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Semi-Explicit Linear MPC Using a Warm-Started Active-Set QP
Algorithm with Exact Complexity Guarantees

Daniel Arnström and Daniel Axehill

Abstract— We propose a semi-explicit approach for linear
MPC in which a dual active-set quadratic programming al-
gorithm is initialized through a pre-computed warm start. By
using a recently developed complexity certification method for
active-set algorithms for quadratic programming, we show how
the computational complexity of the dual active-set algorithm
can be determined offline for a given warm start. We also
show how these complexity certificates can be used as quality
measures when constructing warm starts, enabling the online
complexity to be reduced further by iteratively refining the
warm start. In addition to showing how the computational
complexity of any pre-computed warm start can be determined,
we also propose a novel technique for generating warm starts
with low overhead, both in terms of computations and memory.

I. INTRODUCTION

Model Predictive Control (MPC) is a control strategy in
which an optimization problem needs to be solved in each
time step. For linear MPC, the optimization problems in
question are quadratic programs (QPs) that depend on the
current state of the system to control, making it a multi-
parametric QP (mpQP). When MPC is used on embedded
systems with limited memory and computational resources,
the solvers that are applied to solve the resulting QPs need
to be efficient and reliable.

One way of reducing the computations performed in each
time step is to pre-compute the solution to the mpQP as a
function of the parameter, which will be piecewise affine
over polyhedral regions [1]. Online, all that is needed is to
perform a simple look-up for the optimal control actions.
This approach is known as explicit MPC and is both reliable
and efficient for relatively small problems [2]. For larger
problems, however, the memory required to store the optimal
solution becomes unmanageable and the look-up can become
too computationally demanding.

The alternative to explicit MPC, sometimes called implicit
MPC, is to use a QP solver to solve the new QPs from scratch
in each iteration. Contrary to explicit MPC, the memory
requirements for implicit MPC is not a bottleneck when the
dimensions of the QPs increase. This has led to the devel-
opment of QP methods that are particularly suited for QPs
encountered in MPC [3]–[7]. Still, a drawback of implicit
MPC is that the worst-case computational complexity can be
prohibitive for some QP instances that arise from the mpQP.

As a middle ground between the relatively high memory
footprint and low computational complexity of explicit MPC
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and the relatively low memory footprint and high compu-
tational complexity of implicit MPC, several semi-explicit
approaches that store compressed information to assist a QP
solver online have been proposed [8]–[11].

In this paper we propose a semi-explicit approach in
which the dual active-set QP algorithm presented in [7] is
initialized through a pre-computed warm start. Moreover, we
use the complexity certification framework presented in [12]
to determine the exact computational complexity when the
active-set algorithm is initialized with a pre-computed warm
start. In addition to the reliability such certificates provide,
we show that the certification method can be used as a quality
measure to improve the constructions of warm starts.

The proposed semi-explicit approach is inspired by [11],
where a primal active-set linear programming (LP) algorithm
is initialized through a pre-computed warm start. The main
differences between [11] and this paper are that we consider
the, arguably, more popular mpQP formulation of linear
MPC, instead of the mpLP formulation considered in [11],
and that we consider a different way of representing and gen-
erating the pre-computed warm starts by exploiting structure
in the dual active-set algorithm to reduce the memory and
computational overhead from the warm starts.

The main contributions of this paper are, hence, twofold:
(i) We show how the complexity certification framework

presented in [12] can be used to certify the complexity
of parametric warm starts. This can be seen as extending
the ideas presented in [11] from mpLPs to mpQPs.

(ii) We propose a method for generating parametric warm
starts that does not require any regions to be explicitly
stored. Instead, the regions are implicitly stored in the
problem data of the QP, which makes the overhead
of this semi-explicit scheme minor, both in terms of
computations and memory.

II. PRELIMINARIES

It is well-known (see, e.g., [1]) that linear MPC problems
can be cast into an mpQP in the form

minimize
x

1

2
xTHx+ (f + fθθ)

Tx

subject to Ax ≤ b+Wθ,
(1)

where the decision variable x ∈ Rn is related to the
control action and the parameter θ ∈ Θ0 ⊆ Rp (where Θ0

is a polyhedron) is related to the state of the plant. The
objective function is defined by H ∈ Sn++, f ∈ Rn, and
fθ ∈ Rn×p, while the feasible set is a polyhedron defined
by A ∈ Rm×n, b ∈ Rm, and W ∈ Rm×p. Moreover,



the constraints can be written componentwise as [A]ix ≤
[b]i+[W ]iθ, i ∈ K , {1, . . . ,m}, where [·]i extracts the i:th
row. More generally, [·]I denotes the operations of extracting
all rows contained in an index set I ⊆ K. We also introduce
the compact notation f(θ) , f + fθθ and b(θ) , b+Wθ.

