computing the best low multilinear rank
approximation of large and sparse tensors. Krylov-type methods have been used
for this problem; here block versions are introduced. For the computation of par-
tial eigenvalue and singular value decompositions of matrices the Krylov-Schur
(restarted Arnoldi) method is used. A generalization of this method to tensors is
described, for computing the best low multilinear rank approximation of large and
sparse tensors. In analogy to the matrix case, the large tensor is only accessed in
multiplications between the tensor and blocks of vectors, thus avoiding excessive
memory usage. It is proved that if the starting approximation is good enough, then the
tensor Krylov-Schur method is convergent. Numerical examples are given for syn-
thetic tensors and sparse tensors from applications, which demonstrate that for most
large problems the Krylov-Schur method converges faster and more robustly than
higher order orthogonal iteration.

Keywords Tensor · Multilinear rank · Best rank-(p,q,r) approximation · Grassmann
manifold · Sparse tensor · Block Krylov-type method ·
Krylov-Schur algorithm · (1,2)-symmetric tensor

� Lars Eldén
lars.elden@liu.se

Maryam Dehghan
ma.dehghan@mehr.pgu.ac.ir; maryamdehghan880@yahoo.com

1 Department of Mathematics, Linköping University, SE-58183, Linköping, Sweden

2 Department of Mathematics, Persian Gulf University, 75169, Bushehr City, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01303-0&domain=pdf
http://orcid.org/0000-0003-2281-856X
mailto: lars.elden@liu.se
mailto: ma.dehghan@mehr.pgu.ac.ir
mailto: maryamdehghan880@yahoo.com


Numerical Algorithms

1 Introduction

In many applications of today, large and sparse data sets are generated that are
organized in more than two categories. Such multi-mode data can be represented
by tensors. They arise in applications of data sciences, such as web link analysis,
cross-language information retrieval and social network analysis (see, e.g., [32]). The
effective analysis of tensor data requires the development of methods that can iden-
tify the inherent relations that exist in the data, and that scale to large data sets. Low
rank approximation is one such method, and much research has been done in recent
years in this area (for example, [2, 8, 16, 25, 30, 37, 42, 43, 53]). However, most of
these methods are intended for small to medium size tensors. The objective of this
paper is to develop an algorithm for best low-rank approximation of large and sparse
tensors.

We consider the problem of approximating a 3-mode tensor A by another tensor
B,

min
B

‖A − B‖, (1)

where the norm is the Frobenius norm, and B has low multilinear rank-(r1, r2, r3) (for
definitions of the concepts used in this introduction, see Section 2). We will assume
that A is large and sparse. This problem can be written

min
F ,U,V,W

‖A − (U, V, W) ·F‖, (2)

subject to UT U = Ir1 , V T V = Ir2 , WT W = Ir3 ,

where F ∈ R
r1×r2×r3 is a tensor of small dimensions, and (U, V, W) · F denotes

matrix-tensor multiplication in all three modes. This is the best rank-(r1, r2, r3)

approximation problem [8], and it is a special case of Tucker tensor approximation
[50, 51]. It can be considered as a generalization of the problem of computing the
Singular Value Decomposition (SVD) of a matrix [17]. In fact, a partial SVD solves
the matrix approximation problem corresponding to (1) (see, e.g., [21, Chapter 2.4]).
However, strictly speaking we can only expect to find a local optimum of (1), because
the problem of finding a global solution is NP-hard [23], [34, p. 747].

In this paper, we develop a Block Krylov-Schur like (BKS) method for computing
the best rank-(r1, r2, r3) approximation of large and sparse tensors. We are specially
interested in small values of the rank, as in the two parallel papers [14, 15], where it
is essential to use the best approximation rather than any Tucker approximation.

Krylov methods are routinely used to compute partial SVD’s (and eigenvalue
decompositions) of large sparse matrices [33]. In [42], we introduced a generalization
of Krylov methods to tensors. It was shown experimentally that tensor Krylov-type
methods have similar approximation properties as the corresponding matrix Krylov
methods. In this paper, we present block versions of Krylov-type methods for tensors,
which are expected to be more efficient than the methods in [42]. Having problems
in mind, where the tensor is symmetric with respect to two modes (e.g., sequences of
adjacency matrices of graphs), we also formulate the block methods in terms of such
tensors.



Numerical Algorithms

Even if matrix Krylov methods give low rank approximations, their convergence
properties are usually not good enough, and, if used straightforwardly, they may
require excessive memory and computer time. Therefore, they are accelerated using
restart techniques [33], which are equivalent to the Krylov-Schur method [47]. We
here present a tensor Krylov-Schur-like method, and show that it can be used to
compute best multilinear low-rank approximations of large and sparse tensors.

The Krylov-Schur method is an inner-outer iteration. In the outer iteration we start
from an approximate solution and generate new blocks of orthogonal vectors, using
Krylov-type block methods. Thus, we use the large tensor only in tensor-matrix mul-
tiplications, where the matrix has few columns (this is analogous to the use of block
Krylov methods for large matrices). Then, we project the problem (2) to a smaller
problem of the same type, which we solve in the inner iterations, using a method for
problems with a medium-size, dense tensor. The problem can be formulated as one
on a product of Grassmann manifolds [16]. In our experiments, we use a Newton-
Grassmann method. As a stopping criterion for the outer iteration we use the norm
of the Grassmann gradient of the objective function. We show that this gradient can
be computed efficiently in terms of the small projected problem.

We also prove that, if the starting approximation the Krylov-Schur method is good
enough, the BKS method is convergent.

The literature on algorithms for best rank-(r1, r2, r3) approximation of large and
sparse tensors is not extensive [22, 28, 31]. The main contributions are the following.
(1) Block Krylov-type methods and an efficient way for computing gradients; (2) the
Krylov-Schur approach and its convergence analysis; (3) the present paper is the first
one that goes significantly beyond the Higher Order Orthogonal Iteration (HOOI) [8]
(to the best of our knowledge). Our experiments indicate that the new method is more
efficient and robust than HOOI for many large and sparse tensors.

The paper is organized as follows. Some tensor concepts are introduced in
Section 2. The Krylov-Schur procedure for matrices is sketched in Section 3. In
Section 4, block Krylov-type methods for tensors are described. The tensor Krylov-
Schur method is presented and analyzed in Section 6. Some numerical examples are
given in Section 7.2 that illustrate the accuracy and efficiency of the Krylov-Schur
method. There we also discuss why some alternative methods are not well adapted to
large and sparse tensors.

We are especially interested in tensors that are symmetric with respect to the first
two modes (e.g., tensor consisting of a sequence of adjacency matrices of undirected
graphs). However, most of the theory is formulated for the general case, and we also
give one such numerical example.

The method presented in this paper is “like” a Krylov-Schur method for two rea-
sons. The tensor Krylov-type method is not a Krylov method in a strict sense, as it
does not build bases for Krylov subspaces [42]. The method is not a real Krylov-
Schur method as it does not build and manipulate a Hessenberg matrix; instead, it
uses a tensor, which is in some ways similar to Hessenberg. However, this structure
is not utilized. For ease of presentation, we will sometimes omit “like” and “type.”



Numerical Algorithms

2 Tensor concepts and preliminaries

2.1 Notation

Throughout this paper, we use of the following notations. Vectors will be denoted by
lower case roman letters, e.g., a and b, matrices by capital roman letters, e.g., A and
B and tensors by calligraphic letters, e.g., A and B.

Notice that sometimes we will not explicitly mention the dimensions of matrices
and tensors, and assume that they are such that the operations are well-defined. Also,
for simplicity of notation and presentation, we will restrict ourselves to tensors of
order 3, which are defined in the next paragraph. The generalization to higher order
tensors is straightforward. For more general definitions, we refer reader to [3].

Let A ∈ R
l×m×n be a 3-dimensional array of real numbers. With the defini-

tions below and the approximation problem (2), A is a coordinate representation of
a Cartesian tensor (with some abuse of notation we will call A a tensor for short)
[34]. The order of a tensor is the number of dimensions, also called modes, e.g.,
a 3-dimensional array, is called a tensor of order 3 or 3-tensor. A fiber is a one-
dimensional section of a tensor, obtained by fixing all indices except one; A(i, :, k)

is referred to as a mode-2 fiber. A slice is a two-dimensional section of a tensor,
obtained by fixing one index; A(i, :, :) is a mode-1 slice or 1-slice. A particular ele-
ment of a 3-tensor A can be denoted in two different ways, i.e., “MATLAB-like”
notation and standard subscripts with A(i, j, k) and aijk , respectively.

Definition 1. A 3-tensor A ∈ R
m×m×n is called (1,2)-symmetric if all its 3-slices

are symmetric, i.e.,

A(i, j, k) = A(j, i, k), i, j = 1, 2, . . . , m, k = 1, 2, . . . , n.

Symmetry with respect to any two modes and for tensors of higher order than 3
can be defined analogously.

We use Ik for the identity matrix of dimension k.

2.2 Multilinear tensor-matrix multiplication

We first consider the multiplication of a tensor by a matrix. When a tensor is mul-
tiplied by a single matrix in mode i, say, we will call the operation the mode-i
multilinear multiplication (or mode-i product) of a tensor by a matrix. For example,
the mode-1 product of a tensor A ∈ R

l×m×n by a matrix U ∈ R
p×l is defined

R
p×m×n � B = (U)1 · A, bijk =

l∑

α=1

uiαaαjk .

This means that all mode-1 fibers in the 3-tensor A are multiplied by the matrix U .
The mode-2 and the mode-3 product are defined in a similar way. Let the matrices



Numerical Algorithms

V ∈ R
q×m and W ∈ R

r×n; multiplication along all three modes is defined

R
p×q×r � B = (U, V, W) · A, bijk =

l∑

α=1

m∑

β=1

n∑

γ=1

uiαvjβwkγ aαβγ .

