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Abstract

As the demand for electricity increases throughout the globe while we want to
reduce the use of fossil fuels, the need for renewable energy sources is bigger
than ever. In countries where solar power makes up a large part of the total
energy production, the overall electricity spot price level has become lower. This
thesis investigates the underlying mechanism that drives the energy market,
and in specific, how the solar power impacts the electricity spot price. We
present results from studies made in other markets, and introduce a Regime
Switching model for explaining the impact in Sweden. We show that an increase
of photovoltaics power has a price lowering effect on the daily price pattern in
price area SE3 and SE4.
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Nomenclature

Abbreviations

ADF Augmented Dickey-Fuller

ARCH Autoregressive Conditional Heteroscedasticity

CET Central European Time

EM Expectation–Maximization

IHS Inverse Hyperbolic Sine

iid Independent and Identically Distributed

KPSS Kwiatkowski–Phillips–Schmidt–Shin

LCOE Levelized cost of electricity

ML Maximum Likelihood

PV Photovoltaic

R1 Regime (state) 1

R2 Regime (state) 2

RCM Regime Classification Measure

RES Renewable Energy Sources

RS Regime Switching

SD Standard Deviation

TSO Transmission System Operator
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Nomenclature vii

UTC Coordinated Universal Time

Functions

L(·) Likelihood function

E[·] Expected Value

ln(·) Natural logarithm

Variables

β Regression coefficient

θ Estimable parameters vector

∆ Difference operator

γ Skewness

κ Kurtosis

λ Scale parameter (spread)

µ Mean

φ Auto-regressive coefficient

σ Standard deviation

τ Time difference

Z Vector with unobserved data

ξ Location parameter (shift)

K Number of regimes

Load Consumed electricity

N Sample size adjusted for lags

n Sample size

Nuc Generated nuclear power

P Probability

Prod Electricity production



viii Nomenclature

R2 R-squared

Rprod Production except solar, nuclear and wind production

S Regime state

Solar Generated solar power

t Time point

Wind Generated wind power

P Probability transition matrix
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Chapter 1

Introduction

We live in a world where the climate is changing faster than ever. According
to the NOAA (2020), the years 2011–2020 was the warmest decade on earth.
The use of fossil fuels has a large impact on temperature, making it crucial to
find new ways to provide society with electricity. This has led to an increase in
renewable energy sources (RES), such as wind and solar power.

As more RES are generated, the equilibrium electricity price tends to become
lower. This is a result of the electricity bidding process of buyers and sellers, and
the fact that RES have a low marginal cost. This makes it possible for sellers of
RES electricity to offer a relatively low price (Lazard 2021). In Germany, RES
have had a rapid growth rate. In 2020 solar generation made up for 10.5 %
of the total public electricity generation (Burger 2021). As the generation has
increased, the country has experienced a reduction of the electricity spot price
(Sensfuß, Ragwitz and Genoese 2008), (Martin de Lagarde and Lantz 2018).

Several studies have been made on electricity markets around the world, investi-
gating how the price is affected by an increased share of renewables. To be able
to model the price and understand how it is influenced by different factors, time
series econometrics is widely used. However, electricity prices are highly volatile
and often show characteristics like heteroscedasticity, which makes it difficult to
model. Engle (1982) introduced a way to handle this by modelling the variance
of the errors so that it depends on the past values of the dependent variable.
The process called autoregressive conditional heteroscedastic (ARCH) was fur-
ther developed by Bollerslev (1986) to include the past conditional variance as
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2 Chapter 1. Introduction

well, to further capture the characteristics of electricity prices.

Another approach is to model prices using a regime switching model. Hamilton
(1989) proposed a model that distinguishes periods of high and low growth
to better capture the characteristics of the U.S. gross national product time
series. The main idea for regime switching models is to allow for the time series
characteristics to change across recurring states. This can be applied to periods
of high and low electricity prices, which tend to coincide with periods of high
and low volatility, respectively (Martin de Lagarde and Lantz 2018).

In Sweden, the installed capacity of grid-connected photovoltaic (PV) systems
has increased from 140 megawatts in 2016 to 1090 megawatt in 2020 (En-
ergimyndigheten 2020). However, due to the relatively low proportion of solar
power, a limited amount of studies has been made on Sweden. Additionally,
most studies examine the effect on a daily (or even more rarely) basis, missing
important information on the hourly changes. In this study, the hourly impact
from an increased PV capacity on the Swedish electricity market is investigated
using a two-state regime-switching (RS) model.

1.1 Background

At the company Becquerel Sweden, a model is developed which aims to show
how the revenue from electricity generated by PV depend on the orientation
in which the modules are being placed. The project is a further development
of the model by Campana et al. (2020) that optimizes the irradiance on the
module surface for a span of orientations, given different locations and the local
weather on these locations. In the study, it is shown that local weather affects
the optimal tilt and azimuth in which the panel should be placed, meaning that
it is possible to maximize production by choosing the tilt and azimuth of the
panels (Campana et al. 2020).

Traditionally, modules are being placed towards the south to maximize pro-
duction during sunny hours. The model by Campana et al. (2020) is a tool
to investigate whether the standard placing enables more solar power, or if it
would be preferable to change the orientation. The existing model does not
consider that the electricity prices vary during the day, which could have an
impact on the revenues. The price tends to be slightly lower around lunch time
as compared to in the morning and evening, but still higher than in the night.
Selling at that point in time will result in less revenue. The project by Becquerel
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Sweden investigates whether it is instead preferable to produce more electricity
before or after mid day, and thereby shift the orientation of the PV modules
more to either the east or west.

This thesis aims to complement the results from the project to get an under-
standing of how the hourly electricity spot price, and thereby the hourly revenue,
is affected as more solar power is deployed.

1.2 Purpose

The purpose of the study is to show how the daily pattern of the electricity spot
price is affected as PV production is increased.

1.3 Delimitations

In the scope of the study, following delimitations are made:

• The study only focuses on the Swedish market and the four price regions
SE1, SE2, SE3 and SE4.

• The data used is limited to the years 2018 - 2020.

• The official day-ahead price currency is euro, however in this study we use
the prices converted by Nord Pool to Swedish krona (SEK).



Chapter 2

Electricity pricing

This chapter aims to provide a broader background of the electricity market.
The pricing process is described to give the reader an understanding of what
role different energy sources have on the overall price level. The chapter also
introduces the merit order effect which is a result of renewables entering the
market. Due to their low marginal cost, RES can reduce the price and affect
how the price varies during the day.

2.1 Day-ahead market

Nord Pool is a European power exchange market where participants of the elec-
tricity market buy and sell electricity. It is owned by the Swedish transmission
system operator (TSO) Svenska kraftnät, together with the company Euronext
and other Nordic and Baltic TSOs. At Nord Pool, trading on the Nordic, Baltic,
Central Western European and United Kingdom electricity markets is provided.