The main focus of this paper is to reduce the compu-
tational complexity when computing a minimizer x∗ for
all possible QPs that can arise in the mpQP in (1) (i.e.,
∀θ ∈ Θ0). The algorithm considered herein for solving
a resulting QP (i.e., when θ is given) is a dual active-set
algorithm that is introduced in Section II-A.

In a dual algorithm, the QPs in (1) are not solved directly,
but instead their so-called dual is considered, which is
another related QP [13]. By introducing the matrices and
vectors

M , AR−1, v(θ) , R−T f(θ), d(θ) , b(θ)+Mv(θ), (2)

where R is an upper Cholesky factor of H (i.e., H = RTR
and R is upper triangular), the dual of (1) is

minimize
λ≥0

1

2
λTMMTλ+ d(θ)Tλ, (3)

where λ ∈ Rm is called a dual variable. If a minimizer λ∗

to (3) has been computed, a minimizer x∗ to (1) can (by the
stationarity KKT condition) be calculated by

x∗ = −H−1(Aλ∗ + f(θ)). (4)

A. A dual active-set algorithm

In this paper we consider the dual active-set algorithm
given in Algorithm 1 for solving QPs generated by the mpQP
in (1). A brief overview of the algorithm is given below and
we refer the reader to [7] for a more detailed description.

The algorithm operates on the dual problem (3) and tries
to find the optimal active set:

Definition 1 (Optimal active set): The optimal active set
A∗ : Θ0 → P(K) as a function of θ ∈ Θ0 is defined as
A∗(θ) , {i ∈ K : [A]ix

∗(θ) = [b]i + [W ]iθ}, where P(K)
denotes the power set of K.
If the optimal active set is known, an optimal solution x∗

to (1) can be obtained directly by solving a single system
of linear equations. Because of this, the main objective of
active-set algorithms is to identify the optimal active set by
iteratively updating a so-called working setW . The working
set W can be seen as an estimate of the optimal active set
and is, in Algorithm 1, updated by adding/removing a single
index to/from it in each iteration.

Since Algorithm 1 is iterative, Wk and λk denote the
working set and dual variable at iteration k. Moreover,
W̄k denotes the complement of W at iteration k, i.e.,
W̄k , K \ Wk. Finally, we use the shorthand notations
Mk , [M ]Wk

, dk , [d]Wk
, M̄k , [M ]W̄k

, and d̄k , [d]W̄k

for convenience.
IfW0 could be initialized close to A∗, Algorithm 1 would

require few iterations before terminating. This motivates
warm-starting the algorithm, where the objective is to make
an intialization such that W0 ≈ A∗.

Algorithm 1 Dual active-set method for solving (1) for a
given θ ∈ Θ0[7].

Input: M,d(θ), v(θ), R−1,W0, λ0

Output: x∗, λ∗,A∗
1: while true do
2: if MkM

T
k is nonsingular then

3: [λ∗k]Wk
← solve MkM

T
k [λ∗k]Wk

= −dk(θ)
4: if λ∗k ≥ 0 then
5: [µk]W̄k

← M̄kM
T
k [λ∗k]Wk

+ d̄k(θ), λk+1 ← λ∗k
6: if µk ≥ −εp then optimum found, goto 16
7: else j ← argmini∈W̄k

[µk]i, Wk+1 ←Wk∪{j}
8: else (λ∗k � 0)
9: pk ← λ∗k − λk, B ← {i ∈ Wk : [λ∗k]i < 0}

10: [λk+1,Wk+1]← FIXCOMPONENT(λk,Wk,B, pk)

11: else (MkM
T
k singular)

12: [pk]Wk
← solve MkM

T
k [pk]Wk

= 0, pTk d(θ) < 0
13: B ← {i ∈ Wk : [pk]i < 0}
14: [λk+1,Wk+1]← FIXCOMPONENT(λk,Wk,B, pk)

