
A Composable and
Extensible Environment for
Equation-based Modeling
and Simulation of Variable
Structured Systems in
Modelica

Linköping Studies in Science and Technology
Licentiate Thesis No. 1937

John Tinnerholm

John Tinnerholm
A Com

posable and Extensible Environm
ent for Equation-based M

odeling and Sim
ulation of Variable Structured System

s in M
odelica

 2022

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Licentiate Thesis No. 1937, 2022
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

Linköping Studies in Science and Technology
Licentiate Thesis No. 1937

A Composable and Extensible Environment for Equation‐based
Modeling and Simulation of Variable Structured Systems in

Modelica

John Tinnerholm

Linköping University
Department of Computer and Information Science

Division of Software and Systems
SE‐581 83 Linköping, Sweden

Linköping 2022

This is a Swedish Licentiate’s Thesis

Swedish postgraduate education leads to a doctor’s degree and/or a licentiate’s degree.
A doctor’s degree comprises 240 ECTS credits (4 years of full-time studies).

A licentiate’s degree comprises 120 ECTS credits.

Edition 1:1

© John Tinnerholm, 2022 if nothing else is specified
ISBN 978-91-7929-367-3 (Printed)
ISBN 978-91-7929-368-0 (Electronic)
ISSN 0280-7971
DOI: https://doi.org/10.3384/9789179293680

Published articles have been reprinted with permission from the respective
copyright holder.
Typeset using XƎTEX

Printed by LiU-Tryck, Linköping 2022

ii

This work is licensed under a Creative Commons Attribution 4.0
International License.
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

I dedicate this thesis to my family.

iii

ABSTRACT

Modeling and Simulation are usually used to solve real-world problems safely and efficiently
by constructing digital models of Cyber-Physical Systems. The models can be simulated
and analyzed with respect to requirements, and decisions about their design can be based
on this analysis. In the latest years, the field of Modeling and Simulation has grown
massively and is tackling systems with increased complexity. Thus, the process of modeling
and simulating Cyber-Physical systems is becoming more and more complex. This increase
requires modeling languages that can express systems with increasing complexity.

Modelica is an open-standard declarative equation-based object-oriented language used to
model various systems expressed using equations. Modelica tools can read the models, pro-
cess them, and simulate them. However, the Modelica language and tools cannot express
some concepts such as structural changes to the components or behavior of Cyber-Physical
Systems during Simulation.

In this thesis, we propose extensions of the Modelica language to support modeling
so-called variable structure systems, that is, systems where the structure of the system
varies during Simulation. The full Modelica language and the new extensions are supported
by a novel composable programming environment framework called OpenModelica.jl writ-
ten in the Julia language. The proposed Modelica language extensions can handle explicit
and implicit modeling of variable structure systems by introducing new operators and,
consequently, new semantics to the Modelica language.

The explicit modeling is based on extensions that switch at runtime between continu-
ous modes of operations with operators similar to the ones used in the specification of
Modelica state-machines. The implicit modeling supports reconfiguration during runtime
via recompilation. A Just-in-time compiler was implemented to handle the new semantics
using the symbolic-numeric programming language Julia.

We investigate the performance of our new framework and compare it with existing
state-of-the-art Modelica tools on models with thousands of equations and variables. The
results show that our extensions and proposed runtime framework is viable for simulating
both usual Modelica models and models with variable structure systems.

The conclusion is that the Modelica language can be extended further to support systems
with variable structures with the addition of a few operators and JIT enhanced runtime
system support. Based on the result of this thesis, we propose several directions for future
work.

v

This work has been supported by the Swedish Government in the ELLIIT project and
by Vinnova in the ITEA3 EMBRACE project. Support has also been received from the
Swedish Strategic Research foundation (SSF) in the LargeDyn project. The development
of OpenModelica is supported by the Open Source Modelica Consortium.

vi

POPULÄRVETENSKAPLIG SAMMANFATTNING

Ekvationer har länge använts för att underlätta för mänskligheten inom flera olika fält. När
analysen utvecklades under 1700-talet av Leibnitz och Newton började differentialekvationer
användas i större utsträckning för att beskriva olika fysikaliska fenomen. När därefter först
den analoga och sedan den digitala datorn uppfanns kunde ekvationer skrivas och simuleras
med hjälp av datorer. Detta utgjorde grunden för ett ämne som sedan kom att kallas
beräkningsvetenskap där beräkningsmetoder studeras för att med större noggrannhet och
effektivitet kunna simulera fysikaliska system.

Kompilatorkonstruktion är ett annat ämne. I kompilatorkonstruktion undersöker forskare
hur en textuell eller visuell programbeskrivning kan översättas till effektiv maskinkod för
att köras på en digital dator. Denna licentiatavhandling undersöker hur ett ramverk för att
konstruera kompilatorer kan realiseras för att kunna representera så kallade system med
variabel struktur, som inte tidigare har kunnat representeras i det ekvationsorienterade
programspråket Modelica. Exempel på system med variabel struktur är en pendel som går
av eller en bil där ett hjul faller av under körning. Det vill säga situationer som förekommer
i verkligheten men som inte med enkelhet går att modellera statiskt.

Licentiatavhandlingen visar att det möjligt av att kombinera simulering under kompilering
på ett sådant sätt att enbart ett fåtal nya operatorer behövs för att kunna simulera mer
dynamiska system i Modelica.

Detta har praktiska tillämpningar som exempelvis simulering av elnät där olika typer av
energikällor såsom vindkraft och vattenkraft samverkar. Sådana system har tidigare gått
att simulera i Modelica, men har krävt att att simuleringen konfigureras explicit för olika
scenarier; med de utökningar som avhandlingen presenterar kan beteenden såsom att ett
vindkraftverk slutar fungera representeras på ett mer precist sätt än tidigare. Vidare så har
en helt ny modellerings och simuleringsmiljö utvecklas.

vii

Författarens tack

Först och främst skulle jag vilja tacka min huvudhandledare Adrian Pop.
Adrian har alltid varit tillgänglig, och vi har haft flera intressanta prestigelösa
diskussioner där jag har kunnat diskutera allt mellan himmel och jord. Jag
skulle också vilja tacka min bihandledare Martin Sjölund. Martin introduc-
erade mig till kompilatorkonstruktion och till ekvationsbaserad modellering
från ett datalogiskt perspektiv. Vidare skulle jag också vilja utbringa ett
stort tack till min andra bihandledare Peter Fritzson. Peters långa erfarenhet
och kunnande har varit ytterst hjälpsamt under forskarutbildningen samt i
mitt akademiska skrivande. Vidare skulle jag skulle också vilja tacka mina
kollegor vid PELAB. Tack till Mahder Gebremedhin och Lennart Ochel för
intressanta lunchdiskussioner. Jag vill också uttrycka tacksamhet till Alachew
Mengist för hans återkoppling på de sista utkasten av avhandlingen och den
alltid tillgängliga och kompetente labchefen Kristian Sandahl.

Mina kollegor Lena Buffoni, Christoph Kessler och Ola Leifler har också
varit viktiga. Att handleda masterarbeten tillsammans med er har varit
väldigt givande vilket har hjälpt mig i mitt eget skrivande.

Jag skulle också vilja tacka Francesco Casella, Andreas Heuermann, Karim
Abdelhak och Bernhard Bachman i OpenModelica-konsortiet för deras hjälp.
Anne Moe förtjänar också att omnämnas, tack för att du alltid har tid och
tack för allt du gör för att hjälpa och vägleda doktorander på IDA. Samma
tack förtjänar också administratören på SaS, Lene Rosell, utan hennes hjälp
hade det varit väldigt svårt att resa.

Sist men inte minst vill jag tacka min familj, speciellt min mor Angela och
min far Anders, mina vänner och resten av min familj. Tack för att ni finns
och har funnits!

ix

Contents

Abstract v

Acknowledgments ix

Contents xi

List of Figures xv

List of Tables xvii

List of Symbols xix

List of Abbreviations xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Aim . 2
1.3 Research questions . 2
1.4 Research Methodology . 2
1.5 Contributions . 3
1.6 List of publications . 4

1.6.1 Other publications not included in this thesis 4
1.7 Delimitations . 5
1.8 Structure . 5

2 Systems and Simulation 7
2.1 Systems and Equation-based modeling 7

2.1.1 Continuous Systems . 7
2.1.2 Discrete Systems . 9
2.1.3 Hybrid Systems . 11
2.1.4 Differential Algebraic Equations 13

2.2 Continuous System Simulation . 15
2.2.1 Explicit methods . 16
2.2.2 Implicit methods . 16

xi

2.2.3 Multistep methods . 17
2.2.4 Representing systems . 17

2.3 Summary . 20

3 Compilers and Equation-based modeling languages 23
3.1 Compilers and Interpreters - an overview 23

3.1.1 Compilers . 23
3.1.2 Interpreters . 26
3.1.3 Just-in-time Compilers . 26
3.1.4 Compilers for Declarative Languages 27

3.2 Equation-based modeling languages 28
3.2.1 Historical modeling languages 28

3.2.1.1 Early languages 28
3.2.1.2 Object-oriented modeling languages 30
3.2.1.3 Other languages 31
3.2.1.4 Modelica . 31
3.2.1.5 MetaModelica . 34

3.3 Equation-based languages with variable structure 36
3.3.1 Mosilab . 37
3.3.2 The Sol language . 40

3.3.2.1 Handling structural change in Sol 40
3.3.3 Hydra . 41

3.3.3.1 Recompilation during mode change in Hydra . 41
3.3.4 The Model Composition Language and Nano Modelica . 42
3.3.5 Comparing languages and programming environments

for Variable Structured Modeling 43
3.4 Other frameworks . 47

4 OpenModelica.jl a Composable Modelica Environment 49
4.1 Introducing OpenModelica.jl . 49
4.2 The Julia Programming language 51

4.2.1 Scientific computation in Julia 51
4.2.2 Equation based modeling in Julia 52

4.3 MetaModelica and MetaModelica.jl 53
4.3.1 MetaModelica.jl . 53

4.4 OMFrontend . 55
4.4.1 Validating the frontend by using Flat-Modelica 56
4.4.2 Modelica library support 57

4.5 OMBackend . 58
4.6 Extending the Modelica language to support Variable Struc-

tured Systems . 58
4.6.1 Explicit Variable Structured Systems 58

4.6.1.1 Modeling the breaking pendulum explicitly . . 59
4.6.2 Implicit Variable Structured Systems 62

xii

4.7 Summary . 66

5 Results 71
5.1 Instrumentation . 71
5.2 Simulation of large Modelica models 72
5.3 Evaluating compile-time overhead 75
5.4 Evaluating the cost of structural changes 78
5.5 Comparison To Related work . 81
5.6 Summary . 83

6 Conclusion & Discussion 85
6.1 What syntactic constructs are needed in a language to simulate

VSS? . 85
6.2 What kind of computational framework is suitable for achieving

VSS support? . 86
6.3 How can VSS support for Modelica be realized to simulate large

systems effectively? . 86
6.4 The work in a wider context . 86

7 Future Work 89
7.1 Separate Compilation . 89
7.2 Graphical presentation . 89
7.3 Initialization . 89
7.4 Dynamic optimization & Model Reduction 90
7.5 Verification . 90
7.6 Cloud computing . 90
7.7 Debugging . 90

Bibliography 93

A Source code examples 101
A.1 Models and source code for Chapter 2 101
A.2 The Electrical component library 103

B Tables 105
B.1 Simulation time measurements . 105
B.2 Compilation time measurements 106

xiii

List of Figures

1.1 An overview of the research methodology of this thesis. 3

2.1 A ball being dropped from a high tower. 8
2.2 Plot of the height of the ball as a function of time. 8
2.3 State transition diagram for a DFSM. 10
2.4 A bouncing ball . 11
2.5 Plot of the height and velocity of a bouncing ball. 12
2.6 RLC Circuit . 15
2.7 The relationship between variables and equations. 21

3.1 A high-level overview of compiler phases. 24
3.2 An overview of the different stages in an optimizing compiler. . . . 25
3.3 A Pendulum . 36
3.4 State chart describing a landing system in Mosilab 39

4.1 An overview of the dependencies between the components in Open-
Modelica.jl . 50

4.2 A high level overview of a design separating the intermediate repre-
sentation from the frontend to allow several hypothetical frontends
to use the same backend. 50

4.3 Simulating a simple system with recompilation 60
4.4 Simulation of the explicit breaking pendulum. 63
4.5 Compilation and simulation process of a Modelica compiler with

dynamic capabilities . 66
4.6 Simulation of ArrayGrow and ArrayShrink. 67
4.7 Simulation of the explicit breaking pendulum 69

5.1 Numerical simulation, OMC vs OpenModelica.jl 74
5.2 Time spent translating the Transmission line model 77
5.3 Histogram of VSS simulation and associated phases 80

xv

List of Tables

2.1 State transition table of a DFSM that accepts the string DIS-
CRETE. S1 is the starting state and S9 is the accepting state. . . 9

3.1 Overview of structural variability . 47

5.1 Hardware used in the performance experiments. 71
5.2 Software packages used. 72
5.3 The total time in seconds between the different phases of simulat-

ing the system with variable structure. 79
5.4 Characteristics of languages and frameworks that are able to ex-

press system with structural variability 82

B.1 Numerical simulation for OpenModelica.jl and OpenModelica . . . 105
B.2 Time spent conducting numerical simulation for the OMC. x̂ is the

sample median, µ̂ is the sample mean and σ̂ is the sample standard
deviation. The parameter N corresponds to the total amount of
equations and variables in the system under simulation. 106

B.3 Time spent compiling when generating flat Modelica. 106
B.4 Required memory for the transmission line model 107
B.5 Compilation time when generating flat Modelica. 107

xvii

List of Symbols

ẋ Derivative of x with respect to time.
t Time.
xÐ→ Vector of state variables.
ẋÐ→ Vector of state derivatives.
y
Ð→

Vector of algebraic variables.
uÐ→ Vector of input variables.
p
Ð→

Vector of parameters and constants.
µ̂ Sample mean.
x̂ Sample median.
σ̂ Sample standard deviation.
0Ð→ = f(t, ẋÐ→(t), xÐ→(t), yÐ→

(t), uÐ→(t), pÐ→
) System of differential algebraic equations.

xix

List of Abbreviations

AOT-Compilation Ahead-Of-Time Compilation. 26, 27, 47, 82
AOT-Compilers Ahead-of-time Compilers. 26, 27
BDF Backward differentiation formulas. 17
DAE Differential Algebraic Equation 13, 15, 17
DASSL Differential Algebraic System Solver 20
DFA Deterministic Finite Automaton 9
DFSM Deterministic Finite State Machine xvii, 9, 10
EOOL Equation-based object-oriented modeling lan-

guages. 50
HiR High-level intermediate representation. De-

notes an intermediate language utillized be-
tween initial compiler translation phases. The
High-level intermediate representation keeps
control structures and other characteristics
from the original language. 24

Interpretation Interpretation, in this context is to be under-
stood as a program, A interpreting the mean-
ing of another program, B. That is program
that exectutes a program described in another
program. 47, 82

IR Intermediate representation. Denotes an in-
termediate language used in compilers between
translation phases. 43

JIT-Compilation Just-In-Time Compilation. 26, 27, 41, 47, 51,
62, 71, 75, 78, 81–83, 86, 89

JIT-Compilers Just-in-time Compilers. 26, 27
LiR Low-level intermediate representation. De-

notes an intermediate language used in the last
phases of a typical compiler before code gener-
ation. The LiR representation is close to the
target language but otherwise language inde-
pendent. 26

xxi

List of Abbreviations

LLVM-IR The intermediate representation of the LLVM
compilation framework. 26

MCL Model Composition Language 43
MiR Mid-level intermediate representation. De-

notes an intermediate language used in com-
pilers between translation phases that typi-
cally keep some structures from the original
language. 24, 26

MKL Model Kernel Language 43
MSL Modelica Standard Library 57, 75
MTK ModelingToolKit 53, 73, 81
ODE Ordinary Differential Equation 16, 17, 19, 29
OMC The OpenModelica Compiler. xvii, 34, 53, 55,

56, 73–75, 77, 86, 106, 107
RLC Resistance (R), Inductance (L), and Capaci-

tance (C). Used in the context RLC circuit 13,
15

UML Unified Modeling Language 37
VSS Variable Structure Systems xiii, 1–4, 40, 42,

46, 47, 58, 66, 85, 86, 89, 90

xxii

1. Introduction

The models scientists have proposed to describe our reality are continuously
improving. With the dawn of computing, the necessity of constructing phys-
ical models such as the model that disproved the Reeber plan1, has been
reduced. Instead, models can be created and simulated using computers.
Hence, the advent of the computer has proven to be a useful tool for both
academia and industry.

Still, these developments would not be possible without the environments
and tools to support them, such as MATLAB, Dymola, OpenModelica, Wol-
fram, et cetera. While some environments and associated tooling focus on
specific domains, others aim for generality. In the past, models such as the
model of the Reber Plan were physical; that is, they did not contain any
digital sub-components. However, modern systems such as personal cars also
contain digital subsystems. Such systems are called Cyber-Physical Systems
(CPS). One example of a CPS is the modern car consisting of mechanical
(physical) components and software components. Hence, modern CPS, such
as a car, is often complex, exhibiting both discrete and continuous behavior.
Furthermore, they are usually systems of systems.

The equation-based language Modelica is one way of modeling such sys-
tems. Modelica was developed as a unified object-oriented equation-based
language. The development of Modelica is a continuous effort to create and
maintain an open standard to model wide spectra of systems. However, there
are some elements of modern systems that are hard to capture efficiently in
Modelica. More specifically, Modelica lacks standardized support for highly
dynamic systems, so-called Variable Structured Systems (VSS). While classes
of VSS can be handled in Modelica2, support for systems in which the index 3

of the differential-algebraic equations (DAE) varies at simulation time is not
supported.

1John Reber conceived the Reber plan in 1949 to terraform the San Francisco bay into
two freshwater lakes. A physical miniature of San Francisco Bay was constructed to simulate
the effect of this change. Luckily, the simulation demonstrated that the implementation of
the plan would lead to an environmental disaster, so the plan was abandoned (Weisberg
2012).

2For instance, compile-time structural components.
3The DAE index is the number of times a DAE must be differentiated to be transformed

into an ODE, the index of the ODE being zero (Brenan, Campbell, and Linda Ruth Petzold
1995).

1

1. Introduction

1.1 Motivation

While several modeling languages and environments support acausal model-
ing, support for variable structure modeling has yet to enter the mainstream.
Existing proposals (Benveniste, Benoı̂t Caillaud, and Malandain 2021; Ben-
veniste, Benoît Caillaud, Elmqvist, Ghorbal, Otter, and Pouzet 2019; Höger
2019; Zimmer 2010; Giorgidze and Nilsson 2009) to handle variable structure
system modeling and simulation are not yet integrated into any mainstream
tool. Furthermore, there are no detailed studies concerning the practical im-
plications of a modeling and simulation environment with VSS support.

This calls for an investigation on how to integrate support for VSS in
a framework that is capable of supporting larger systems than previous ap-
proaches while adhering to existing standards and practices.

1.2 Aim

This thesis aims to provide a new environment for equation-based languages
in general and Modelica in particular. This environment is then used to
examine the practical implication of dynamic compilation within the context
of equation-based languages empirically.

1.3 Research questions

The main question in this licentiate thesis is: How to integrate VSS support in
an equation-based language to allow for efficient simulation of large systems?

While the question above constitutes the main theme, it can be divided
into the following sub questions.

1. (RQ-I) What syntactic and semantic constructs are needed in an
equation-based language for modeling and simulating VSS?

2. (RQ-II) What characteristics of a modeling and simulation framework
are appropriate for achieving VSS support?

3. (RQ-III) How can VSS support for Modelica be realized to simulate
large systems effectively?

1.4 Research Methodology

This thesis follows the principal methodology of a design study proposed
by Peffers, Tuunanen, Rothenberger, and Chatterjee (2007) sketched in Fig-
ure 1.1.

2

1.5. Contributions

Identification

Design & Implementation

Evaluation

RQ I

RQ III

Future
work

RQ II

Figure 1.1: An overview of the research methodology of this thesis.

Starting with Research Question I (RQ I) relevant literature was examined
and together with the initial experiments described in Tinnerholm, Sjölund,
and Pop (2019) a framework was designed to support the syntactic and se-
mantic constructs of VSS in Modelica.

During the process of answering RQ II Just-In-Time-Compilation was
selected as the main technique to realize the simulation runtime.

To answer RQ III we investigated the feasibility of VSS simulation for large
systems, and the subsequent impact on compiler design in a performance ex-
periment where we gradually increased the number of equations and variables
for a selection of models. As depicted in Figure 1.1 these experiments also
influenced the design.

If we compare the methodology to that of the suggested guidelines for
design studies by (Peffers, Tuunanen, Rothenberger, and Chatterjee 2007)
and our research questions the first two steps contributed to answer RQ I :

• Problem identification and motivation.

• Define the objectives for a solution.

The process of answering RQ II corresponds to the Design and Develop-
ment stage. Finally, the evaluation stage corresponds to the Demonstration
and Evaluation stage.

While we follow the steps sequentially, some stages have been refined it-
eratively during the process of this research4.

1.5 Contributions

The contributions of this licentiate thesis are to be understood in the context
of equation-based languages. This thesis contributes to our understanding
of designing a composable framework to model and simulate large systems

4Examples of this is the refinement of algorithms when inefficiencies have been noted
during our experiments.

3

1. Introduction

with variable structure using Modelica. Furthermore, this thesis provides a
concrete framework to do so. Moreover, while an extension of Modelica is the
target of this thesis, this framework provides the necessary retargetability so
that it could be used to support new novel equation-based languages.

To summarize, the main contributions are:

• Firstly, an overview of current and past research within equation mod-
eling of variable structured systems.

• Secondly, empirical insight regarding large-scale VSS simulation, and an
initial proposal on how to design support for this paradigm in standard
Modelica.

• Thirdly, a composable compiler framework that can be used to increase
collaboration and further the design of other equation-based languages
in the context of modeling and simulation.

1.6 List of publications

This monograph is based on the following publications.

1. Towards introducing just-in-time compilation in a Modelica compiler.
In Proceedings of the 9th International Workshop on Equation-based
Object-oriented Modeling Languages and Tools (pp. 11-19) (Tinner-
holm, Sjölund, and Pop 2019).

2. Towards an Open-Source Modelica Compiler in Julia. In Proceedings
of Asian Modelica Conference (pp. 08-09) (Tinnerholm, Pop, Sjölund,
Heuermann, and Abdelhak 2020).

3. OpenModelica.jl: A modular and extensible Modelica compiler frame-
work in Julia targeting ModelingToolkit.jl. In Modelica Conferences
(pp. 109-117) (Tinnerholm, Pop, Heuermann, and Sjölund 2021).