For multiplication with a transposed matrix X ∈ R
l×s it is convenient to introduce a

separate notation,

R
s×m×n � B =

(
XT

)

1
· A = A · (X)1 , bi,j,k =

l∑

α=1

xαiaαjk .

In a similar way if x ∈ R
l then

R
1×m×n � B =

(
xT

)

1
· A = A · (x)1 = B ∈ R

m×n.

Thus, the tensor B is identified with a matrix B.

2.3 Inner product and norm, contractions

The inner product of two tensors A and B of the same order and dimensions is
denoted by 〈A,B〉 and is computed as a sum of element-wise products over all the
indices, that is

〈A,B〉 =
∑

i,j,k

aijkbijk

The product allows us to define the Frobenius norm of a tensor A as

‖A‖ = 〈A,A〉1/2.

As in the matrix case the Frobenius norm of a tensor is invariant under orthogonal
transformations, i.e., ‖A‖ = ‖(U, V, W) · A‖, for orthogonal matrices U , V , and W .
This follows immediately from the fact that mode-i multiplication by an orthogonal
matrix does not change the Euclidean length of the mode-i fibers.

The inner product is a contraction. We also define partial contractions that involve
less than three modes,

C = 〈A,B〉1, cjkμν =
∑

λ

aλjkbλμν,

D = 〈A,B〉1,2, dkν =
∑

λ,μ

aλμkbλμν .

We use negative subscripts to denote partial contractions in all but one mode,

〈A,B〉−1 = 〈A,B〉2,3. (3)

The result is a matrix of inner products between the mode-1 slices of the two tensors.
For partial contractions only the contracted modes are required to be equal, so the
result matrix may be rectangular.



Numerical Algorithms

2.4 Multilinear rank

Unlike the matrix case, there is no unique definition of the rank of a tensor. In this
paper, we consider the concept of multilinear rank defined by Hitchcock [24]. Let
A(i) denote the mode-i unfolding (matricization) of A (using some ordering of the
vectors),

A(i) = unfoldi (A),

where the columns of A(i) are all mode-i fibers [7]. Similarly, let foldi be the
inverse of unfoldi . The multilinear rank of a third order tensor A is an integer
triplet (p, q, r) such that

p = rank(A(1)), q = rank(A(2)), r = rank(A(3)),

where rank(A(i)) is the matrix rank. In this paper we will deal only with multilin-
ear rank, and we will use the notation rank-(p, q, r), and rank(A) = (p, q, r). For
matrices the rank is obtained via the SVD (see, e.g., [21, Chapter 2]). In exact arith-
metic the multilinear rank can be computed using the higher order singular value
decomposition (HOSVD) [7].

2.5 Best rank-(r1, r2, r3) approximation

The problem (1) of approximating a given tensor A ∈ R
l×m×n by another tensor

B of equal dimensions but of lower rank, occurs in many modern applications, e.g.,
machine learning [35], pattern classification [41], analytical and quantum chemistry
[29, 44], and signal processing [6]. We assume that rank(B) = (r1, r2, r3), which
means that B can be written as a product of a core tensor F ∈ R

r1×r2×r3 and three
matrices,

B = (U, V, W) · F, B(i, j, k) =
r1,r2,r3∑

l,μ,ν=1

uilvjμwkνfλμν,

where U ∈ R
l×r1 , V ∈ R

m×r2 , and W ∈ R
n×r3 are full column rank matrices. With-

out loss a generality, we can suppose that U , V and W have orthonormal columns, as
any nonorthogonality may be incorporated1 into F . Therefore, the best multilinear
low rank problem (1) can be written as

min
F ,U,V,W

‖A − (U, V, W) · F‖, subject to UT U = Ir1 , V T V = Ir2 , WT W = Ir3 . (4)

There are a few major differences between the best low rank approximation of
matrices and 3-mode tensors and higher. In the matrix case, the explicit solution of
corresponding problem can be obtained from the SVD (see the Eckart-Young prop-
erty in [21, Theorem 2.4.8]). A simple proof is given in [13, Theorem 6.7]. There
is no known closed form solution for the minimization problem (4), but it can be

1Assume that U = U0R0 is the thin QR decomposition of U . Then, (U, V,W) ·F = (U0R0, V ,W) ·F =
(U0, V ,W) · ((R0)1 · F) =: (U0, V ,W) · F0.



Numerical Algorithms

shown that this is a well-defined problem in the sense that for any (r1, r2, r3) a solu-
tion exists [9, Corollary 4.5]. Several iterative methods for computing the low rank
approximation for small and medium size tensors have been proposed (see [8, 16, 26,
43]). In [8], it is shown that (4) is equivalent to following maximization problem

max
U,V,W

�(U, V, W), subject to UT U = Ir1 , V T V = Ir2 , WT W = Ir3 ,

(5)
where �(U, V, W) = ‖A · (U, V, W) ‖2. Since the norm is invariant under orthog-
onal transformations, it holds that �(U, V, W) = �(UQ1, V Q2, WQ3) for any
orthogonal matrices Q1 ∈ R

r1×r1 , Q2 ∈ R
r2×r2 and Q3 ∈ R

r3×r3 . Hence, (5) is
equivalent to a maximization problem over a product of Grassmann manifolds (for
optimization on matrix manifolds, see [1, 12, 25, 26]).

Throughout this paper, we will assume that the multilinear rank of A is larger
(mode-wise) than (r1, r2, r3).

After computing the optimal U , V and W the optimal F can be obtained by con-
sidering the minimization of (4) as a linear least squares problem with unknown
F .

Lemma 2.1. LetA ∈ R
l××m×n be given along with three matrices with orthonormal

columns, U ∈ R
l×r1 , V ∈ R

m×r2 , and W ∈ R
n×r3 , where r1 ≤ l, r2 ≤ m, and

r3 ≤ n. Then, the least squares problem

min
F

‖A − (U, V, W) · F‖
has the unique solution

F =
(
UT , V T , WT

)
· A = A · (U, V, W) . (6)

For a proof, see, e.g., [8, 42]. The tensor F is a generalization of the matrix
Rayleigh quotient.

2.6 Gradient on the product manifold

In [16] a Newton-Grassmann method is derived for computing the solution of max-
imization problem (5). The constraints on the unknown matrices U , V , and W are
taken into account by formulating the problem as an optimization problem on a prod-
uct of three Grassmann manifolds. In this paper, we will need the gradient of � in
the tangent space of the product manifold for a stopping criterion. This gradient can
be expressed in the ambient coordinate system, or in local coordinates. In the context
of the new methods presented, it is practical and more efficient to use local coordi-
nate representations (see Proposition 5.2). Let (U U⊥) denote the enlargement of U

to a square orthogonal matrix, and use the analogous notation for V and W . Then,
the Grassmann gradient at (U, V, W) can be written as

∇local(U, V, W) = (〈F1⊥,F〉−1, 〈F2⊥,F〉−2, 〈F3⊥,F〉−3),

where F1⊥ = A · (U⊥, V , W), F2⊥ = A · (U, V⊥, W), and F3⊥ = A · (U, V, W⊥).
In the context of the HOOI (see Section 7.1), it is more efficient to use global



Numerical Algorithms

coordinates. For instance, the first component of the gradient can be computed as

(I − UUT)�1 = �1 − U(UT�1), �1 = 〈A · (V , W)2,3 ,F〉−1.

For more details on coordinate representations for this problem, see [16], [17, Section
3.2]. In the rest of this paper, the concept G-gradient will mean the Grassmann
gradient in global or local coordinates.

2.7 Conditioning of the best approximation problem

The best rank-r approximation problem for a matrix A is not unique if the singular
values satisfy σr(A) = σr+1(A). The problem is ill-conditioned if the gap is small,
i.e., σr(A) > σr+1(A) but σr(A) ≈ σr+1(A) (see, e.g., [48, Chapter 3], [21, Chapter
8.6]). A similar situation exists for the tensor case [17, Corollary 4.5] (note that the
perturbation theory for the SVD is a special case of that for the best rank-(r1, r2, r3)

approximation of a tensor). Define

s
(k)
i = (λi(〈F,F〉−k))

1/2, i = 1, 2, . . . , rk, k = 1, 2, 3,

s
(k)
rk+1 = (λmax(〈Fk⊥,Fk⊥〉−k))

1/2, k = 1, 2, 3,

where the λ’s are eigenvalues, in descending order, of the symmetric matrices. We
will refer to these quantities as S-values. Then, we can define three gaps, one for each
mode,

gapk = s(k)
rk

− s
(k)
rk+1, k = 1, 2, 3.

(In the matrix case, there is only one set of s
(k)
i , which are the singular values). It is

shown in [17, Section 5.3] that the gaps can be taken as measures of the conditioning
of the best approximation problem. If, for any k, s

(k)
rk is considerably larger than

s
(k)
rk+1 then the approximation problem is well-conditioned with respect to mode k.

Conversely, if the gap is small, then the problem is ill-conditioned.

3 The Krylov-Schur method for matrices

Krylov subspace methods are the main class of algorithms for solving iteratively
large and sparse matrix problems. Here we give a very brief introduction to Krylov-
Schur methods, illustrating with the Arnoldi method for the eigenvalue problem. The
method that we propose in Section 6 is analogous.

For a given square matrix A ∈ R
n×n and a nonzero vector u ∈ R

n the subspace

Kk(A, u) = span{u, Au, A2u, . . . , Ak−1u} (7)

is called the Krylov subspace of dimension k associated with A and u [21, Chap-
ter 10]. Given a starting vector u = u1, the Arnoldi method computes successively
w = Auj , and immediately orthogonalizes w against the previous u1, . . . , uj ,



Numerical Algorithms

thereby generating an orthogonal basis for the Krylov subspace (7)). The Arnoldi
recursion is equivalent to the matrix equation

AUk = UkHk + βkuk+1e
T
k , (8)

where Uk = [u1, . . . , uk] has orthonormal columns and Hk ∈ R
k×k is a Hes-

senberg matrix with orthogonalization coefficients. Hk can be considered as the
representative of A on the Krylov subspace, and its eigenvalues (the Ritz values) are
approximations of those of A (see, e.g., [21, Chapter 10], [48, Chapter 5]).