15: k ← k + 1
16: return x∗ ← −R−1(MT

k [λ∗k]Wk
+ v), λ∗k,Wk

17: procedure FIXCOMPONENT(λk,Wk,B, pk)
18: j ← argmini∈B − [λk]i/[pk]i
19: Wk+1 ←Wk \ {j}, λk+1 ← λk + (−[λk]j/[pk]j)pk

Remark 1: Most of the ideas herein are not limited to
Algorithm 1; any active-set algorithm covered by the frame-
work in [12] could be considered. The dual algorithm in
Algorithm 1 is, however, particularly well-suited when con-
sidering warm starts since the algorithm can be initialized
with any nonnegative starting iterate (λ0 ≥ 0). In contrast,
primal active-set algorithms often require more work to find
a feasible starting iterate given a working set.

Remark 2 (Forming problem): Before Algorithm 1 is ap-
plied to a QP originating from (3) for a fixed θ ∈ Θ0, d(θ)
and v(θ) are computed, which, from (2), are both affine
functions of θ.

III. COMPLEXITY-CERTIFIED WARM STARTS

From Definition 1 it is clear that the optimal active set
varies for different parameters θ, which in turn means that a
good starting guess such that W0 ≈ A∗ in Algorithm 1 will,
also, be parameter dependent. The main idea is, therefore, to
initialize Algorithm 1 with different starting working sets
W0 for different regions of the parameter space. In this
section we formalize parameter dependent warm starts to
Algorithm 1 and show how the quality of such warm starts
can be evaluated ∀θ ∈ Θ0.

A. Parametric warm starts
First, we need to split Θ0 into regions on which Algo-

rithm 1 is initialized with different W0. This motivates the
introduction of polyhedral partitions:

Definition 2 (Polyhedral partition): The polyhedral col-
lection {Θi}Ni=1 is said to be a polyhedral partition of Θ0 if
∪Ni=1Θi = Θ0 and if Θi ∩Θj = ∅,∀i 6= j.

A parametric warm start of Algorithm 1 is then defined
as a collection of pairings of regions Θi ⊆ Rp and starting
working sets Wi

0 ⊆ K such that the regions form a polyhe-
dral partition of Θ0:



Definition 3 (Parametric warm start): The collection of
tuples {(Θi,Wi

0)}Ni=1 is said to be a parametric warm start
of (1) on Θ0 if Wi

0 ⊆ K,∀i ∈ {1, . . . , N} and if {Θi}Ni=1
is a polyhedral partition of Θ0.

Provided that a parametric warm start is available, warm-
starting Algorithm 1 given a parameter θ is done in two steps.
First, a parameter region Θj that contains θ is identified
and, secondly, the associated working set Wj

0 is used as
W0 in Algorithm 1. These two steps are summarized in
Algorithm 2.

Algorithm 2 Warm-starting Algorithm 1 parametrically.

Input: θ; Warm start {(Θi,Wi
0)}Ni=1 on Θ0; δ0 > 0

Output: x∗, λ∗
1: Find j such that θ ∈ Θj for Θj ∈ {Θi}Ni=1

2: Apply Algorithm 1 with initial working set W0 = Wj
0

and starting iterate λ0 s.t. [λ0]Wj = 0, [λ0]W̄j = δ0

Remark 3 (Parameter independendent starting iterate):
In Algorithm 2 we consider a constant (i.e., parameter
independent) starting iterate λ0 on all regions Θi forming
the polyhedral partition. In principle one could, however,
allow λ0 to be, e.g., affine in θ. There are two main
advantages for restricting λ0 to be constant: First, a constant
λ0 means that we do not have to store λi0 for each region,
which reduces the memory footprint. Secondly, as is shown
in [12], the complexity certification becomes more tractable
when a parameter independent starting iterate is used.

Considering two extreme cases of parametric warm starts
in Algorithm 2 is particularly enlightening:

(i) If the parametric warm start is equal to the explicit
solution of (1), only the point location is necessary and
Algorithm 2, essentially, breaks down to explicit MPC
[1]. When the number of optimal active sets on Θ0

is large (i.e., if |A(Θ0)| � 0) , using explicit MPC
can be expensive in terms of worst-case computational
complexity and, especially, in terms of the memory
needed to store the explicit solution and critical regions.