4. A modular, extensible, and Modelica standard-compliant OpenModelica
compiler framework in Julia supporting structural variability, J Tinner-
holm, A Pop, M Sjölund (Submitted for publication)

1.6.1 Other publications not included in this thesis
Publications listed here are publications completed during my time writing
this licentiate thesis that concern empirical software engineering and modeling
and simulation but are not included:

1. A Failed attempt at creating Guidelines for Visual GUI Testing: An in-
dustrial case study. In 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST) (pp. 340-350)

4

1.7. Delimitations

2. The OpenModelica Integrated Environment for Modeling, Simulation,
and Model-Based Development. Modeling, Identification and Control,
P Fritzson et al.

1.7 Delimitations

This thesis aims not to prove the correctness of the implementation formally.
Rather the aim is to provide insight concerning:

• How well the Julia language performs as an implementation language
for a large application.

• The practical performance implications concerning the simulation of
large dynamic systems.

• How support for models with dynamic structure can be realized.

This licentiate thesis is inductive and experimental; deductive approaches such
as formal methods are not considered. Furthermore, while separate compila-
tion of equation-based languages is a central concern in the context of efficient
dynamic compilation, due to time limitations, such approaches are not con-
sidered. Notwithstanding these limitations, this thesis suggests that support
for models with varying structures can be implemented in the core Modelica
language with just a few modifications.

1.8 Structure

The structure of the remaining chapters is as follows: in Chapter 2 the con-
cepts of systems, simulation, and some foundations within mathematical mod-
eling are presented. In Chapter 3 we present the background concerning
compilers and equation-based languages. Chapter 4 presents the framework
developed as part of the thesis and the experimental framework used to an-
swer the stated research questions. The result of the experiments evaluating
the performance are presented in Chapter 5, and the answers to the research
question are provided in Chapter 6. Finally, future research directions are
presented in Chapter 7.

5

2. Systems and Simulation

In this chapter, we present the background of this thesis. In Section 2.1
we discuss continuous, discrete, and hybrid systems and how they can be
represented using equations. This is followed by Section 2.2 where we discuss
algorithms used to simulate equation-based systems. The examples in this
chapter were simulated using OpenModelica.jl developed as a part of the thesis.

2.1 Systems and Equation-based modeling

What is a system? Donella Meadows gives one definition in Thinking in
Systems (Meadows 2008):

“A set of elements or parts that is coherently organized and inter-
connected in a pattern or structure that produces a characteristic
set of behaviors, often classified as its ”function” or ”purpose”.”
Meadows 2008. p. 188.

This is similar to the definition given by Merriam Webster1:

“A regularly interacting or interdependent group of items forming
a unified whole.” Merriam-Webster 2020.

This thesis is concerned with systems modeled by equations. We briefly
describe Continuous Systems, Discrete Systems, and Hybrid Systems in the
following subsections.

2.1.1 Continuous Systems
In continuous systems no events occur. When modeling continuous systems
using equations it means that the values of the system variables at any time
point t are decided by continuous functions. An example of a physical scenario
represented with continuous equations can be seen in Figure 2.1. This can
be described by a continuous system of equations as given by Equation (2.1).
The system describes how the height, h and the velocity, v of a ball dropped
from this tower behave where h0 = 1 and v0 = 0 when t = 0, t ≥ 0.

1Merriam Webster is a well known American dictionary.

7

2. Systems and Simulation

gv

Figure 2.1: A ball being dropped from a high tower.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

H
e
ig

h
t

(m
)

Time (s)

Simulation of the falling ball

Figure 2.2: Plot of the h height of the ball as a function of time.

f(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g = 9.81
ḣ = v
v̇ = −g

(2.1)

In Figure 2.2 we can observe how this system behaves if it is simulated
for 0.5 seconds. Equation (2.1) does not take the ground into account as that
would imply using discrete behavior in our continuous model. Systems where
continuous and discrete behavior is combined are discussed in Section 2.1.3.

8

2.1. Systems and Equation-based modeling

2.1.2 Discrete Systems
While the continuous systems depicted in Figure 2.1 can be modeled using
continuous functions by contrast, in a discrete system, the variables are con-
trolled by discrete functions; hence the state of the system change at discrete
points in time. One example of a discrete system is a digital computer2 an-
other is a deterministic finite state machine (DFSM)3.

A DFSM can be represented with an alphabet Σ; a set of states Q; a
transition function δ and a set of final states F (Hopcroft, Motwani, and
Jeffrey D. Ullman 2007).

A DFSM that accepts the word DISCRET can be defined as follows:

Σ = {D,I,S,C,R,E,T},
Q = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10},

F = {S9}
(2.2)

The state transition function, δ is represented using a table 2.1. Hence, as
the table illustrates δ(′D′, S1) = S2, δ(′I ′, S2) = S3, δ(′S′, S3) = S4 and so on.

D I S C R E T

→ S1 S2 S10 S10 S10 S10 S10 S10

S2 S10 S3 S10 S10 S10 S10 S10

S3 S10 S10 S4 S10 S10 S10 S10

S4 S10 S10 S10 S5 S10 S10 S10

S5 S10 S10 S10 S10 S6 S10 S10

S6 S10 S10 S10 S10 S10 S7 S10

S7 S10 S10 S10 S10 S10 S10 S8

S8 S10 S10 S10 S10 S10 S9 S10

∗S9 S10 S10 S10 S10 S10 S10 S10

S10 S10 S10 S10 S10 S10 S10 S10

Table 2.1: State transition table of a DFSM that accepts the string DIS-
CRETE. S1 is the starting state and S9 is the accepting state.

A DFSM can be visualized as a directed graph with the set of states as
vertices and the set of transitions represented as edges, see Figure 2.3.

The next section discusses hybrid systems that combine discrete and con-
tinuous behavior.

2These discrete systems can be used to simulate continuous systems.
3Also known as a Deterministic Finite Automaton (DFA).

9

2. Systems and Simulation

S1start

S9

S2 S3 S4 S5 S6

S7

S8

S10

D
I S C R

E

T

E

-

-

- - - - - -

-

-

Figure 2.3: The state transition diagram for the DFSM defined in Equation
2.2 and Table 2.1. In this figure − denotes input that lead to our error state
(S10). So for state S1 − represents some x ∈ {I, S,C,R,E,T}.

10

2.1. Systems and Equation-based modeling

2.1.3 Hybrid Systems
Our previous model describes the change in height and velocity of a ball
dropped from a tower, assuming that the ball would never hit the ground.
If we consider the ground in our model, we need to introduce events. We
introduce one event that happens when the ball hits the ground and h = 0. To
model this behavior, we need to introduce the notion of state. Either the ball
is in free fall as in Equation (2.1) or the ball made contact with the ground at
some time tn and changed its trajectory before falling again, see Figure 2.4.

The event that occurs when the ball hits the ground is a discontinuity.
Therefore, the value of v changes at that instance, in Equation (2.3) e denotes
the coefficient of restitution, and v− represents the value of v before the event
and v+ the value after the event. During the event, the value of v changes
abruptly to −e ∗ v−. This value is the new initial value of v after the event
until some time t + δ when the ball once again hits the ground4.

{
e = 0.7,
v+ = −e ∗ v−

(2.3)

Figure 2.5 illustrates the behavior of the system with the introduction of
discrete events. By introducing the notion that the ball hits the ground and
consequently bounce, we have introduced a discrete behavior in our previously
continuous model. This is a hybrid system since it exhibits both discrete and
continuous behavior (Cellier and Kofman 2006).

4In fact, this will continue indefinitely.

Figure 2.4: A ball being dropped from a high tower. On impact the ball
bounces.

11

2. Systems and Simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

H
e
ig

h
t

(m
)

Time (s)

Behavior of the ball with the introduction of discrete events

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 0.5 1 1.5 2 2.5

V
e
lo

ci
ty

 (
m

/s
)

Time (s)

Change in velocity of the ball with the introduction of discrete events

Figure 2.5: Plot of h(t) and v(t) respectively when extending the falling ball
in Equation 2.1 with the discrete event in Equation 2.3.

12

2.1. Systems and Equation-based modeling

2.1.4 Differential Algebraic Equations
In the previous sections, we discussed three types of systems that appear when
modeling with equations. In this section, we discuss systems of differential-
algebraic equations (DAE), a useful mathematical model when modeling con-
tinuous systems (Cellier and Kofman 2006). A DAE system can be formulated
generally as:

0Ð→ = f(t, ẋÐ→(t), xÐ→(t), yÐ→
(t), uÐ→(t), pÐ→

) (2.4)

In Equation (2.4) the arguments to the function f are divided into five
different categories. All variables that are derived w.r.t the state of the system
are named state variables, denoted xÐ→ and the corresponding state derivatives
are denoted ẋÐ→. Variables that are not differentiated w.r.t the state y

Ð→
are

called algebraic variables.
A system might depend on parameters, constants and external input. For

instance, a model of a Resistance (R), Inductance (L), and Capacitance (C),
in short a RLC (RLC) circuit, can be reused if, for instance, the capacitance
of the circuit is parameterized5. To reflect this, Equation (2.4) includes an
input vector uÐ→ and a parameter vector p

Ð→
.

5The ability to reuse physical components defined using equations is one of the advan-
tages with equation-based programming languages which we discuss in this thesis.

13

2. Systems and Simulation

R2.p.v = AC.p.v

R2.p.v = R1.p.v

C.p.v = R1.n.v

R2.n.v = L.p.v
AC.n.v = C.n.v
AC.n.v = L.n.v
AC.n.v = G.p.v

R1.n.i +C.p.i = 0.0
L.p.i +R2.n.i = 0.0

G.p.i +C.n.i +L.n.i +AC.n.i = 0.0
R1.p.i +R2.p.i +AC.p.i = 0.0

R1.R ∗R1.i = R1.v

R1.v = R1.p.v −R1.n.v

0.0 = R1.p.i +R1.n.i

R1.i = R1.p.i

C.i = C.C ∗ dC.v
dt

C.v = C.p.v −C.n.v
0.0 = C.p.i +C.n.i

C.i = C.p.i
R2.R ∗R2.i = R2.v

R2.v = R2.p.v −R2.n.v

0.0 = R2.p.i +R2.n.i

R2.i = R2.p.i

L.L ∗ dL.i
dt
= L.v

L.v = L.p.v −L.n.v
0.0 = L.p.i +L.n.i

L.i = L.p.i
AC.v = AC.A ∗ sin(AC.w ∗ t)

AC.v = AC.p.v −AC.n.v

0.0 = AC.p.i +AC.n.i

AC.i = AC.p.i

G.p.v = 0.0

(2.5)

14

2.2. Continuous System Simulation

Uq

R2

L

R1

C

Figure 2.6: A RLC circuit connected to a sine voltage source. The circuit is
based upon the simple circuit model in (P. Fritzson 2014, p. 43).

ẋÐ→ = {
dC.v

dt
,
dL.i

dt
},

xÐ→ = {C.v,L.i},

y
Ð→
= {AC.i,AC.n.v,AC.p.v,AC.v,C.i,C.n.v,C.p.v,

G.p.v,L.n.v,L.p.v,L.v,R1.i,R1.n.i,R1.n.v,

R1.p.i,R1.p.v,R1.v,R2.i,R2.n.v,R2.p.i,R2.p.v,

R2.v,AC.n.i,AC.p.i,C.n.i,C.p.i

G.p.i,L.n.i,L.p.i,R2.n.i},
uÐ→ = {},

p
Ð→
= {R1.R,C.C,R2.R,L.L,AC.A,AC.w},

(2.6)

In Equation (2.5) we have a set of equations representing the RLC circuit in
Figure 2.6. This set of equations constitutes a DAE system, which is a system
with mixed differential and algebraic equations. In this example, the set of
state variables, state derivatives, algebraic variables, parameters, constants,
and input variables, are assigned as in Equation (2.6). In the subsequent
sections, we discuss how to numerically solve such systems.

2.2 Continuous System Simulation

To simulate DAE systems, we need to numerically solve systems such as Equa-
tion (2.4). However, we start by discussing how to solve systems of Ordinary

15

2. Systems and Simulation

Differential Equations (ODEs), which are systems of the following form:

ẋ(t) = f(t, x(t))
x(t0) = x0

(2.7)

Several methods for numerical integration have been developed to achieve
an approximate solution. These methods can roughly be divided into three
categories, Explicit methods, Implicit methods, and so-called Higher-Order
methods (Cellier and Kofman 2006).

2.2.1 Explicit methods
The simplest explicit method is the Euler method6. Explicit methods consider
the current state of the system, and from this current state, we calculate the
value of the system at some time t +∆t

By using the definition of the derivative, the Euler method numerically
approximate the true solution via extrapolation:

x(tn +∆t) ≈ x(tn) +∆t ⋅ f(tn, x(tn)) (2.8)

The approximate equality in Equation (2.8) is used to formulate Algorithm 1.

Algorithm 1 The explicit Euler method for one timestep, t +∆t. The pa-
rameter t represents the current value of the time, ∆t is the current timestep,
H is the function to integrate and V is the set of state variables.

function Explicit Euler(t, ∆t, H, V)
k1 ←H(t, V)
hk ←∆t ⋅ k1
V ← V + hk

return V

This explicit integration algorithm assumes a fixed step-size; however, it
might be difficult to know what step-size to select for a particular problem.
To solve this issue, algorithms with adaptive step-sizes have been developed.
One such being Richardson Extrapolation (Cheney and Kincaid 2003).

For a more in depth treatment of other explicit methods such as Runge-
Kutta and Heun, see (Cheney and Kincaid 2003).

2.2.2 Implicit methods
While explicit methods and step-size control improve the accuracy, such im-
provements are sometimes not enough for certain systems. Furthermore, for

6This method is named after the mathematician Leonard Euler.

16

2.2. Continuous System Simulation

some systems using adaptive step-size in combination with a higher-order ex-
plicit method might result in small timesteps. Hence, implicit methods allow
for greater step-size and stability (Cheney and Kincaid 2003).

An example of an implicit method is the implicit Euler method or back-
ward Euler method, Equation (2.9):

x(tn +∆t) = x(tn) +∆t ⋅ x(tn +∆t) (2.9)

In Equation (2.9) an algebraic equation needs to be solved for each
timestep ∆t, since x(tn + ∆t) occurs on both sides of the equation. Since
the algebraic equation might be nonlinear, integration using implicit methods
is more computationally expensive in comparison to explicit methods such as
the Euler method. Similar to the explicit methods, several implicit methods
exist. A comprehensive overview of implicit and explicit methods and their
applications in solving stiff and nonstiff ODE systems are available in (Norsett
and Wanner 1993; Gerhard Wanner and Hairer 1996).

2.2.3 Multistep methods
Another category of integration algorithms are the multistep methods. While
explicit and implicit methods disregard previously computed values, multi-
step methods also consider previously computed solutions. These methods
are typically divided into three categories Adams-Bashforth methods, Adams-
Moulton methods, and Backward differentiation formulas BDF. Adams-
Bashforth methods are explicit; BDF and Adams-Moulton methods are im-
plicit (Cellier and Kofman 2006).

2.2.4 Representing systems
In the previous sections, we presented a set of integration methods that can
be applied to solve ODE systems numerically. However, the DAE system
presented in Figure 2.6 and the resulting equations in Equation (2.5) is not
an ODE. It is possible to transform a DAE system into a corresponding ODE
system. This section briefly discusses the steps needed to go from one rep-
resentation to the other. Recall Equation (2.5) and Equation (2.6). In this
DAE system we got 32 equations and 32 variables.

We can start by simplifying the set of equations that constitutes this DAE
system, removing trivial equations such as R2.p.v = AC.p.v. The simplifica-
tion results in Equation (2.10).

17

2. Systems and Simulation

G.p.i = L.i − ((−C.i) −AC.i)
AC.i = (−L.i) −C.i

C.i = R1.v/R1.R

R1.v = AC.v −C.v
C.v

dt
= C.i/C.C

R2.v = R2.R ∗L.i
L.v = AC.v −R2.v

L.i

dt
= L.v/L.L

AC.v = AC.A ∗ x
x = sin(AC.w ∗ t)

(2.10)

As in Equation (2.6) we divide our system into five sets:

ẋÐ→ = {
dC.v

dt
,
dL.i

dt
},

xÐ→ = {C.v,L.i},

y
Ð→
= {G.p.i,AC.i,AC.v,L.v,R2.v,C.i,R1.v},

uÐ→ = {x},

p
Ð→
= {R1.R,C.C,R2.R,L.L,AC.A,AC.w}

(2.11)

Recall from Equation (2.6) that ẋÐ→ are our state derivatives, xÐ→ are our state
variables, y

Ð→
are our algebraic variables and p

Ð→
are our parameters and con-

stants. To solve this system using one of the integration algorithms within
a procedural programming language, we transform our system of equations
into the explicit state space representation see Equation (2.12) (Cellier and
Kofman 2006).

ẋÐ→ = h(t, xÐ→; uÐ→, pÐ→
)

y
Ð→
= k(t, xÐ→; uÐ→, pÐ→

)
(2.12)

We also reformulate the equations for the state derivatives so that they
only depend on the state, input variables and parameters. That is C.v

dt
=

(AC.A⋅x−C.v)/R1.R
C.C

and L.i
dt
= AC.A⋅x−R2.R⋅L.i

L.L

18

2.2. Continuous System Simulation

Using the explicit state space representation we get the following equa-
tions:

h(t, xÐ→; uÐ→, pÐ→
) =
⎧⎪⎪⎨⎪⎪⎩

C.v
dt
= (AC.A⋅x−C.v)/R1.R

C.C
L.i
dt
= AC.A⋅x−R2.R⋅L.i

L.L

k(t, xÐ→; uÐ→, pÐ→
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G.p.i = L.i − ((−C.i) −AC.i)
AC.i = (−L.i) −C.i
C.i = R1.v/R1.R

R1.v = AC.v −C.v
R2.v = R2.R ∗L.i
L.v = AC.v −R2.v

AC.v = AC.A ∗ x
x = sin(AC.w ∗ t)

(2.13)

This representation enable us to reformulate the system such that it can be
solved using a procedural algorithm. That is the system h is a ODE system
that can be integrated in separation from the algebraic equations that con-
stitute system k. Algorithm 2 describes the solution procedure. A concrete
implementation is available in Listing A.1.3.

Algorithm 2 Procedural integration of the systems in Equation (2.13).
procedure Solve system(t, ∆t, h, k)

Initialize parameters, states and algebraic variables
while Simulation not finished do

xÐ→← Explicit Euler(t, h, xÐ→, uÐ→)
y
Ð→
← k(t, xÐ→, uÐ→)

t← t +∆t

In Equation (2.13), we rewrote the system using forward substitution.
However, not all systems of equations are possible to solve using forward
substitution. One way to classify the difficulty of these systems is to use the
DAE-index7.

For example, the set of equations for the previously discussed DAE-System
is a index-0 system. The set of equations can be ordered8 using forward
substitution. However, sometimes the inter-dependencies between variables
and equations can not be solved using forward substitution alone (Cellier and
Kofman 2006).

7The meaning of the term DAE-index varies. An overview of the relationship to match-
ing is available in Determination of perturbation index of a DAE with maximum weighted
matching algorithm (Bujakiewicz and Bosch 1994).

8Causalized, that is, the equalities can be treated as assignments.

19

2. Systems and Simulation

To visualize these inter-dependencies, let us consider the following nonlin-
ear system of equations with initial values omitted:

N = 5
xÐ→ = {x1, x2, x3, x4, x5}

(1)N + 1 = e(t∗1+x1) +Σ xÐ→
(2)N + 1 = e(t∗2+x2) +Σ xÐ→
(3)N + 1 = e(t∗3+x3) +Σ xÐ→
(4)N + 1 = e(t∗4+x4) +Σ xÐ→
(5)N + 1 = e(t∗5+x5) +Σ xÐ→
(6)ẏ = Σ xÐ→ ∗ t

(2.14)

In this example, we can observe that all algebraic variables in xÐ→ are in-
terdependent; only the state variable y is independent. We can visualize
this relationship by using a directed graph, as in Figure 2.7. These inter-
dependencies are called algebraic loops. Systems that contain algebraic loops
are called index-1 systems.

To handle algebraic loops, a method called tearing is employed. An algo-
rithm for reducing high-index systems of DAE to lower index is the Pantelides
algorithm (Pantelides 1988). In some cases, the algorithm for index reduction
needs to be applied more than once. These systems are denoted higher index
systems and have a DAE-index strictly greater than one, and the index of the
system is reduced by one after each application of the algorithm of Pantelides
(Cellier and Kofman 2006).

2.3 Summary

A numerical solver may implement several numerical algorithms (Hindmarsh,
Brown, K. E. Grant, S. L. Lee, Serban, Shumaker, and Woodward 2005) or
one specific configuration of an algorithm, which is the case, for example,
in the DASSL(Differential-Algebraic System Solver) solver (Linda R Petzold
1982). Some frameworks abstract several solvers behind a single interface. A
recent example is DifferentialEquations.jl (Christopher Rackauckas and Nie
2017).

Transforming systems of equations into executable code is a central con-
cept of equation-based compilers and to a degree within the context of solver
frameworks. The next chapter provides an overview of equation-based pro-
gramming languages and how compilers automate the transformation process
which is done in OpenModelica.jl for the Modelica language.

20

2.3. Summary

Figure 2.7: The relationship between the six variables and six equations in
Equation 2.14. The edges represent equations and the vertices represent the
variables. The independent variable y is colored yellow to distinguish it from
xÐ→. To solve for y the algebraic loop between the variables in xÐ→ must be
resolved.

21

3. Compilers and Equation-based
modeling languages

In this chapter, we introduce compiler construction in Section 3.1 and in
Section 3.2 we provide an overview of both past and present equation-based
languages. Finally, we discuss equation-based languages and frameworks that
supports variable structure in Section 3.3.

Section 3.3 is partly based upon:

• A modular, extensible, and Modelica standard compliant OpenModelica
compiler framework in Julia supporting structural variability, J Tinner-
holm, A Pop, M Sjölund (Submitted for publication)

3.1 Compilers and Interpreters - an overview

This section provides an overview of modern compiler design and associated
compiler phases. We briefly elaborate on interpreters and their differences
compared to compilers. Finally, in the last subsection, we discuss just-in-time
compilation, its implications and possibilities.

3.1.1 Compilers
A compiler is a computer program designed to transform code1 from one
language to another2 (Aho, Lam, Sethi, and Jeffrey D Ullman 2007).

The transformation from the source language (original language) into a
target language is commonly subdivided into a sequence of compiler phases.
Each phase has its purpose; a high-level overview of a typical compiler for a
procedural language with associated phases is presented in Figure 3.1. The
high-level overview of Figure 3.1 consists of three phases transforming the
input program into a sequence of tokens and, from this sequence of tokens,
constructing a syntax-tree and from the syntax-tree generating code for the
target language. While the high-level overview of Figure 3.1 succinctly de-
scribes different components of a compiler, a modern optimizing compiler
typically consists of more phases (Aho, Lam, Sethi, and Jeffrey D Ullman
2007).