Krylov methods are designed for computing the eigenvalues of large and sparse
matrices. A problem with this approach is that when k grows the cost for orthogonal-
izing a newly generated vector against the columns of Uk increases. In addition, since
Uk is dense, the memory requirements may increase too much. In order to save mem-
ory and work, an implicit restarting Arnoldi technique (IRA) was developed [46],
and implemented in the highly successful ARPACK package [33]. In [47], Stewart
proposed a Krylov-Schur method which is mathematically equivalent to IRA (see
[48, Chapter 5]).

Assume that r < k eigenvalues are wanted, along with the corresponding eigen-
vectors. From Uk and the Schur decomposition of Hk , compute approximations of the
wanted eigenvalues and eigenvectors. They satisfy a relation analogous to (8), but of
dimension r . Starting a new recursion from this, expand the basis again to dimension
k, and repeat the process. For a detailed description of this method, see [48, Chapter
5].

4 Krylov-typemethods for tensors

Krylov-type methods that generalize the Arnoldi method to tensors are proposed in
[42]. The methods are called Krylov-type methods, because the recursions are gen-
eralizations of matrix Krylov recursions, but no analogues of Krylov subspaces can
be identified (to our knowledge). These methods are also inspired by Golub-Kahan
bidiagonalization [20]. The bidiagonalization process generates two sequences of
orthonormal basis vectors for certain Krylov subspaces. In the tensor case three
sequences of orthogonal basis vectors are generated that are used to compute a core
tensor corresponding to the matrix Hk in (8). For matrix Krylov methods, once an
initial vector has been selected, the following vectors are determined uniquely; in
the tensor case, one can choose different combinations of previously computed basis
vectors. So there are different variants of tensor Krylov-type methods. We describe
briefly two examples in the following.

For a given third order tensor A ∈ R
l×m×n and starting two vectors, u1 ∈ R

l

and v1 ∈ R
m, we can obtain a third mode vector by w1 = A · (u1, v1)1,2 ∈ R

n.
Using the most recently obtained vectors, three sequences of vectors can be gen-
erated. Using the modified Gram-Schmidt process, a newly generated vector is
immediately orthogonalized against all the previous ones in its mode. The minimal
Krylov recursion [42, Algorithm 3], which can be seen as a generalization of the
Golub-Kahan bidiagonalization method, is given in Algorithm 1. The orth function
orthogonalizes û against Ui , and normalizes it.



Numerical Algorithms

Using the three orthogonal matrices Uk , Vk , and Wk generated by Algorithm 1, we
obtain a rank-k approximation of A as

A ≈ (Uk, Vk, Wk) · H, H = A · (Uk, Vk, Wk)1,2 ∈ R
k×k×k .

In the minimal Krylov recursion, a new vector ui+1 is generated based on the two
most recently computed vi and wi (and correspondingly for the other modes). But
we can choose any other available vj and wk that have not been combined before
in an operation A · (

vj , wk

)
2,3. If we decide to use all available combinations, then

this is called the maximal Krylov recursion [42, Algorithm 5]. Given Vj and Wk , all
combinations can be computed as

Û = A · (
Vj , Wk

)
2,3 .

Next the mode-1 fibers of the tensor Û have to be orthogonalized. The number of
basis vectors generated grows very quickly. In the following subsections, we will
describe a few modifications of the maximal recursion that avoid computing many of
the vectors in the maximal recursion, while maintaining as much as possible of the
approximation performance.

5 Block-Krylovmethods

For large and sparse tensors, it is convenient to use software that implements oper-
ations with tensors, in particular tensor-matrix multiplication. In our numerical
experiments, we use the extension of the MATLAB tensor toolbox [3] to sparse ten-
sors [4]; it is natural to base some algorithm design decisions on the use of such
software. Other languages and implementations are likely to have similar properties.

There are two main reasons why we choose to use block-Krylov methods. Firstly,
it is easier to design and describe modifications of the maximal Krylov recursion in
terms of blocks. Secondly, the time required for the computation of sparse tensor-
vector and tensor-matrix products is dominated by data movements [4, Sections
3.2.4-3.2.5], where the tensor is reorganized to a different format before the multipli-
cation takes place. Therefore, it is better to reuse the reorganized tensor for several
vectors, as is done in a tensor-matrix product (akin to the use of BLAS 3 operations
in dense linear algebra). In our experiments with a few sparse tensors of moderate
dimensions (approximately 500×500×500 and 3600×3600×60) and 6 vectors, the



Numerical Algorithms

time for repeated tensor-vector multiplication was 3–9 times longer than for the cor-
responding tensor-matrix block multiplication. One should keep in mind, however,
that such timings may also be highly problem-, software- and hardware-dependent.

Let A ∈ R
l×m×n be given, and assume that, starting from U0 ∈ R

l×r1 , V0 ∈ R
m×r2

and W0 ∈ R
n×r3 , three sequences of blocks of orthonormal basis vectors (referred to

as ON-blocks) have been computed, Ûλ−1 = [U0 U1 · · · Uλ−1], V̂μ = [V0 V1 · · · Vμ],
and Ŵν = [W0 W1 · · · Wν]. Letting p be a block size, and V̄ ∈ R

m×p and W̄ ∈ R
n×p

be blocks selected out of V̂μ and Ŵν , we compute a new block Uλ ∈ R
l×p2

using
Algorithm 2.

The algorithm is written in tensor form, in order to make the operations in
steps (ii)–(iv) look like the Gram-Schmidt orthogonalization that it is. In our actual
implementations we have avoided some tensor-matrix restructurings (see Appendix
B).

Clearly, after step (iii) we have
(
ÛT

λ−1

)
1
·Ũ (1) = 0. In step (iv), the mode-1 vectors

(fibers) of Ũ (1) are orthogonalized and organized in a matrix Uλ ∈ R
l×p2

, i.e., a
“thin” QR decomposition is computed,

unfold1(Ũ (1)) = UλH
1
λ ,

where the matrix H 1
λ is upper triangular. The tensor H1

λ = fold1(H
1
λ ) ∈ R

p2×p×p

contains the columns of H 1
λ , and consequently it has a “quasi-triangular” structure.

The mode-1 step can be written

A · (
V̄ , W̄

)
2,3 = (

Ûλ−1
)

1 · H1
λ−1 + (Uλ)1 · H1

λ. (9)

The mode-2 and mode-3 block-Krylov steps are analogous. Different variants of
BK methods can be derived using different choices of V̄ and W̄ , etc. However, we
will always assume that the blocks U0, V0, and W0 are used to generate the blocks
with subscript 1.

The recursion (9) and its mode-2 and mode-3 counterparts imply the following
simple lemma2. It will be useful in the computation of gradients.

2More general results can be obtained for A · (
Uλ, Vμ,Wν

)
. Taken together, those results can be used to

show the existence of a tensor structure that is analogous to the block Hessenberg structure obtained in a
block-Arnoldi method for a matrix.



Numerical Algorithms

Lemma 5.1. Assume that, starting from three ON-blocks U0, V0, and W0, Algorithm
2 and its mode-2 and mode-3 counterparts, have been used to generate ON-blocks
Ûλ = [U0 U1 · · · Uλ], V̂μ = [V0 V1 · · · Vμ], and Ŵν = [W0 W1 · · · Wν]. Then,

A · (
Uj , V0, W0

) =

⎧
⎪⎨

⎪⎩

H1
0 = A · (U0, V0, W0) , j = 0,

H1
1 = A · (U1, V0, W0) , j = 1,

0, 2 ≤ j ≤ λ.

(10)

The corresponding identities hold for modes 2 and 3.

Proof Consider the identity (9) with V̄ = V0, and W̄ = W0, multiply by UT
j in the

first mode, and use orthogonality and
(
UT

j

)

1
· (A · (V0, W0)2,3) = A · (Uj , V0, W0

)
.

Proposition 5.2. Let (U0, V0, W0) with U0 ∈ R
l×r1 , V0 ∈ R

m×r2 , and W0 ∈ R
n×r3 ,

have orthonormal columns. Let it be a starting point for one block-Krylov step in
each mode with A ∈ R

l×m×n, giving (U1, V1, W1) and tensors

H0 = A · (U0, V0, W0) , H1
1 = A · (U1, V0, W0) ,

H2
1 = A · (U0, V1, W0) , H3

1 = A · (U0, V0, W1) .

Then, the norm of the G-gradient of (5) at (U0, V0, W0) is

‖∇(U0, V0, W0)‖2 = ‖〈H0,H1
1〉−1‖2 + ‖〈H0,H2

1〉−2‖2 + ‖〈H0,H3
1〉−3‖2.

Proof The mode-1 gradient at (U0, V0, W0) is 〈F,F1⊥〉−1, where F = H0 =
A · (U0, V0, W0), and F1⊥ = A · (U⊥, V0, W0), and (U0 U⊥) is an orthogonal matrix.
So we can write U⊥ = (U1 U1⊥), where UT

1⊥(U0 U1) = 0. Since from Lemma 5.1

R
(l−r1)×r2×r3 � F1⊥ = A · ((U1 U1⊥), V0, W0) =

(
H1

1
0

)
,

the mode-1 result follows. The proof for the other modes is analogous.

Assume we have an algorithm based on block-Krylov steps in all three modes, and
we want to compute the G-gradient to check if a point (U0, V0, W0) is approximately
stationary. Then, by Proposition 5.2, we need only perform one block-Krylov step
in each mode, starting from (U0, V0, W0), thereby avoiding the computation of U⊥,
V⊥, and W⊥, which are usually large and dense. If the norm of the G-gradient is not
small enough, then one would perform more block-Krylov steps. Thus, the gradient
computation comes for free, essentially.