(ii) If a trivial warm start (Θ0,W0) is used, i.e., if the same
W0 is used for all θ ∈ Θ0, no point location is required
and Algorithm 2 breaks down to Algorithm 1 cold
started withW0. For a cold start, the worst-case number
of iterations can be high since a lot of constraints might
be active at the solution, implying that many iterations
in Algorithm 1 have to be executed to find the optimum
since only a single index is added/removed from/to W
at a time.

A ”good” warm start can be seen as intermediary of these two
cases, where the point location is cheaper than explicit MPC
(primarily in terms of the memory footprint) while being
informative enough to result in fewer iterations in Algorithm
1 compared with a cold start.

B. Complexity certification
Next, we consider how to determine the quality of a

given parametric warm start. In [12], a method for cer-
tifying the computational complexity of a class of well-
known active-set algorithms is presented, and Algorithm 2

belongs to this class. The certification method determines
the worst-case computational complexity for solving any
possible QP instance that can arise from a given mpQP and
a polyhedral parameter set Θ. Of special interest for our
purpose is that the method in [12] can certify the worst-case
complexity when the active-set algorithm is initialized with
any nonnegative starting iterate that is affine in θ and with
any working set. In other words, [12] provides a function
κ̄ = certComplexity(mpQP,Θ,W, λ) that determines the
worst-case complexity κ̄ when Algorithm 1 is initialized with
W0 = W and λ0 = λ for all parameters θ ∈ Θ. Herein
we consider κ̄ to be a measure of the worst-case iteration
complexity, but more generally κ̄ can be a measure of the
complexity in terms of, e.g., flops.

Hence, the function certComplexity can be used to de-
termine the worst-case computational complexity for a given
warm start by applying it separately for each pair (Θi,Wi

0),
which is summarized in Algorithm 3.

Algorithm 3 Complexity certification of Algorithm 2 using
the complexity certification method from [12].

Input: Warm start {(Θi,Wi
0)}Ni=1 on Θ0; λ0 > 0

Output: Worst-case computational complexity κ̄
1: for i ∈ {1, . . . , N} do
2: κ̄i = certComplexity(mpQP,Θi,Wi

0, λ0)

3: κ̄ = max{κ̄1, . . . , κ̄N}

The remainder of the paper describes specific ways of
generating parametric warm starts, but we want to stress
that Algorithm 3 can certify the complexity of any given
parametric warm start, no matter the means of how it was
obtained. Alternative ways of generating effective parametric
warm starts for a given mpQP is an interesting subject for
future research, where Algorithm 3 can be used to discern
the best warm start from multiple alternatives.

Remark 4 (Clarification of the method presented in [12]):
To be precise, the method in [12] partitions a polyhedral
region Θ into multiple subregions Θ̃j on which the worst-
case computational complexity κj might differ. For our
purpose, however, only the worst-case complexity for when
W is used on the entire region Θ is of interest and therefore
the worst-case complexity κ̄ that certComplexity outputs is
given by κ̄ = maxj κ

j .
Remark 5 (Taking into account the point location): In

general, the point location performed in Step 1 in Algorithm
2 might require a significant amount of computations.
However, in Section IV-B we propose a partition of Θ0 that
allows the point locations to be done implicitly by a lookup
in a static hash table, which can be done in O(1) time.
We have therefore, for simplicity, omitted analyzing the
computations needed during the point location in this paper.

IV. GENERATING PARAMETRIC WARM STARTS

Next, we try to answer the following question: Given an
mpQP in the form (1), how do you construct a parametric
warm start with a low memory footprint that yields a low
computational complexity in Algorithm 2?



We divide the construction of a parametric warm start into
two steps: 1) Generate a partition of Θ0. 2) for each region,
find a starting working set W0. In Section IV-A we address
2) by proposing techniques for selecting a workingWi given
a region Θi. In Section IV-B we address 1) by proposing a
method for generating a polyhedral partition {Θi}Ni=1 that is
suitable to use for parametric warm starts.

A. Selecting starting working sets

For the moment, assume that a suitable polyhedral parti-
tion {Θi}Ni=1 of Θ0 is given and consider the problem of
selecting starting working sets Wi

0, ∀i ∈ {1, . . . , N}. That
is, select Wi

0 that minimize the computational complexity of
Algorithm 1 when it is initialized with W0 = Wi

0 for all
θ ∈ Θi.