1This program code may or may not be a high-level program.
2A common target language is a sequence of instructions that can be executed on some

target architecture.

23

3. Compilers and Equation-based modeling languages

Lexer

Parser

Code generator

Original language

Sequence of tokens

Parse tree

Target language

Figure 3.1: A high-level overview of compiler phases.

In Figure 3.2 a more detailed overview of an optimizing compiler is pro-
vided. The first part of the compiler is the frontend. For example, in Fig-
ure 3.2 the frontend consists of three modules, the Lexer, the Parser, and the
Semantic Analyzer. The Lexer is responsible for transforming the textual pro-
gram description into a set of tokens; this is called lexical analysis from which
the name lexer is derived. This set of tokens produced by the Lexer is then fed
into the Parser; the task of the Parser is to construct a High-level intermediate
representation (HiR)3 such that the sequence of tokens now represent a syn-
tactically valid program w.r.t some grammar4. Certain optimizations can be
performed on the intermediate representation of the frontend, the so-called,
HiR one example being automatic parallelization (Muchnick 1997).

The midend is dedicated to platform-independent optimization; typically,
the high-level intermediate representation is transformed into a midlevel in-
termediate representation (MiR). According to (Muchnick 1997) the MiR is
designed to be a language-independent flat representation with the control
structure defined as a basic block graph, still, as with the HiR, the exact
characteristics of the MiR representation varies in the literature.

To give an example, some modern MiR such as Rust Intermediate Repre-
sentation (MIR)5 and the Swift Intermediate Representation (SIL)6 are not
fully language independent.

3The high-level intermediate representation typically keeps language-specific constructs
such as loops.

4Depending on the compiler, this can be done during parsing or in a separate module.
In Figure 3.2 this analysis is performed by the Semantic Analyzer.

5URL: https://rustc-dev-guide.rust-lang.org/mir/index.html, accessed 2022-05-03.
6URL: https://github.com/apple/swift/blob/main/docs/SIL.rst, accessed 2022-05-03.

24

3.1. Compilers and Interpreters - an overview

Semantic
analyser

Parser

Lexer

Code generator

Frontend

Midend

Optimizer

Code generator

Optimizer

Code generator

Backend

Sequence of characters

Sequence of tokens

High-level
intermediate code

High-level
intermediate code

Medium-level
intermediate code

Medium-level
intermediate code

low-level intermediate code

low-level intermediate code

Executable code

Figure 3.2: An overview of the different stages in an optimizing compiler,
from the initial sequence of tokens from the target program to the low-level
intermediate code and finally the target language, in this case machine code.
In some literature, such as (Muchnick 1997; Aho, Lam, Sethi, and Jeffrey D
Ullman 2007; Cooper and Torczon 2011) many of the phases of the midend
are grouped into the backend phase of the compiler. This figure is based upon
Figure 1.5 in (Muchnick 1997).

25

3. Compilers and Equation-based modeling languages

The backend is the last module of a compiler, and its responsibility is code
generation (Muchnick 1997; Aho, Lam, Sethi, and Jeffrey D Ullman 2007;
Cooper and Torczon 2011). The intermediate representation of the backend
is the low-level intermediate representation (LiR). This representation is simi-
lar to MiR; however, it is designed to be close to a possible target architecture
or target language while still being target-independent (Muchnick 1997). A
modern example of a LiR is the LLVM intermediate representation LLVM-IR
first introduced in LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation (Lattner and Adve 2004). Several modern com-
pilers employ LLVM-IR as a LiR, examples include the Clang compiler, the
Rust Compiler and the Julia compiler (Bezanson, Edelman, Karpinski, and
V. B. Shah 2017).

3.1.2 Interpreters
The distinction between interpreters and compilers is not always clear. How-
ever, compilers that exhibit the behavior of interpreters and perform code
generation as a part of running the program while generating machine code
are called Just-in-time compilers. Interpreters may have more or less the same
structure as a compiler. However, what sets them apart from compilers is that
while compilers typically generate native code at the end of the compilation
process, interpreters instead produce a result based on the direct interpreta-
tion of some final intermediate representation such as a LiR (Romer, D. Lee,
Voelker, Wolman, Wong, Baer, Bershad, and Levy 1996).

In the next section, we present some of the characteristics of Just-in-time
compilers.

3.1.3 Just-in-time Compilers
Just-in-time compilers (JIT-Compilers) are contrasted with so called Ahead-
of-time compilers (AOT-Compilers). The previous discussion in Sec-
tion 3.1.1 illustrated in Figure 3.2 describes Ahead-of-time compilation (AOT-
Compilation). In AOT-Compilation the result of the compilation process is a
semantically equivalent program in some target language. This program can
later be executed native on the machine CPU or in a virtual machine.

In contrast, during Just-In-Time Compilation7 (JIT-Compilation), code
is not compiled immediately. Instead, the compilation is postponed until
that particular code is required. The compilation process occurs during pro-
gram execution. The operations of JIT-Compilers are similar to certain in-
terpreter configurations in the sense that code is executed while the program
is running. However, what makes JIT-Compilers distinct from interpreters is
that while the interpreter interprets the code, a JIT compiler typically gen-
erates native machine code for some target architecture or virtual machine.

7Also known as dynamic compilation.

26

3.1. Compilers and Interpreters - an overview

JIT-Compilers have several advantages compared to AOT-Compilers; one is
that they can support more expressive languages allowing constructs for self-
modifying code8; another is that JIT-Compilers allow runtime optimization.
What is meant by runtime optimization is that the compiler can dynami-
cally optimize the program according to some heuristic while the program is
executing (Aycock 2003).

However, the flexibility of JIT-Compilation comes with a cost. Since com-
pilation occurs during runtime, typical schemes that are used during AOT-
Compilation such as register allocation (Chaitin, Auslander, Chandra, Cocke,
Hopkins, and Markstein 1981) may be to expensive to employ. Thus, the
number of static optimization passes employed in JIT-Compilers are typically
limited. Historically this has led to compilers that can employ just-in-time
compilation to use schemes such as only compiling a fraction of the program
or using JIT-Compilation in combination interpretation for functions that are
seldom called (Aycock 2003).

In this section, we provided a brief overview of compilers for typical pro-
cedural languages. In the next section we introduce equation-based model-
ing languages and equation-based object-oriented modeling languages. While
compiler construction principles remain the same for these languages, there
are domain-specific characteristics and challenges. We start by discussing
equation-based modeling languages in general and proceed by discussing the
compilation of such languages in particular and how this process is related to
the theory in the previous chapter.

3.1.4 Compilers for Declarative Languages
Declarative equation-based languages differ from procedural languages in the
sense that you describe problems that the computer is to solve rather than
specifying the steps involved in solving the problem. The equation-based
language Modelica is an example of a declarative language; another exam-
ple is the Prolog language. Some equation-based languages, such as Omola
(Andersson 1990) are fully declarative, whereas others, such as Modelica and
MetaModelica, contain both declarative and procedural elements (P. Fritzson
2014). This means that compilers for equation-based languages need to handle
both symbolical and numerical methods as a part of the compiler pipeline.

Consequently, the model as presented in Figure 3.2 apply to compilers for
equation-based languages the contents of each box is slightly different. For
instance, the final program needs to generate code such that the equations of
the program can be solved numerically. Either by using an external numerical
solver or it needs to generate logic that implements a solver algorithm.

8The Lisp programming language is regarded to be the first example (Aycock 2003).

27

3. Compilers and Equation-based modeling languages

3.2 Equation-based modeling languages

The advent of computers and later programming languages made it possible
to implement and run mathematical models using computers. While the first
programming languages were procedural, dedicated domain-specific modeling
languages were developed shortly after in the 1960s.

An equation-based modeling language is a language that allows the user
to model systems using equations rather than writing algorithms or, in other
ways, predefine causality9,10. Thus, equation-based languages fall in the cat-
egory of declarative languages. Declarative languages are written according
to the paradigm of declarative programming. In declarative programming,
the programmer specifies the problem to solve, not how to solve the problem
through an algorithm. In imperative programming, the programmer provides
an explicit algorithm describing the steps to solve a given problem, e.g., pro-
viding the computer with the sequence of steps to execute.

In equation-based programming languages, this sequence of steps is in-
stead derived from the language’s textual representation of the equations11.
This derivation is achieved by translating a given textual or graphical rep-
resentation into one or more intermediate representations. The process is
similar to that described by Figure 3.212. This section restricts the discussion
to such languages and provides a brief overview of equation-based modeling
languages. We start by enumerating some historical languages and discuss
the Modelica language.

3.2.1 Historical modeling languages
In this section, we briefly summarize some historical modeling languages. We
start by discussing early procedural languages for modeling and simulation.
We then discuss object-oriented languages and how they relate to simulation.

3.2.1.1 Early languages

Equation-based modeling languages have been around since the 1960s. One
early example of a standardized modeling language for scientific computing is
the Continuous System Simulation Language (CSSL) which provided exten-
sions to the earlier MIMIC (H.E and F.J Sansom 1965) language (Augustin,
Fineberg, Johnsson, Linebarger, and F.John Sansom 1967). The language was

9The causality of an equation-based language is inferred by the compiler.
10There exist modeling frameworks with fixed causality, a notable example being

Simulink; however, modeling languages, in general, are outside the scope of this thesis
(Chaturvedi 2017).

11While some programming environments provide a graphical user interface that allows
the user to specify a model using graphical components, this representation is converted to
a textual description before compilation.

12A compiler for an equation-based declarative language is different from a procedural
in some aspects, some of these will be treated later in this chapter.

28

3.2. Equation-based modeling languages

Listing 3.2.1 Small CSSL example program (Augustin, Fineberg, Johnsson,
Linebarger, and F.John Sansom 1967, p .283).

DX = INTEG[F - B*X - A*DX, DX0]
X = INTEG[DX, X0]

designed to allow users to solve ODE systems and simulate them on digital
computers13.

˙̇x + aẋ + bx = f(t)
ẋ0 =DX0

x0 =X0

(3.1)

In Listing 3.2.1 the first equation of Equation (3.1) has first been manually
preprocessed and rewritten explicitly as ˙̇x = f(t) − aẋ − bx which is required
of the integration operator INTEG. Note that programming in CSSL is not
declarative as described in (Augustin, Fineberg, Johnsson, Linebarger, and
F.John Sansom 1967). However, it is equation-based in that it allows the user
to specify numerical operators to solve equations and combine these with pro-
cedural procedures mixing procedural code together with simulation operators
such as INTEG.

A CSSL program was structured according to three regions of operation:

• Initial region

• Dynamic Region

• Terminal Region

Where the initial region handled initial conditions, the computations were
run each time step in the dynamic region, and the final region was responsible
for the final postprocessing (Augustin, Fineberg, Johnsson, Linebarger, and
F.John Sansom 1967).

The Advanced continuous simulation language ACSL extended the func-
tionality of CSSL. It introduced another region, the derivative region. This
region was responsible for solving the equations for the state variables. Un-
like the initial CSSL design the order of the equations in this region did not
matter. Instead, the equations were automatically sorted according to the
dependencies between them (Mitchell and Gauthier 1976).

13Previously analog computers had been the main platform for mathematical simula-
tions.

29

3. Compilers and Equation-based modeling languages

Another language that CSSL inspired was Simnon (Elmqvist 1977). Simi-
lar to ACSL, Simnon allowed unordered equation sections. One feature intro-
duced by Simnon was the possibility to connect subsystems so that systems
could be defined in isolation as individual components (Elmqvist 1977). While
tendencies towards object orientation in terms of macros to facilitate reuse of
systems and procedures in the case of CSSL and ACSL and the notion of
subsystems in Simnon can be observed in these earlier languages, they were
not explicitly object-oriented.

With inspiration from Simula (Capretz 2003) and the previously men-
tioned language Simnon, Dymola was developed (Elmqvist 1978). Dymola
built upon some of the concepts introduced by Simnon. To give an example,
in Simnon, a model might have one submodel; however, a model in Dymola
might have a submodel which in turn might have other submodules. Dymola
makes use of object-oriented concepts such as composition14 and abstractions
to connect subsystems together using the cut to denote the sets of variables
involved and connect to connect them. However, Dymola as described in
(Elmqvist 1978) was not explicitly object oriented (Jobling, P. W. Grant,
Barker, and Townsend 1994). In the next section, we discuss object-oriented
equation-based languages.

3.2.1.2 Object-oriented modeling languages

The following section introduces some historical object-oriented equation-
based modeling languages. An explicit object-oriented modeling language
was Omola (Andersson 1992) with concepts such as abstract classes15 and
abstractions to enforce encapsulation.

In Listing 3.2.2 we can see an example of the object-oriented features of
Omola. In the listing, the basic tank model extends the tank model. Like Dy-
mola, Omola had support for concepts such as model parameters, connections,
and submodels. However, a drawback of Omola was that it lacked constructs
for modelers to express procedural algorithms (P. Fritzson and D. Fritzson
1992; Andersson 1990).

Another early object-oriented programming language was ObjectMath
(Viklund, Herber, and P. Fritzson 1992). ObjectMath combined features of
languages dedicated to computer algebra with features of object-oriented sim-
ulation languages and matrix languages (Viklund and P. Fritzson 1995). In
the article The need for High-Level programming Support in Scientific Com-
puting applied to Mechanical Analysis, Omola and Dymola was mentioned as
influences (P. Fritzson and D. Fritzson 1992) along with the Mathematica
language (Wolfram 1991).

An additional early object oriented modeling environment was ASCEND
(Piela, Epperly, K. M. Westerberg, and A. W. Westerberg 1991). Andersson

14Via something called submodel decomposition.
15In the licentiate thesis by Andersson referred to as primitive models.

30

3.2. Equation-based modeling languages

Listing 3.2.2 Example of a Omola model for a tank model. The Tank model
extends the basic tank. (Andersson 1990, p. 35).

Basic_Tank ISA Model WITH
terminals:
inflow ISA Terminal;
outflow ISA Terminal;
parameter:
tank_area TYPE Real := 5.0;

END;
Tank ISA Basic_Tank WITH
realization:
mass_balance ISA SetDAE WITH
variable:
level TYPE Real :=0;

equation:
tank_area * dot(level) = inflow - outflow;

END;
END;

(1990) states that the ASCEND language is similar to Omola in that it follows
the object-oriented modeling paradigm.

3.2.1.3 Other languages

While the languages discussed in the previous sections deals with the sim-
ulation of physical systems, another modeling paradigm was that of system
dynamics developed by J.W Forrester (Forrester 1993). Industrial dynamics
attempts to model feedback loops through differential equations describing
social systems such as a companies (Forrester 1968). The methodology was
also applied to other contexts outside the industry, such as urban planning,
demonstrating the practical use of system dynamics (Forrester 1970).

We have reviewed aspects concerning the development of equation-based
language and provided a brief historical overview. For a more exhaustive
treatment concerning the evolution of languages for simulation see Evolution
of continuous-time modeling and simulation (Åström, Elmqvist, Mattsson,
et al. 1998); A perspective on modeling and simulation of complex dynamical
systems (Åström 2011) and (Jobling, P. W. Grant, Barker, and Townsend
1994).

3.2.1.4 Modelica

Version 1.0 the Modelica language specification was introduced in 1998
(Elmqvist, Mattsson, and Otter 1998; P. Fritzson and Engelson 1998) with

31

3. Compilers and Equation-based modeling languages

Listing 3.2.3 The Modelica HelloWorld model (P. Fritzson 2014, p. 20)

model HelloWorld
parameter Real a = 1;
Real x(start = 1, fixed = true;

equation
der(x) = - a * x;

end HelloWorld;

Listing 3.2.4 The Pin model in A.2.1

connector Pin
Real v;
flow Real i;

end Pin;

the goal of provided a unified language for system modeling and simulation16.
Modelica is a declarative and object-oriented equation-based modeling lan-
guage (P. Fritzson 2014). Similar to the languages presented in the previous
section, the Modelica language was designed to describe model behavior us-
ing equations and then compose these models to define systems using an
object-oriented paradigm. Moreover, unlike the earlier Omola language, the
first version of Modelica included the capability of expressing parts of models
using non-declarative (imperative and causal) algorithms and functions.

The key construct in Modelica is the model or the class. To illustrate
the object-oriented features of Modelica, the circuit in the previous chapter
Figure 2.6 can be expressed using subclasses, one for each component.

In Listing A.2.1 in the appendix several electrical components are defined
using Modelica. Firstly the Pin model (Listing 3.2.4) is defined. Pin is de-
clared as a connector. A connector is a specialized class in Modelica, and it
can be thought about as a datatype that specifies a set of components that
may interface with other connectors using the connect statement17.

The Pin class, has two variables, voltage v represented using a Real variable
and one flow Real variable i.

The flow construct in Modelica indicates that the sum of the connections
that use the variable must sum to zero. Recall that in the previous chapter
the system of equations for the RLC circuit included equations such as G.p.i+
C.n.i+L.n.i+AC.n.i = 0 these equations are the results of Kirchhoff’s circuit
laws which states ∑n

k=1 Ik = 0.
16It is a unifying language in the sense that it standardized features present in existing

languages such as Dymola, Omola and ObjectMath.
17The connector type is similar to the cut in Dymola (Elmqvist 1978).

32

3.2. Equation-based modeling languages

Listing 3.2.5 The TwoPin model in A.2.1

partial model TwoPin
Real v;
Real i;
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i
i = p.i;

end TwoPin;

Listing 3.2.6 The Resistor model in A.2.1

model Resistor
extends TwoPin;
parameter Real R;

equation
R * I = V

end Resistor;

Modelica supports both inheritance and composition. Using inheritance
we declare the model TwoPin, similarly to the primitive classes of Omola.
Modelica, supports an equivalent construct, so-called partial models. The
keyword partial indicates that the model is not complete and can not be used
on its own; rather, the model is to be extended by some concrete model. Using
these models we can represent a resistor as in Listing 3.2.6 by inheriting from
the TwoPin model in Listing 3.2.5. The single equation of the resistor model
is derived using Ohms law: V = R ⋅ I.

Similarly, by using physical laws combined with the Pin and TwoPin
constructs, we can declare models for other electrical components, see List-
ing A.2.1. These are combined to construct a model for the circuit in Fig-
ure 2.6. In the example, we can see the heritage that Modelica shares with
previously discussed languages, such as the connections, inheritance, and com-
position. To model the circuit a new model is created using these basic ele-
ments as building blocks.

The final Modelica model of the circuit is illustrated in Listing 3.2.7.
While the language is mainly declarative, the Modelica language also sup-

ports a procedural subset via functions and algorithm sections. In this way,
Modelica is capable of formulating discrete procedural models.

Similar to previous equation-based languages, Modelica is not limited to
electrical circuits. Modelica has an extensive standard library encompass-

33

3. Compilers and Equation-based modeling languages

Listing 3.2.7 A Modelica model of the RLC circuit in Figure 2.6 (P. Fritzson
2014, p. 35).
model RLCCircuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
Source AC(A = 1.0, w = 1.0);
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end RLCCircuit;

ing several domains, from electronics to mechanics. Several modeling and
simulation environments supports the Modelica language. Examples include
OpenModelica (P. Fritzson, Pop, Abdelhak, Asghar, Bachmann, W. Braun,
Bouskela, R. Braun, Buffoni, Casella, et al. 2020), Modelon Impact18 and
Dymola19.

3.2.1.5 MetaModelica

While Modelica does provide elements of procedural languages such as func-
tions and algorithms such that Modelica is Turing complete, the language
was not explicitly designed for semantic modeling. MetaModelica extends
the Modelica language with features common in functional programming lan-
guages, such as pattern matching and recursive datatypes (Pop and P. Fritz-
son 2006).

MetaModelica is at the time of writing the implementation language of the
OpenModelica Compiler OMC (P. Fritzson, Pop, Abdelhak, Asghar, Bach-
mann, W. Braun, Bouskela, R. Braun, Buffoni, Casella, et al. 2020).

Listing 3.2.8 illustrates the uniontype data type of MetaModelica. In this
listing a real expression is defined the Exp type is defined to either be a node
representing a real number constant such as 3.14 or one of five arithmetic
operators.

18URL: https://www.modelon.com/modelon-impact/, accessed 2022-02-15
19URL: https://www.3ds.com/products-services/catia/products/dymola/, accessed

2022-02-15

34

3.2. Equation-based modeling languages

Listing 3.2.8 Use of the uniontype construct in MetaModelica to define a
syntax tree for arithmetic expressions (Pop and P. Fritzson 2006, p. 220).

uniontype Exp
record RCONST Real x1; end RCONST;
record PLUS Exp x1; Exp x2; end PLUS;
record SUB Exp x1; Exp x2; end SUB;
record MUL Exp x1; Exp x2; end MUL;
record DIV Exp x1; Exp x2; end DIV;
record NEG Exp x1; end NEG;

end Exp;

Listing 3.2.9 A function to evaluate expressions defined using the uniontype
in Listing 3.2.8 (Pop and P. Fritzson 2006, p. 222).

function eval
input Exp in_exp;
output Real out_real;

algorithm
out_real := match in_exp
local Real v1,v2,v3; Exp e1,e2;
case RCONST(v1) then v1;
case ADD(e1,e2)
equation
v1 = eval(e1); v2 = eval(e2); v3 = v1 + v2;

then v3;
case SUB(e1,e2)
equation
v1 = eval(e1); v2 = eval(e2); v3 = v1 - v2;

then v3;
case MUL(e1,e2)
equation
v1 = eval(e1); v2 = eval(e2); v3 = v1 * v2;

then v3;
case DIV(e1,e2)
equation
v1 = eval(e1); v2 = eval(e2); v3 = v1 / v2;

then v3;
case NEG(e1)
equation
v1 = eval(e1); v2 = -v1;

then v2;
end match;

end eval;

35

3. Compilers and Equation-based modeling languages

Figure 3.3: A ball attached to a pendulum located at the top of a tower.

To evaluate constructs represented by the uniontype data types, MetaMod-
elica pattern matching can be used. Listing 3.2.9 demonstrates how pattern
matching together with recursion is used to define a function for evaluating
expressions defined by the uniontype in Listing 3.2.8.