Every day, buyers and sellers of electricity submit their orders for the next 24
hours. There are several available options for ordering. The most common is the
single hourly order, where desired or offered volume is entered along with the
price range you are prepared to accept (Nord Pool 2020c). This exercise take
place for all hours, and consequently the electricity spot price varies between
different hours. A Nordic system price is calculated representing the market

4 Fahlén, 2022.



2.1. Day-ahead market 5

Figure 2.1: Illustration over the (Nordic) electricity pricing data on 2020-05-19
at CET 09:00 and 12:00. The sell-curves illustrates the power supply whereas
the buy-curves show the power demand.

equilibrium price for the Nordic markets. The system price is used when trading
different financial instruments, for example within futures trading (i.e. buying
or selling at a set price on a specific future date). Nord Pool collects information
from market participants about what volumes they want to sell or buy, and to
which price range they are willing to trade. In the calculations the Nordics
is considered as one region, meaning that the transmission capacities between
the bidding zones are considered endless. Electricity that flows to and from
bidding areas outside the Nordics have to be considered in the calculations as
well. Therefore, imported and exported volumes are included when creating
aggregated supply and demand curves for electricity in the Nordics (Nord Pool
2020a). Figure 2.1 shows an illustration of the Nordic curves on 2020-05-19 for
two different hours, where the intersect of the curves gives the electricity price
for the specific hour.

Looking at the relevant values, which are presented in figure 2.2, the equilibrium
price for the Nordic electricity system at 09:00 and 12:00 was 16.42 EUR/MWh
respective 14.77 EUR/MWh. Table 2.1 show the variation in the traded prices
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Figure 2.2: Illustration showing the supply- and demand intersections for the
electricity pricing process on 2020-05-19 at CET 09:00 and 12:00.

throughout that day.

The system price is also used as an index market when hedging against price
risk from differences between the Nordic electricity price and spot prices in
specific areas within the Nordics. These futures are called Electricity Price
Area Differentials. The electricity spot prices in different areas are calculated
similar to the Nordic system price, although the transmission capacities between
the specific areas are considered. Furthermore, the prices are expressed in euro
and since it is possible to trade in different currencies, trades which are not
in euro have to be converted. This is done using an exchange rate which is
preliminary for the trading point (Nord Pool 2020b).

Some countries have one electricity price for the whole country, while Sweden is
divided into four geographical price regions. The four bidding areas are called
SE1, SE2, SE3 and SE4, see figure 2.3. SE3 is the only region generating
electricity through nuclear power. It is possible to transfer electricity between
the areas to reduce excess supply or demand, although it is not always possible to
get a perfect match due to limitations on the grid. As the maximal transmission
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2020-05-19

Hour System price
(EUR/MWh)

00-01 12.79
01-02 12.64
02-03 12.50
03-04 12.50
04-05 12.63
05-06 13.02
06-07 13.84
07-08 17.49
08-09 17.96
09-10 16.42
10-11 15.65
11-12 14.44
12-13 14.77
13-14 14.54
14-15 14.62
15-16 13.62
16-17 13.18
17-18 13.68
18-19 13.92
19-20 14.88
20-21 14.91
21-22 14.81
22-23 13.57
23-00 12.53

Table 2.1: Nord Pool hourly day-ahead prices, 2020-05-19.
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Figure 2.3: Price regions in Sweden.

capacity is reached, supply and demand are set for the regions (Svenska kraftnät
2021).

2.2 Merit order

The price is a result of how much electricity is produced, electricity consumption,
and the possibility to transfer electricity between price areas and countries. In
Sweden, the consumption pattern is predictable and rather constant. This also
applies to the transmission limits. However, the supply varies a lot during the
year. For example, during dry periods the possibility of extracting electricity
from hydro power decreases. The weather also affects the amount of wind power,
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Figure 2.4: Illustration over the pricing process, including approximate produc-
tion volumes of different energy sources.

windy periods provide more electricity. A decision on closing a nuclear plant
can have big effects on the supply as well.

The hourly generated amount from each energy source affects the market price.
Generators who can offer a low price will reduce the equilibrium price, while
expensive energy sources will increase the market price. What price generators
will offer depends on the marginal cost, how much it costs to produce one more
unit. Since RES have a relatively low marginal cost, as there are no fuel costs
associated to the production and low maintenance costs, they can offer a low
price. Figure 2.4 shows an approximate figure over the merit order effect and
how the price is connected to the different energy sources. The final production
mix will consist of energy sources that can offer a competitive price.

In theory, as production from RES increases, the electricity market price will
decrease. This is called the merit order effect: as RES generate the traditional
power sources are pushed to the right, which lowers the total production cost
those hours and consequently the overall price paid to all generators. This
means that an increase of RES undermines their value, a phenomenon called
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the cannibalization effect. This phenomenon also applies to the other energy
sources, although it is more prominent for RES. Lopéz Prol, Steininger and Zil-
berman (2020) show that an increase of solar and wind production in California
undermines their own revenues, with cannibalization effect more prominent at
high penetration levels.

2.3 Daily price pattern

On average, the electricity spot price in Sweden has its price peaks in the morn-
ing and evening. The price tends to be lower during the middle of the day, but
is still higher than in the night. Figure 2.5 shows how the electricity price in
price area SE4 depends on the hour of the day. This can partly be explained
by the electricity consumption pattern, more electricity is used during the day
and less at night. A similar pattern exists in the other Swedish price areas,
presented in figure A.1- A.3 in appendix A

In Sweden, PV power still makes up a small proportion of the total electricity
generation. Although, in countries with a larger share of solar, it is possible to
see a price lowering effect. Martin de Lagarde and Lantz (2018) shows that
in Germany, both wind and solar power helps to decrease the price as the
production increases. They also show that the impact is greater during high
price periods. Although, they do not investigate the hourly effect. Therefore,
it is not possible to analyze the daily price pattern in their study. It is possible
to imagine a price situation where it would be more profitable to produce PV
power in the morning or later in the afternoon if the price is sufficiently low in
the middle of the day. Therefore, it is interesting to investigate the impact of PV
power on the price. In Sweden, solar panels are traditionally placed towards the
south in order to maximize production during the middle of the day when the
global radiation is the highest in the northern hemisphere. To enable maximal
production in hours other than in the middle of the day, the panels have to be
placed at a different azimuth.
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Figure 2.5: Average price in SE4 per hour.



Chapter 3

Theory

This chapter presents the theoretical framework needed to answer the purpose of
the study. As we are interested in modelling electricity prices, data on historical
prices needs to be analyzed. Therefore, we introduce the theory behind some
tests relevant for time series. The chapter also describes the RS model used to
answer the thesis problem, and methods used to evaluate the model.

3.1 Time series characteristics

Before implementing a model it is important to investigate whether the used
time series are stationary or not. In reality we expect many time series to be
time dependent, if we collect temperature data in Sweden we will most likely see
a pattern of higher temperatures in the summer than the winter. In a stationary
process, the probability density function fX(t)(x) does not depend on t. Yates
and Goodman (2005) defines a stochastic process X(t) to be stationary if, for
all sets of t1, .., tm, and any time increment τ :

fX(t1),...,X(tm)(x1, ..., xm) = fX(t1+τ),...,X(tm+τ)(x1, ..., xm). (3.1)

Time series that are stationary are easier to analyze and can be better suited
for modelling, since the statistical properties do not change over time. Above

12 Fahlén, 2022.
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that, many models for forecasting assume the data to be stationary. As a
tool to investigate this, two stationary tests are described in the chapter. Two
additional measures are introduced as well, which can be used to further analyze
the price time series and its characteristics. To investigate the covariation of
time series, correlation is introduced as well.