In principle, since the set of all possible working sets
P(K) is finite, the starting working set W0 that yields
the lowest computational complexity for all parameters in
region Θi could be determined by computing the worst-case
complexities κ̄ = certComplexity(mpQP,Θi,W, λ0) for all
W ∈ P(K) and then selectingW that minimizes κ̄. However,
this is not feasible in practice for large problems since
|P(K)| = 2m, that is, the exponential growth in possible
W0 renders a brute-force search intractable.

To circumvent the exponential nature of a brute-force
search, heuristics can be used to find a set of candidates
W = {Wj}j and then the candidate that leads to the lowest
computational complexity on Θi can be selected, i.e.,

Wi
0 ∈ argmin

W∈W
certComplexity(mpQP,W,Θi, λ0) (5)

Remark 6 (Brute-force search): A brute-force search is
achieved by using W = P(K) in (5).

A natural follow-up question to be able to use (5) in
practice is then: How does one determine a suitable candidate
set W? A quick way of discriminating potential candidates
is by using the so-called Hamming distance:

Definition 4 (Hamming distance): Let A,A′ ⊆ K. Then
the Hamming distance H : P(K) × P(K) → N between A
and A′ is defined as H(A,A′) , |A ∩ (K \ A′) |.

The Hamming distance is a measure of how many changes
(additions and removals) are required to transform one work-
ing set into another. Since Algorithm 1 transforms the initial
working set W0 into the optimal active set A∗(θ),∀θ ∈ Θi,
by either adding or removing an index in each iteration, the
Hamming distance can be used to determine a lower bound
on how many iterations Algorithm 1 require. We formalize
this lower bound in the following theorem:

Theorem 1: (Lower iteration bound) For any parameter
θ ∈ Θ, let k(θ) denote the number of iterations needed for
Algorithm 1 to solve the resulting QP in (1) when W0 is
used as the starting working set. Then ∃θ̃ ∈ Θ such that
k(θ̃) ≥ maxA′∈A(Θ)H(W0,A′), where A(Θ) denotes all
optimal active sets on Θ, i.e., A(Θ) , {A ∈ P(K) : A =
A∗(θ) for some θ ∈ Θ}.

Proof: Since Algorithm 1 changes the working set one
element at a time in each iteration, the minimum number
of iterations required to transform W0 into A′ ∈ A(Θ)

is H(W0,A′). Moreover, by definition of A(Θ), for any
A′ ∈ A(θ) there exist parameters in Θ for which W0 has to
be transformed into A′. The algorithm will, hence, at least
require maxA′∈A(Θ)H(W0,A′) iterations.

Hence, Theorem 1 can be used to find a candidate Wi
0

by computing all optimal active sets A(Θi) using an explicit
mpQP method and then considering the minmax problem

Wi
0 ∈ arg min

A∈P(K)
max

A′∈A(Θi)
H(A,A′). (6)

Still, minimizing over P(K) is intractable for large m and
a more practical alternative is to instead perform the outer
minimization over A(Θi), i.e.,

Wi
0 ∈ arg min

A∈A(Θi)
max

A′∈A(Θi)
H(A,A′). (7)

Remark 7 (Insufficiency of Hamming distance): Keep in
mind that there might exist W ∈ P(K) that yield fewer
iterations in Algorithm 1 compared with the candidates
generated from (6). This stems from Algorithm 1 sometimes
making redundant additions/removals to/from W . Such re-
dundancies can, however, be identified and analyzed using
the certification method presented in [12].

B. Implicit point location
When generating a polyhedral partition of Θ0 to use in

a warm start, we have two opposing objectives to keep in
mind. First of, A(Θi) tend to contain more elements when
Θi is large, which, from Theorem 1, in turn means that the
lower iteration bound increases. Therefore we want to make
the partition of Θ0 as fine as possible. At the same time
though, we want the point location that is performed in Step
1 in Algorithm 2 to be as inexpensive as possible, both in
terms of the memory for storing the regions and in terms of
the computations performed in the point location itself, both
of which increase for finer partitions.

In this paper we take into account both of these opposing
objectives by implicitly partitioning Θ0 using d(θ). As will
be shown, such an implicit partition means that no regions
have to be stored (reducing the memory footprint) and
that the point location becomes computationally inexpensive
(since d(θ) already needs to be computed in Algorithm
1, see Remark 2). In other words, we get an informative
partition with negligible overhead, both in terms of memory
and computations.