3.3 Equation-based languages with variable structure

In the previous section we have enumerated several historical languages and
we have introduced the Modelica language, along with the MetaModelica ex-
tension. In this section we discuss another subset of equation-based languages
that supports a variable structure. A language with a variable structure means
that the program’s structure may change during simulation. Examples of
structural variability could be a ball joint breaking on a automobile, a revo-
lute joint breaking on a door handle or if the pendulum depicted in Figure 3.3
breaks. The scenario with the breaking pendulum, can be described more
formally by Equation (3.2).

f =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g(t, ẋÐ→(t), xÐ→(t), yÐ→
(t), p
Ð→
), if t ≥ 1

h(t, χ̇
Ð→
(t), χ
Ð→
(t), γ
Ð→
(t), p
Ð→
), Otherwise

(3.2)

When the pendulum breaks, in this example when t ≥ 1, it is no longer
a pendulum, but a falling object as in Figure 2.1. When representing this
scenario with Equation (3.2) the dynamics of the pendulum is defined by g

and when the pendulum breaks the dynamics are defined by h.
All systems around us have some structural variability. Besides providing

increased modeling capabilities, support for varying the model’s structure
during simulation also has other advantages. For example, the model can
change the granularity of a specific subsystem during the simulation. With
this approach, the dynamics of the entire system need not be specified from

36

3.3. Equation-based languages with variable structure

the beginning. Instead, the model can make use of low complexity idealization
at the start of the simulation and switch to a more granular description when
some conditions are met. For example, if we model a water damn, we might
not be interested in calculating the mechanics of materials until the amount
of water has reached a certain threshold. Thus, computational resources can
be saved since only part of the entire system needs to be specified initially.

Due to the advantages of a modeling language that supports systems with
varying structure, several languages and environments have been developed
to support this paradigm. However, as it turns out, extending an equation-
based language to support variable structure leads to additional complications
in terms of language design.

In this section, we present a brief overview of languages and environments
dedicated to extending or providing support for modeling structural variability
within the context of equation-based modeling.

3.3.1 Mosilab
An extension to the Modelica language to allow models with variable structure
is the Modeling and Simulation Language (MOSILA) within the programming
environment Mosilab (Nytsch-Geusen, Ernst, Nordwig, Schneider, Schwarz,
Vetter, Wittwer, Holm, Nouidui, Leopold, et al. 2005). Mosilab is consid-
ered to be the first programming environment with the explicit goal of being
capable of modeling systems with variable structure (Zimmer 2010).

To support the modeling of systems with variable structure, Mosilab in-
troduces Dynamical object structures. These structures can be activated or
deactivated during discrete time events. The Mosilab environment also pro-
vides a visual methodology to represent these systems using statecharts based
on UML (Nytsch-Geusen, Ernst, Nordwig, Schneider, Schwarz, Vetter, Wit-
twer, Holm, Nouidui, Leopold, et al. 2005).

In Figure 3.4 we can see an example of a state chart describing the behavior
of a landing device. At the start of the simulation, the model enters the state
moving; if the speed by which the device is descending becomes too great,
boosters are activated to stabilize it. Finally, when the device has landed, it
enters the state stop.

From the state chart depicted in Figure 3.4 the code in Listing 3.3.1 is
derived. In the figure we can see how the system transitions between the
different states as depicted in Figure 3.4. However, as can be seen in the
example above, a disadvantage of the Mosilab approach is that the dynamic
objects of the model must be specified explicitly before simulation.

37

3. Compilers and Equation-based modeling languages

Listing 3.3.1 The Model describing the state chart in Figure 3.4 (Nytsch-
Geusen, Ernst, Nordwig, Schneider, Schwarz, Vetter, Wittwer, Holm,
Nouidui, Leopold, et al. 2005, p. 528).

model System
...
statechart
state SystemSC extends State;
state Moving extends State;
state SlowDown extends State;
exit action
body.remove(boost);

end exit;
end SlowDown;

State falling, start(isInitial=true);
SlowDown slowDown;

transition start -> falling end transition;
transition t2 : falling -> slowDown

event sw guard sw==1 action
body.add(boost);

end transition;
transition t3 : slowDown -> falling

event sw guard sw==0
end transition;
end Moving;

State stop, start(isInitial=true);
Moving moving;

transition t1 : start -> moving action
body.add(gr);

end transition;
transition t4 : moving -> stop
event landed action
body.remove(gr);

end transition;
end SystemSC;

end System;

38

3.3. Equation-based languages with variable structure

Figure 3.4: State chart describing a landing system in Mosilab. The figure
is adapted from Figure 1. in (Nytsch-Geusen, Ernst, Nordwig, Schneider,
Schwarz, Vetter, Wittwer, Holm, Nouidui, Leopold, et al. 2005)

39

3. Compilers and Equation-based modeling languages

3.3.2 The Sol language
While Mosilab solves the problem by allowing models to exhibit dynamic
behavior during simulation, it requires the modeler to describe the system’s
state prior to simulation. Individual components of the system may also not
modify themselves (Zimmer 2010).

To overcome the limitations of the Mosilab approach and extend the ex-
pressiveness of Modelica, Zimmer proposed the Sol language (Zimmer 2010).
The Sol language, while superficially similar to Modelica in many aspects, is
a separate language designed to support the handling of VSS using the frame-
work SolSim. The key addition of the sol language is the addition of new
operators to change component during discrete time events:

• The copy transmission operator, «

• The move transmission operator, <-

The copy transmission works like an assignment in procedural languages such
as C. That is, the value of the right-hand side is assigned to the object on
the left-hand side. The move transmission operator is similar to the copy
operator; however, it transfers the ownership of the object to the destination
component 20. The move operator in Sol can be used, for instance, to indicate
that one object should replace another given that certain conditions are met.

One example of how structural variability is achieved in Sol can be seen in
Listing 3.3.2. The model consists of two states, Engine1 and Engine2, where
Engine2 is more computationally expensive to simulate compared to Engine1.
However, during the simulation, the dynamics of the engine change due to
the relationship between the inertia and the torque. Because of this, the level
of detail of Engine2 is no longer needed, and Engine1 can be used instead to
speed up the simulation process. This translation is captured by the F.w > 40
condition in the when equation which in turn results in the exchange of the
engine model.

3.3.2.1 Handling structural change in Sol

During simulation the following cases can occur and is handled by the simu-
lator for the Sol language, SolSim.

• Introducing a new variable

• Removing a variable

• Introducing a new relation

• Removing a relation
20This is similar to how the move semantics work in C++ (Stroustrup 2013).

40

3.3. Equation-based languages with variable structure

Listing 3.3.2 A Machine model with structural change from (Zimmer 2010,
p. 78)

model Machine
implementation:
static Mechanics.FlyWheel F{inertia << 1}
static Mechanics.Gear G{ ration << 1.8}
connection{a << G.f2, b << F.f};
static Boolean fast;
if fast then
static Mechanics.Engine1 E{meanT << 10};
connection{a << E.f, b << G.f1};

else then
static Mechanics.Engine2 E{meanT << 10};
connection{a << E.f, b << G.f1};

end;
if initial() then
fast << false;

end;
when F.w > 40 then
fast << true;

end;
end Machine;

The SolSim simulator handles these changes by dynamic DAE processing. The
simulator calculates these using symbolic operations to dynamically account
for changes in the set of equations and variables using dynamic topological
sorting (Pearce and Kelly 2004).

3.3.3 Hydra
Hydra (Giorgidze 2012) is a deeply embedded language implemented in
Haskell according to the paradigm of functional hybrid modeling (Nilsson,
Peterson, and Hudak 2003). Hydra supports most operations of acausal mod-
eling languages but lacks the object-oriented features present in languages
such as Modelica. Hydra compensates for the lack of these capabilities by
enabling more flexibility compared to the relatively static Modelica language.
One example of this flexibility is handling systems where the set of equations
and variables change during simulation. Hydra handles this issue by utilizing
JIT-Compilation, see Section 3.1.3.

3.3.3.1 Recompilation during mode change in Hydra

Hydra, as presented in the thesis by Giorgidze (Giorgidze 2012), does not
cache the equations between mode changes. Instead, the system is recompiled.
This means that equations that were not subject to change during the mode
switch are recompiled regardless. Conversely, in the SolSim modeling and

41

3. Compilers and Equation-based modeling languages

Listing 3.3.3 A breaking pendulum model described using Hydra21.

g :: Double
g = 9.81
freeFall :: Body -> SR Body
freeFall ((x0,y0),(vx0,vy0)) = [rel| ((x,y),(vx,vy)) ->

init (x,y) = ($x0$,$y0$)
init (vx,vy) = ($vx0$,$vy0$)
(der x,der y) = (vx,vy)
(der vx,der vy) = (0.0, - g)|]

pendulum :: Double -> Double -> SR Body
pendulum l phi0 = [rel| ((x,y),(vx,vy)) ->

local phi
local phid
init phi = $phi0$
init phid = 0
init (x,y) = (l * sin $phi0$, - l * cos $phi0$)
phid = der phi
(x,y) = (l * sin phi, - l * cos phi)
(vx,vy) = (der x, der y)
der phid + (g / l) * sin phi = 0|]

breakingPendulum :: Double -> Double ->
Double -> SR Body
breakingPendulum t l phi0 = switch (pendulum l phi0)

[fun| ((_,_),(_,_)) -> time - t |] freeFall
....

simulation environment, heuristics are used to estimate which equations need
to be modified during a mode switch (Zimmer 2010).

Another difference is that while the Sol language is interpreted by an
interpreter, the realization of the Hydra language instead generates machine
code. While caching equations would improve performance, the generation of
machine code was discovered to be the main bottleneck (Giorgidze 2012).

Listing 3.3.3 illustrates a breaking Pendulum in Hydra. Initially the pen-
dulum is active until t = 5.0 seconds when the active model change from the
pendulum model to the free fall model.

3.3.4 The Model Composition Language and Nano
Modelica

In Compiling Modelica Höger presents both a theoretical framework and an
experimental prototype that is capable of handling systems with a dynamic
structure as well as separate compilation (Höger 2019). In this section, we
focus on the extensions to the language and the computational framework to
achieve VSS.

21URL: https://github.com/giorgidze/Hydra/blob/e5b59d0baff27f06368caeb1e9860f1395913ca5/
examples/BreakingPendulum.hs accessed 2022-05-03

42

3.3. Equation-based languages with variable structure

Höger introduces two new operators to a subset of the Modelica language,
Nano Modelica:

• resume

• resuming

Along with the attribute restart and a new class Checkpoint.
A Modelica model specified in Nano Modelica is translated to some Hy-

brid DAE representation. This representation is then translated to the Model
Composition Language (MCL). MCL is inspired from a previous core lan-
guage, the Model Kernel Language (MKL) (Broman 2010). The purpose of
the kernel language is to provide a formal framework to describe the semantics
of modeling languages22. It is used as an IR in the translation process before
finally being transformed into OCaml23.

To be noted that MCL is not Modelica; rather, it is a concise language
meant to encapsulate the behavior of a subset of Modelica called Nano Mod-
elica. It is also used to implement the simulation runtime of the models that
are being simulated.

The breaking pendulum example is also discussed in the work of Höger,
the use of the Checkpoint, resume and resuming can be seen in Listing 3.3.4.
Initially the constraint equation x2 + y2 = 1 is active along with the equations
governing the dynamics of the pendulum:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = vx
ẏ = vy
v̇x = F ⋅ x
v̇y = F ⋅ y − 9.81

(3.3)

until y exceeds 0.6, after which the new equation F = 0 is activated, which
results in the object attached to the pendulum entering the free fall state.
This approach to representing the model is different when contrasted with
the model in Hydra. See Listing 3.3.3. In the latter case, the free fall state
and the attached state are explicitly encoded, whereas in the example by
Höger, activating and deactivating equations change the behavior.

3.3.5 Comparing languages and programming environments
for Variable Structured Modeling

In the previous section, we have discussed different languages and program-
ming environments that attempt to achieve support for systems with variable

22In the context of the thesis this is used to describe the semantics of the Modelica
subset mapped to MKL, however, it is not limited to Modelica alone, since conceivably
similar equation-based languages could be mapped to it.

23URL: https://ocaml.org/, accessed 2022-02-15.

43

3. Compilers and Equation-based modeling languages

Listing 3.3.4 The Breaking Pendulum from (Höger 2019, p. 171).

model Pendulum
constant Real pi = 2*asin(1.0);
Real x(start=sin(3.*pi/4.));
Real y(start=cos(pi/4.));
Real vx, vy ,F;
Checkpoint cp;

initial equation
vx=0; vy=0; x = sin(3.*pi/4.); y = cos(pi/4.);

equation
der(x) = vx; der(y) = vy;
der(vx) = F*x; der(vy) = F*y - 9.81;
if (not resuming(cp)) then
x*x + y*y = 1;
when (y > 0.6) then
resume(cp);

end when;
else
F = 0;

end if;
end Pendulum;

structure. Within the context of Modelica, there seems to be a consensus
that Mosilab represents the first attempt to extend Modelica for this purpose
(Zimmer 2010; Giorgidze 2012; Höger 2019). Concerning the Hydra language,
Zimmer states:

Hydra is based on the paradigm of functional hybrid mod-
eling. This makes it a powerful language. In principle, it
is possible to state arbitrary equation systems with Hydra
and to formulate arbitrary changes. Also new elements
can be generated at runtime. Practically, the simulation
engine is currently not able to support higher-index sys-
tems to a sufficient extent. Also the language has not
been tested on complex modeling examples. The way Hy-
dra is processed is rather unique in the field of M&S. Hy-
dra features a just-in-time compilation. At each struc-
tural change, the model is completely recompiled in order
to enable a fast evaluation of the system. This process-
ing scheme makes Hydra interesting with respect to Sol
since it represents a contemplative approach. Whereas
Sol, being an interpreter, is efficient in handling the
changes in the system of equations but inefficient in the
evaluation stage, Hydra represents the opposite case. A

44

3.3. Equation-based languages with variable structure

combination of both approaches would therefore lead to
an optimal trade-off between flexibility and efficiency.
Zimmer 2010

p. 49

Concerning the Sol language Giorgidze states:

Sol is a Modelica-like language [Zimmer, 2007, 2008]. It
introduces language constructs that enable the descrip-
tion of systems where objects are dynamically created
and deleted, thus supporting modelling of unbounded
structurally dynamic systems. The work on Sol is com-
plementary to ours in a number of respects outlined in
the following. Sol explores how structurally dynamic sys-
tems can be modelled in an object-oriented, noncausal
language. Hydra extends a purely functional program-
ming language with constructs for structurally dynamic,
noncausal modeling.
The implementation of Sol makes use of symbolic meth-
ods that for each structural change aim to identify the
smallest number of equations that need to be modified
or added in order to model the structural change. It
would be interesting to combine these symbolic methods
with the runtime code generation approach used in Hy-
dra in order to reduce the JIT compilation overheads by
only compiling the modifid and added equations for each
structural change.
Sol features only an interpreted implementation. The
dynamic compilation techniques featured in the imple-
mentation of Hydra would be of interest in the context
of Sol to enable it to target high-end simulation tasks.
Giorgidze 2012

p. 108

Furthermore, both Zimmer and Giorgidze states that the main disadvan-
tage of Mosilab is the explicit structure, moreover, it does not allow the mod-
eler to model an unbounded system with structural variability (Zimmer 2010;
Giorgidze 2012).

Concerning MCL, the thesis by Höger leaves the following final remark:

Throughout this thesis, we have deviated quite far from
the topics that are usually discussed in the context of

45

3. Compilers and Equation-based modeling languages

Modelica. We have only sketched the surface of the nu-
merical and symbolical treatment of equations and done
so only to provide the necessary framework for some
very specific aspects of its operational semantics. While
we considered it important to fully support the simula-
tion of at least a very small subset of the language, we
did not bother with realistic models or aspects like sim-
ulation performance. Instead, we focused on a specific
architecture of implementation, namely that of a rigor-
ous, separate compiler, and how its choice enables a new
modeling paradigm. Höger 2019

p. 206

From this, we can infer that while the work of Höger provides an extensive
formal overview concerning separate compilation and the modeling of highly
dynamic systems, it does not provide any empirical evaluation concerning the
efficiency of his approach.

A summary of the characteristics of the approaches by (Höger 2019;
Giorgidze 2012; Zimmer 2010; Nytsch-Geusen, Ernst, Nordwig, Schneider,
Schwarz, Vetter, Wittwer, Holm, Nouidui, Leopold, et al. 2005) in Table 3.1.

In Table 3.1 we categorize the approaches according to the following char-
acteristics:

• Type

• Paradigm

• Boundness

• Variability

• Declaration Scheme

• Higher-Order Models

The Type and the Paradigm are discussed in the previous sections, along
with the description of the compilation technique. What is more interesting
is the concept Boundness. Boundness in the context of VSS is defined not in
terms of how many distinct modes of operation models might have but rather
if the language is capable of formulating models that may in turn, generate
new modes. In the case of Mosilab, a model may have infinite modes, but
this set of modes must be specified before simulation, which is unfeasible.
However, in the case of Sol, MCL and Hydra new modes may be created
during simulation.

46

3.4. Other frameworks

Table 3.1: Characteristics of languages that are able to express system with
structural variability.

Mosilab Sol Hydra MCL
Type Modelica extension Modelica variant Embedded in Haskell Intermediate Representation

Paradigm Declarative Declarative Functional Functional
Compilation technique AOT-Compilation Interpretation JIT-Compilation AOT-Compilation

Variability Static Dynamic Dynamic Static
Declaration Scheme Explicit Implicit Explicit Implicit

Boundness Bounded Unbounded Unbounded Unbounded
Higher-order-models No Yes Yes Yes

Variability, concerns the modeling and simulation framework. Framework
that are able either to extend or add to the program itself via metaprogram-
ming after starting the simulation are categorized as Dynamic, otherwise we
say that it is Static.

Declaration Scheme, concerns how structural variability is expressed syn-
tactically, ether explicitly or implicitly. One example of an explicit decla-
ration is in Listing 3.3.3 where the structural dynamics are expressed using
the switch operator. Another is Listing 3.3.1 where structural changes are
expressed via structural transitions. This can be contrasted with the works of
Höger and Zimmer where an operator in the code affects the resulting mode.

An example of implicit transitions is how the constraint equation in List-
ing 3.3.4 change the active mode.

The last category is Higher-order-models, it implies that simulated model
is able to directly reconfigure models as if models themselves are variables,
either explicitly or implicitly.

The themes identified in this overview have illustrated that simulation
of variable structured systems is possible. However, how these changes are
expressed and the expressive power of proposed constructs vary. Neverthe-
less, researchers have not treated the practical implication of a programming
environment with VSS support in detail. In general, no attempt was made
to quantify the implication of modeling systems according to this paradigm
on large examples. Only Giorgdize provides empirical insight regarding the
practicality of his approach.

3.4 Other frameworks

Besides the frameworks discussed above, variable structure systems in
equation-based languages are discussed in (Mehlhase 2014; Elmqvist, Mats-
son, and Otter 2014; Elmqvist and Otter 2017). The work by (Mehlhase 2014)
is an interesting approach in terms of tool interoperability. However, since it
abstracts existing modeling and simulation environments rather than defining
or extending a language, we omitted it in Section 3.3. The ideas by Elmqvist,
Matsson, and Otter (2014) are similar to those in (Nytsch-Geusen, Ernst,

47

3. Compilers and Equation-based modeling languages

Nordwig, Schneider, Schwarz, Vetter, Wittwer, Holm, Nouidui, Leopold, et
al. 2005). We implement and discuss a similar scheme in Section 4.6.1.

48

4. OpenModelica.jl a Composable
Modelica Environment

This chapter is closely based on the following publications:

• Towards introducing just-in-time compilation in a Modelica compiler
(Tinnerholm, Sjölund, and Pop 2019)

• Towards an Open-Source Modelica Compiler in Julia (Tinnerholm, Pop,
Sjölund, Heuermann, and Abdelhak 2020)

• OpenModelica.jl: A modular and extensible Modelica compiler frame-
work in Julia targeting ModelingToolkit.jl (Tinnerholm, Pop, Heuer-
mann, and Sjölund 2021)

• A modular, extensible, and Modelica standard-compliant OpenModelica
compiler framework in Julia supporting structural variability, J Tinner-
holm, A Pop, M Sjölund (Submitted for publication)

In this chapter we present OpenModelica.jl. OpenModelica.jl is a compos-
able modeling and simulation environment written in the Julia language. The
term composable means that software components within this programming
environment can be used interchangeably. We start by providing an overview
of OpenModelica.jl without any implementation specifics in Section 4.1. We
then introduce the Julia language and highlight some of the key advantages
of providing a Modelica compiler written in Julia and the implications of us-
ing such an environment. Section 4.3 presents the MetaModelica extension
of Modelica. The section ends with a presentation of MetaModelica.jl a com-
ponent of OpenModelica.jl and how the homoiconic1 characteristics of the
Julia language is leveraged. In Section 4.4 and Section 4.5 we introduce the
compiler frontend and backend respectively. Furthermore, in Section 4.6 we
discuss how a set of minimal modifications to the Modelica language allows
for more expressive and novel modeling. We end this chapter in Section 4.7
by providing a partial answers to the stated research questions.

4.1 Introducing OpenModelica.jl

OpenModelica.jl is a modeling and simulation environment written in the
Julia language dedicated to Modelica modeling and simulation. As of this

1Homoiconicity is a characteristic of the Lisp programming language. Homoiconicity
means that code is data and data is code (McIlroy 1960).

49

4. OpenModelica.jl a Composable Modelica Environment

OMFrontend.jl

OMParser.jl

OMBackend.jl

MetaModelica.jl

Absyn.jl

SCode.jl

DAE.jl

Auxiliary libraries

OpenModelica.jl

Figure 4.1: An overview of the dependencies between the components in Open-
Modelica.jl. Absyn.jl, SCode.jl and DAE.jl are existing intermediate represen-
tations encoded in the Julia language. The compiler runtime is implemented
by MetaModelica.jl. The frontend is provided by the OMFrontend.jl module
and the backend by the OMBackend.jl module.

Frontend for Modelica Frontend for EOOL X Frontend for EOOL Y

Intermediate representation

OMBackend

Figure 4.2: A high level overview of a design separating the intermediate
representation from the frontend to allow several hypothetical frontends to
use the same backend.

writing the OpenModelica.jl programming environment consists of several in-
tegrated modules that make up separate pieces of a Modelica compiler.

An overview of the various components of OpenModelica.jl is available
in Figure 4.1. In the figure we can see that the backend depends on the
frontend. The reason for this dependency is to enable the compiler to dynam-
ically recompile models during simulation. We discuss this feature and its
implications in Section 4.6. Following the principles of LLVM (Lattner and
Adve 2004) the frontend and the intermediate representation were separated
so that additional frontends or backends can be provided to support other
EOOL given that they target the same intermediate representation.

An illustration is provided in Figure 4.2.

50

4.2. The Julia Programming language

Listing 4.2.1 An example of a Julia function, addition that adds two vari-
ables.
function addition(a, b)
return a + b

end
addition(1.0, 1.0)
addition(1, 1)

4.2 The Julia Programming language

The Julia programming language was created to combine the expressive power
and flexibility of scientific computing environments such as those existing for
Python and Matlab with the performance of compiled procedural languages
such as Fortran and C. The Julia language achieves this by utilizing, multiple
dispatch, dataflow type inference and runtime JIT-Compilation (Bezanson,
Edelman, Karpinski, and V. B. Shah 2017).