3.1.1 Augmented dickey fuller test

Stationarity is of importance in time series analysis and there are several tests
that can be performed to detect it. Dickey and Fuller (1979) proposed a unit
root test which was later further developed by Said and Dickey (1984), called
the Augmented Dickey-Fuller (ADF) test. Let l be the number of lagged terms
included and consider the model

yt = c+ δt+ φyt−1 +

l∑
i=1

βi∆yt−i + εt, (3.2)

where the estimable terms c is the drift term, δ is the trend component, φ is the
auto-regressive coefficient and β is the regression coefficient of the lagged change
in yt. Furthermore, ∆ is the difference operator such as ∆yt−i = yt−i − yt−i−1,
and εt = σtzt, where zt are independent and identically distributed (iid) random
variables with mean 0 and variance σ2.

We want to test whether y, a time series of points at time t, is non-stationary
and if it has a unit root. This can be expressed by setting the null hypothesis
of a unit root as H0 : φ = 1 and the alternative hypothesis H1 : φ < 1.

The test statistic is given by

tADF =
N
(
φ̂− 1

)
1− β̂1 − ...− β̂l

, (3.3)

where N is the size of observations in y, adjusted for lags. Rejecting H0 means
that no unit root is present and that the process is stationary. Not rejecting H0

means that the test fails to reject the possibility of an existing unit root.
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3.1.2 Kwiatkowski–Phillips–Schmidt–Shin test

Realizing that many time series fail to reject the hypothesis that a unit root ex-
ists, even though a unit root most likely does not exist, Kwiatkowski et al. (1992)
introduced the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. The test ex-
amines whether the time series is trend stationary, and can be used as a com-
pliment to other unit root tests, as the ADF test.

Let ut be a stationary process and rt a random walk where zt are iid with mean
0 and variance σ2. The test model can then be expressed as

yt = rt + δt+ ut

rt = rt−1 + zt,
(3.4)

where δ is a trend component. We want to test the null hypothesis H0 : σ2 = 0
against the alternative H1 : σ2 > 0. The test statistic is given by

tKPSS =
1

n2σ̂2

T∑
t=1

S2
t , (3.5)

where n is the sample size, σ̂ is the Newey–West long run variance estimate,
and St =

∑t
i=1 ei, t = 1, .., T where e are the errors. A test that rejects the null

hypothesis, rejects that the data is trend stationary.

3.1.3 Kurtosis

Electricity price often show characteristics like price jumps which makes it more
difficult to predict. Kurtosis is a measure of the expected value of extreme
outcomes to occur. It was introduced by Pearson (1905) and is defined as the
fourth central moment which can be expressed as

κ = E

[(
X − µx

σ

)4
]
, (3.6)

where X is a real-valued random variable, µx is the mean, σ is the standard de-
viation and E the expectation operator. The standard normal distribution have
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kurtosis 3. For time series that show a kurtosis value above 3 the distribution
is called leptokurtic and extreme outcomes have a higher probability to occur.

3.1.4 Skewness

Skewness is a measure of unevenness in the distribution and is defined as the
third central moment (Hull 2018). A positive value indicates that the distribu-
tion is rightly skewed while a negative value indicates the values to be skewed
to the left. This implies that a perfectly symmetric distribution will have a
skewness of zero. Skewness is defined as

γ = E

[(
X − µx

σ

)3
]
, (3.7)

where X is a random variable, µx is the mean, σ is the standard deviation and
E the expectation operator.

3.1.5 Pearson’s correlation coefficient

Correlation can be used to understand how variables move relative to each other.
Pearson’s correlation coefficient is a well known measure within statistics that
indicates the relation between two variables. Let X be a time series with mean
µx, and Y another time series with mean µy. A positive coefficient mean that as
the values of X increase, Y will go in the same direction. A negative correlation,
ρ < 0, indicates that the variables move in opposite directions.

ρ =
E [(X − µx)(Y − µy)]√

E
[
(X − µx)

2
]
E
[
(Y − µy)

2
] (3.8)

3.2 Time series transformation

In some applications, data needs to be formatted before use. Removing outlier
values, null values, or shifting a time series are three examples of transformations
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that can improve the quality of the data to make it easier to use and interpret.

Let xi ∈ R be the value of data point i in a time series to be transformed and
f(·) a function. Let yi be the output of the transformed value of data point i,
defined by

yi = f

(
xi − ξ
λ

)
, (3.9)

where ξ is the shift and λ is a scale factor.

In time series analysis a common way to reduce skewness and to normalize the
data is by log transforming it, replacing f(·) in equation 3.9 with the natural
logarithm

yi = ln
(
xi − ξ
λ

)
(3.10)

Another option is to use inverse hyperbolic sine (IHS) to transform a time series
(Johnson 1949). The inverse hyperbolic sine transformation is defined as

yi = sinh−1
(
xi − ξ
λ

)
= ln

xi − ξ
λ

+

√(
xi − ξ
λ

)2

+ 1

 . (3.11)

3.3 Markov Regime Switching model

In this thesis a regime switching model is proposed for understanding the impact
from solar power on the electricity price pattern. Markov RS models are widely
used as they enable us to capture different characteristics in a time series, by di-
viding the data into two or more regimes. It was introduced by Hamilton (1989)
and many scientists have used and improved the model since then. Electricity
prices are highly volatile, which indicates that an RS model can be a suitable
choice.
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3.3.1 Markov chains

A (discrete-time) Markov chain Xt, t = 0, 1, ... is a stochastic process where the
state at a time t only depends on the previous state at time t− 1. This is called
the Markov Property:

P (Xt = xt|Xt−1 = xt−1, ..., X0 = x0) = P (Xt = xt|Xt−1 = xt−1) (3.12)

The definition implies that by knowing Xt we have all information needed to be
able to predict the next variable Xt+1 (Yates and Goodman 2005).

3.3.2 Two state RS model

Let St be the unobserved state following a first order two state markov chain
yielding the transition states:

P (St = 1|St−1 = 1) = p1,1

P (St = 2|St−1 = 1) = p1,2

P (St = 2|St−1 = 2) = p2,2

P (St = 1|St−1 = 2) = p2,1

(3.13)

As S1, ..., St are random variables following a Markov chain, they hold the
Markov property meaning that the probability of being in a state is only depen-
dent on the most recent state. Equation 3.12 can then be written as:

P (St = st|St−1 = st−1, ..., S0 = s0) = P (St = st|St−1 = st−1) (3.14)

Let the probability of going from state i to j in one time step be P (j|i) = pi,j .
Using the notation from equation 3.13, the transition matrix can be expressed
as

P =

(
p1,1 p1,2
p2,1 p2,2

)
, (3.15)

∀i ∈ {1, 2} it must hold that pi,1 + pi,2 = 1. The Markov chain and its states
are illustrated in figure 3.1.
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Figure 3.1: Markov chain and transition probabilities pi,j between state 1 and
state 2.

The different regimes must be modelled by some process, which we allow to
alternate between. In this thesis, linear regression is used to model the prices.
The probabilities pi,j must be estimated together with the parameters from
the regime models. Hamilton (1989) proposes the EM algorithm for doing the
estimations.

3.3.3 Expectation–Maximization algorithm

The Expectation–Maximization (EM) algorithm was named by Dempster, Laird
and Rubin (1977), although it had been mentioned by other authors before
that. The algorithm is a method to compute maximum likelihood estimates
of a vector θ by dividing the problem into two smaller problems to maximize
the marginal likelihood. First, by computing a distribution on Z, a vector of
unobserved or missing data, given some initial guess on θ. Then, using the
probability values on Z to estimate new parameter values in θ, and repeating.
The algorithm is considered done when the difference between θ(t) and θ(t+1)

fulfills the convergence criterion, where θt+1 is considered the ML estimate
θ̂. The steps of computing the expected log likelihood value is known as the
Expectation step, while the step of computing θ(t+1) is called the Maximization
step.