In many real applications, the tensors are (1, 2)-symmetric. This is the case, for
instance, if the mode-3 slices of the tensor represent undirected graphs. Here and
in Sections 5.1–5.3, we will assume that A ∈ R

m×m×n is (1, 2)-symmetric; in
Section 5.4 we will come back to the general case. For the (1, 2)-symmetric tensor,
we will compute two sequences of blocks U1, U2, . . . and W1, W2, . . ., where the Uλ

blocks contain basis vectors for modes 1 and 2, and the Wν for mode 3.



Numerical Algorithms

A new block Uλ is computed from given blocks Ū and W̄ in the same way as in
the nonsymmetric case, using Algorithm 2. To compute a new block Wν , we use two

blocks Ū and ¯̄U . If Ū �= ¯̄U , then we can use the analogue of Algorithm 2. In the

case Ū = ¯̄U , the product tensor A · (
Ū , Ū

)
1,2 is (1,2)-symmetric, which means that

almost half its 3-fibers are superfluous, and should be removed. Thus, letting W̃(3)

denote the tensor that is obtained in (iii) of Algorithm 2, we compute the “thin” QR
decomposition,

triunfold3(W̃(3)) = WνH
3
ν ,

where triunfold3(X ) denotes the mode-3 unfolding of the (1,2)-upper triangular
part of the tensor X . If Ū ∈ R

m×p, then Wν ∈ R
n×pν , where pν = p(p + 1)/2.

A careful examination of Lemma 5.1 for the case of (1,2)-symmetric tensors shows
that the corresponding result holds also here. We omit the derivations in order not to
make the paper too long.

5.1 Min-BKmethod for (1,2)-symmetric tensors

Our simplest block-Krylov method is the (1,2)-symmetric block version of the mini-
mal Krylov recursion of Algorithm 1, which we refer to as the min-BK method. Here,
instead of using only two vectors in the multiplication û = A · (ui, wi), we use the p

first vectors from the previous blocks. Let Ū = U(:, 1 : p), denote the first p vectors
of a matrix block U . The parameter s in Algorithm 3 is the number of stages.

The min-BK method is further described in the two diagrams of Table 1. Note that
to conform with Proposition 5.2, we always use Ū0 = U0 and W̄0 = W0. It is seen
that the growth of the number of basis vectors, the ki parameters, is relatively slow.
However, it will be seen in Section 7.2 that this method is not competitive.

5.2 Max-BKmethod for (1,2)-symmetric tensors

The max-BK method is maximal in the sense that in each stage we use all the avail-
able blocks to compute new blocks. The algorithm is defined by three diagrams (see
Table 2). E.g., in stage 2, we use combinations of the whole blocks U0, U1, W0, and
W1, to compute U2, U3, and U4 (U1 was computed already in stage 1).



Numerical Algorithms

Table 1 Diagrams of the min-BK method

Top: combinations of blocks for computing the new blocks. The stages are indicted by horizontal and
vertical lines. Bottom: The number of basis vectors in the stages with p = 4, and r = (2, 2, 2) and
r = (7, 7, 7) (separated by /)

The diagram for the Wi’s is triangular: due to the (1,2)-symmetry of A, the two
tensor-matrix products A · (U0, U1)1,2 and A · (U1, U0)1,2 generate the same mode-3
fibers.

It is clear that the fast growth of the number of basis vectors makes this variant
impractical, except for small values of r and s, e.g. r = (2, 2, 2) and s = 2. In the
same way as in the matrix Krylov-Schur method, we are not interested in too large
values of k1 and k3, because we will project the original problem to one of dimension
(k1, k1, k3), which will be solved by methods for dense tensors. Hence, we will in
the next subsection introduce a compromise between the min-BK and the max-BK
method.

Table 2 Diagrams of the max-BK method

Top: Combinations of blocks of basis vectors for computing new blocks. Bottom: Number of basis vectors
in the stages of the max-BK method. Columns 3 and 5 give the number of basis vectors for r = (2, 2, 2)

and r = (7, 7, 7)



Numerical Algorithms

5.3 BKmethod for (1,2)-symmetric tensors

The BK method is similar to min-BK in that it uses only the p first vectors of each
block in the block-Krylov step. In each stage, more new blocks are computed than in
min-BK, but not as many as in max-BK. Both these features are based on numerical
tests, where we investigated the performance of the BK method in the block Krylov-
Schur method to be described in Section 6. We found that if we omitted the diagonal
blocks in the diagrams in Table 2, then the convergence of the Krylov-Schur method
was only marginally impeded. The BK method is described in the two diagrams of
Table 3.

It may happen that one of the dimensions of the tensor is considerably smaller than
the other. Assume that m � n. Then, after a few stages, the number of vectors in the
third mode may be equal to n, and no more can be generated in that mode. Then, the
procedure is modified in an obvious way (the right diagram is stopped being used)
so that only vectors in the other modes (U blocks) are generated. The min-BK and
max-BK methods can be modified analogously.

5.4 BKMethod for general tensors

The block-Krylov methods for general tensor are analogous to those for (1,2)-
symmetric tensors. In fact, they are simpler to describe, as one has no symmetry to
take into account. Here we will only describe the BK method; the min-BK and max-
BK variants are analogous. In Table 4, we give the diagram for computing the “U”
blocks; the diagrams for the “V ” and “W” blocks are similar.

Table 3 Diagrams of the BK method

Top: Combinations of blocks of basis vectors for computing the new blocks. In the case when U0 ∈ R
m×2

and p ≥ 3, we let W̄1 = W1. Bottom: Basis blocks in the stages of the BK method, and the number of
vectors for p = 4, and r = (2, 2, 2), r = (7, 7, 7)



Numerical Algorithms

Table 4 Diagram of the BK method for nonsymmetric tensors. Top: Combinations of blocks of basis
vectors for computing the new “U” blocks. In the case when U0 ∈ R

m×2 and p ≥ 3, we let W̄1 = W1.
Bottom: Basis blocks in the stages of the BK method, the number of vectors for p = 4, and r = (2, 2, 2),
and r = (7, 7, 7)

6 A tensor Krylov-Schur-like method

When tensor Krylov-type methods are used for the computation of low multilinear
rank approximations of large and sparse tensors, they suffer from the same weak-
ness as Krylov methods for matrices: the computational burden for orthogonalizing
the vectors as well as memory requirements may become prohibitive. Therefore, a
restarting procedure should be tried. We will now describe a generalization of the
matrix Krylov-Schur approach to a corresponding tensor method. Here, we assume
that the tensor is non-symmetric.

Let A ∈ R
l×m×n be a given third order tensor, for which we want to compute

the best rank-(r1, r2, r3) approximation. For reference, we restate the maximization
problem,

U ∈ R
l×r1 , UT U = Ir1 ,

maxU,V,W ‖A · (U, V, W) ‖, V ∈ R
m×r2 , V T V = Ir2 ,

W ∈ R
n×r3 , WT W = Ir3 .

(11)

Let k1, k2, and k3 be integers such that

k1 � l, k2 � m, k3 � n, (12)

and assume that we have computed, using a BK method, a rank-(k1, k2, k3) approxi-
mation

A ≈ (X, Y, Z) · C, C = A · (X, Y, Z) , (13)

where X ∈ R
l×k1 , Y ∈ R

m×k2 , and Z ∈ R
n×k3 are matrices with orthonormal

columns, and C ∈ R
k1×k2×k3 is a core tensor. With the assumption (12), we can use

an algorithm for dense tensors, e.g., a Newton-Grassmann method [16, 26], to solve



Numerical Algorithms

the projected maximization problem

Û ∈ R
k1×r1 , ÛT Û = Ir1 ,

max
Û ,V̂ ,Ŵ

‖C ·
(
Û , V̂ , Ŵ

)
‖, V̂ ∈ R

k2×r2 , V̂ T V̂ = Ir2 ,

Ŵ ∈ R
k3×r3 , Ŵ T Ŵ = Ir3 .

(14)

From the solution of (14), we have the best rank-(r1, r2, r3) approximation of C,

C ≈
(
Û , V̂ , Ŵ

)
· F, (15)

where F ∈ R
r1×r2×r3 is the core tensor. This step is analogous to computing and

truncating the Schur decomposition of the matrix Hk in the matrix case in Section 3.
Combining (15) and (13), we can write

A ≈ (X, Y, Z) ·
((

Û , V̂ , Ŵ
)

· F
)

= (U, V, W) · F, (16)

where U = XÛ ∈ R
l×r1 , V = Y V̂ ∈ R

m×r2 , and W = ZŴ ∈ R
n×r3 , with

orthonormal columns. Thus, (16) is a rank-(r1, r2, r3) approximation of A. Then,
starting with U0 = U , V0 = V , and W0 = W , we can again expand (16), using a
BK method, to a rank-(k1, k2, k3) approximation (13). A sketch of the tensor Krylov-
Schur method is given in Algorithm 4.

The algorithm is an outer-inner iteration. In the outer iteration (11) is projected
to the problem (14) using the bases (X, Y, Z). Step (i) of Algorithm 4 is the inner
iteration, where we solve (14) using an algorithm for a small, dense tensor, e.g.,
the Newton algorithm on the Grassmann manifold [16, 26]. The Newton-Grassmann
method is analogous to and has the same basic properties as the standard Newton
method in a Euclidean space.

Notice that if A is a (1, 2)-symmetric tensor, then all aforementioned relations are
satisfied with U = V and X = Y . So (16) transfers to

A ≈ (U, U, W) · F .