Consider the Julia code in Listing 4.2.1. In this example a single func-
tion, addition is defined with two arguments a and b. Similar to the Python
language which support duck-typing this function can be called with different
arguments in this case with integer and float arguments. The language differ
in while Python interprets the program, Julia will instead infer a function
to generate based on the arguments to the function and create native code
for each type specialization. In the case of the addition function two such
specializations will be created one for integer arguments and one for floating
point arguments.

In this way Julia retains the flexibility of scripting languages such as
Python while at the same time generating high performance code (Bezan-
son, Edelman, Karpinski, and V. B. Shah 2017). However, the drawback of
this approach is that there is an initial overhead in terms of compilation time
(Tinnerholm, Sjölund, and Pop 2019).

4.2.1 Scientific computation in Julia
As previously stated, the Julia language was designed to provide a flexible
yet performant environment for scientific computing. Consequently, several
packages2 have been developed to facilitate scientific computing. One exam-
ple of such a package is DifferentialEquations.jl (Christopher Rackauckas and
Nie 2017). This package allows the user to interface with a number of solver
libraries such as SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic
Equation Solvers) (Hindmarsh, Brown, K. E. Grant, S. L. Lee, Serban, Shu-

2A Julia package is a piece of reusable Julia code. It is similar to modules in other
programming languages.

51

4. OpenModelica.jl a Composable Modelica Environment

maker, and Woodward 2005). As of 2022, DifferentialEquations.jl provides
support for the following features3:

• Discrete equations (function maps, discrete stochastic (Gillespie/-
Markov) simulations)

• Ordinary differential equations (ODEs)

• Split and Partitioned ODEs (Symplectic integrators, IMEX Methods)

• Stochastic ordinary differential equations (SODEs or SDEs)

• Stochastic differential-algebraic equations (SDAEs)

• Random differential equations (RODEs or RDEs)

• Differential algebraic equations (DAEs)

4.2.2 Equation based modeling in Julia
As of 2022, several modeling environments that provide the option of causal
and acausal modeling within the Julia ecosystem exists and DifferentialE-
quations.jl (Christopher Rackauckas and Nie 2017) is one such environment.
It provides a seamless foreign function interface that allows interfacing al-
gorithmic Julia code and a variety of different solvers. A user of Differen-
tialEquations.jl writes imperative code in the Julia language to conform to
systems such as Nonlinear-systems, ODE-systems, and DAE-systems. Tin-
nerholm, Pop, Sjölund, Heuermann, and Abdelhak (2020) selected Differen-
tialEquations.jl as the default backend target. A model of a hybrid system
representing a bouncing ball using DifferentialEquations.jl can be studied in
Listing 4.2.2.

While DifferentialEquations.jl provides the abstractions necessary to write
causal models in Julia, it does not provide the abstractions of a full-fledged
modeling language. ModelingToolkit.jl (MTK) aims address this issue (Ma,
Gowda, Anantharaman, Laughman, V. Shah, and Chris Rackauckas 2021).
MTK is a recent modeling and simulation framework to automate symbolic
operations common for equation-based languages, such as methods for index
reduction. It does so by using the symbolic-numerical capabilities of Julia
to preprocess a description into a format that can be solved using the set of
solvers provided by DifferentialEquations.jl. In other words, the translation
process from an acausal description based on equations to a causal represen-
tation acceptable for a solver is similar to that of a typical Modelica Compiler.

Two studies (Ma, Gowda, Anantharaman, Laughman, V. Shah, and Chris
Rackauckas 2021; Elmqvist, Neumayr, and Otter 2018) have begun to exam-
ine the usefulness of the Julia language within the context of equation-based

3URL: https://github.com/SciML/DiffEqDocs.jl/blob/5ab30570f91a69820e02449f71b59d2f786c3dd4/
docs/src/index.md accessed 2022-04-27

52

4.3. MetaModelica and MetaModelica.jl

modeling. However, no study has - to our knowledge - implemented and
investigated the implications of developing a full compiler for an equation-
based language in Julia. Instead, they provide the possibility of Modelica-
like acausal modeling using Julia as a host language. In (Tinnerholm, Pop,
Sjölund, Heuermann, and Abdelhak 2020) we presented the first Modelica
compiler written in Julia. We constructed the compiler by translating the old
frontend of the OMC and by providing a MetaModelica-Julia compatibility
layer, MetaModelica.jl. In addition, a backend was implemented and the first
backend target was DifferentialEquations.jl (Christopher Rackauckas and Nie
2017).

The main difference between Modelica and the language defined by MTK
is the level of abstraction. To give an example, as of this writing, MTK
requires users to specify the application of index reduction explicitly; it also
requires systems to be specified explicitly with the state derivatives on the left-
hand side. Thus, the user specifies the transformation from a DAE-System
into an ODE-system, whereas in a Modelica compiler, these decisions are
generally abstracted away. Still, as we illustrate, this flexibility makes MTK
suitable as a backend framework for Modelica Compilers or other equation-
based languages frameworks in Julia.

Modia.jl (Elmqvist and Otter 2017; Elmqvist, Otter, Neumayr, and Hipp-
mann 2021) is another framework for acausal modeling in Julia. Syntacti-
cally it is more similar to Modelica when compared to the language defined
by MTK. However, it is different from the work presented here because its
constructs are implemented using Julia metaprogramming, primarily a set of
macros, rather than traditional compiler phases.

Yet another modeling framework is Causal.jl (Sarı and Günel 2021) a
causal modeling framework reminiscent of Simulink.

4.3 MetaModelica and MetaModelica.jl

MetaModelica is an extension to the Modelica language. It extends Modelica
with several constructs to provide the Modelica language with greater ex-
pressive power (P. Fritzson, Pop, Abdelhak, Asghar, Bachmann, W. Braun,
Bouskela, R. Braun, Buffoni, Casella, et al. 2020). To automatically trans-
late the OpenModelica Compiler into Julia, MetaModelica constructs such
as matchcontinue and match had to be mapped into Julia. To define these
constructs we implemented MetaModelica.jl.

4.3.1 MetaModelica.jl
MetaModelica.jl4 provides a compatibility layer between Julia and MetaMod-
elica (P. Fritzson, Pop, and Sjölund 2011; Pop and P. Fritzson 2006) and an

4URL: https://github.com/OpenModelica/MetaModelica.jl accessed 2022-05-03.

53

4. OpenModelica.jl a Composable Modelica Environment

Listing 4.2.2 Automatically generated Julia code for a simple hybrid sys-
tem. The Julia code presented in this listing is targeting the IDA solver in
Sundials (Hindmarsh, Brown, K. E. Grant, S. L. Lee, Serban, Shumaker, and
Woodward 2005) using DifferentialEquations.jl.
function BouncingBallRealsStartConditions(aux, t)
local x = zeros(2)
local dx = zeros(2)
local p = aux[1]
local reals = aux[2]
reals[1] = 1.0
dx[1] = reals[2]
dx[2] = -(p[2])
x[2] = reals[2]
x[1] = reals[1]
return (x, dx)

end
function BouncingBallRealsDifferentialVars()
return Bool[1, 1]

end
function BouncingBallRealsDAE_equations(res, dx, x, aux, t)
local p = aux[1]
local reals = aux[2]
res[1] = dx[2] - -(p[2])
res[2] = dx[1] - reals[2]
reals[2] = x[2]
reals[1] = x[1]

end

function BouncingBallRealsParameterVars()
local aux = Array{Array{Float64}}(undef, 2)
local p = Array{Float64}(undef, 2)
local reals = Array{Float64}(undef, 2)
aux[1] = p
aux[2] = reals
p[2] = 9.81
p[1] = 0.7
return aux

end
saved_values_BouncingBallReals = SavedValues(Float64, Tuple{Float64,Array})
function BouncingBallRealsCallbackSet(aux)
local p = aux[1]
function condition1(x, t, integrator)
x[1] - 0.0
end
function affect1!(integrator)
integrator.u[2] = -(p[1] * integrator.u[2])

end
cb1 = ContinuousCallback(condition1, affect1!, rootfind = true,

save_positions = (true, true), affect_neg! = affect1!)
savingFunction(u, t, integrator) = let
(t, deepcopy(integrator.p[2]))

end
cb2 = SavingCallback(savingFunction, saved_values_BouncingBallReals)
return CallbackSet(cb1, cb2)

end

54

4.4. OMFrontend

Listing 4.3.1 Original code written in MetaModelica to typecheck array ex-
pressions.
function matchArrayExpressions
input output Expression exp1;
input Type type1;
input output Expression exp2;
input Type type2;
input Boolean allowUnknown;
output Type compatibleType;
output MatchKind matchKind;

protected
Type ety1, ety2;
list<Dimension> dims1, dims2;

algorithm
Type.ARRAY(elementType = ety1, dimensions = dims1) := type1;
Type.ARRAY(elementType = ety2, dimensions = dims2) := type2;
// Check that the element types are compatible.
(exp1, exp2, compatibleType, matchKind) :=
matchExpressions(exp1, ety1, exp2, ety2, allowUnknown);

// If the element types are compatible, check the dimensions too.
(compatibleType, matchKind) :=
matchArrayDims(dims1, dims2, compatibleType, matchKind, allowUnknown);

end matchArrayExpressions;

extension to the Julia language via Julia metaprogramming. It re-implements
several constructs of MetaModelica such as match and matchcontinue. Fur-
thermore, MetaModelica.jl replicates the existing runtime of OMC. This Julia
extension is used extensively in the translated modules.

For a more-in-depth comparison between Julia and MetaModelica we refer
to (P. Fritzson, Pop, Sjölund, and Asghar 2019).

Listing 4.3.2 illustrates an example of automatically translated code using
@match equations. The original MetaModelica version of this function can be
seen in Listing 4.3.1.

4.4 OMFrontend

OMFrontend.jl is used to flatten Modelica code. OMFrontend was automat-
ically generated from the high-performance frontend (Pop, Östlund, Casella,
Sjölund, Franke, et al. 2019) of the OMC. Previously, we used the old frontend
(Tinnerholm, Pop, Sjölund, Heuermann, and Abdelhak 2020); however, as
part of the work presented here, the MetaModelica-Julia translator was used
to automatically generate a Julia implementation of the high-performance
frontend (Pop, Östlund, Casella, Sjölund, Franke, et al. 2019).

While the translation of the old frontend5 was achieved without any major
modifications, we had to manually resolve cases of mutually circular module

5The old frontend is the frontend the high-performance frontend replaced (Pop, Östlund,
Casella, Sjölund, Franke, et al. 2019).

55

4. OpenModelica.jl a Composable Modelica Environment

Listing 4.3.2 A function used in the type checking phase of our Model-
ica compiler. This code make use of the @match equation constructs from
MetaModelica, for comparison the original MetaModelica code is available in
Listing 4.3.1.
function matchArrayExpressions(
exp1::Expression,
type1::NFType,
exp2::Expression,
type2::NFType,
allowUnknown::Bool,
)::Tuple{Expression, Expression, NFType, MatchKindType}
local matchKind::MatchKindType
local compatibleType::NFType
local ety1::NFType
local ety2::NFType
local dims1::List{Dimension}
local dims2::List{Dimension}
@match TYPE_ARRAY(elementType = ety1, dimensions = dims1) = type1
@match TYPE_ARRAY(elementType = ety2, dimensions = dims2) = type2
#= Check that the element types are compatible. =#
(exp1, exp2, compatibleType, matchKind) =
matchExpressions(exp1, ety1, exp2, ety2, allowUnknown)
#= If the element types are compatible, check the dimensions too. =#
(compatibleType, matchKind) =
matchArrayDims(dims1, dims2, compatibleType, matchKind, allowUnknown)
return (exp1, exp2, compatibleType, matchKind)

end

dependencies for the new frontend since Julia does not handle mutually cir-
cular module dependencies while MetaModelica does.

The design and implementation of this frontend remains the same as de-
scribed by Pop et al. in (Pop, Östlund, Casella, Sjölund, Franke, et al. 2019),
however a few modifications where made that we elaborate on later in this
text.

4.4.1 Validating the frontend by using Flat-Modelica
Similarly to the frontend in OMC OpenModelica.jl is capable of generating flat
Modelica from a Modelica model. By generating flat Modelica using OMC
and comparing it to OMFrontend, we established the frontend’s correctness
to an extent6. In Listing 4.4.1 we can see a model representing a water tank,
and in Listing 4.4.2 we can see the corresponding flat model generated by
OMFrontend where the object-orientation is gone.

6Software testing can not prove the absence of errors.

56

4.4. OMFrontend

Listing 4.4.1 A model of a water tank.
connector Stream //Connector class
Real pressure;
flow Real volumeFlowRate;

end Stream;

model Tank
parameter Real area = 1;
replaceable connector TankStream = Stream;
TankStream inlet, outlet;
Real level(start=2);

equation
inlet.volumeFlowRate = 1;
inlet.pressure = 1;
area * der(level) = inlet.volumeFlowRate + outlet.volumeFlowRate;
outlet.pressure = inlet.pressure;
outlet.volumeFlowRate = 2;

end Tank;

Listing 4.4.2 The flat model of the water tank.
class Tank
parameter Real area = 1.0;
Real inlet.pressure;
flow Real inlet.volumeFlowRate;
Real outlet.pressure;
flow Real outlet.volumeFlowRate;
Real level(start = 2.0);

equation
inlet.volumeFlowRate = 0.0;
outlet.volumeFlowRate = 0.0;
inlet.volumeFlowRate = 1.0;
inlet.pressure = 1.0;
area * der(level) = inlet.volumeFlowRate + outlet.volumeFlowRate;
outlet.pressure = inlet.pressure;
outlet.volumeFlowRate = 2.0;

end Tank;

4.4.2 Modelica library support
The compiler presented in this text provide support for users to write their
own custom libraries. We have also tested our compiler on existing Mod-
elica libraries, such as the ScalableTestSuite testsuite and the MSL. While
OpenModelica.jl does not currently cover all models of the Modelica Stan-
dard Library, the Electrical sub-library of electrical components and example
models is currently supported. In Chapter 5 we provide one example where
we use a transmission line model from the ScalableTestSuite (Casella 2015)
to estimate the current performance of our frontend.

57

4. OpenModelica.jl a Composable Modelica Environment

4.5 OMBackend

The module responsible for code generation is the backend module, OMBack-
end.jl. Current backend targets include both MTK and DifferentialEqua-
tions.jl. The DifferentialEquations.jl backend uses the Sundials IDA solver
(Hindmarsh, Brown, K. E. Grant, S. L. Lee, Serban, Shumaker, and Wood-
ward 2005) and it roughly follows the DAE-mode implementation by (W.
Braun, Casella, Bachmann, et al. 2017). OMBackend currently supports con-
tinuous systems and initial support for hybrid systems. The backend currently
performs matching and sorting on the equations; however, the process of sym-
bolic index reduction and other compiler optimizations such as algebraic sim-
plification is outsourced to the MTK-framework. Furthermore, the backend
integrates other Julia facilities such as Plots.jl (Christ, Schwabeneder, and
Christopher Rackauckas 2022) for plotting and animation.

4.6 Extending the Modelica language to support
Variable Structured Systems

The literature overview presented in Chapter 3 highlighted that for an
equation-based language to support VSS, the language would need to have the
syntax and semantics necessary to describe and capture structural changes in
the systems of equations. Furthermore, if the system is object oriented, the
language also needs such syntax and semantics to capture the change in the
components constituting these systems as well. In this section we discuss two
extensions to enable the Modelica language to represent such systems.

4.6.1 Explicit Variable Structured Systems
We define Explicit Variable Structured Systems as system where the transitions
between states of the system are explicitly encoded by the modeler. In this
case the equations and variables of the system is known before the system
is simulated. To illustrate this we reused the process of representing state
machines in the Modelica language by providing support for continuous state
machines.

However, while state machines in Modelica does not support continuous-
time equations or algorithms7 our representations allows a modeler to repre-
sent structural transitions between separate continuous-time states.

To be able to encode such explicit structural transitions we introduced one
new keyword structuralmode along with two operators:

• initialStructuralState(state)

• structuralTransition(fromState, toState, condition)
7URL: https://specification.modelica.org/v3.4/Ch17.html accessed 2022-04-20

58

4.6. Extending the Modelica language to support Variable Structured
Systems

Listing 4.6.1 An example of a simple explicit variable structured systems
with two modes of operation.

model SimpleTwoModes
model Single
parameter Real a = 1.0;
Real x (start = 1.0);

equation
der(x) = 2 * x + a;

end Single;
model HybridSingle
parameter Real a = 1.0;
Real x (start = 0.0);

equation
der(x) = x - a;

end HybridSingle;
structuralmode Single firstMode;
structuralmode HybridSingle secondMode;

equation
// We start in this initial mode
initialStructuralState(firstMode);
// We switch the mode when time is greater than or equal to 0.7
structuralTransition(firstMode, secondMode, time >= 0.7);

end SimpleTwoModes;

The operator initialStructuralState is used to represent an initial struc-
tural state while structuralTransition is used to specify the transition be-
tween one structural state to another structural state.

Listing 4.6.1 illustrates an example of a system modeled using these con-
structs. The model SimpleTwoModes consists of two states Single and Hy-
bridSingle. The model starts in the Single state and after 0.7 second the model
transition to the next state HybridSingle. This transition is modeled using the
structuralTransition operator and the initial structural state is specified using
the initialStructuralState operator.

The code for simulating and plotting this model is available in Listing 4.6.1,
the plot is available in Figure 4.3.

4.6.1.1 Modeling the breaking pendulum explicitly

Using these constructs we can simulate models where the equations and vari-
ables change, given that this change is encoded by the modeler. We can
use this methodology of explicitly encoding the states to model the breaking
pendulum model discussed in Chapter 3.

Simulating this system results in the plot seen in Figure 4.4. To summarize,
using an explicit approach we can increase the flexibility concerning what
is possible to express in Modelica. However, there are some disadvantages
to this approach. The first is that the representation is causal, that is the

59

4. OpenModelica.jl a Composable Modelica Environment

Listing 4.6.2 A program to simulate and plot SimpleTwoModes from List-
ing 4.6.1 using OpenModelica.jl with associated modules.

using Revise
import Absyn
import DAE
import OM
import OMBackend
import OMFrontend
import SCode
using MetaModelica
using Plots
function runModelMTK(model,

file;
timeSpan = (0.0, 1.0))

@info ”Running : ” model
@time OM.simulate(model,

file,
mode = OMBackend.MTK_MODE,
startTime = first(timeSpan),
stopTime = last(timeSpan))

end
res = runModelMTK(”SimpleTwoModes”,

”./Models/SimpleTwoModes.mo”;
timeSpan=(0.0, 1.0))

p = plot(res; legend = :topleft)
Plots.pdf(p,

”./Plots/SimpleTwoModesPlot”)

Figure 4.3: The result of simulating Listing 4.6.1.

60

4.6. Extending the Modelica language to support Variable Structured
Systems

Listing 4.6.3 An example of the breaking pendulum model using structural
transitions.

model FreeFall
Real x;
Real y;
Real vx;
Real vy;
parameter Real g = 9.81;
parameter Real vx0 = 0.0;

equation
der(x) = vx;
der(y) = vy;
der(vx) = vx0;
der(vy) = -g;

end FreeFall;
model Pendulum
parameter Real x0 = 10;
parameter Real y0 = 10;
parameter Real g = 9.81;
parameter Real L = sqrt(x0^2 + y0^2);
// Common variables
Real x(start = x0);
Real y(start = y0);
Real vx;
Real vy;
// Model specific variables
Real phi(start = 1.0, fixed = true);
Real phid;

equation
der(phi) = phid;
der(x) = vx;
der(y) = vy;
x = L * sin(phi);
y = -L * cos(phi);
der(phid) = -g / L * sin(phi);

end Pendulum;

model BreakingPendulum
structuralmode Pendulum pendulum;
structuralmode FreeFall freeFall;

equation
initialStructuralState(pendulum);
structuralTransition(pendulum,

freeFall,
time - 5.0 <= 0);

end BreakingPendulum;

61

4. OpenModelica.jl a Composable Modelica Environment

Listing 4.6.4 A program to simulate and plot the explicit breaking pendulum
model.

using Revise
import Absyn
import DAE
import OM
import OMBackend
import OMFrontend
import SCode
using MetaModelica
using Plots

function runModelMTK(model, file; timeSpan = (0.0, 1.0))
@info ”Running : ” model
@time OM.runModelFM(model,

file,
mode = OMBackend.MTK_MODE,
startTime = first(timeSpan),
stopTime = last(timeSpan))

end

res = runModelMTK(”BreakingPendulum”,
”./Models/BreakingPendulumExplicit.mo”;
timeSpan=(0.0, 7.0))

p = plot(res;
legend = :bottomleft,
xlim=(0.0, 7.0),
ylim = (0.0, 10.0),
vars = [(0,2)])

Plots.pdf(p, ”./Plots/BreakingPendulumExplicit”)

transition between the states need to be encoded sequentially. The second
drawback is that all equations need to be known and represented a priori
simulation. The disadvantage of this representation is that the compiler and
the simulation runtime need to process the entire model at the same time,
and while transition between states can be achieved dynamically the model
may not modify itself during simulation. The implicit VSS discussed in the
next section does not have this disadvantage. Consequently we do not need
to explicitly encode the model’s entire behavior.

4.6.2 Implicit Variable Structured Systems
In the previous section we discussed systems that we denoted Explicit Vari-
able Structure Systems. These are models where the variables and equations
change during simulation according to some explicit stated scheme. In this
section we provide examples of implicit systems where we lift the restric-
tion of explicit encoding. We do so by introducing a single new operator
recompilation. To achieve recompilation during simulation we introduce JIT-

62

4.6. Extending the Modelica language to support Variable Structured
Systems

Figure 4.4: The result of simulating Listing 4.6.3.

Compilation in our compiler. Figure 4.5 illustrates compilation our compiler
extended with dynamic capabilities.

Recompilation allows structural events to trigger a modification and sub-
sequently recompile the model under simulation. To achieve this we extended
the flat Modelica representation to also contain a MetaModel of itself8. During
recompilation the model may query itself and change the values of its param-
eters or constants. In this way the different sets of equations and variables
need not to be explicitly encoded before structural transitions. Consequently,
values computed by some model during simulation may be used to modify the
model itself. Note that any part of the model could be changed if additional
meta-programming operators would be introduced or even load a completely
different model during recompilation.

To illustrate consider the two examples in Listing 4.6.6 and Listing 4.6.5
respectively. At the start of the simulation ArrayShrink consists of ten equa-
tions and variables. However, after 0.5 seconds the system changes radically,
and the number of equations and variables shrinks to five. For the second
example in Listing 4.6.5 the system initially consists of 10 equations however,
during the course of the simulation the set of equations and variables double.

The code and the resulting plot of this system is presented in Listing 4.6.7.
The benefit of this approach is that it is also capable of modeling the explicit
models discussed previously. Using the recompilation construct we can modify

8As of this writing this meta model consists of the SCode IR.

63

4. OpenModelica.jl a Composable Modelica Environment

Listing 4.6.5 The ArrayGrow model.