Let X be a time series with observed data and Z a vector of unobserved data.
The marginal likelihood function to be maximized is

L(θ;X) = p(X | θ) =

∫
Z

p(X | Z,θ)p(Z | θ) dZ. (3.16)
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As it can be difficult to find a solution to equation 3.16, following steps are given
as a method for finding a solution:

E-step:
Q(θ | θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)] (3.17)

and as the E-step is done, the M-step begins:

θ(t+1) = arg max
θ

Q(θ | θ(t)) (3.18)

These iterative steps are then repeated until a solution, θ̂, is found.

3.4 Model evaluation

To be able to evaluate the reliability of the models we use methods for measuring
the quality. We introduce a measure for regime classification and also look into
a measure on statistical significance.

3.4.1 Regime classification

Regime classification measure (RCM) can be used to evaluate the quality of the
regime classification (Ang and Bekaert 2002). Let K be the number of regimes,
then the statistic can be calculated as

RCM(K) = 100K2 1

n

T∑
t=1

(
K∏
i=1

pi,t

)
, (3.19)

where n is the sample size, and pi,t = P (st = i|{st}t∈[1:T ]) is the smoothed
regime probability for regime i. It take values between 0 and 100, where an
RCM statistic equaling 0 indicates that the model succeed to detect a perfect
regime classification. A statistic of 100 implies that the model fail to make any
classification.
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3.4.2 Statistical significance

A probability value (p-value), is a measure of the probability of observing a test
statistic equal or more extreme than the observed value, under the assumption
that the null hypothesis is correct. It describes how likely it is that the data
would have occurred randomly, meaning that the null hypothesis is true.

In hypothesis testing, the level of statistical significance is often expressed as
the p-value taking a number between 0 and 1. A small p-value indicate that the
probability of observing an extreme value would be very low.



Chapter 4

Method

This chapter aims to give the reader an understanding of the model implemen-
tation. First, we describe how the data was collected and analyzed. We then
present the method for implementing the RS model, and the methods used to
evaluate the results. The final model consists of code implemented in the pro-
gramming platform MATLAB, together with Excel files containing all relevant
data.

4.1 Data analysis

The data consists of 7 different time series for each price area in Sweden:

• Day-ahead electricity prices (SEK/MWh), retrieved from Europe’s power
market Nord Pool

• Wind electricity production, retrieved from the Swedish TSO

• Solar electricity production, retrieved from the Swedish TSO

• Nuclear electricity production, retrieved from the Swedish TSO

• Simulated solar electricity production, given by Becquerel Sweden

• Total electricity production, retrieved from Nord Pool

Fahlén, 2022. 21
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• Total electricity load, retrieved from Nord Pool

All data is given on hourly basis expressed in MWh, except for the simulated
PV production which is given in kWh. Since the calculations throughout the
project are made on hourly points in time, it is of high importance to make sure
all data are expressed in the same time. The day-ahead prices retrieved from
Nord Pool are given in Central European Time (CET), while the production and
load time series retrieved from the Swedish TSO are expressed in Coordinated
Universal Time (UTC)+0. CET is 1 hour ahead of UTC, which means CET
equals UTC+1, so in order to make the data sets coincide all price data points
are moved one hour back in time. The reason for choosing to use UTC+0
instead of CET is due to the transition from standard time to summer time
which complicates the calculations. Therefore, only the data from Nord Pool
was transitioned, to make all data sets expressed in UTC.

One reason for complementing the data with a set of simulated solar production
is due to the fact that a lot of production is missing in the regular data for
solar production, which is because households use the electricity for their own
needs before injecting the excess into the public grid. The self-consumption is
calculated by removing the solar generation acquired from the Swedish TSO
from the simulated solar generation data. The load time series does not include
self-consumption, so it has to be manually added to get the correct load. The
simulated solar production data was provided by Becquerel, produced using
the model developed by Lingfors and Widén (2016). During the project, we
discovered that the simulated values for the dates 2018-06-29, 2018-06-30 and
2018-07-01 were missing. This was solved by filling in the missing values with
the simulated solar production data from 2018-07-02. The date was chosen due
to very similar levels of sun radiance on 2018-07-01, see figure 4.1. For simplicity,
the same values were used for the two other dates as well, as the irradiance levels
were rather similar.

Table 5.4 shows that the minimum of solar production is above zero in SE3
and SE4. This indicates that the measured values contains errors as the solar
production should be zero at least for some hours during the night. These errors
could be ejection of solar electricity from a battery or electricity from hybrid
power plants, like a site that contain both PV and wind power.
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Figure 4.1: Hourly UV Irradiance data collected from SMHI STRÅNG Open
Data
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4.1.1 Time series analysis

To get an understanding of how the different parameters are affected relatively
to each other, the Pearson’s correlation coefficient is calculated. The correla-
tion between all parameters are calculated using equation 4.1 rewritten for all
observations to:

ρ =

∑T
t=1(X − µx)(Y − µy)√∑T

t=1 (X − µx)
2∑T

t=1 (Y − µy)
2

(4.1)

As the electricity spot price plays a significant role in the project, the price time
series is analyzed thoroughly. We perform two stationary tests, the ADF test
for testing stationarity and the KPSS to complement the ADF test and test for
trend stationarity. According to Kwiatkowski, Phillips and Schmidt (1991), the
square root of the sample size is a suitable number of lags in the model. As
all calculations are made on hourly data, meaning we have approximately 8760
data points in a year, we use

√
10000 as number of lags. In the KPSS test, the

same number of lags are used for the autocovariance lags in the Newey-West
estimator of the long-run variance. For the ADF test, we rewrite equation 3.2
to

Pricet = c+ δt+ φyt−1 +

100∑
i=1

βi∆yt−i + εt, (4.2)

where c is the drift term, δ is the trend component, ∆ is the difference operator
such as ∆yt−i = yt−i − yt−i−1, and εt = σtzt, where zt are independent and
identically distributed (iid) random variables with mean 0 and variance σ2.

For each price area, the kurtosis (3.6) of the price time series is calculated as

κ =
1

n

T∑
t=1

(
Pricet − µ

σ

)4

, (4.3)

where n is the sample size of the time series, µ is the mean and σ is the standard
deviation of the prices in a specific region.

To examine whether the data is shifted, the skewness (3.7) is calculated by

γ =
1

n

T∑
t=1

(
Pricet − µ

σ

)3

, (4.4)
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4.2 The RS model

In this project we aim to investigate how the levels of solar generation affects
the electricity spot price. To do so, we use an RS model in which we model the
price with a linear regression model.