A motivation behind why using d(θ) might lead to
an informative partition is that d(θ) is the constraint vi-
olation at the unconstrained minimizer of (1), that is,
d(θ) = b(θ)−Ax∗u(θ), where the unconstrained minimizer
x∗u(θ) = −H−1f(θ). Constraints that are violated at the
unconstrained minimizer are often more likely to be active at
the optimizer (although they are not necessarily active). Also
note that since we can certify the exact complexity of the
final parametric warm start, as was described in Section III-
B, we can determine the viability of using d(θ) to generate
a partition for a given mpQP.

The polyhedral partition defined by d(θ) is determined as
follows: for any Vi ∈ P(K), a region Θi is defined as

Θi ,
{
θ ∈ Θ0 : [d(θ)]Vi < 0, [d(θ)]K\Vi ≥ 0

}
, (8)



which results in Θi containing all parameters such that the
constraints in Vi are violated at the unconstrained minimum.
Most of the regions in (8) are, however, empty and the
resulting non-empty regions can be found by, e.g., solving
an mpLP, as is shown in the following theorem.

Theorem 2 (Computing regions): The regions described
in (8) are the critical regions to the mpLP

minimize
τ∈Rm

‖τ‖1

subject to [τ ]i ≥ [d(θ)]i, i = 1, . . .m

θ ∈ Θ0.

(9)

Proof: For θ such that [d(θ)]i ≥ 0 we have that
[τ ]i = [d(θ)]i is optimal and, hence, the i:th constraint in
(9) is active. Likewise, [d(θ)]i < 0 results in [τ ]i = 0 being
optimal, i.e., that the i:th constraint is inactive. Therefore,
the constraints that are inactive at the optimum for (9) maps
onto the violated constraint sets Vi, which in turn means that
the critical regions to (9) are equal to the regions in (8).

As previously mentioned, a major advantage of doing the
partition through d(θ) is that the regions {Θi}i given by
(8) do not have to be stored explicitly. Online, d(θ) is first
computed and then Vi is determined by Vi = {i ∈ K :
[d(θ)]i < 0}, which, implicitly, means that θ ∈ Θi. This can
be interpreted as using d(θ) to form a binary search tree,
similar to [14], as is illustrated for an example with two
constraints in Figure 1. In contrast to [14], the binary search
tree defined by d(θ) requires no additional preprocessing,
while computing the separating half-planes used in [14]
quickly becomes intractable to compute as the problem size
increases [15].

[d(θ)]1

[d(θ)]2

Θ1

< 0

Θ2

≥ 0

< 0

[d(θ)]2

Θ3

< 0

Θ4

≥ 0

≥ 0

Fig. 1: Visualization of how d(θ) is used to represent a
polyhedral partition of Θ0, for an example with m = 2.

Hence, what is needed online is a mapping that maps
each Vi, which can be stored as a binary string, to a
memory location that contains the starting working set Wi

0.
An efficient way of mapping a binary string to a memory
location, both in terms of storage and lookup effort, is
through a static hash table [16]. A lookup in such a table
can be made in O(1) time.

For example, consider a problem with 4 constraints. The
region for which the second and third constraints are violated
can be encoded as 0110, where a 1 corresponds to the
constraint being violated. This means that only 4 bits in Vi
are needed to implicitly represent a region. Generally, Vi
requires m bits to represent a region.

We summarize how to generate a warm start using d(θ)
that yields a worst-case complexity of κ̄ in Algorithm 4.

Algorithm 4 Generate a warm start for (1) with worst-case
complexity κ̄ by using d(θ).

Input: mpQP
Output: Warm start {(Θi,Wi

0)}Ni=1 on Θ0; h; κ̄.
1: {Θi}Ni=1 ← generate critical regions for the mpLP in (9)
2: for i ∈ {1, . . . N} do
3: Generate Wi

0 through, e.g., (7).
4: κ̄i ← certComplexity(mpQP,Θi,Wi

0, λ0)

5: Generate hash function h s.t. h(Vi)→Wi
0, ∀i.

6: κ̄← max{κ̄1, . . . , κ̄N}

In practice, Step 3 and 4 in Algorithm 4 can be repeated in
an iterative fashion, where new candidatesWi

0 are generated
until the worst-case complexity κ̄i is sufficiently low.