// This is an example of a model with structural variability
// We initially start with 10 equations, however during the simulation
// the amount of equations are doubled.
model ArrayGrow
parameter Integer N = 10;
Real x[N](start = {i for i in 1:N});

equation
for i in 1:N loop
x[i] = der(x[i]);

end for;
when time > 0.5 then
// Recompilation with change of parameters.
// the name of this function is the subject of change.
// What is changed depends on the argument passed to this function.
recompilation(
N /* What we are changing */,
2 * N /* The value of the change */
);

end when;
end ArrayGrow;

Listing 4.6.6 The ArrayShrink model.

// This is an example of a model with structural variability
// We initially start with 10 equations, however during the simulation
// the amount of equations are decreased to 5.
model ArrayShrink
parameter Integer N = 10;
Real x[N](start = {i for i in 1:N});

equation
for i in 1:N loop
x[i] = der(x[i]);

end for;
when time > 0.5 then
// Recompilation with change of parameters.
// the name of this function is the subject of change.
// What is changed depends on the argument passed to this function.
recompilation(
N /* What we are changing */,
5 /* The value of the change */

);
end when;

end ArrayShrink;

64

4.6. Extending the Modelica language to support Variable Structured
Systems

Listing 4.6.7 Program to simulate the implicit breaking pendulum model,
ArrayGrow and ArrayShrink models.

using Revise

import Absyn
import DAE
import OM
import OMBackend
import OMFrontend
import SCode
using DifferentialEquations
using MetaModelica
using Plots

function runModelMTK(model, file; timeSpan = (0.0, 1.0))
@info ”Running : ” model
@time OM.simulate(model, file,

mode = OMBackend.MTK_MODE,
startTime = first(timeSpan),
stopTime = last(timeSpan),
solver = :(Rodas5()))

end

function plotCombined(res, name, limX, limY)
#= Plot array grow=#
p1 = plot(res[1]; legend = false)
p2 = plot(res[2]; legend = false)
p3 = plot(p1, p2)
#= Plot array grow change from 10 to 15 equations =#
Plots.pdf(p3, ”./Plots/$name”)
#= Construct a merged plot =#
p1 = plot(res[1]; legend = false, xlim=limX, ylim = limY)
p2 = plot!(res[2]; legend = false, xlim=limX, ylim = limY)
Plots.pdf(p2, ”./Plots/$(name)SinglePlot”)

end

function plotPendulum(res, name, limX, limY)
#= Plot array grow=#
p1 = plot(res[1]; legend = true)
p2 = plot(res[2]; legend = true)
p3 = plot(p1, p2)
#= Plot array grow change from 10 to 15 equations =#
Plots.pdf(p3, ”./Plots/$name”)
#= Construct a merged plot =#
p1 = plot(res[1]; legend = :bottomleft, xlim=limX, ylim = limY, vars = [(0,3)])
p2 = plot!(res[2]; legend = :bottomleft, xlim=limX, ylim = limY, vars = [(0,2)])
Plots.pdf(p2, ”./Plots/$(name)SinglePlot”)

end

res = runModelMTK(”BreakingPendulum”,
”./Models/BreakingPendulumRecompilation.mo”; timeSpan=(0.0, 7.0))

plotPendulum(res, ”BreakingPendulum”, (0.0, 7.0), (-10, 10.0))

res = runModelMTK(”ArrayGrow”, ”./Models/ArrayGrow.mo”; timeSpan=(0.0, 1.0))
plotCombined(res, ”ArrayGrow”, (0.0, 1.0), (0.0, 20))
res = runModelMTK(”ArrayShrink”, ”./Models/ArrayShrink.mo”; timeSpan=(0.0, 1.0))
plotCombined(res, ”ArrayShrink”, (0.0, 1.0), (0.0, 20))

65

4. OpenModelica.jl a Composable Modelica Environment

Simulation runtime

Compiler phases

Continuous event handler

Simulation

Integration algorithm

Code generation

Compilation

Discrete event handler

Structural event handler

Parsing Instantiation and Flattening

Cache

Figure 4.5: The compilation and simulation process of a Modelica compiler
with dynamic capabilities. A dynamic Modelica compiler differs from a static
compiler in the sense that the line between system simulation and compilation
are blurred. Instead such a framework unifies the simulation process and the
translation phase of a system being simulated.

such parameters during simulation by querying and updating the meta model.
With this proposed extension we can reformulate this model see, Listing 4.6.8.

4.7 Summary

In this chapter we have presented OpenModelica.jl a Modelica environment
in Julia and discussed some of the implications of having such a framework
written in this language. We have demonstrated that:

• Automatically translating MetaModelica to Julia is possible

• A Modelica compiler written in the Julia language is possible

• The Modelica language can be extended to simulate VSS with only
minor changes

66

4.7. Summary

Figure 4.6: The result of simulating Listing 4.6.5 (Top) and Listing 4.6.6
(Bottom). The structural change and subsequent recompilation of the model
occurs at t = 0.5 seconds. The curve in the graph represents all xi variables of
xÐ→ in Listing 4.6.5 and Listing 4.6.6 respectively. In the top graph we can see
how the system grows and in the bottom graph we can see how the system
shrinks at t = 5.

67

4. OpenModelica.jl a Composable Modelica Environment

Listing 4.6.8 The breaking pendulum model using the new recompilation
keyword to activate and deactivate components via Just-in-time compilation
during simulation.

model BreakingPendulum

model FreeFall
parameter Real e=0.7;
parameter Real g=9.81;
Real x;
Real y;
Real vx;
Real vy;

equation
der(x) = vx;
der(y) = vy;
der(vy) = -g;
der(vx) = 0.0;

end FreeFall;

model Pendulum
parameter Real x0 = 10;
parameter Real y0 = 10;
parameter Real g = 9.81;
parameter Real L = sqrt(x0^2 + y0^2);
// Common variables
Real x(start = x0);
Real y(start = y0);
Real vx;
Real vy;
// Model specific variables
Real phi(start = 1., fixed = true);
Real phid;

equation
der(phi) = phid;
der(x) = vx;
der(y) = vy;
x = L * sin(phi);
y = -L * cos(phi);
der(phid) = -g / L * sin(phi);

end Pendulum;

parameter Boolean breaks = false;
FreeFall freeFall if breaks;
Pendulum pendulum if not breaks;

equation
when 5.0 <= time then
recompilation(breaks, true);

end when;
end BreakingPendulum;

68

4.7. Summary

Figure 4.7: The result of simulating Listing 4.6.3. Note that the legend pro-
vides the prefix of the last active model instance which was the freeFall. The
behavior before the structural transition at t = 5 is described by the equations
of the Pendulum model with instance pendulum.

• There is an advantage in terms of expressive power of a modeling lan-
guage when blurring the line between compilation, modeling and simu-
lation

At the time of writing, to my best knowledge, there is no other framework
for object-oriented equation-based languages that is capable of simulating
systems with structural change consisting of thousands of variables and equa-
tions where JIT-Compilation is the main technique. Furthermore, it can be
argued, that our proposed framework is the first composable implementation
of a compiler for the Modelica language.

69

5. Results

This chapter is closely based upon:

• OpenModelica.jl: A modular and extensible Modelica compiler frame-
work in Julia targeting ModelingToolkit.jl (Tinnerholm, Pop, Heuer-
mann, and Sjölund 2021)

• A modular, extensible, and Modelica standard-compliant OpenModelica
compiler framework in Julia supporting structural variability, J Tinner-
holm, A Pop, M Sjölund (Submitted for publication)

The previous chapter presented a novel framework for equation-based sim-
ulation and modeling. In this chapter, we evaluate the performance of this
framework. The instrumentation of our experiments is given in Section 5.1.

In Section 5.2 we analyze the simulation performance of OpenModelica.jl
and compare it to the OpenModelica environment (P. Fritzson, Pop, Abdel-
hak, Asghar, Bachmann, W. Braun, Bouskela, R. Braun, Buffoni, Casella,
et al. 2020).

This is followed by Section 5.3 where we present some numbers concerning
initial compilation time performance when compiling a set of Modelica models.

Recall that in Section 4.6 we explained how we extended the Model-
ica language to allow the simulation of systems with variable structure via
JIT-Compilation. To examine the overhead and possible advantages of this
method, we compare the costs induced by this method in Section 5.4. In
Section 5.5 we compare our solution to the related research presented in Sec-
tion 3.3. Finally, we end the chapter in Section 5.6 where we summarize our
results.

5.1 Instrumentation

The experiments were run with the following system specifications:

Table 5.1: Hardware used in the performance experiments.

Operating System Processor System memory
Ubuntu 20.04.4 LTS AMD Ryzen1 130 GiB

71

5. Results

Table 5.2: Software packages used.

OpenModelica ModelingToolkit Julia
1.18.1 ModelingToolkit v8.5.0 1.7.2

5.2 Simulation of large Modelica models

This experiment evaluates the simulation time performance when simulating
large Modelica models using our proposed compiler. The model selected for
this experiment is the CascadingFirstOrder system from the scalable testsuite
(Casella 2015), see Listing 5.2.1.

Listing 5.2.1 The Cascading first Order system from the scalable testsuite.
package CascadingFirstOrder
model Casc
parameter Integer N = 100 ”Order of the system”;
final parameter Real tau = T/N ”Individual time constant”;
parameter Real T = 1 ”System delay”;
Real x[N] (each start = 0, each fixed = true);

equation
tau*der(x[1]) = 1 - x[1];
for i in 2:N loop
tau*der(x[i]) = x[i-1] - x[i];

end for;
end Casc;

model Casc10
Casc(N = 10);

end Casc10;

model Casc100
Casc(N = 100);

end Casc100;

model Casc200
Casc(N = 200);

end Casc200;

model Casc400
Casc(N = 400);

end Casc400;

model Casc800
Casc(N = 800);

end Casc800;
...
end CascadingFirstOrder;

72

5.2. Simulation of large Modelica models

In our experiment, we gradually increased N2 from 10 to 25600 and simu-
lated the system using the MTK backend of our proposed compiler with the
TSIT5 solver and the IDA solver. The resulting simulation time was evalu-
ated using the standard benchmark suite of Julia, BenchmarkTools.jl (Chen
and Revels 2016). We also performed the same experiments using the OMC
compiler with the IDA solver. The IDA solver was selected since the OMC
did not support a solver similar to TSIT5. The benchmarking program was
set to use 1000 samples for each level of N. The timeout over all samples for
each N was set to 500 seconds.

The OMC was used with the standard settings and the IDA solver.
The resulting simulation time performance is presented in Table B.1. From

this experiment, we can see that the simulation time performance of our pro-
posed compiler is on par with one state-of-the-art Modelica compiler. Fur-
thermore, since the MTK environment supports more solvers compared to
the OMC we can also leverage this difference and achieve better performance
than the OMC. The feasibility of the MTK framework has also been demon-
strated in (Chris Rackauckas, Anantharaman, Edelman, Gowda, Gwozdz,
Jain, Laughman, Ma, Martinuzzi, Pal, Rajput, Saba, and V. Shah 2021) where
MTK models accelerated with machine learning outperformed the commer-
cial Dymola compiler in terms of simulation performance in a specific case.
However, due to the high memory requirements of Julia and MTK, we are
currently unable to go further than 25600 equations in this benchmark.

If we examine Figure 5.1 we conclude that simulation time performance
is similar between OpenModelica and OpenModelica.jl when simulating the
system with around a thousand equations and variables. In Table B.1 we
see that OpenModelica.jl initially performs better. However, as the value of
N is increased, the performance between the two becomes more similar, as
illustrated in Figure 5.1. To conclude, the experiment highlights that the
MTK can achieve similar performance to that of an existing state-of-the-art
Modelica compiler.

It should be noted, however, that both MTK and subsequently Differ-
entialEquations.jl can be configured using several solvers and employ parallel
processing to solve systems faster. Similar configurations can also be employed
by the OMC. This experiment aimed not to test all possible permutations of
backend configurations but rather to examine the behavior of the new Mod-
elica compiler presented here and one existing state-of-the-art compiler using
typical configurations in both environments.

2N in Listing 5.2.1 directly governs the number of equations and variables in the model.

73

5. Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000

Ti
m

e
 (

s)

Equations/Variables

Mean time for numerical simulation for OMFrontend.jl and the OMC.

OpenModelica.jl
OMC

Figure 5.1: Time spent during numerical simulation in OMFrontend.jl and
for the OMC. Lower is better.

74

5.3. Evaluating compile-time overhead

5.3 Evaluating compile-time overhead

This section presents the compile-time overhead when flattening large Model-
ica models. For this experiment, we selected the Transmission line model from
the scalable testsuite, since it represents a typical Modelica model and uses
the Modelica Standard Library. The full model is presented in Listing 5.3.1.

We generated scalarized flat Modelica code by gradually increasing the
N in the transmission line model, starting with N = 10 and ending with
N = 1280. For each N we ran the experiments for 500 seconds with the
maximum number of replications configured to 100. The compilation time
is presented in Tables B.3 and B.5 and memory consumption is presented in
Table B.4. Figure 5.2 illustrates how the two frameworks compare.

In this experiment, we have demonstrated that although OpenModel-
ica.jl is still under development, we can see that the partially automatically
translated frontend is capable of translating large Modelica models up to
26915 equations and variables using standard Modelica components from the
MSL with competitive performance compared to the OpenModelica Com-
piler. Overall, these results indicate that while the frontend demonstrates
lower performance compared to the OMC by a factor of 3.7 in the case of
26915 equations and variables. It can be argued that frontend performance
is not significantly worse, especially considering OpenModelica.jl is still in its
development phase.

These results must also be understood in that the current frontend is
mostly automatically generated from the OMC so performance regressions
were expected. Still, as discussed in (Tinnerholm, Sjölund, and Pop 2019),
the Julia language is superior in terms of performance for certain cases in
comparison to the MetaModelica language. The Julia language is also actively
developed and improved by a large team while the MetaModelica language is
in maintenance phase only.

We expect that with manual tuning OMFrontend.jl can achieve similar
performance or even outperform the OMC. However, additional research is
needed to establish the benefits of using Julia to implement a compiler for an
equation-based language. In the next section, we highlight these issues in more
detail, in an experiment where we measure the impact of JIT-Compilation
when simulating a system with variable structure.

75

5. Results

Listing 5.3.1 A Modelica model representing an electrical transmission line.

// Transmission line model from the Scalable testsuite by Francesco Casella Politecnico
Milano↪

model TransmissionLine ”Modular model of an electrical transmission line”
import Modelica.SIunits;
import Modelica.Electrical.Analog;
SIunits.Voltage vpg ”voltage of pin p of the transmission line”;
SIunits.Voltage vng ”voltage of pin n of the transmission line”;
SIunits.Current ipin_p
”current flows through pin p of the transmission line”;

SIunits.Current ipin_n
”current flows through pin n of the transmission line”;

Analog.Interfaces.Pin pin_p;
Analog.Interfaces.Pin pin_n;
Analog.Interfaces.Pin pin_ground ”pin of the ground”;
Analog.Basic.Ground ground ”ground of the transmission line”;
parameter Integer N = 1 ”number of segments”;
parameter Real r ”resistance per meter”;
parameter Real l ”inductance per meter”;
parameter Real c ”capacitance per meter”;
parameter Real length ”length of tranmission line”;
Analog.Basic.Inductor L[N](L = fill(l * length / N, N)) ”N inductors”;
Analog.Basic.Capacitor C[N](C = fill(c * length / N, N)) ”N capacitors”;
Analog.Basic.Resistor R[N](R = fill(r * length / N, N)) ”N resistors”;

initial equation
for i in 1:N loop
C[i].v = 0;
L[i].i = 0;

end for;
equation
vpg = pin_p.v - pin_ground.v;
vng = pin_n.v - pin_ground.v;
ipin_p = pin_p.i;
ipin_n = pin_n.i;
connect(pin_p, R[1].p);
for i in 1:N loop
connect(R[i].n, L[i].p);
connect(C[i].p, L[i].n);
connect(C[i].n, pin_ground);

end for;
for i in 1:N - 1 loop
connect(L[i].n, R[i + 1].p);

end for;
connect(L[N].n, pin_n);
connect(pin_ground, ground.p);

end TransmissionLine;

76

5.3. Evaluating compile-time overhead

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000

Ti
m

e
 (

s)

Equations/Variables

Mean time spent translating the Transmission line model to flat Modelica.

OpenModelica.jl
OMC

Figure 5.2: Time spent translating the Transmission line model in Listing 5.3.1
to flat Modelica for OMFrontend.jl and for the OMC. Lower is better.

77

5. Results

Listing 5.4.1 SimpleClockArrayGrow, this model initially starts out with N
equations and variables, however, each 10 seconds the structure of the model
changes and K new equations and variables are added to the system.
// This model a exhibits the same behavior as
// ArrayGrow, except that it resizes several times
model SimpleClockArrayGrow
parameter Integer N = 1000;
parameter Integer K = 2000;
Real x[N](start = {i for i in 1:N});

equation
when sample(0.0, 15.0) then
recompilation(N, N + K);

end when;
for i in 1:N loop
x[i] = der(x[i]);

end for;
end SimpleClockArrayGrow;

5.4 Evaluating the cost of structural changes

When introducing JIT-Compilation in a Modelica compiler it is important
to examine the introduced overhead. In this section we evaluate the cost
of compilation during simulation using a modified variant of the previously
described ArrayGrow model (see Listing 4.6.5), SimpleClockArrayGrow see
Listing 5.4.1.

This model differs from the previous ArrayGrow in that it gradually grows
the system of equations during simulation instead of just once. A more re-
alistic model with a similar behavior could be a nuclear power plant where
different reactors are scheduled to be active at specific times or some other
system where the dynamics change abruptly at regular intervals.

In this experiment we simulate SimpleClockArrayGrow for 60 seconds. Ini-
tially, the model consists of 1000 equations and variables, but after 15 seconds,
the structure of the system changes, and the number of equations and vari-
ables increases to 2000. This process is repeated continuously until the system
reaches 7000 equations.

Table 5.3 presents the median time in seconds required by each phase in
the compiler when processing the structural changes in the model, compared
to the cost of numerical simulation.

The median value was computed by running the model 5 times. The
solver used in this experiment was Rodas5, a Rosenbrock method for stiff
problems, with the tolerance set to 1e−6. This solver was selected to emulate
computationally expensive simulation.

The reason for not using a standardized benchmark suite for this example
was that it was not possible to configure BenchmarkTools.jl with the granu-
larity necessary to estimate the cost of the various phases. If we examine the

78

5.4. Evaluating the cost of structural changes

Table 5.3: The total time in seconds between the different phases of simulating
the system with variable structure presented in Listing 5.4.1. Note that the
reported compilation stages when N = 1000 is the initial time of compiling
the model, that is the simulation in the initial interval between 0.0 seconds
and 15.0 seconds. Since only five replications were used, the numbers in this
graph were derived from the median.

Equations and Variables 1000 3000 5000 7000
Frontend Processing 0.21 s 2.65 s 2.86 s 3.24
Backend Processing 0.3 2.16 6.12 13.7

Machine Code Generation 3.62 9.06 16.4 25.4
Numerical simulation 8.81 52.02 153.44 335

data in Table 5.3 we can see that most of the significant cost of recompiling
during simulation is caused by the Julia compiler and the later machine code
generation done by LLVM. A separate sequence of experiments was used to
establish the initial compilation time before the first simulation.

In Figure 5.3 we can see that the total compilation time is only a fraction
of the total time spent when simulating this model. Furthermore, we can
see that process of translating Modelica to Julia code is only a small fraction
of the total compilation time. The main bottleneck is compile time machine
code generation to LLVM by Julia. Comparing the results, it can be seen
that the feasibility of runtime compilation depends on how often the system
undergoes structural changes.

From this experiment, it is clear that a system undergoing such changes
every other time-step would suffer from extensive overhead caused by exces-
sive recompilation. This issue, however, could be circumvented by relying on
interpretation instead of machine code generation. Hence, simulation time
performance can be improved by combining the two approaches, generate
machine code for large systems with few structural changes, and use inter-
pretation for smaller systems. However, heuristics need to be developed to
decide when to generate machine code and when to interpret the system under
simulation.

79

5. Results

 0

 50

 100

 150

 200

 250

 300

 350

1000
3000

5000
7000

Ti
m

e
(s

)

Equations Variables

Time spent by the variouse phases
As a function of the total number of variables and equations

Frontend Processing
Backend Processing

Machine Code Generation
Numerical Simulation

 0

 5

 10

 15

 20

 25

 30

1000
3000

5000
7000

Ti
m

e
(s

)

Equations Variables

Code generation phases as a function time

Frontend Processing
Backend Processing

Machine Code Generation

Figure 5.3: Time spent (in seconds) in the various phases when simulating
the model in Listing 5.4.1.

80

5.5. Comparison To Related work

5.5 Comparison To Related work

As discussed in Chapter 3 there are other frameworks capable of handling
Modelica systems with variable structure. However, none of these frameworks
can handle standard Modelica to the same extent, with the same size and scale.

In Table 5.4 we compare some characteristics of our proposed framework
with other existing frameworks. Our extensions to Modelica (in Table 5.4
called VariableModelica) can be viewed as a combination of Sol and Hydra.
Still, neither Sol nor Hydra are capable of handling standard Modelica. In
this sense, the extension presented here is more similar to the work presented
by Höger (2019). However, since our extension relies upon JIT-Compilation it
is not necessary to set explicit checkpoints to mark where structural changes
occur. Furthermore, while the frontend presented by Höger (2019) supports
a subset of Modelica, Nano Modelica our solution supports much more of the
Modelica standard3.

On the technical side, our work is based upon MTK. Hence, we have access
to more solvers combined with the symbolic numerical capabilities of Julia.
Furthermore, our proposed compiler is not limited to a single platform. It
works on Windows, macOS, and Linux.

3However, in theory the work presented by Höger (2019) could be extended with such
support.

81

5. Results

Table 5.4: Characteristics of languages and frameworks that are able to ex-
press system with structural variability. Our extension supported by Open-
Modelica.jl is called VariableModelica.

Mosilab Sol
Type Modelica extension Modelica variant

Paradigm Declarative Declarative
Compilation technique AOT-Compilation Interpretation

Variability Static Dynamic
Declaration Scheme Explicit Implicit

Boundness Bounded Unbounded
Higher-order-models No Yes

Hydra MCL VariableModelica
Embedded in Haskell Intermediate Representation Modelica Extension

Functional Functional Declarative
JIT-Compilation AOT-Compilation JIT-Compilation

Dynamic Static Dynamic
Explicit Implicit Implicit

Unbounded Unbounded Unbounded
Yes Yes Yes

82

5.6. Summary

5.6 Summary

We have presented an experimental overview on how a Modelica compiler ca-
pable of JIT-Compilation behaves both when compiling and simulating large
dynamic systems. Furthermore, in our experiment, we have highlighted the
performance characteristics concerning compiling large models using compo-
nents from the Modelica Standard Library, and we have provided initial esti-
mates concerning the novel capabilities concerning JIT-Compilation.