4.2.1 Price transformation

The price is transformed using the IHS transformation introduced in equation
3.11. We use the scale factor λ = 10 SEK/MWh and let the shift be the mean of
the time series, ξ = µ. For each price region the transformed price time series,
Price∗t , is generated by

Price∗t = ln

Pricet − µ
λ

+

√(
Pricet − µ

λ

)2

+ 1

 , t = 1, . . . , T. (4.5)

4.2.2 Regression model

Let Prodt be the total electricity production and Windt, Solart and Nuct the
electricity generated from wind, PV and nuclear power, at time t. Furthermore,
let Rprodt be the residual production when removing wind, PV and nuclear,
Rprodt = Prodt −Windt − Solart −Nuct. As we are interested in model two
regimes, we let index (1) denote regime 1 and index (2) regime 2, which gives

Price∗t (1) = β
(1)
0,t + β

(1)
1,t

Wind
(1)
t

Prod
(1)
t

+ β
(1)
2,t

Solar
(1)
t
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(1)
t

+ β
(1)
3,t

Nuc
(1)
t

Prod
(1)
t

+ β
(1)
4,tRprod

(1)
t + εt

Price∗t (2) = β
(2)
0,t + β

(2)
1,t

Wind
(2)
t

Prod
(2)
t

+ β
(2)
2,t

Solar
(2)
t

Prod
(2)
t

+ β
(2)
3,t

Nuc
(2)
t

Prod
(2)
t

+ β
(2)
4,tRprod

(2)
t + εt

(4.6)

for SE3, and

Price∗t (1) = β
(1)
0,t + β

(1)
1,t

Wind
(1)
t

Prod
(1)
t

+ β
(1)
2,t

Solar
(1)
t

Prod
(1)
t

+ β
(1)
3,tRprod

(1)
t + εt

Price∗t (2) = β
(2)
0,t + β

(2)
1,t

Wind
(2)
t

Prod
(2)
t

+ β
(2)
2,t

Solar
(2)
t

Prod
(2)
t

+ β
(2)
3,tRprod

(2)
t + εt

(4.7)
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for SE1, SE2 and SE4, as the nuclear production is zero in these price regions.
Price∗t is the transformed price and εt ∼ N (0, σ2).

The estimation is made by first creating a discrete time Markov chain with
an unknown transition matrix. We also create two initial regression models to
be estimated, one for regime 1 (R1) and the other for regime 2 (R2), accord-
ing to equation 4.6 and 4.7. As the regimes are unknown, the EM algorithm
described in section 3.3.3 is used to estimate the probabilities as well as the
regime model parameters. The parameters to be estimated in this study is
θSE3 = [β0, β1, β2, β3, β4, pi,j ] for SE3 and θSE4 = [β0, β1, β2, β3, pi,j ] for SE4,
∀i, j ∈ {1, 2}. Let the unobserved data be the state St, then the EM algorithm
procedure is:

Algorithm 1 The Expectation-Maximization Algorithm

Input: Initial guess θ(0)

Initialize θ(t)

while not converged do
Expectation step: Q(θ | θ(t)) = ES|Y,θ(t) [logL(θ;Y,St)]

Maximization step: θ(t+1) = arg max
θ

Q(θ | θ(t))

end while
θ̂ = θ(t+1)

Output: Maximum likelihood estimate θ̂

4.2.3 Evaluating the coefficients

As the price time series is transformed, the beta coefficients can be difficult to
interpret. As we are interested in analyzing the price effect of an increased PV
power production we derive an expression for the hourly marginal effects. A
decision to focus on SE3 and SE4 was made, as these price regions generate the
most solar power. The derivative of the IHS is

d

dx
sinh−1(x) =

1√
x2 + 1

. (4.8)

With all other variables held constant we end up with the marginal effect on
price from wind, PV and nuclear by calculating the differentials from equation
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4.9.

(
∂Pricet
∂Windt

)(i)

= λ

√√√√(Price(i)t − µ(i)

λ

)2

+ 1

(
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)
, i = 1, 2 (4.9)

where i indicates regime 1 or 2. To adjust for the fluctuation in production
levels, the values are also multiplied by the production for the specific hour of
the day.

4.2.4 Validation

We evaluate the model in several different ways. First, the p-value (introduced in
section 3.4.2) and standard errors in the parameter estimation in the regression
models are investigated. We also calculate the RCM statistic (3.19) measuring
the quality of the regime classification. A low measure value is preferable, as
high RCM value indicate difficulties for the model to detect regimes. For a
two-regime model, equation 3.19 can be rewritten as

RCM(2) =
400

n

T∑
t=1

p1,tp2,t =
400

n

T∑
t=1

pt (1− pt) , (4.10)

where n is the sample size and pt = P (st = 1|{st}t∈[1:T ]).
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Results

In this chapter all results are presented. We show all characteristics for the
data used in the project, and the results that are obtained. We also show the
impact from wind, PV and nuclear power on the daily electricity price pattern
in Sweden.

5.1 Time series characteristics

Figure 5.1-5.4 shows the final time series used in the study for all four price
areas, between the years 2018 and 2020. The figures aim to show an overall
picture of how the time series evolve during the three years included in the
study. In appendix A, figure A.4, A.5, A.6 and A.7 shows the time series for
each year, making in possible to examine the time series more closely. Note
that for 2018, the simulated solar production on 2018-06-29 to 2018-07-01 is
replaced by the values for 2018-07-02 due to missing data in the delivered time
series data. This is described thoroughly in section 4.1.

In all price areas the solar production show a seasonal pattern, during the win-
ter month the production is close to zero while it peaks in June. A similar
pattern can be seen for the simulated solar production, although the produc-
tion is higher in spring and fall compared to the solar production. In SE3 the
nuclear production level is rather constant, showing a decrease in 2020 which is

28 Fahlén, 2022.
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Wind Solar Sim. solar Load Production Price
SE1
Wind 1.00 -0.14 -0.14 0.11 0.13 -0.37
Solar -0.14 1.00 0.90 -0.25 -0.00 -0.12
Sim. solar -0.14 0.90 1.00 -0.19 0.06 -0.08
Load 0.11 -0.25 -0.19 1.00 0.61 0.15
Production 0.13 -0.00 0.06 0.61 1.00 0.15
Price -0.37 -0.12 -0.08 0.15 0.15 1.00
SE2
Wind 1.00 -0.15 -0.15 0.10 0.38 -0.37
Solar -0.15 1.00 0.92 -0.20 0.00 -0.18
Sim. solar -0.15 0.92 1.00 -0.15 0.02 -0.13
Load 0.10 -0.20 -0.15 1.00 0.65 0.16
Production 0.38 0.00 0.02 0.65 1.00 -0.25
Price -0.37 -0.18 -0.13 0.16 -0.25 1.00
SE4
Wind 1.00 -0.11 -0.10 0.18 0.93 -0.30
Solar -0.11 1.00 0.96 -0.09 -0.13 -0.07
Sim. solar -0.10 0.96 1.00 -0.02 -0.10 -0.05
Load 0.18 -0.09 -0.02 1.00 0.45 0.26
Production 0.93 -0.13 -0.10 0.45 1.00 -0.26
Price -0.30 -0.07 -0.05 0.26 -0.26 1.00

Table 5.1: Correlation between the parameters in SE1, SE2 and SE4 for 2018-
2020.

explained by the closing of reactor 2 in Ringhals on December 30, 2019. The
wind production do not show any pattern over season, but it is clear that the
wind production levels increased from 2018 to Dec 2021 in SE1, SE2 and SE3.
For SE4, the levels are rather constant.

Load show a clear seasonal pattern in all price areas with a low electricity
demand during summer and high in the winter. This is reasonable considering
the Swedish climate. The total production show a similar pattern, although not
as clear, with more production in the winter months and less in the summer. In
SE4, wind generation makes up a large part of the total production.

Table 5.1 shows the Pearson’s correlation coefficient for all parameters in price
areas SE1, SE2 and SE4. The correlation coefficients in SE3 are shown in table
5.2, where nuclear is added.
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(a) Hourly wind and solar production in price area SE1.

(b) Hourly electricity price, total load and total production in price area SE1.

Figure 5.1: Final time series 2018-2020 in price area SE1.
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(a) Hourly wind and solar production in price area SE2.