Numerical Algorithms

6.1 Convergence of the tensor Krylov-Schur algorithm

In the discussion below, we will assume that the G-Hessian for (11) at the stationary
point is negative definite, i.e., the stationary point is a strict local maximum. This is
equivalent to assuming that the objective function is strictly convex in a neighborhood
of the stationary point. The situation when this is not the case is described in [17,
Corollary 4.5] and Section 2.7.

Let (U0, V0, W0) be an approximate solution, and let the expanded bases of ON-
blocks be X = [U0 U1] ∈ R

l×k1 , Y = [V0 V1] ∈ R
m×k2 , and Z = [W0 W1] ∈ R

n×k3 .
For simplicity we here have included more than one block-Krylov steps in U1, V1,
and W1. Let X⊥ be a matrix such that (X X⊥) is orthogonal, and make the analogous
definitions for Y⊥ and Z⊥. We then make the change of variables

B = A · ([X X⊥], [Y Y⊥], [Z Z⊥]) .

The tensor
C = A · (X, Y, Z) ,

is a subtensor of B (see Fig. 1).
In the discussion of convergence we can, without loss of generality, consider the

equivalent maximization problem for B,

max ‖B · (U, V, W) ‖, UTU = Ir1 , V TV = Ir2 , W TW = Ir3 . (17)

Now, the approximate solution (U0, V0, W0) is represented by

E0 =
((

Ir1

0

)
,

(
Ir2

0

)
,

(
Ir3

0

))
,

and we have enlarged E0 by one or more block-Krylov steps to

E =
((

Ik1

0

)
,

(
Ik2

0

)
,

(
Ik3

0

))
.

Fig. 1 The tensors B and C, and the mode-1 subblocks (for visibility we have not drawn the corresponding
mode-2 and mode-3 blocks). The block H1

1 is the tensor in the first block-Krylov step (see Lemma 5.1)



Numerical Algorithms

In the inner iteration, we shall now compute the best rank-(r1, r2, r3) approximation
for C,

max ‖C · (P, Q, S) ‖, P TP = Ir1 , QTQ = Ir2 , STS = Ir3 . (18)

using the Newton-Grassmann method (note that P ∈ R
k1×r1 , Q ∈ R

k2×r2 , and S ∈
R

k3×r3 ). Denote the core tensor after this computation by F̃ . Due to the fact that F
is a subtensor of C, it follows that

‖F̃‖ ≥ ‖F‖, (19)

and evidently the Krylov-Schur algorithm produces a non-decreasing sequence of
objective function values that is bounded above (by ‖A‖).

If E0 is the local maximum point for (17), then the G-gradient ∇B(E0) = 0,
and, by Proposition 5.2, ∇C(Ē0) = 0, where Ē0 corresponds to E0. Therefore, the
Newton-Grassmann method for (14) will not advance, but give F̃ = F .

On the other hand, if E0 is not the local maximum, then ∇B(E0) and ∇C(Ē0)

are nonzero. Assume that we are close to a local maximum so that the G-Hessian
for (17) is negative definite. Then, the G-Hessian for (18) is also negative definite
(see Appendix3 A) and the projected maximization problem (14) is locally convex.
Therefore, the Newton-Grassmann method will converge to a solution that satisfies
‖F̃‖ > ‖F‖ [18, Theorem 3.1.1].

Thus, we have the following result.

Theorem 6.1. Assume that (U0, V0, W0) is close enough to a strict local maximum
for (11). Then, Algorithm 4 will converge to that local maximum.

The G-gradient is zero at the local maximum; thus, the Krylov-Schur-like algo-
rithm converges to a stationary point for the best rank-(r1, r2, r3) approximation
problem.

7 Numerical experiments

In this section, we investigate the performance of Krylov-Schur methods applied to
some large and sparse tensors. As a comparison we will use the HOOI method. We
here give a brief description of HOOI, for details (see [8]).

7.1 Higher order orthogonal iteration and other methods

Consider first the nonsymmetric case (5). HOOI is an alternating iterative method
[8], where in each iteration three maximization problems are solved. In the first

3In the Appendix, we also take care of some Grassmann-technical details.



Numerical Algorithms

maximization, we assume that V and W are given satisfying the constraints, and
maximize

max
UT U=I

‖C1 · (U)1 ‖, C1 = A · (V , W)2,3 ∈ R
l×r2×r3 . (20)

The solution of this problem is given by the first r1 left singular vectors of the mode-
1 unfolding C(1) of C1, and that is taken as the new approximation U . Then, in the
second maximization, U and W are considered as given and V is determined.

The cost for computing the thin SVD is O(l(r2r3)
2) (under the assumption (12)).

As this computation is highly optimized, it is safe to assume that for large and sparse
tensors the computational cost in HOOI is dominated by the tensor-matrix multipli-
cations A · (V , W)2,3 (and corresponding in the other modes), and the reshaping of
the tensor necessary for the multiplication. In addition, the computation of the G-
gradient involves extra tensor-matrix multiplications. Here, it is more efficient to use
global coordinates (cf. Section 2.6). In our experiments, we computed the G-gradient
only every ten iterations.

For a (1,2)-symmetric tensor, we use the HOOI method, where we have two max-
imizations in each step, one for U , with the previous value of U in C1, and the other
for W , with C3 = A · (U, U)1,2.

The HOOI iteration has linear convergence; its convergence properties are studied
in [52]. In general, alternating methods are not guaranteed to converge to a local
maximizer [39, 40]. For some tensors, HOOI needs quite a few iterations before the
convergence is stabilized to a constant linear rate. On the other hand, HOOI has
relatively fast convergence for several well-conditioned problems. In our tests the
HOOI method is initialized with random matrices with orthonormal columns.

For large tensors, we use HOOI as a starting procedure for the inner Newton-
Grassmann iterations to improve robustness. Note that here the tensor C is much
smaller of dimension (k1, k1, k3).

In the Introduction, we cite a few papers that deal with the computation of Tucker
approximations. For instance, in [16, 25], the best approximation is computed using
Riemannian Newton methods. However, the Hessian matrix is large and dense, and
therefore such methods require too much memory and are unsuitable for large and
sparse tensors. The same is true of the Quasi-Newton method in [43], unless the
Hessian approximation is forced to be very sparse, say diagonal, which would impede
the convergence rate seriously.

7.2 Numerical tests

To investigate the performance of Krylov-Schur methods, we first present results of
experiments on a few (1, 2)-symmetric tensors. In the outer iteration, the stopping
criterion is the relative norm of the G-gradient ‖∇‖/‖F‖ ≤ 10−13.

In the inner iteration (step (i) of Algorithm 4) the best rank-(r1, r1, r3) of the ten-
sor C is computed using the Newton-Grassmann algorithm [16], initialized by the
HOSVD of C, truncated to rank (r1, r1, r3), followed by 5 HOOI iterations to improve
robustness (recall that this problem is of dimension (k1, k1, k3)). The same stopping



Numerical Algorithms

criterion as in the outer iteration was used. The typical iteration count for the inner
Newton-Grassmann iteration was 4-5.

In the figures, the convergence history of the following four methods is illustrated,
where the last three are named according to the block Krylov-type method used in
the outer iterations:

1. HOOI,
2. max-BKS(s ; k1, k3),
3. BKS(s, p ; k1, k3),
4. min-BKS(s, p ; k1, k3).

Here, s denotes the stage, k1 and k3 the number of basis vectors in the X and Z basis,
respectively, and p indicates that the first p vectors of each ON-block are used in
BKS and min-BKS.

The convergence results are presented in figures, where the y-axis and x-axis rep-
resent the relative norm of G-gradient and the number of outer iterations, respectively.
For the larger examples, we also plot the gradient against the execution time.

In the examples we used rather small values for (r1, r1, r3), like in some real world
applications [36, 38]. In two forthcoming papers [14, 15] on tensor partitioning and
data science applications we compute rank-(2, 2, 2) approximations.

The experiments were performed using MATLAB and the tensor toolbox [4] on a
standard desktop computer with 8-GB RAM memory. In all test cases, the primary
memory was sufficient.

7.3 Example 1. Synthetic signal-plus-noise tensor

For the first test, we generated synthetic (1, 2)-symmetric tensors with specified low
rank. Let A = Asignal +ρAnoise, where Asignal is a signal tensor with low multilinear
rank, Anoise is a noise tensor and ρ denotes the noise level. Asignal was constructed
as a tensor of dimension (r1, r1, r3) with normally distributed N(0, 1) elements; this
was placed at the top left corner of a zero tensor of size m × m × n. The elements of
the noise tensor were chosen normally distributed N(0, 1), and then the tensor was
made (1, 2)-symmetric. For testing purposes, we performed a random permutation
such that the tensor remained (1,2)-symmetric. This tensor is dense. The purpose of
this example is to demonstrate that the rate of convergence of all methods depends
heavily on the conditioning of the approximation problem (cf. [17, Corollary 4.5] and
the short statement in Section 6.1).

Figure 2 illustrates the convergence results for a 200 × 200 × 200 tensor approx-
imated by one of rank-(2, 2, 2), which is the correct rank of the signal tensor. The
problem with ρ = 10−2 is more difficult than the other one, because the signal-to-
noise ratio is smaller, making the approximation problem more ill-conditioned. This
shows in the iteration count for all methods. See also Table 5, where the S-values are
given. The HOOI was considerably more sensitive to the starting approximation than
the other methods. For a few starting values it converged much more slowly than in
the figure.

It is of some interest to see how good the result is as an approximation of the (noise
free) signal tensor (see Table 6).