From the experiments in Section 5.4, we conclude that the large-scale
simulation of variable structured systems in the context of equation-based
languages is both possible and feasible. However, while recompilation of the
models only took a fraction of the total simulation time, the compiler currently
recompiles the entire system, not just the part that was impacted by some
structural change. A recommendation for future work would be to integrate
some of the symbolic techniques proposed by Zimmer (2010) and aspects of
separate compilation proposed by Höger (2019), to minimize the number of
variables and equations that need to be recompiled when a model undergoes
structural changes.

Furthermore, modelers would experience a significant reduction in mod-
eling time formulating systems using these new constructs along with having
new abstractions to express more dynamic models than previously possible.
Such a reduction would be possible because instead of having separate models,
different behavior could be captured in the same model.

83

6. Conclusion & Discussion

This thesis set out to provide answers to the following research questions:

1. What syntactic and semantic constructs are needed in an equation-based
language for modeling and simulating VSS?

2. What characteristics of a modeling and simulation framework are ap-
propriate for achieving VSS support?

3. How can VSS support for Modelica be realized to simulate large systems
effectively?

In this section, we discuss each of the stated research questions.

6.1 What syntactic constructs are needed in a language
to simulate VSS?

In this text, we have illustrated two possible approaches; the first is to express
the system as a set of continuous-time state machines and express the transi-
tions between these. While this approach can be realized without compilation
during simulation, it requires the entire model to be processed. As Zimmer
(2010) discussed, this might not be feasible since it requires the modeler to
enumerate all the states ahead of time. Also, this approach is causal1, and it
diverges from the acausal design of equation-based languages such as Model-
ica. The Modelica language needs to be extended with constructs to support
systems with a variable structure to express either explicit or implicit changes
to the system. As discussed earlier, the advantage of the explicit approach is
that a graphical representation of such transitions is straightforward.

However, as discussed, this diverges from the acausal design principles of
Modelica. Ideally, the Modelica language should support both explicit and
implicit use of VSS. The other approach is to provide the ability to express
implicit transitions. In this thesis, we implemented support for this by intro-
ducing compilation during simulation. However, this is not strictly necessary;
in some cases, implicit transitions could be realized using static analysis. One
recent example of this is the work by Benveniste, Benoı̂t Caillaud, and Ma-
landain (2021) where they handle multi-mode models via static analysis and
subsequently generate additional code for the new states that are introduced.

1That is, the transitions of the system are specified as a set of causal transitions between
different model states

85

6. Conclusion & Discussion

Still, a disadvantage of this approach is that all states need to be enumerated,
which might result in an exponential increase in the model’s size.

6.2 What kind of computational framework is suitable
for achieving VSS support?

In this thesis, we have illustrated that for a Modelica compiler to support
variable structure systems successfully; it seems that JIT-Compilation is ad-
vantageous. As discussed in the result section, this comes with an additional
cost. It might be the case for smaller models that the cost of recompiling
the system is more expensive than the simulation. Instead, for small models,
it might be suitable to combine interpretation with JIT-Compilation. Ide-
ally, such a framework should be capable of utilizing both interpretation and
JIT-Compilation.

6.3 How can VSS support for Modelica be realized to
simulate large systems effectively?

In this thesis, we have illustrated that it is possible to design such a framework
by writing a Modelica environment in the Julia programming language. As
the experiments in Chapter 5 illustrate that while frontend performance is still
not on par with state-of-the-art compilers such as the OMC we believe that
we can achieve better performance by tuning the frontend and improving
the MetaModelica-Julia compatibility layer, MetaModelica.jl. For example,
the performance of the final generated Julia code can be improved both in
terms of compilation time and in term of simulation time. One suggestion
would be for MTK to introduce descalarization or avoid scalarization during
symbolic processing. Techniques for unscalarized processing is described in
(Marzorati, Fernández, and Kofman 2022). Another alternative, is MTK
support for DAE-Mode as described in (W. Braun, Casella, Bachmann, et al.
2017; Henningsson, Olsson, and Vanfretti 2019).

6.4 The work in a wider context

The research presented in this thesis should enable modelers to express cyber-
physical models with greater accuracy where it is possible to express the sys-
tem in the Modelica language where the system’s structure is changing during
simulation. By implementing these extensions to the Modelica language in a
compiler that tries to adhere to the standards of the existing language, mod-
eling know-how from existing libraries can be reused. We believe this would
enable the work presented in this thesis to impact a wider audience than what
is typical of a research framework.

86

6.4. The work in a wider context

Regarding research ethics, the source code to replicate the experiments is
available, and the code written as a part of this thesis is licensed under an
open-source license, adhering to the scientific principle of openness.

As discussed in the previous paragraph, the result of this work enables
modelers to express new kinds of models in the Modelica language. This can
be used both for good and nefarious purposes. For instance, by modeling
harmful systems to humanity and society in general. I would argue that such
applications of the results obtained in this thesis are morally wrong and that
the duty to make such judgments falls on the individual scientist.

87

7. Future Work

In this chapter, we propose future research directions. Starting with discussing
separate compilation in Section 7.1 and ending with debugging in Section 7.7.

7.1 Separate Compilation

While the experiments illustrated that the JIT-Compilation is inexpensive
compared to other phases when simulating variable structure systems, it still
results in increased costs when employing this scheme. Previous work such
as (Zimmer 2010) shows that causalisation when simulating systems with
variable structure can be done in steps so that the impact of a change in
one part of the system should not affect the whole system. (Höger 2019)
presents a theoretical framework to deal with the issue of compiling models
separately and composing them at runtime. One direction for future research
is to examine the practical implications of using such schemes within the
context of OpenModelica.jl.

7.2 Graphical presentation

While this thesis has primarily focused on the application of VSS on textual
descriptions of models, further studies need to be carried out to examine the
impact of the work presented here concerning how to represent and present
models with structural variability in a graphical modeling environment. While
this has been done before in Mosilab, using state charts representing implicit
variability has to my knowledge, not been investigated.

Broman (2021) discusses this issue. However, it remains to investigate the
impact of such frameworks in terms of empirical software engineering.

7.3 Initialization

Another problem not addressed in this thesis is the problem of initialization
when systems undergo structural changes. Currently, the modeler is not aided
by the language. The current compiler runtime assumes that the user specifies
a valid structural change. This is similar to how Modelica allows the user to
specify initial equations to ensure that the system is in or near a steady
state at the start of a simulation. Similar features should be introduced
for structural transitions. Benveniste et al. (Benveniste, Benoît Caillaud,
Elmqvist, Ghorbal, Otter, and Pouzet 2019; Benveniste, Benoı̂t Caillaud, and

89

7. Future Work

Malandain 2021) present some approaches to initialization in the context of
systems with several modes.

7.4 Dynamic optimization & Model Reduction

The capability of having the simulation affect the model being simulated al-
lows the model to be modified based on the model’s behavior. This is possible
in a framework that supports VSS. Some static approaches demonstrating this
have been discussed in the thesis. However, it would be interesting to examine
how to devise a scheme to handle it more dynamically. One example could
be using predefined surrogate models instead of using a predefined model as
done by (Chris Rackauckas, Anantharaman, Edelman, Gowda, Gwozdz, Jain,
Laughman, Ma, Martinuzzi, Pal, Rajput, Saba, and V. Shah 2021). In the
context of Modelica, Tinnerholm, Pop, Heuermann, and Sjölund (2021) con-
ducted some experiments that illustrated how algebraic loops or other compo-
nents of a system could be replaced with surrogate models. One application
of the techniques introduced in this paper could be to experiment and see if
parts of a model could be replaced with a surrogate if the conditions during
the simulation allow parts of a model to be simulated with less detail. In that
case, surrogatization techniques could possibly be employed in conjunction
with VSS to improve simulation efficiency.

7.5 Verification

Extending Modelica with initial support for VSS and combining the process of
simulation and compilation results in the possibility of new types of runtime
errors. However, the new capabilities of formulating models might also aid
the user. For example, it should be possible to run simulations interactively
and see if adding additional components to the model might cause an error.
To conclude, verifiability is a wide area of research in its own right and further
research is required in the context of equation-based languages that supports
VSS.

7.6 Cloud computing

Cloud Computing is a relatively new trend. Another area of future work
would be to experiment with cloud computing and examine the benefits of,
for example, distributing the simulation on several computing nodes.

7.7 Debugging

Debugging declarative equation-based languages is a difficult problem because
the programmer’s view of the program, the model, is different from what the

90

7.7. Debugging

compiler for the language generates for final execution on the target machine.
Debugging in the context of equation-based languages has been examined by
(Pop, Sjölund, Ashgar, P. Fritzson, and Casella 2014; Sjölund 2015) How-
ever, adding support for varying model structure to the Modelica language
complicates debugging further. One direction of future research could be to
investigate how to combine features introduced in this thesis with efficient
and user-friendly debugging.

91

Bibliography

[1] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compil-
ers: Principles, Techniques, & Tools. Pearson, 2007. isbn: 0321486811.

[2] Mats Andersson. An Object-Oriented Language for Model Representa-
tion. Licentiate thesis. 1990.

[3] Mats Andersson. “Discrete event modelling and simulation in Omola.”
In: IEEE Symposium on Computer-Aided Control System Design. IEEE.
1992, pp. 262–268.

[4] K. J. Åström. “A perspective on modeling and simulation of complex
dynamical systems.” In: Integrated Modeling of Complex Optomechan-
ical Systems. Ed. by Torben Andersen and Anita Enmark. Vol. 8336.
International Society for Optics and Photonics. SPIE, 2011, pp. 13–22.
doi: 10.1117/12.916687.

[5] Karl Johan Åström, Hilding Elmqvist, Sven Erik Mattsson, et al. “Evo-
lution of continuous-time modeling and simulation.” In: ESM. 1998,
pp. 9–18.

[6] Donald Augustin, Mark Fineberg, Bruce Johnsson, Robert Linebarger,
and F.John Sansom. “The SCi Continuous System Simulation Language
(CSSL).” In: SIMULATION 9.6 (1967). Ed. by Jon C Strauss, pp. 281–
303. doi: 10.1177/003754976700900601.

[7] John Aycock. “A brief history of just-in-time.” In: ACM Computing
Surveys (CSUR) 35.2 (2003), pp. 97–113. doi: 10.1145/857076.857077.

[8] Albert Benveniste, Benoît Caillaud, Hilding Elmqvist, Khalil Ghorbal,
Martin Otter, and Marc Pouzet. “Multi-Mode DAE Models - Chal-
lenges, Theory and Implementation.” In: Computing and Software Sci-
ence: State of the Art and Perspectives. Ed. by Bernhard Steffen and
Gerhard Woeginger. Cham: Springer International Publishing, 2019,
pp. 283–310. isbn: 978-3-319-91908-9. doi: 10.1007/978-3-319-91908-
9_16. url: https://doi.org/10.1007/978-3-319-91908-9_16.

[9] Albert Benveniste, Benoı̂t Caillaud, and Mathias Malandain. “Handling
Multimode Models and Mode Changes in Modelica.” In: Proceedings of
the 14th International Modelica Conference. Ed. by Martin Sjölund,
Lena Buffoni, Adrian Pop, and Lennart Ochel. Linköping Electronic
Conference Proceedings 181. Linköping, Sweden: Modelica Association
and Linköping University Electronic Press, Sept. 2021, pp. 507–517.
isbn: 978-91-7929-027-6. doi: 10.3384/ecp21181507.

93

Bibliography

[10] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah.
“Julia: A Fresh Approach to Numerical Computing.” In: SIAM Review
59.1 (2017), pp. 65–98. doi: 10.1137/141000671. eprint: https://doi.
org/10.1137/141000671. url: https://doi.org/10.1137/141000671.

[11] Willi Braun, Francesco Casella, Bernhard Bachmann, et al. “Solv-
ing large-scale Modelica models: new approaches and experimental re-
sults using OpenModelica.” In: 12 International Modelica Conference.
Linkoping University Electronic Press. 2017, pp. 557–563.

[12] Kathryn Eleda Brenan, Stephen L Campbell, and Linda Ruth Petzold.
Numerical solution of initial-value problems in differential-algebraic
equations. SIAM, 1995.

[13] David Broman. “Meta-Languages and Semantics for Equation-Based
Modeling and Simulation.” PhD thesis. Linköping University Electronic
Press, 2010. isbn: 978-91-7393-335-3.

[14] David Broman. “Interactive Programmatic Modeling.” In: ACM Trans.
Embed. Comput. Syst. 20.4 (May 2021). issn: 1539-9087. doi: 10.1145/
3431387. url: https://doi.org/10.1145/3431387.

[15] P Bujakiewicz and PPJ van den Bosch. “Determination of perturba-
tion index of a DAE with maximum weighted matching algorithm.” In:
Proceedings of IEEE Symposium on Computer-Aided Control Systems
Design (CACSD). IEEE. 1994, pp. 129–136.

[16] Luiz Fernando Capretz. “A Brief History of the Object-Oriented Ap-
proach.” In: SIGSOFT Softw. Eng. Notes 28.2 (Mar. 2003), p. 6. issn:
0163-5948. doi: 10.1145/638750.638778. url: https://doi.org/10.1145/
638750.638778.

[17] Francesco Casella. “Simulation of large-scale models in modelica: State
of the art and future perspectives.” In: 11th International Modelica Con-
ference. 2015, pp. 459–468.

[18] François E Cellier and Ernesto Kofman. Continuous system simulation.
Springer Science & Business Media, 2006. isbn: 0387261028.

[19] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. “Register Allocation via
Coloring.” In: Comput. Lang. 6.1 (Jan. 1981), pp. 47–57. issn: 0096-0551.

[20] Devendra K Chaturvedi. Modeling and simulation of systems using
MATLAB® and Simulink®. CRC press, 2017. isbn: 9781351834223.

[21] Jiahao Chen and Jarrett Revels. “Robust benchmarking in noisy en-
vironments.” In: arXiv e-prints, arXiv:1608.04295 (Aug. 2016). arXiv:
1608.04295 [cs.PF].

[22] E Ward Cheney and David R Kincaid. Numerical mathematics and com-
puting. Cengage Learning, 2003. isbn: 0534389937.

94

Bibliography

[23] Simon Christ, Daniel Schwabeneder, and Christopher Rackauckas.
“Plots. jl–a user extendable plotting API for the julia programming
language.” In: arXiv preprint arXiv:2204.08775 (2022).

[24] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier,
2011. isbn: 9780120884780.

[25] Hilding Elmqvist. “SIMNON-An Interactive Simulation Program for
Non-Linear Systems.” In: Simulation’77: Proceedings of the international
symposium, Montreaux, June 22-24, 1977. Acta Press. 1977, pp. 85–89.

[26] Hilding Elmqvist. “A structured model language for large continuous
systems.” PhD thesis. Lund University, 1978.

[27] Hilding Elmqvist, Sven Erik Matsson, and Martin Otter. “Modelica ex-
tensions for multi-mode DAE systems.” In: Proceedings of the 10 th
International Modelica Conference; March 10-12; 2014; Lund; Sweden.
096. Linköping University Electronic Press. 2014, pp. 183–193.

[28] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. “Modelica:
The new object-oriented modeling language.” In: 12th European Simu-
lation Multiconference, Manchester, UK. Vol. 5. 1998.

[29] Hilding Elmqvist, Andrea Neumayr, and Martin Otter. Modia-dynamic
modeling and simulation with julia. 2018.

[30] Hilding Elmqvist and Martin Otter. “Innovations for future Modelica.”
In: Proceedings of 12th International Modelica Conference. Linköping
University Electronic Press. 2017, pp. 693–702.

[31] Hilding Elmqvist, Martin Otter, Andrea Neumayr, and Gerhard Hipp-
mann. “Modia - Equation Based Modeling and Domain Specific Algo-
rithms.” In: Proceedings of the 14th International Modelica Conference.
Ed. by Martin Sjölund, Lena Buffoni, Adrian Pop, and Lennart Ochel.
Linköping Electronic Conference Proceedings 181. Linköping, Sweden:
Modelica Association and Linköping University Electronic Press, Sept.
2021, pp. 73–86. isbn: 978-91-7929-027-6. doi: 10.3384/ecp2118173.

[32] Jay W Forrester. “Industrial dynamics—after the first decade.” In: Man-
agement science 14.7 (1968), pp. 398–415.

[33] Jay W Forrester. “Urban dynamics.” In: IMR; Industrial Management
Review (pre-1986) 11.3 (1970), p. 67.

[34] Jay W Forrester. “System dynamics and the lessons of 35 years.” In: A
systems-based approach to policymaking. Springer, 1993, pp. 199–240.

[35] Peter Fritzson. Principles of object-oriented modeling and simulation
with Modelica 3.3: a cyber-physical approach. John Wiley & Sons, 2014.
isbn: 978-1-118-85912-4.

95

Bibliography

[36] Peter Fritzson and Vadim Engelson. “Modelica—A unified object-
oriented language for system modeling and simulation.” In: European
Conference on Object-Oriented Programming. Springer. 1998, pp. 67–
90.

[37] Peter Fritzson and Dag Fritzson. “The need for high-level program-
ming support in scientific computing applied to mechanical analysis.”
In: Computers & structures 45.2 (1992), pp. 387–395.

[38] Peter Fritzson, Adrian Pop, Karim Abdelhak, Adeel Asghar, Bernhard
Bachmann, Willi Braun, Daniel Bouskela, Robert Braun, Lena Buffoni,
Francesco Casella, et al. “The OpenModelica integrated environment
for modeling, simulation, and model-based development.” In: Modeling,
Identification and Control 41.4 (2020), pp. 241–295.

[39] Peter Fritzson, Adrian Pop, and Martin Sjölund. Towards Modelica
4 Meta-Programming and Language Modeling with MetaModelica 2.0.
Tech. rep. 2011:10. Linköping University, PELAB - Programming Envi-
ronment Laboratory, May 2011. 297 pp. url: http://urn.kb.se/resolve?
urn=urn:nbn:se:liu:diva-68361 (visited on 04/01/2013).

[40] Peter Fritzson, Adrian Pop, Martin Sjölund, and Adeel Asghar. “Meta-
Modelica – A Symbolic-Numeric Modelica Language and Comparison
to Julia.” In: Proceedings of the 13th International Modelica Conference.
Regensburg, Germany: Modelica Association and Linköping University
Electronic Press, Mar. 2019. doi: 10.3384/ecp19157289.

[41] George Giorgidze. “First-class models: On a noncausal language for
higher-order and structurally dynamic modelling and simulation.” PhD
thesis. University of Nottingham, 2012.

[42] George Giorgidze and Henrik Nilsson. “Higher-order non-causal mod-
elling and simulation of structurally dynamic systems.” In: Proceed-
ings of the 7th International Modelica Conference; Como; Italy; 20-
22 September 2009. 043. Linköping University Electronic Press. 2009,
pp. 208–218.

[43] Peterson H.E and F.J Sansom. MIMIC - A digital simulator program.
1965.

[44] Erik Henningsson, Hans Olsson, and Luigi Vanfretti. “DAE Solvers for
Large-Scale Hybrid Models.” In: Proceedings of the 13th International
Modelica Conference, Regensburg, Germany, March 4–6, 2019. 2019,
pp. 491–500.

[45] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu
Serban, Dan E Shumaker, and Carol S Woodward. “SUNDIALS: Suite
of nonlinear and differential/algebraic equation solvers.” In: ACM Trans-
actions on Mathematical Software (TOMS) 31.3 (2005), pp. 363–396.

96

Bibliography

[46] Christoph Höger. “Compiling Modelica : about the separate translation
of models from Modelica to OCaml and its impact on variable-structure
modeling.” Doctoral Thesis. Berlin: Technische Universität Berlin, 2019.
doi: 10.14279/depositonce-8354. url: http://dx.doi.org/10.14279/
depositonce-8354.

[47] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduc-
tion to automata theory, languages and computation. Pearson Addison-
Wesley, 2007. isbn: 0321476174.

[48] CP Jobling, Phil W Grant, HA Barker, and Peter Townsend. “Object-
oriented programming in control system design: a survey.” In: Automat-
ica 30.8 (1994), pp. 1221–1261.

[49] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for
lifelong program analysis & transformation.” In: International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. IEEE.
2004, pp. 75–86.

[50] Yingbo Ma, Shashi Gowda, Ranjan Anantharaman, Chris Laughman,
Viral Shah, and Chris Rackauckas. ModelingToolkit: A Composable
Graph Transformation System For Equation-Based Modeling. 2021.
arXiv: 2103.05244 [cs.MS].

[51] Denise Marzorati, Joaquin Fernández, and Ernesto Kofman. “Efficient
connection processing in equation–based object–oriented models.” In:
Applied Mathematics and Computation 418 (2022), p. 126842. issn:
0096-3003. doi: https://doi.org/10.1016/j.amc.2021.126842.

[52] M Douglas McIlroy. “Macro instruction extensions of compiler lan-
guages.” In: Communications of the ACM 3.4 (1960), pp. 214–220.

[53] Donella H Meadows. Thinking in systems: A primer. chelsea green pub-
lishing, 2008. isbn: 9781603580557.

[54] Alexandra Mehlhase. “A Python framework to create and simulate
models with variable structure in common simulation environments.”
In: Mathematical and Computer Modelling of Dynamical Systems 20.6
(2014), pp. 566–583.

[55] Merriam-Webster. System. In: Merriam-Webster.com dictionary. url:
https : //www.merriam- webster . com/dictionary/ system (visited on
11/08/2020).

[56] Edward EL Mitchell and Joseph S Gauthier. “Advanced continuous sim-
ulation language (ACSL).” In: Simulation 26.3 (1976), pp. 72–78.

[57] Steven Muchnick. Advanced compiler design & implementation. Morgan
Kaufmann, 1997. isbn: 9789814066242.

[58] Henrik Nilsson, John Peterson, and Paul Hudak. “Functional hybrid
modeling.” In: International Symposium on Practical Aspects of Declar-
ative Languages. Springer. 2003, pp. 376–390.

97

Bibliography

[59] Hairer SP Norsett E and G Wanner. Solving Ordinary Differential
Equations I: Nonstiff Problems. Springer-Verlag, 1993. isbn: 978-3-540-
78862-1.

[60] Christoph Nytsch-Geusen, Thilo Ernst, André Nordwig, Peter Schnei-
der, Peter Schwarz, Matthias Vetter, Christof Wittwer, Andreas Holm,
Thierry Nouidui, Jürgen Leopold, et al. “MOSILAB: Development of
a Modelica based generic simulation tool supporting model structural
dynamics.” In: Proceedings of the 4th International Modelica Conference
TU Hamburg-Harburg. Vol. 2. Citeseer. 2005.

[61] Constantinos C Pantelides. “The consistent initialization of differential-
algebraic systems.” In: SIAM Journal on Scientific and Statistical Com-
puting 9.2 (1988), pp. 213–231.