(b) Hourly electricity price, total load and total production in price area SE2.

Figure 5.2: Final time series 2018-2020 in price area SE2.
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(a) Hourly wind, solar and nuclear production in price area SE3.

(b) Hourly electricity price, total load and total production in price area SE3.

Figure 5.3: Final time series 2018-2020 in price area SE3.
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(a) Hourly wind and solar production in price area SE4.

(b) Hourly electricity price, total load and total production in price area SE4.

Figure 5.4: Final time series 2018-2020 in price area SE4.
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Wind Solar Sim. solar Nuclear Load Production Price
SE3
Wind 1.00 -0.15 -0.14 0.01 0.13 0.33 -0.34
Solar -0.15 1.00 0.96 -0.32 -0.16 -0.34 -0.08
Sim. solar -0.14 0.96 1.00 -0.28 -0.10 -0.29 -0.06
Nuclear 0.01 -0.32 -0.28 1.00 0.48 0.89 0.28
Load 0.13 -0.16 -0.10 0.48 1.00 0.68 0.27
Production 0.33 -0.34 -0.29 0.89 0.68 1.00 0.14
Price -0.34 -0.08 -0.06 0.28 0.27 0.14 1.00

Table 5.2: Correlation matrix for the parameters in SE3, 2018-2020.

Load Production Price
SE1
Residual Load 0.47 0.23 0.42
Residual Production 0.57 0.95 0.26
SE2
Residual Load 0.38 -0.05 0.42
Residual Production 0.64 0.87 -0.07
SE3
Residual Load 0.70 -0.02 0.19
Residual Production 0.85 0.71 0.09
SE4
Residual Load 0.85 -0.08 0.41
Residual Production 0.80 0.54 0.02

Table 5.3: Correlation for residual load and residual production to total load,
total production and price. For every price area, 2018-2020.
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Min (MWh) Mean (MWh) Max (MWh) SD
SE1
Wind 0.00 304.76 1341.61 294.64
Solar 0.00 0.22 3.72 0.50
Sim. solar 0.00 0.46 6.08 0.93
Load 738.89 1153.00 1754.18 187.85
Production 337.43 2480.70 4892.01 969.58
SE2
Wind 0.27 864.98 3276.15 729.52
Solar 0.00 1.64 27.16 3.68
Sim. solar 0.00 3.06 43.84 6.21
Load 1036.27 1803.48 3065.97 368.48
Production 924.50 5122.07 9166.34 1454.55
SE3
Wind 0.38 798.86 2630.67 595.63
Solar 0.01 21.61 305.67 45.26
Sim. solar 0.00 43.82 540.43 83.01
Nuclear 2255.88 6759.41 8671.27 1473.52
Load 4809.68 9443.67 16709.48 2133.15
Production 3360.02 9285.77 13385.94 1983.82
SE4
Wind 0.53 471.37 1478.27 367.34
Solar 0.01 9.28 135.55 19.51
Sim. solar 0.00 19.22 216.13 35.50
Load 1311.05 2644.62 4988.43 638.35
Production 52.89 767.77 2006.47 425.48

Table 5.4: Characteristics for time series in SE1, SE2 and SE4, 2018-2020.

Comparing table 5.1 with table 5.3 we see that the residual load correlates more
with the price than the load, meaning that removing solar and wind production
from the load time series yields a parameter with higher correlation with price.
Doing the same analysis on SE3 by comparing 5.3 with 5.2 we get the opposite
result. Here, the correlation coefficient is 0.27 between load and price, while it
is 0.19 for residual load and price. The same pattern goes for production, in
SE3 the full production time series correlates more to the price while the rest
of the price areas show a higher correlation for residual production. Note that
for SE3, nuclear generation is included in the load and production but removed
from the residual load and residual production.
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SE1 SE2 SE3 SE4
Wind/Production 0.12 0.17 0.09 0.61
Solar/Production 0.00 0.00 0.00 0.01
Nuc/Production 0.00 0.00 0.73 0.00

Total production (GWh) 65 252 134 730 244 250 20 195
Residual production (GWh) 57 230 111 940 44 872 7 552
Wind/Load 0.26 0.48 0.08 0.18
Sim solar/Load 0.00 0.00 0.00 0.01
Nuc/Load 0.00 0.00 0.72 0.00

Total Load (GWh) 30 329 47 439 248 406 69 564
Residual Load (GWh) 22 300 24 606 48 441 56 660

Table 5.5: Total share of production, with total production, residual production,
load and residual load (all in GWh), 2018-2020.

Table 5.4 shows the minimum, mean and maximal value of the time series wind,
solar, simulated solar, load and production. Characteristics of the price time
series are presented in chapter 5.1.1. In general, we can see that SE3 and SE4
have a higher electricity demand than what is possible to generate in the areas,
while SE1 and SE2 have a production surplus. Moreover, SE1 and SE2 both
have low levels of solar. In SE3 the generation mix consist of 73 % nuclear on
average, while wind power makes up the largest part of electricity production in
SE4. What is common to all energy sources is that solar production constitutes
a very small part of the total production, where SE4 have the largest share of
solar relative to its total production. To confirm these values, table 5.5 show
wind, solar and nuclear share out of total production and load during the time
period 2018-2020. As previously stated, nuclear is the largest energy source in
SE3 while there is no generation from nuclear power in the other regions. Solar
production is low in all price regions.

5.1.1 Price characteristics

Figure 5.5 shows the distribution of prices in all price areas during 2018-2020.
All time series are rightly skewed, with extreme values in the right tail. Table
5.6 show additional characteristics which confirms the skewness. Furthermore,
the electricity price have a minimum below zero in all price areas. Overall, the
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Figure 5.5: Histogram for prices, 2018-2020.

prices follow a similar pattern in all price areas. For SE1 and SE2, the prices
are almost identical. This can be seen both by looking at the characteristics in
table 5.6 and in figure 5.6 where SE1 and SE2 have a very similar plot line.

During 2018-2020 all price areas follow a similar pattern throughout the year.
Figure 5.6 show that, on average, the prices are lower in April, May and June
compared to the rest of the months. This is even more visible in figure 5.7 where
it is clear that the price decreases as we get closer to July in all years, and that
the price starts to increase from July. Although the price varies throughout
the year, the daily pattern show the same characteristics all year. As shown in
??, on average the prices are generally low during the nights, having its peaks
before and after lunch and a bit lower during the middle of the day.

Table 5.7 show the results from testing the stationarity of the spot prices in all
price areas using the ADF test. The test reject the unit-root null in favor of
the alternative model in all price regions. Similar results were found doing the
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Min
(SEK/MWh)

Average
(SEK/MWh)

Max
(SEK/MWh) SD Kurtosis Skewness

SE1 -17.92 335.15 2573.41 175.35 5.14 0.13
SE2 -17.92 335.15 2573.41 175.35 5.14 0.13
SE3 -17.92 361.30 2584.07 180.85 9.01 0.61
SE4 -19.75 388.90 2584.07 184.64 8.71 0.65

Table 5.6: Price characteristics, 2018-2020.

Figure 5.6: Average prices for Jan-Dec, 2018-2020.



5.1. Time series characteristics 39

Figure 5.7: Average prices for Jan-Dec 2018, Jan-Dec 2019 and Jan-Dec 2020.

KPSS test, see table 5.8.

The transformed prices, Price∗, are less spread out than the original data and
have two distinct peaks. Figure 5.8 show a histogram over the prices in SE2,
SE3 and SE4. Price area SE1 is not included due to its similarities with SE2.
For λ = 50 the prices are more evenly spread out, making the two peaks less
clear to distinguish.