Numerical Algorithms

0 5 10 15 20 25

Iteration

10 -15

10 -10

10 -5

10 0

HOOI
min-BKS
BKS
max-BKS

1 2 3 4 5 6

Iteration

10 -15

10 -10

10 -5

10 0

HOOI
min-BKS
BKS
max-BKS

Fig. 2 Convergence for Example 1 when (m,m, n) = (200, 200, 200) and (r1, r1, r3) = (2, 2, 2). In
the left plot ρ = 10−2 and in the right ρ = 10−4. In both cases the methods min-BKS(3,4;34,25),
BKS(2,4;20,13), and max-BKS(2;32,23) were used

For this small problem, it is possible to compute the solution directly using HOOI
and the Newton-Grassmann method, without the Krylov-Schur approach. We com-
pared that solution with the one obtained using the max-BK method and they agreed
to within less than the magnitude of the stopping criterion (the angles between the
subspaces spanned by the solution matrices were computed).

For the small problems in this example, it is not meaningful to compare the com-
putational efficiency of the BKS methods to that of HOOI: due to the simplicity of
HOOI, it comes out as a winner in the cases when it converges.

7.4 Example 2. The Princeton tensor

The Princeton tensor is created using the Facebook data from Princeton [49]4. We
constructed it from a social network, using a student/faculty flag as third mode: the
tensor element A(λ, μ, ν) = 1, if students λ and μ are friends and one of them has
flag ν. After zero slices in the third mode have been removed, this is a 6593×6593×
29 tensor with 1.2 · 106 non zeros.

Figure 3 shows the convergence for the Princeton tensor approximated with a rank-
(2, 2, 2) and a (4, 4, 4)-rank tensor. In both cases, the inner iterations were initialized
with truncated HOSVD followed by 5 HOOI iterations.

The time measurements in Fig. 3 are based on the MATLAB functions tic and
toc. A large proportion of the time in HOOI is the computation of the G-gradient
(which was done every ten iterations).

In Table 7, we give the S-values. The mode-3 entries are a strong indication that
the mode-3 multilinear rank of the tensor is equal to 3. Any attempt to compute,

4The data can be downloaded from https://archive.org/details/oxford-2005-facebook-matrix.

https://archive.org/details/oxford-2005-facebook-matrix


Numerical Algorithms

Table 5 Example 1. S-values for
ρ = 10−2 (top) and ρ = 10−4

(bottom). The column k is the
mode

k s
(k)
1 s

(k)
2 s

(k)
3

1 1.95 1.33 0.11

3 2.07 1.13 0.14

1 1.80 1.68 0.001

3 2.43 0.35 0.001

Table 6 Example 1.
Approximation of the signal
tensor. Ã is the computed
approximation

ρ ‖ρAnoise‖/‖A‖ ‖Ã − Asignal‖/‖A‖

10−2 0.99 0.014

10−4 0.075 0.0011

10−6 6.7 · 10−4 9.9 · 10−6

0 50 100 150 200 250 300

Iteration

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

0 20 40 60 80 100 120

Time

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

Fig. 3 Convergence for Example 2, the Princeton tensor with (m,m, n) = (6593, 6593, 29) and
(r1, r2, r3) = (3, 3, 3). Convergence as function of iterations (left), as function of time (seconds), (right).
The methods min-BKS(3,5;62,29), BKS(2,4;36,21), and max-BKS(1;12,9) were used

Table 7 Example 2, Princeton
tensor. S-values for
(r1, r2, r3) = (3, 3, 3). Note that
the very small entry is
approximately equal to zero in
the floating point system

k s
(k)
1 s

(k)
2 s

(k)
3 s

(k)
4

1 300 193 187 47.3

3 390 185 80.2 2.4 · 10−14



Numerical Algorithms

e.g., a rank-(4,4,4) approximation will suffer from the mode-3 ill-conditioning and is
likely to give incorrect results. However, a rank-(4,4,3) can be computed easily using
BKS. Here, the convergence of HOOI was very slow.

The number of iterations in the BKS method was rather insensitive to the choice of
stage and block size parameters s and p. Thus, it did not pay off to use a larger inner
subproblem. Similarly, the use of max-BKS(2;111,29) gave relatively fast conver-
gence in terms of the number of iterations, but the extra information gained by using
a large value of k1 was not so substantial that it made up for the heavier computations.

HOOI was sensitive to the choice of starting approximation. Often, the conver-
gence rate was considerably slower than in Fig. 3.

7.5 Example 3. The Reuters tensor

The Reuters tensor is a sparse tensor of dimensions 13332×13332×66 with 486,894
nonzero elements. It is constructed from all stories released during 66 consecutive
days by the news agency Reuters after the September 11, 2001, attack [5]. The ver-
tices of the network are words. There is an edge between two words if they appear in
the same text unit (sentence). The weight of an edge is its frequency.

Figure 4 shows the convergence results for the Reuters tensor, approximated with
a rank-(2, 2, 2) and a rank-(6, 6, 6) tensor. In the second case, the inflexibility of
the choice of k1 and k3 in max-BKS forced us to use stage 1, which led to slower
convergence than with BKS and min-BKS.

The S-values are given in Table 8. It is seen that none of the problems is
particularly ill-conditioned.

It is argued in [15] that in cases when the 3-slices of a (1,2)-symmetric tensor
are adjacency matrices of graphs, then one should normalize the slices so that the
largest eigenvalue of each slice becomes equal to 1. In that context, a rank-(2,2,2)
approximation is computed. We ran a test with the normalized tensor and the same
parameter values as in Fig. 4. The results are shown in Fig. 5.

The S-values are given in Table 9. They indicate that this problem is slightly more
ill-conditioned than the unscaled one.

7.6 Example 4. 1998DARPA tensor

The following description is taken from [14]. In [27] network traffic logs are ana-
lyzed in order to identify malicious attackers. The data are called the 1998 DARPA
Intrusion Detection Evaluation Dataset and were first published by the Lincoln Labo-
ratory at MIT5. We downloaded the data set from https://datalab.snu.ac.kr/haten2/ in
October 2018. The records consist of (source IP, destination IP, port number, times-
tamp). In the data file there are about 22000 different IP addresses. We chose the
subset of 8991 addresses that both sent and received messages. The time span for the
data is from June 1, 1998, to July 18, and the number of observations is about 23 mil-
lion. We merged the data in time by collecting every 63999 consecutive observations

5http://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset.

https://datalab.snu.ac.kr/haten2/
http://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset.


Numerical Algorithms

0 50 100 150 200 250 300
Iteration

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

0 20 40 60 80 100 120
Time

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

0 20 40 60 80 100 120 140 160
Iteration

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

0 50 100 150 200
Time

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

Fig. 4 Convergence for Example 3, the Reuters tensor with (m,m, n) = (13332, 13332, 66). Top plot:
(r1, r2, r3) = (2, 2, 2). The methods min-BKS(3,4;34,25), BKS(2,4;20,13) and max-BKS(2;32,23) were
used. Bottom plot: (r1, r2, r3) = (6, 6, 6). The methods min-BKS(2,4;58,37), BKS(1,6;42,27) and max-
BKS(1;42,27) were used (the last two are identical for these parameters)

into one bin. Finally, we symmetrized the tensor A ∈ R
m×m×n, where m = 8891

and n = 371, so that

aijk =
{

1 if i communicated with j in time slot k

0 otherwise.

In this example, we did not normalize the slices of the tensor: The 3-slices
are extremely sparse, and normalization makes the rank-(2,2,2) problem so ill-
conditioned that none of the algorithms converged. Instead we scaled the slices to
have Frobenius norm equal to 1. The convergence history is shown in Fig. 6.

The HOOI method was sensitive to the (random) starting approximations. It did
happen that the method converged rapidly, but in many cases convergence was
extremely slow.



Numerical Algorithms

Table 8 Example 3 S-values for the Reuters tensor with (r1, r2, r3) = (2, 2, 2) (left) and (r1, r2, r3) =
(6, 6, 6) (right)

k s
(k)
1 s

(k)
2 s

(k)
3 k s

(k)
1 · · · s

(k)
6 s

(k)
7

1 350 207 75.2 1 353 · · · 125 74.3

3 397 88 13 3 495 · · · 22.2 15.7

The S-values are given in Table 10. The problem is well-conditioned.

7.7 Example 5. Non-symmetric NeuroIPS tensor

Experiments with data from all the papers at the Neural Information Process-
ing Systems Conferences 1987–2003 are described in [19]. We downloaded the
data from http://frostt.io/ [45], and formed a sparse tensor of dimension
2862 × 14036 × 17, where the modes represent (author,terms,year), and the val-
ues are term counts. We performed a non-symmetric normalization of the 3-slices
of the tensor [10], and computed approximations with (r1, r2, r3) = (2, 2, 2) and
(r1, r2, r3) = (5, 5, 5). Convergence of BKS and HOOI is illustrated in Fig. 7.

The S-values are given in Table 11. It is seen that none of the problems is
particularly ill-conditioned.

For larger values of (r1, r2, r3) the inner iterations of the BKS method became so
heavy that the HOOI method was competitive in terms of execution time (recall that
a relatively large portion of the work in HOOI is devoted to the computation of the
gradient; the more seldom it is done, the more efficient becomes the method).

0 50 100 150 200 250 300
Iteration

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

0 50 100 150 200 250
Time

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
min-BKS
BKS
max-BKS

Fig. 5 Convergence for Example 3, the scaled Reuters tensor, and (r1, r2, r3) = (2, 2, 2). We used min-
BKS(3,4;34,25), BKS(2,4,32,23), and max-BKS(2;32,23)



Numerical Algorithms

Table 9 Example 3. S-values for
the scaled Reuters tensor with
(r1, r2, r3) = (2, 2, 2)

k s
(k)
1 s

(k)
2 s

(k)
3

1 5.07 3.43 0.692

3 6.11 0.421 0.222

7.7.1 Discussion of experiments

Profiling tests of the BKS and HOOI methods for the Reuters example show that
most of the computational work is done in the reshaping of tensors, and in tensor-
matrix multiplications. For small values of the rank (r1, r1, r3), the number of stages
and block size in the BKS methods, the time work for the dense tensor and matrix
operations in the inner iterations in BKS and the SVD’s in HOOI is relatively small.
A considerable proportion of the work in HOOI is the computation of the G-gradient;
we reduced that by computing it only every ten iterations. The data shuffling and
reshaping must be done irrespectively of which programming language is used. It
is reasonable to assume that the implementation made in the sparse tensor toolbox
[4] is efficient. Therefore, it is makes sense to measure efficiency by comparing the
MATLAB execution times (by tic and toc) of the methods.