[62] David J Pearce and Paul HJ Kelly. “A dynamic algorithm for topolog-
ically sorting directed acyclic graphs.” In: International Workshop on
Experimental and Efficient Algorithms. Springer. 2004, pp. 383–398.

[63] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir
Chatterjee. “A design science research methodology for information sys-
tems research.” In: Journal of management information systems 24.3
(2007), pp. 45–77.

[64] Linda R Petzold. Description of DASSL: a differential/algebraic system
solver. Tech. rep. Sandia National Labs., Livermore, CA (USA), 1982.

[65] Peter C Piela, Thomas G Epperly, Karl M Westerberg, and Arthur
W Westerberg. “ASCEND: An object-oriented computer environment
for modeling and analysis: The modeling language.” In: Computers &
chemical engineering 15.1 (1991), pp. 53–72.

[66] Adrian Pop and Peter Fritzson. “Metamodelica: A unified equation-
based semantical and mathematical modeling language.” In: Joint Mod-
ular Languages Conference. Springer. 2006, pp. 211–229.

[67] Adrian Pop, Per Östlund, Francesco Casella, Martin Sjölund, Rüdi-
ger Franke, et al. “A new openmodelica compiler high performance
frontend.” In: 13th International Modelica Conference. Vol. 157. 2019,
pp. 689–698.

[68] Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson, and
Francesco Casella. “Integrated Debugging of Modelica Models.” In:
(2014).

[69] Chris Rackauckas, Ranjan Anantharaman, Alan Edelman, Shashi
Gowda, Maja Gwozdz, Anand Jain, Chris Laughman, Yingbo Ma,
Francesco Martinuzzi, Avik Pal, Utkarsh Rajput, Elliot Saba, and Viral
Shah. “Composing Modeling and Simulation with Machine Learning in
Julia.” In: Proceedings of the 14th International Modelica Conference.
Ed. by Martin Sjölund, Lena Buffoni, Adrian Pop, and Lennart Ochel.

98

Bibliography

Linköping Electronic Conference Proceedings 181. Linköping, Sweden:
Modelica Association and Linköping University Electronic Press, Sept.
2021, pp. 97–107. isbn: 978-91-7929-027-6. doi: 10.3384/ecp2118197.

[70] Christopher Rackauckas and Qing Nie. “Differentialequations.jl–a per-
formant and feature-rich ecosystem for solving differential equations in
Julia.” In: Journal of Open Research Software 5.1 (2017).

[71] Theodore H Romer, Dennis Lee, Geoffrey M Voelker, Alec Wolman,
Wayne A Wong, Jean-Loup Baer, Brian N Bershad, and Henry M Levy.
“The structure and performance of interpreters.” In: ACM SIGPLAN
Notices 31.9 (1996), pp. 150–159.

[72] Zekeriya Sarı and Serkan Günel. “Causal.jl: A Modeling and Simula-
tion Framework for Causal Models.” In: Proceedings of the JuliaCon
Conferences 1.1 (2021), p. 71. doi: 10.21105/jcon.00071. url: https:
//doi.org/10.21105/jcon.00071.

[73] Martin Sjölund. “Tools and Methods for Analysis, Debugging, and Per-
formance Improvement of Equation-Based Models.” PhD thesis. 2015.
isbn: 978-91-7519-071-6.

[74] Bjarne Stroustrup. The C++ programming language. Addison-Wesley
Educational Publishers Inc, 2013. isbn: 9780321958327.

[75] John Tinnerholm, Adrian Pop, Andreas Heuermann, and Martin
Sjölund. “OpenModelica.jl: A modular and extensible Modelica com-
piler framework in Julia targeting ModelingToolkit.jl.” In: Proceedings
of the 14th International Modelica Conference. Ed. by Martin Sjölund,
Lena Buffoni, Adrian Pop, and Lennart Ochel. Linköping Electronic
Conference Proceedings 181. Linköping, Sweden: Modelica Association
and Linköping University Electronic Press, Sept. 2021, pp. 109–117.
isbn: 978-91-7929-027-6. doi: 10.3384/ecp21181109.

[76] John Tinnerholm, Adrian Pop, Martin Sjölund, Andreas Heuermann,
and Karim Abdelhak. “Towards an Open-Source Modelica Compiler
in Julia.” In: Proceedings of Asian Modelica Conference Tokyo, Japan,
October 08-09. 2020. doi: 10.3384/ecp2020174143.

[77] John Tinnerholm, Martin Sjölund, and Adrian Pop. “Towards introduc-
ing just-in-time compilation in a modelica compiler.” In: Proceedings of
the 9th International Workshop on Equation-based Object-oriented Mod-
eling Languages and Tools. 2019, pp. 11–19.

[78] Lars Viklund and Peter Fritzson. “Objectmath–an object-oriented lan-
guage and environment for symbolic and numerical processing in scien-
tific computing.” In: Scientific Programming 4.4 (1995), pp. 229–250.

99

Bibliography

[79] Lars Viklund, Johan Herber, and Peter Fritzson. “The implementation
of ObjectMath—a high-level programming environment for scientific
computing.” In: International Conference on Compiler Construction.
Springer. 1992, pp. 312–318.

[80] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equa-
tions II. Vol. 375. Springer Berlin Heidelberg, 1996. isbn: 978-3-642-
05221-7.

[81] Michael Weisberg. Simulation and similarity: Using models to under-
stand the world. Oxford University Press, 2012. isbn: 0190265124.

[82] Stephen Wolfram. Mathematica: a system for doing mathematics by
computer. Addison Wesley Longman Publishing Co., Inc., 1991.

[83] Dirk Zimmer. “Equation-based modeling of variable-structure systems.”
PhD thesis. ETH Zürich, 2010.

100

A. Source code examples

A.1 Models and source code for Chapter 2

This sections contains models and source code for chapter 2.

Listing A.1.1 The Modelica code of the bouncing ball model in Section 2.1.1

model FreeFall
Real h(start = 1.0);
Real v(start = 0.0);
parameter Real g = 9.81;

equation
der(h) = v;
der(v) = -g;
end FreeFall;

Listing A.1.2 The Modelica code of the bouncing ball model in Section 2.1.3

model BouncingBallReals
parameter Real e=0.3;
parameter Real g=9.81;
Real h(start = 1);
Real v(start = 0);

equation
der(h) = v;
der(v) = -g;
when h <= 0 then
reinit(v, -e*pre(v));

end when;
end BouncingBallReals;

101

A. Source code examples

Listing A.1.3 Julia program to simulate the RLC circuit in Figure 2.6

using Plots
R1R = 1.0
CC = 0.01
R2R = 1.0
LL = 0.1
ACA = 1.0
ACw = 1.0
function Runge(t::Real, Δt::Real, f::Function, vars...)
local k1 = f(t, vars...)
local k2 = f(t + Δt/2, (vars .+ (Δt .* (k1 ./ 2)))...)
local k3 = f(t + Δt/2, (vars .+ (Δt .* (k2 ./ 2)))...)
local k4 = f(t + Δt, (vars .+ (Δt.*k3)...))
vars = (Δt .* ((k1 .+ (2 .* k2) .+ (2 .* k3) .+ k4) ./ 6)) .+ vars
return vars

end
function H(t, Cv, Li)
x = ACA * sin(ACw * t)
DCv = ((ACA * x - Cv) / R1R) / CC
DLi = (ACA * x - R2R * Li) / LL
return (DCv, DLi)

end
function K(t, Cv, Li)
x = sin(ACw * t)
ACv = ACA * x
R2v = R2R * Li
Lv = ACv - R2v
R1v = ACv - Cv
Ci = R1v / R1R
ACi = (-Li) - Ci
Gpi = Li - ((-Ci) - ACi)
return (ACv, R2v, Lv, R1v, Ci, ACi, Gpi)

end
function simulate()
tArr = []
CvArr = []
LiArr = []
(Cv, Li) = (0.0, 0.0)
(x, ACv, R2v, Lv, R1v, Ci, ACi, Gp) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Δt = 0.001
for i in 0.00:Δt:3.0
local t = i
(Cv, Li) = Runge(t, Δt, H, Cv, Li)
(ACv, R2v, Lv, R1v, Ci, ACi, Gpi) = K(t, Cv, Li)
push!(tArr, t)
push!(CvArr, Cv)
push!(LiArr, Li)

end
return [tArr, CvArr, LiArr]

end
#= Simulate and plot =#
res = simulate()
fig = plot(res[1],res[2:3])
Plots.plot(fig)

102

A.2. The Electrical component library

A.2 The Electrical component library

The different components that constitute the electrical component library is
presented here. Adapted from (P. Fritzson 2014).

103

A. Source code examples

Listing A.2.1 Definition of some basic electrical components using Modelica.

package ElectricalComponents
connector Pin
Real v;
flow Real i;

end Pin;

partial model TwoPin
Real v;
Real i;
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

model Resistor
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model Inductor
extends TwoPin;
parameter Real L;

equation
L*der(i) = v;

end Inductor;

model Capacitor
extends TwoPin;
parameter Real C ;

equation
i=C*der(v);

end Capacitor;

model Source
extends TwoPin;
parameter Real A,w;

equation
v = A*sin(w*time);

end Source;

model Ground
Pin p;

equation
p.v = 0;

end Ground;

end ElectricalComponents;

104

B. Tables

B.1 Simulation time measurements

Table B.1: Time spent conducting numerical simulation for OpenModelica.jl.
x̂ is the sample median, µ̂ is the sample mean and σ̂ is the sample standard
deviation. The parameter N corresponds to the total amount of equations
and variables in the system under simulation. During the experiment the last
model, where N = 25600 the benchmark program ran into issues, hence three
samples where collected manually for this last test. This model and all other
models involved are available upon request.

N x̂ µ̂ σ̂
10 47.854 µs 48.927 µs 8.084 µs
100 474.505 µs 477.517 µs 37.169 µs
200 1.688 ms 1.688 ms 43.439 µs
400 5.592 ms 5.602 ms 80.194 µs
800 23.104 ms 23.121 ms 209.631 µs
1600 0.223 s 0.224 s 410.541 µs
3200 1.818 s 1.818 s 2.448 ms
6400 3.812 s 3.792 s 150.810 ms
12800 12.878 s 12.795 s 394.981ms
25600 41.018 s 42.679 s 5.276 s

105

B. Tables

Table B.2: Time spent conducting numerical simulation for the OMC. x̂ is the
sample median, µ̂ is the sample mean and σ̂ is the sample standard deviation.
The parameter N corresponds to the total amount of equations and variables
in the system under simulation.

N x̂ µ̂ σ̂
10 0.083 s 0.084 s 0.003 s
100 0.092 s 0.093 s 0.003 s
200 0.104 s 0.105 s 0.003 s
400 0.135 s 0.136 s 0.007 s
800 0.211 s 0.211 s 0.005 s
1600 0.446 s 0.447 s 0.011 s
3200 1.046 s 1.049 s 0.021 s
6400 2.938 s 2.946 s 0.058 s
12800 10.006 s 10.004 s 0.096 s
25600 46.342 s 46.301 s 0.208 s

B.2 Compilation time measurements

This section contains the compilation time measurements from Chapter 5.

Table B.3: Time spent compiling when generating flat Modelica for the trans-
mission line model in Listing 5.3.1 using OMFrontend.jl. x̂ is the sample
median, µ̂ is the sample mean and σ̂ is the sample standard deviation.

N Equations and Variables x̂ µ̂ σ̂
10 245 0.723 s 0.727 s 0.01 s
20 455 1.039 s 1.045 s 0.012 s
40 875 1.631 s 1.638 0.015 s
80 1715 2.836 s 2.835 s 0.019 s
160 3395 5.219 s 5.219 s 0.015 s
320 6755 10.039 s 10.035 s 0.029 s
640 13475 19.776 s 19.763 s 0.072 s
1280 26915 39.572 s 39.592 s 0.322 s

106

B.2. Compilation time measurements

Table B.4: Required memory when generating flat Modelica for the transmis-
sion line model in 5.3.1.

N Equations and Variables Memory (MiB)
10 245 24.84 MiB
20 455 35.12 MiB
40 875 55.52 MiB
80 1715 97.55 MiB
160 3395 182.21 MiB
320 6755 362.87 MiB
640 13475 746.70 MiB
1280 26915 1.62 GiB

Table B.5: Compilation time when generating flat Modelica for the transmis-
sion line model in Listing 5.3.1 using the OMC. x̂ is the sample median, µ̂ is
the sample mean and σ̂ is the sample standard deviation.

N Equations and Variables x̂ µ̂ σ̂
10 245 243.479 ms 242.933 ms 71.733 ms
20 455 269.227 ms 269.371 ms 86.438 ms
40 875 288.616 ms 287.360 ms 76.614 ms
80 1715 425.284 ms 391.838 ms 89.497 ms
160 3395 640.857 ms 639.815 ms 25.950 ms
320 6755 1.441 s 1.440 s 7.798 ms
640 13475 3.341 s 3.369 s 127.039 ms
1280 26915 10.617 s 10.758 s 296.437 ms

107

Department of Computer and Information Science
Linköpings universitet

Licentiate Theses
Linköpings Studies in Science and Technology

Faculty of Arts and Sciences

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,
Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge- Bases,

1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Systems, 1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.
No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.

No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.
No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel och Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering

av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling,

1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av

partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i

personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv, 1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder och

leverantörer på producentmarknader, 1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.

No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie ur ett
agentteoretiskt perspektiv, 2000.

No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.
No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett

FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement,

2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue systems, 2001.
FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarkitektur

och aktörssamverkan som förutsättningar för affärsprocesser, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som

stöd för beslut om anskaffning av JAS 1982, 2002.
FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
FiF-a-51 Per Oscarsson: Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages, 2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in limited

liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times, 2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.

No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002.
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular

Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts, 2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.
No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency in Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the sick

leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie baserad på

trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i

transaktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution, 2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging Industry,

2005.
No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.

No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data,
2005.

No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach,

2005.
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implementation

Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation - What

are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.
No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.
No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education and

Research Simulations, 2006.
FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.
No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006.
No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.
No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.
No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.
No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.
No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage, 2007.
No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.
No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches, 2007.
No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.
No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations, 2007.
No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.
No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.
No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.
No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.
No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.
No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.
No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.
No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.
No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.
No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.
No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.
No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.
No 1359 Jana Rambusch: Situated Play, 2008.
No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.
No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.
No 1371 Fredrik Lantz: Terrain Object Recognition and Context Fusion for Decision Support, 2008.
No 1373 Martin Östlund: Assistance Plus: 3D-mediated Advice-giving on Pharmaceutical Products, 2008.
No 1381 Håkan Lundvall: Automatic Parallelization using Pipelining for Equation-Based Simulation Languages, 2008.
No 1386 Mirko Thorstensson: Using Observers for Model Based Data Collection in Distributed Tactical Operations, 2008.
No 1387 Bahlol Rahimi: Implementation of Health Information Systems, 2008.
No 1392 Maria Holmqvist: Word Alignment by Re-using Parallel Phrases, 2008.
No 1393 Mattias Eriksson: Integrated Software Pipelining, 2009.
No 1401 Annika Öhgren: Towards an Ontology Development Methodology for Small and Medium-sized Enterprises,

2009.
No 1410 Rickard Holsmark: Deadlock Free Routing in Mesh Networks on Chip with Regions, 2009.
No 1421 Sara Stymne: Compound Processing for Phrase-Based Statistical Machine Translation, 2009.
No 1427 Tommy Ellqvist: Supporting Scientific Collaboration through Workflows and Provenance, 2009.
No 1450 Fabian Segelström: Visualisations in Service Design, 2010.
No 1459 Min Bao: System Level Techniques for Temperature-Aware Energy Optimization, 2010.
No 1466 Mohammad Saifullah: Exploring Biologically Inspired Interactive Networks for Object Recognition, 2011

No 1468 Qiang Liu: Dealing with Missing Mappings and Structure in a Network of Ontologies, 2011.
No 1469 Ruxandra Pop: Mapping Concurrent Applications to Multiprocessor Systems with Multithreaded Processors and
 Network on Chip-Based Interconnections, 2011.
No 1476 Per-Magnus Olsson: Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles, 2011.
No 1481 Anna Vapen: Contributions to Web Authentication for Untrusted Computers, 2011.
No 1485 Loove Broms: Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts, 2011.
FiF-a 101 Johan Blomkvist: Conceptualising Prototypes in Service Design, 2011.
No 1490 Håkan Warnquist: Computer-Assisted Troubleshooting for Efficient Off-board Diagnosis, 2011.
No 1503 Jakob Rosén: Predictable Real-Time Applications on Multiprocessor Systems-on-Chip, 2011.
No 1504 Usman Dastgeer: Skeleton Programming for Heterogeneous GPU-based Systems, 2011.
No 1506 David Landén: Complex Task Allocation for Delegation: From Theory to Practice, 2011.
No 1507 Kristian Stavåker: Contributions to Parallel Simulation of Equation-Based Models on

Graphics Processing Units, 2011.
No 1509 Mariusz Wzorek: Selected Aspects of Navigation and Path Planning in Unmanned Aircraft Systems, 2011.
No 1510 Piotr Rudol: Increasing Autonomy of Unmanned Aircraft Systems Through the Use of Imaging Sensors, 2011.
No 1513 Anders Carstensen: The Evolution of the Connector View Concept: Enterprise Models for Interoperability
 Solutions in the Extended Enterprise, 2011.
No 1523 Jody Foo: Computational Terminology: Exploring Bilingual and Monolingual Term Extraction, 2012.
No 1550 Anders Fröberg: Models and Tools for Distributed User Interface Development, 2012.
No 1558 Dimitar Nikolov: Optimizing Fault Tolerance for Real-Time Systems, 2012.
No 1582 Dennis Andersson: Mission Experience: How to Model and Capture it to Enable Vicarious Learning, 2013.
No 1586 Massimiliano Raciti: Anomaly Detection and its Adaptation: Studies on Cyber-physical Systems, 2013.
No 1588 Banafsheh Khademhosseinieh: Towards an Approach for Efficiency Evaluation of

Enterprise Modeling Methods, 2013.
No 1589 Amy Rankin: Resilience in High Risk Work: Analysing Adaptive Performance, 2013.
No 1592 Martin Sjölund: Tools for Understanding, Debugging, and Simulation Performance Improvement of Equation-

Based Models, 2013.
No 1606 Karl Hammar: Towards an Ontology Design Pattern Quality Model, 2013.
No 1624 Maria Vasilevskaya: Designing Security-enhanced Embedded Systems: Bridging Two Islands of Expertise, 2013.
No 1627 Ekhiotz Vergara: Exploiting Energy Awareness in Mobile Communication, 2013.
No 1644 Valentina Ivanova: Integration of Ontology Alignment and Ontology Debugging for Taxonomy Networks, 2014.
No 1647 Dag Sonntag: A Study of Chain Graph Interpretations, 2014.
No 1657 Kiril Kiryazov: Grounding Emotion Appraisal in Autonomous Humanoids, 2014.
No 1683 Zlatan Dragisic: Completing the Is-a Structure in Description Logics Ontologies, 2014.
No 1688 Erik Hansson: Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA

Multicore Architecture, 2014.
No 1715 Nicolas Melot: Energy-Efficient Computing over Streams with Massively Parallel Architectures, 2015.
No 1716 Mahder Gebremedhin: Automatic and Explicit Parallelization Approaches for Mathematical Simulation Models,

2015.
No 1722 Mikael Nilsson: Efficient Temporal Reasoning with Uncertainty, 2015.
No 1732 Vladislavs Jahundovics: Automatic Verification of Parameterized Sytems by Over-Approximation, 2015.
FiF 118 Camilla Kirkegaard: Adding Challenge to a Teachable Agent in a Virtual Learning Environment, 2016.
No 1758 Vengatanathan Krishnamoorthi: Efficient and Scalable Content Delivery of Linear and Interactive Branched

Videos, 2016.
No 1771 Andreas Löfwenmark: Timing Predictability in Future Multi-Core Avionics Systems, 2017.
No 1777 Anders Andersson: Extensions for Distributed Moving Base Driving Simulators, 2017.
No 1780 Olov Andersson: Methods for Scalable and Safe Robot Learning, 2017.
No 1782 Robin Keskisärkkä: Towards Semantically Enabled Complex Event Processing, 2017.
No 1783 Daniel de Leng: Spatio-Temporal Stream Reasoning with Adaptive State Stream Generation, 2017.
No 1827 Johan Falkenjack: Towards a Model of General Text Complexity for Swedish, 2018.
No 1836 Magdalena Granåsen: Exploring C2 Capability and Effectiveness in Challenging Environments:

Interorganizational Crisis Management, Military Operations and Cyber Defence, 2019.
No 1848 Alachew Mengist: Methods and Tools for Efficient Model-Based Development of Cyber-Physical Systems with

Emphasis on Model and Tool Integration, 2019.
No 1871 Klervie Toczé: Latency-aware Resource Management at the Edge, 2020.
No 1881 Chih-Yuan Lin: A Timing Approach to Network-based Anomaly Detection for SCADA Systems, 2020.
No 1886 August Ernstsson: Designing a Modern Skeleton Programming Framework for Parallel and Heterogeneous

Systems, 2020.
No 1892 John Törnblom: Formal Verification of Tree Ensembles in Safety‐Critical Applications, 2020.
FiF 128 Amanda Olmin: On Uncertainty Quantification in Neural Networks: Ensemble Distillation and Weak Supervision,

2022.
No 1937 John Tinnerholm: A Composable and Extensible Environment for Equation-based Modeling and Simulation of

Variable Structured Systems in Modelica, 2022.

A Composable and
Extensible Environment for
Equation-based Modeling
and Simulation of Variable
Structured Systems in
Modelica

Linköping Studies in Science and Technology
Licentiate Thesis No. 1937

John Tinnerholm

John Tinnerholm
 A Com

posable and Extensible Environm
ent for Equation-based M

odeling and Sim
ulation of Variable Structured System

s in M
odelica

 2022

FACULTY OF SCIENCE AND ENGINEERING

Linköping Studies in Science and Technology, Licentiate Thesis No. 1937, 2022
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

www.liu.se

	ABSTRACT
	POPULÄRVETENSKAPLIG SAMMANFATTNING
	Författarens tack
	Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	1. Introduction
	2. Systems and Simulation
	3. Compilers and Equation-based modeling languages
	4. OpenModelica.jl a Composable Modelica Environment
	5. Results
	6. Conclusion & Discussion
	7. Future Work
	Bibliography
	A. Source code examples
	B. Tables

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20220421103128
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 630
 391
 None
 Up
 283.4646
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 129
 128
 129

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 557
 405

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 138
 137
 138

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 138
 137
 138

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 557
 405

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20220421103128
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 630
 391

 None
 Up
 283.4646
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 139
 141
 140
 141

 1

 HistoryList_V1
 qi2base