SE1 SE2 SE3 SE4
φ (h) 1 1 1 1
N 26 203 26 203 26 203 26 203
tADF -59.72 -59.72 -138.59 -172.95
P Value 0.00 0.00 0.00 0.00
Adjusted R2 0.97 0.97 0.94 0.92

Table 5.7: Results ADF test.
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(a) λ = 10 MWh.

(b) λ = 50 MWh.

Figure 5.8: Histogram showing transformed prices in SE2, SE3 and SE4 for
different values on λ, during 2018-2020.



5.2. Impact on electricity spot price 41

SE1 SE2 SE3 SE4
φ (h) 1 1 1 1
n 26 304 26 304 26 304 26 304
tKPSS 1.89 1.89 1.23 1.25
P Value 0.01 0.01 0.01 0.01
Adjusted R2 0.42 0.42 0.21 0.14

Table 5.8: Results KPSS test.

5.2 Impact on electricity spot price

As we can see in table 5.9, the installed capacity have grown a lot during the
last couple of years. It also clear that the levels are much higher in SE3 and
SE4, why we chose to analyze the results from those two price areas.

SE1 SE2 SE3 SE4 Total [MW]
2021-01-01 8.7 59.6 736.1 285.0 1089.4
2020-01-01 4.9 37.2 460.4 188.4 690.9
2019-01-01 4.2 21.6 275.8 110.0 411.6
2018-01-01 2.2 10.6 172.1 70.3 255.2

Table 5.9: Installed capacity (MW) solar power at the end of each year for all
price regions (1 Jan 2021 is installed capacity at the end of 2020).

5.2.1 Regime distribution in SE3

In table 5.10 the RS model estimates are shown for SE3 (2018-2020), using the
regression model in equation 4.6. The p-values are all very close to zero in both
regimes, so the results are statistically significant. The β-value for Solar have
the largest standard error relative to their beta-coefficient. Since the price time
series is transformed, the betas can be difficult to interpret. Further analysis on
the coefficients and what impact the different energy sources have on the price
levels, can be found in section 5.2.3.

Equation 5.1 show the transition probabilities. The probability of changing from
state 1 into state 2 is 4.46 % and 3.15 % the other way, which means that being
in any state means you will stay there with a high probability. As an example,
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β-coefficient Standard Error P Value
Regime 1 (SE3)
β
(1)
0 Intercept -11.8783 0.1739 0.00e+0
β
(1)
1 Wind/Production 4.1218 0.1877 7.47e-107
β
(1)
2 Solar/Production 4.5241 0.7798 6.57e-9
β
(1)
3 Nuc/Production 9.9988 0.1913 0.00e+0
β
(1)
4 Residual production 0.7410 0.0144 0.00e+0

Regime 2 (SE3)
β
(2)
0 Intercept 6.2846 0.2120 4.31e-193
β
(2)
1 Wind/Production -6.0500 0.2337 8.52e-148
β
(2)
2 Solar/Production -14.1889 1.3540 1.08e-25
β
(2)
3 Nuc/Production -3.3514 0.2212 7.62e-52
β
(2)
4 Residual Production -0.3249 0.0193 9.05e-64

Table 5.10: Estimates for SE3, 2018-2020.

figure 5.9 show the price level and the corresponding probability of being in R1
during the first week of September 2019 in SE3. Figure 5.10 show the sectioning
of the prices into the two states, with R2 being the state including most of the
high prices.

The results from evaluating the regime classification by the RCM test described
in section 4.2.4 is RCM(2)SE3 = 1.0823 indicating an adequate model that
manages to do a good regime classification.

PSE3 =

(
0.9554 0.0446
0.0315 0.9685

)
(5.1)

5.2.2 Regime distribution in SE4

Figure 5.11 show the results from running the RS model on SE4, resulting
in low p-values and errors. As in SE3, the standard errors are (relatively)
high for Solar/Production compared to the other energy sources. Looking at
the transition probabilities (equation 5.2), we see that there is a slightly lower
probability of staying in a regime compared to in SE3, although it still much
more likely than switching state into the other regime. Figure 5.11 show the
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Figure 5.9: Prices (left axis) and the probability of being in R1 (right axis),
during the first week of September 2019 in SE3.

Figure 5.10: Prices per regime in SE3 (2018-2020)
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β-coefficient Standard Error P Value
Regime 1 (SE4)
β
(1)
0 Intercept -1.7606 0.0352 0
β
(1)
1 Wind/Production -1.6542 0.0394 0
β
(1)
2 Solar/Production -1.7089 0.1617 4.19e-26
β
(1)
3 Residual production -0.3767 0.0521 4.79e-13

Regime 2 (SE4)
β
(2)
0 Intercept 3.7463 0.0283 0
β
(2)
1 Wind/Production -0.9942 0.0322 9.94e-210
β
(2)
2 Solar/Production -1.2727 0.1547 1.93e-16
β
(2)
3 Residual Production -1.2929 0.0461 4.13e-173

Table 5.11: Estimates for SE4, 2018-2020.

probability of being in St = 1 (R1) for one week in September 2019. For this
period, we see that the probability of being in R1 equals 1 (100 %) when prices
are low. Investigating the regimes for the whole time period, by viewing figure
5.12 we see that R1 includes lower prices while higher prices have a higher
probability of belonging to R2. Evaluation the model show that RCM(2)SE4 =
1.9205, which indicates that the model has well classified regimes.

PSE4 =

(
0.9423 0.0577
0.0498 0.9502

)
(5.2)

5.2.3 Energy sources impact on the electricity price

Since the prices are transformed according to equation 4.5, it is difficult to inter-
pret the values of the coefficients. Therefore, differentials of the transformation
is calculated as described in section 4.2.3.

For SE3 the graph in figure 5.13 show a rather constant pattern in R1 for all
generators as well as for nuclear in R2. On the other hand, in R2 we see that the
impact from solar and wind production is higher during daytime, with it peaks
in the morning and around 16:00-17:00. This is also the time of the day when
the prices are highest, as shown in figure ??. The price effect is (in absolute
terms) strongest from solar in R2, decreasing the price with an average of 96.44
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Figure 5.11: Prices (left axis) and the probability of being in R1 (right axis),
during the first week of September 2019 in SE4.

Figure 5.12: Prices per regime in SE4 (2018-2020).
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Figure 5.13: Differential pattern from wind ( ∂P∂W ), solar (∂P∂S ) and nuclear ( ∂P∂N )
power in SE3 for R1 and R2.

SEK/GWh. R2 is the state including most of the high prices. In periods of
lower prices, which is regime 1 the effect is not as prominent. Exact numbers
can be found in table A.1 in A.

As the production levels on average varies throughout the day, it is interesting to
evaluate the results while considering the different production amounts. Figure
5.14 show the adjusted values. We see that all generators tend to lower the
price, except from nuclear power in R1 (the purple graph and axis). In R2 (the
green plots) solar have the largest impact in the middle of the day, while wind
power show the lowest values, and thereby highest impact, during morning and
evening. Furthermore, the derivatives for solar are more negative in R2 than in
R1, which means seeing a larger impact in the high-price regime.