Our tests indicate that all methods considered here converge fast for very
well-conditioned problems. However, the convergence behavior of HOOI was less
predictable: sometimes it converged very slowly also for well-conditioned, large
problems (see Example 4). Consistently, the min-BKS method converged much more
slowly than the other two Krylov-Schur-like methods. The max-BKS method suf-
fered from its inflexibility in the choice of k1 and k3, especially with r1 and r3
somewhat larger.

0 20 40 60 80 100
Iteration

10 -15

10 -10

10 -5

10 0

HOOI
min-BKS
BKS
max-BKS

0 5 10 15 20 25 30 35
Time

10 -15

10 -10

10 -5

10 0

HOOI
min-BKS
BKS
max-BKS

Fig. 6 Convergence for Example 4, the 1998DARPA tensor with (m,m, n) = (8991, 8991, 371), and
(r1, r2, r3) = (2, 2, 2). The methods min-BKS(2,4;18,15), BKS(2,4;20,13) and max-BKS(2;32,23) were
used



Numerical Algorithms

Table 10 Example 4. S-values
for the 1998DARPA tensor with
(r1, r2, r3) = (2, 2, 2)

k s
(k)
1 s

(k)
2 s

(k)
3

1 6.35 6.12 0.948

3 8.82 0.257 0.0995

The design of BKS is to some extent based on heuristics and numerical experi-
ments. A comparison of BKS and max-BKS shows that the choice of blocks of p

vectors, for p rather small, in the Krylov steps, does not substantially impede the
convergence rate. Using fewer blocks, in the sense of using only p vectors from the
“diagonal” blocks in the diagram in Table 1, as in min-BKS, leads to slower conver-
gence. Thus, BKS seems to be a reasonable compromise. Based on the experience
presented in this paper and [14, 15] it seems clear that for large and sparse tensors the

0 20 40 60 80 100 120

Iteration

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
BKS

0 20 40 60 80 100

Time

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
BKS

0 50 100 150 200 250 300

Iteration

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
BKS

0 50 100 150 200 250 300 350

Time

10 -8

10 -6

10 -4

10 -2

10 0

HOOI
BKS

Fig. 7 Convergence for Example 5, the NeurIPS tensor with (l,m, n) = (2862, 14036, 17). Top plots:
(r1, r2, r3) = (2, 2, 2). The method BKS(2,4;22,22,17) was used. Bottom plots: (r1, r2, r3) = (5, 5, 5).
The method BKS(2,3;60,60,17) was used, and here the stopping criterion was 10−8



Numerical Algorithms

Table 11 Example 5. S-values for the NeurIPS tensor with (r1, r2, r3) = (2, 2, 2) (left) and (r1, r2, r3) =
(5, 5, 5) (right)

k s
(k)
1 s

(k)
2 s

(k)
3 k s

(k)
1 · · · s

(k)
5 s

(k)
6

1 1.89 1.27 0.279 1 1.92 · · · 0.899 0.395

2 2.16 0.702 0.210 2 2.70 · · · 0.257 0.177

3 1.85 1.32 0.388 3 1.87 · · · 0.900 0.132

BKS method is in general more robust and efficient than HOOI. However, for large
values of (r1, r2, r3), the inner problem in the BKS method becomes so large that it
loses some of its competitive edge; for such problems HOOI may be preferred.

In the BKS method the parameters s and p (which give k1 and k3) could be chosen
rather small, typically 2 and 4, respectively. Using larger values did not pay off.

8 Conclusions and future work

We have generalized block Krylov-Schur methods for matrices to tensors and
demonstrated that the new method can be used for computing best rank-(r1, r2, r3)

approximations of large and sparse tensors. The BKS method is shown to be flexible
and has best convergence properties.

The purpose of this paper has been to show that the block-Krylov-Schur method is
a viable approach. It may be possible to analyze BKS methods in depth, theoretically
and by experiments, and optimize the method further, for instance with regard to the
choice of blocks in the tables defining the method.

Since we are interested in very low rank approximation of (1,2)-symmetric tensors
for applications such as those in [14, 15], the development of block Krylov-Schur
type methods was done mainly with such applications in mind. More work is needed
to investigate the application of BKS methods for nonsymmetric tensors.

The detailed implementation of block Krylov-Schur methods for matrices is rather
technical (see, e.g., [54]). The generalization to tensors might improve the conver-
gence properties for ill-conditioned problems. However, this is beyond the scope of
the present paper, and may be a topic for future research.

It appears to be straightforward to generalize the results to tensors of order larger
than 3. We are planning to do research in this direction in the future.

Appendix A: The Grassmann Hessian

Let X ∈ R
l×r , be a matrix with orthonormal columns, XTX = Ir . We will let it

represent an entire subspace, i.e., the equivalence class,

[X] = {XQ | Q ∈ R
r×r , QTQ = Ir }.

For convenience, we will say that X ∈ Gr(l, r), the Grassmann manifold (of
equivalence classes).



Numerical Algorithms

Define the product manifold

Gr3 = (Gr(l, r1), Gr(m, r2), Gr(n, r3)),

and, for given integers satisfying r1 < k1 < l, r2 < k2 < m, and r3 < k3 < n,

Gr3
k = (Gr(k1, r1), Gr(k2, r2), Gr(k3, r3)).

The following is a submanifold of Gr3:

Gr3
s = {(X, Y, Z) =

((
U

0

)
,

(
V

0

)
,

(
W

0

))
∈ Gr3 | (U, V, W) ∈ Gr3

k}.

Let (X0, Y0, Z0) ∈ Gr3, and let three matrices X1 ∈ R
l×(k1−r1), Y1 ∈ R

m×(k2−r2),
and Z1 ∈ R

n×(k3−r3) be given, such that

X̄ = [X0 X1], Ȳ = [Y0 Y1], Z̄ = [Z0 Z1],
all have orthonormal columns.

For a given matrix P ∈ Gr(l, r) we let P⊥ ∈ Gr(l, l − r) be such that (P P⊥) is
an orthogonal matrix. It can be shown [11, Section 2.5] that P⊥ is a matrix of basis
vectors in the tangent space of Gr(l, r) at the point P .

In the maximization problem for ‖A · (X, Y, Z) ‖2 on the Grassmann product
manifold Gr3, we now make a change of variables by defining

B = A · (
(X̄ X̄⊥), (Ȳ Ȳ⊥), (Z̄ Z̄⊥)

)
,

and further
C = A · (

X̄, Ȳ , Z̄
)

.

Clearly C is a leading subtensor of B (see Fig. 1). After this change of variables the
point (X0, Y0, Z0) is represented by

Gr3 � E0 =
((

Ir1

0

)
,

(
Ir2

0

)
,

(
Ir3

0

))
,

and the bases for the tangent space of Gr3 at E0 are

(E0)⊥ =
((

0
Il−r1

)
,

(
0

Im−r2

)
,

(
0

In−r3

))
.

The bases for the tangent space of the submanifold Gr3
s at E0 are given by

⎛

⎝

⎛

⎝
0

Ik1−r1

0

⎞

⎠ ,

⎛

⎝
0

Ik2−r2

0

⎞

⎠ ,

⎛

⎝
0

Ik3−r3

0

⎞

⎠

⎞

⎠ ,

where the top zeros are in R
ri×ri , i = 1, 2, 3, and the bottom in R

(l−k1)×(k1−r1),
R

(m−k2)×(k2−r2), and R
(n−k3)×(k3−r3), respectively. Clearly, the tangent space of Gr3

s

is a subspace of the tangent space of Gr3.
Define the functions

f (X, Y, Z) = ‖B · (X, Y, Z) ‖2, (X, Y, Z) ∈ Gr3,

g(U, V, W) = ‖C · (U, V, W) ‖2, (U, V, W) ∈ Gr3
k



Numerical Algorithms

The subtensor property implies that for (U, V, W) ∈ Gr3
k ,

g(U, V, W) = f (X, Y, Z), (X, Y, Z) =
((

U

0

)
,

(
V

0

)
,

(
W

0

))
. (21)

Proposition A.1. Assume that the Grassmann Hessian of f is positive definite on
the tangent space of Gr3 at E0. Then, the Grassmann Hessian of g is positive definite
on the tangent space of Gr3

k at the point

E0k =
((

Ir1

0

)
,

(
Ir2

0

)
,

(
Ir3

0

))
∈ Gr3

k .

Proof As the tangent space in Gr3
s at E0 is a subspace of the tangent space in Gr3,

the Hessian of f must be positive definite at E0 in Gr3
s . Therefore, due to (21), the

geometric properties of g are the same as those of f , and the Hessian of g is positive
definite in Gr3

k at E0k .

Appendix B: Implementation of the block-Krylov step

Steps (ii)–(iv) in Algorithm 2 are written in tensor form to emphasize the equivalence
to Gram-Schmidt orthogonalization. As we remarked in Section 5, the reorganization
of data from tensor to matrix form before performing tensor-matrix multiplication is
costly. Therefore, we keep the result of step (i) in matrix form and directly orthog-
onalize it to the previous vectors by performing a QR decomposition. Thereby we
also avoid performing reorthogonalization, which might be necessary if we use the
Gram-Schmidt method.

Acknowledgements This work was done when the second author visited the Department of Mathematics,
Linköping University. We thank the referees and the associate editor for constructive criticism and several
suggestions that helped to improve the paper.

Funding Open access funding provided by Linköping University.

Availability of data and material References to data repositories are given in the text.