Again, we want to stress that the regions {Θi}Ni=1 that
comprise the warm start generated in Algorithm 4 are not
stored for the online use since these regions are implicitly
given by d(θ) and the hash function h. The explicit parameter
regions are only necessary for the offline complexity analysis
performed in Step 4.

V. NUMERICAL EXAMPLE

To illustrate the proposed semi-explicit approach we con-
sider an mpQP that originates from the MPC of an inverted
pendulum on a cart. This problem is part of the tutorials
in the Model Predictive Control MATLAB toolbox and the
same weights as in this tutorial have been used. By using a
control horizon of 10, the resulting mpQP has the dimensions
n = 10, p = 8 and m = 20. For the mpQP, Algorithm 4 was
used to generate a parametric warm start.

A. Memory complexity

A two-dimensional slice of the resulting partition for the
generated parametric warm start is shown in Figure 2b. The
partition for the explicit solution to (1) is shown in Figure
2a (which has to be stored if explicit MPC is used). By
comparing Figure 2a and 2b, one can see that the granularity
of both the partitions for this particular example is similar.

θ1-20 20

θ2

-20

20

(a) Regions for explicit solution

θ1-20 20

θ2

-20

20

(b) Warm-start partition

Fig. 2: 2D-slice obtained for θi = 0 i 6= 1, 2.

A major difference between the proposed semi-explicit
approach and explicit MPC in terms of required storage can,
however, be seen in Table I. The memory requirements for
the proposed approach stem from storing the real numbers
for M,d(θ), v(θ) and R used in Algorithm 1 together with
the starting working set W0 on each region (since m = 20,



3 bytes were needed to store each starting working set). The
memory requirements for explicit MPC have been computed
based on the approach presented in [17], where two affine
functions for each region are stored (one for the point-
location problem and one for the optimal feedback law). In
addition, an adjacency list that stores neighboring regions is
also required to be stored.

TABLE I: Memory requirements when double precision is
used (i.e., each real number is represented by 8 bytes).

Warm start Explicit MPC
# of regions 743 683
Memory [kB] 6.2 136.6

B. Iteration complexity

The resulting iteration complexity for a two-dimensional
slice when Algorithm 1 is initialized using the generated
parametric warm start is visualized in Figure 3b, which is
compared with a similar slice for when the algorithm is cold
started with W0 = ∅, ∀θ ∈ Θ0 in Figure 3a. The worst-case
and average iteration complexity with the warm/cold start for
the entire, eight-dimensional, Θ0 are reported in Table II.

# of iterations
1 2 3 4 5 6 7 8 9 10 11

θ1-20 20

θ2

-20

20

(a) Cold start

θ1-20 20

θ2

-20

20

(b) Warm start

Fig. 3: 2D-slice obtained for θi = 0 for i 6= 1, 2.

TABLE II: Number of iterations performed by Algorithm 1

Cold start Warm start
Worst-case # iterations 21 11
Average # iterations 9.0 6.2

Figure 3 and Table II show that both the worst-case
and average iteration complexities are significantly decreased
when the parametric warm start is used. The worst-case and
average number of iterations were decreased by 48% and
31%, respectively.

Importantly, note that since the method from [12] has
been used, the reported iteration complexity is exact and
covers the entire Θ0. Hence, the proposed warm start leads,
with complete certainty, to a lower iteration complexity
for all θ ∈ Θ0 (not just for a finite number of samples,
which is often reported when Monte-Carlo simulations are
considered). This complete certainty is a strength in using
Algorithm 3 to analyze parametric warm starts.

VI. CONCLUSION

In this paper we have proposed a semi-explicit approach
for linear MPC in which a dual active-set quadratic program-
ming algorithm is initialized through a pre-computed warm
start. By using a recently developed complexity certification
method for active-set algorithms for quadratic programming,
the computational complexity of the dual active-set algorithm
when warm-started can be determined offline. Moreover, by
exploiting structure in the dual active-set algorithm, we have
proposed a novel technique for generating warm starts with
low memory and computational overhead. The semi-explicit
approach was illustrated on an mpQP originating from MPC
of an inverted pendulum on a cart, where its memory
requirements were shown to be significantly lower compared
with explicit MPC and where the iterations performed by the
active-set algorithm were shown to be significantly lower,
both in the worst-case and on average, compared with cold-
starting the algorithm.
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