Code availability Codes are available from the web page of LE.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


Numerical Algorithms

References

1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton
University Press, Princeton (2007)

2. Andersson, C.A., Bro, R.: Improving the speed of multi-way algorithms: part i. Tucker3. Chemomet-
rics and Intelligent Laboratory Systems 42, 93–103 (1998)

3. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping.
ACM Transactions on Mathematical Software (TOMS) 32, 635–653 (2006)

4. Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and factored tensors. SIAM
Journal on Scientific Computing 30, 205–231 (2007). https://doi.org/10.1137/060676489. http://link.
aip.org/link/?SCE/30/205/1

5. Batagelj, V., Mrvar, A.: Density based approaches to network analysis. Analysis of Reuters Ter-
ror News Network. University of Ljubljana, Slovenia (2003). https://repozitorij.uni-lj.si/IzpisGradiva.
php?id=33150&lang=eng

6. Comon, P., Mourrain, B.: Decomposition of quantics in sums of powers of linear forms. Signal
Process. 53, 93–107 (1996)

7. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21, 1253–1278 (2000)

8. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(r1, r2, ..., rn) approxi-
mation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

9. De Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation
problem. SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008)

10. Dhillon, I.S.: Co-Clustering documents and words using bipartite spectral graph partitioning. In: Proc
7th ACM-SIGKDD Conference, pp. 269–274 (2001)

11. Edelman, A., Arias, T., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM
J. Matrix Anal. Appl. 20, 303–353 (1998)

12. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints.
SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

13. Eldén, L.: Matrix methods in data mining and pattern recognition. SIAM (2007)
14. Eldén, L., Dehghan, M.: Analyzing large and sparse tensor data using spectral low-rank approxima-

tion, Tech. Report 2012.07754 arxiv,math.NA (2020)
15. Eldén, L., Dehghan, M.: Spectral partitioning of large and sparse tensors using low-rank tensor

approximation. Numerical Linear Algebra Appl., https://doi.org/10.1002/nla.2435 (2022)
16. Eldén, L., Savas, B.: A Newton–Grassmann method for computing the best multilinear rank-

(r1, r2, r3) approximation of a tensor. SIAM Journal on Matrix Analysis and applications 31, 248–271
(2009)

17. Eldén, L., Savas, B.: Perturbation theory and optimality conditions for the best multilinear rank
approximation of a tensor. SIAM J. Matrix Anal. Appl. 32, 1422–1450 (2011)

18. Fletcher, R. Practical Methods of Optimization, 2nd edn. Wiley, Hoboken (1987)
19. Globerson, A., Chechik, G., Pereira, F., Tishby, N.: Euclidean embedding of co-occurrence data. The

Journal of Machine Learning Research 8, 2265–2295 (2007)
20. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. Journal of the

Society for Industrial and Applied Mathematics Series B: Numerical Analysis 2, 205–224 (1965)
21. Golub, G.H., Van Loan, C.F. Matrix Computations, 4th edn. Johns Hopkins University Press,

Baltimore (2013)
22. Goreinov, S., Oseledets, I.V., Savostyanov, D.V.: Wedderburn rank reduction and Krylov subspace

method for tensor approximation. Part 1 Tucker case. SIAM Journal on Scientific Computing 34,
A1–A27 (2012)

23. Hillar, C.J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60, 1–39 (2013)
24. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or tensor. Stud. Appl.

Math. 7, 39–79 (1928)
25. Ishteva, M., Absil, P.-A., Van Huffel, S., De Lathauwer, L.: Best low multilinear rank approximation

of higher-order tensors, based on the Riemannian trust-region scheme. SIAM J. Matrix Anal. Appl.
32, 115–135 (2011)

26. Ishteva, M., De Lathauwer, L., Absil, P.-A., Van Huffel, S.: Differential-geometric Newton method
for the best rank-(r1, r2, r3) approximation of tensors. Numer. Algo. 51, 179–194 (2009)

27. Jeon, I., Papalexakis, E., Faloutsos, C., Sael, L., Kang, U.: Mining billion-scale tensors: algorithms
and discoveries. The VLDB Journal 25, 519–544 (2016). https://doi.org/10.1007/s00778-016-0427-4

https://doi.org/10.1137/060676489
http://link.aip.org/link/?SCE/30/205/1
http://link.aip.org/link/?SCE/30/205/1
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=33150&lang=eng
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=33150&lang=eng
https://doi.org/10.1002/nla.2435
https://doi.org/10.1007/s00778-016-0427-4


Numerical Algorithms

28. Kaya, O., Uçar, B.: High performance parallel algorithms for the Tucker decomposition of sparse
tensors. In: 2016 45th International Conference on Parallel Processing (ICPP), pp. 103–112 (2016).
https://doi.org/10.1109/ICPP.2016.19

29. Khoromskij, B., Khoromskaia, V.: Low rank Tucker-type tensor approximation to classical potentials.
Open Mathematics 5, 523–550 (2007)

30. Khoromskij, B.N., Khoromskaia, V.: Multigrid accelerated tensor approximation of function related
multidimensional arrays. SIAM J. Sci. Comput. 31, 3002–3026 (2009)

31. Kolda, T., Sun, J.: Scalable tensor decompositions for multi-aspect data mining, in. Eighth IEEE
International Conference on Data Mining 2008, 363–372 (2008)

32. Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-order web link analysis using multilinear algebra. In:
Fifth IEEE International Conference on Data Mining, pp. 27–30. IEEE (2005)

33. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ guide: solution of large-scale eigenvalue
problems with implicitly restarted Arnoldi methods. SIAM (1998)

34. Lim, L.-H.: Tensors in computations. Acta Numerica 30, 555–764 (2021). https://doi.org/10.1017/
S0962492921000076

35. Lim, L.-H., Morton, J.: Cumulant component analysis: a simultaneous generalization of PCA and
ICA. CASTA2008, 18 (2008)

36. Liu, X., Ji, S., Glänzel, W., De Moor, B.: Multiview partitioning via tensor methods. IEEE Trans.
Knowl. Data Eng. 25, 1056–1069 (2013)

37. Oseledets, I.V., Savostianov, D., Tyrtyshnikov, E.E.: Tucker dimensionality reduction of three-
dimensional arrays in linear time. SIAM J. Matrix Anal. Appl. 30, 939–956 (2008)

38. Persson, C., Bohlin, L., Edler, D., Rosvall, M.: Maps of sparse Markov chains efficiently reveal
community structure in network flows with memory. arXiv:1606.08328 (2016)

39. Powell, M.J.: On search directions for minimization algorithms. Math. Program. 4, 193–201 (1973)
40. Ruhe, A., Åwedin, P.: Algorithms for separable nonlinear least squares problems. SIAM Rev. 22,

318–337 (1980)
41. Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition.

Pattern Recognit. 40, 993–1003 (2007)
42. Savas, B., Eldén, L.: Krylov-type methods for tensor computations I. Linear Algebra Appl. 438, 891–

918 (2013)
43. Savas, B., Lim, L.-H.: Quasi-newton methods on Grassmannians and multilinear approximations of

tensors. SIAM J. Sci. Comput. 32, 3352–3393 (2010)
44. Smilde, A., Bro, R., Geladi, P.: Multi-way analysis: applications in the chemical sciences. Wiley,

Hoboken (2005)
45. Smith, S., Choi, J.W., Li, J., Vuduc, R., Park, J., Liu, X., Karypis, G.: FROSTT: The formidable

repository of open sparse tensors and tools. http://frostt.io/ (2017)
46. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix

Anal. Appl. 13, 357–385 (1992)
47. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23,

601–614 (2001)
48. Stewart, G.W.: Matrix Algorithms: Volume II: Eigensystems. SIAM (2001)
49. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community structure to characteris-

tics in online collegiate social networks. SIAM Rieview 53, 526–543 (2011)
50. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In: Gulliksen, H.,

Frederiksen, N. (eds.) Contributions to mathematical psychology, pp. 109–127. Holt, Rinehart and
Winston, New York (1964)

51. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311
(1966)

52. Xu, Y.: On the Convergence of higher-order orthogonality Iteration, Tech. Report 1504.00538v2 arXiv
[math.NA] (2015)

53. Zhang, T., Golub, G.H.: Rank-one approximation to higher order tensors. SIAM J. Matrix Anal. Appl.
23, 534–550 (2001)

54. Zhou, Y., Saad, Y.: Block Krylov-Schur method for large symmetric eigenvalue problems. Numer.
Alg. 47, 341–359 (2008)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ICPP.2016.19
https://doi.org/10.1017/S0962492921000076
https://doi.org/10.1017/S0962492921000076
http://arxiv.org/abs/1606.08328
http://frostt.io/

	A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
	Abstract
	Introduction
	Tensor concepts and preliminaries
	Notation
	Multilinear tensor-matrix multiplication
	 Inner product and norm, contractions
	Multilinear rank
	Best rank-(r1,r2,r3) approximation
	Gradient on the product manifold
	Conditioning of the best approximation problem

	The Krylov-Schur method for matrices
	Krylov-type methods for tensors
	Block-Krylov methods
	Min-BK method for (1,2)-symmetric tensors
	Max-BK method for (1,2)-symmetric tensors
	BK method for (1,2)-symmetric tensors
	BK Method for general tensors

	A tensor Krylov-Schur-like method
	Convergence of the tensor Krylov-Schur algorithm

	Numerical experiments
	Higher order orthogonal iteration and other methods
	Numerical tests
	Example 1. Synthetic signal-plus-noise tensor
	Example 2. The Princeton tensor
	Example 3. The Reuters tensor
	Example 4. 1998DARPA tensor
	Example 5. Non-symmetric NeuroIPS tensor
	Discussion of experiments


	Conclusions and future work
	Appendix A A: The Grassmann Hessian
	 B: Implementation of the block-Krylov step
	Appendix B B: Implementation of the block-Krylov step
	References