Figure 5.15 show the differentials pattern for SE4, and the results adjusted for
the hourly production level can be found in figure 5.16. Exact numbers can be
found in table A.2 in A. We see that for the data points in R1 wind production
have a lowering but rather stable impact on the prices (see the orange plot and
axis), while solar only have a lowering impact on daytime. This is reasonable
since solar have a very limited production level during the night. In R2 wind
production show a very volatile pattern, while solar decreases the prices during
the day with its peak around CET 10:00.
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Figure 5.14: Effect in hourly price levels (SEK/GWh) from wind, solar and
nuclear power in SE3 for R1 and R2, adjusted for production levels. All plots
use the left y-axis except for Nuclear in R1 using the right y-axis.

Figure 5.15: Differential pattern from wind and solar power in SE4 for R1 and
R2.
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Figure 5.16: Effect in hourly price levels (SEK/GWh) from wind, and solar
power in SE4 for R1 and R2, adjusted for production levels. All plots use the
left y-axis except for Wind in R1 using the right y-axis (in orange).
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Discussion

The results from analyzing the price time series show that the price have a
similar pattern in all price areas, although the production vary a lot. This can be
explained by the pricing system in Sweden, where energy is transferred between
the areas which makes prices reach towards an equilibrium price. Although, the
prices are not always equal due to grid limitations. It is a situation that needs
to be handled in the future, as renewable energy sources are taking a bigger part
of the total production all over the world. One reason is the demand for more
environmental friendly power, in combination with new technologies making it
possible to produce more, in new ways and at a lower cost. Unfortunately the
limitations on the grid decrease the transition pace towards a greener electricity
production.

As the results show, solar power still make up a very small part of the total
electricity consumption in Sweden, although it is growing at a fast pace. The
data in this thesis was limited to the years 2018-2020 for mainly two reasons.
First, a similar study was made in Germany using data from 2014-2015 and in
order to be able to compare our results with theirs, we did not want to use too
many years. Second, we were not certain that it would be better to extend the
model by including more years, since the levels of solar are almost insignificant
going only a few years back. Furthermore, the fact that solar power constitutes
to a very small part of the total production, can also make the results uncertain.
Especially in comparison to the German market.

In this project, we had some problem with selecting the value of λ in the price
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transformation. One of the reason why λ = 10 was chosen was due to the fact
that 1 euro was used in the German article, the article that we wanted to be
able to compare our results with. 10 SEK was assumed to equal 1 euro. The
authors of that article did not motivate the reason for using λ = 1 euro other
than "for simplicity reasons" and even after correspondence with the authors,
the reason was still not clear. In the end, the results were not significantly
affected by choice of λ in the price transformation. This was only investigated
in a small scale, and could be further examined.

The fact that solar power is a relatively small energy type might also have
affected the result. To reduce the impact from that, we decided to do the
analysis on SE3 and SE4 being the two price areas with most installed capacity
(MW) for solar power in Sweden. Still, the difference between SE3 and SE4
is not insignificant since the installed capacity is more than doubled in SE3
compared to SE4, which is seen in table 5.9. However, the impact on the results
was not further investigated in this thesis. The same table also show that the
total amount of installed capacity have had a lot of growth the last years, with
very small levels in the beginning of the selected study period, especially in SE4
which also might have affected the results.

The result show a price lowering effect on the daily price pattern from increasing
solar power in both SE3 and SE4. In SE3, the impact is larger in R2. In SE4,
the impact is on the other hand larger in R1. As mentioned above, the level
of solar production (capacity) is smaller in SE4 and regime 1 is the state with
most of the low prices which occur mainly during the night. This means that
the solar production and corresponding prices included in R1 in SE4 is not very
interesting to investigate. As we are interested in investigating the electricity
price changes from increasing solar power, it is naturally most important to
investigate the hours when we actually have sunlight. In that sense, it is SE3
(and R2 where we have higher prices) that we can assume give us the most
accurate results.

6.1 Further research

This is a project that could be extended in many ways. For example, researchers
interested in understanding the impact of hydro power on the Swedish electricity
prices could change the model to include a hydro power parameter. There
are several ways to improve the model to gain greater understanding of the
impact from solar production too. As earlier mentioned, a decision was made
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to perform the study on the years 2018-2020. As soon as new simulations on
the solar production has been made, the year 2021 can be added to the model.
In that way, it is possible to see whether the trends discovered in this thesis
are still valid as the time series from 2021 are added to the model. Although,
adding data from 2021 could cause some problems. It was a year with extremely
high electricity prices caused mainly by high prices on natural gas in Europe.
Limitations on the Swedish grid also caused large price differences between the
price areas. The extreme values and the volatility in the data would then have
to be considered. Other improvements could be to do new simulations on solar
production for the dates in 2018 that were missing.

The main drawback in this study is that the derivatives showing the solar pro-
duction impact on the electricity spot price is only valid for the time period that
we used in this study. This means that, as the production continue to grow,
there are no guarantee that the effect on prices will continue in the same pace
further on. To solve this, a first step could be to investigate the pattern in coun-
tries who have a higher share of renewable energy, such as Germany or Spain. In
theory, at a certain point in time the merit order effect will be lower. When the
electricity generation mix consists mainly of RES, the impact of adding more
RES will not affect the price on the same levels as today. Another approach
would be to implement an RS Autoregressive model that make the price not
only depend on factors such as load or production, but also linearly on its own
previous values. It could also be good to have a model where it is possible to
put weight on the different years, for example it might be good to put more
weigh on years more recent in time than further back.

To further deepen the analysis of this thesis, it would be interesting to investigate
future levelized cost of electricity (LCOE) for the price levels computed in this
project. The results from this thesis tell us about the price levels today if we
would have other levels of production, and therefore making a prediction of
LCOE based on only this would not be a very robust way to go. Although
the values could be used as one scenario together with other possible future
outcomes.
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Conclusion

This study presents a model that can help to understand the impact from solar,
wind and nuclear on the daily Swedish electricity spot price pattern. The result
show that an increase of solar power have a price lowering effect on the daily
price pattern in both SE3 and SE4. In SE3 wind production tend to lower the
spot price even more.

One drawback with this project is the fact that solar power is still considered a
small contributor to the total energy production in Sweden. This complicates
the work of making good models and analyzes on the results. As a consequence
of that, not all price areas were analyzed in this study. As more photovoltaics
is being installed, this study can advantageously be performed again including
all price areas.
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Appendix A

Results

A.1 Daily price pattern
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Figure A.1: Average price in SE1 per hour.

Figure A.2: Average price in SE2 per hour.

Figure A.3: Average price in SE3 per hour.
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A.2 Time series per year and price area
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(a) SE1 2018 Hourly wind, solar and
nuclear production in price area SE1.

(b) SE1 2018 Hourly electricity price,
total load and total production in

price area SE1.

(c) SE1 2019 Hourly wind, solar and
nuclear production in price area SE1.

(d) SE1 2019 Hourly electricity price,
total load and total production in

price area SE1.

(e) SE1 2020 Hourly wind, solar and
nuclear production in price area SE1.

(f) SE1 2020 Hourly electricity price,
total load and total production in

price area SE1.

Figure A.4: Final time series for 2018, 2019 and 2020 in price area SE1.
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(a) SE2 2018 Hourly wind, solar and
nuclear production in price area SE2.

(b) SE2 2018 Hourly electricity price,
total load and total production in

price area SE2.

(c) SE2 2019 Hourly wind, solar and
nuclear production in price area SE2.

(d) SE2 2019 Hourly electricity price,
total load and total production in

price area SE2.

(e) SE2 2020 Hourly wind, solar and
nuclear production in price area SE2.

(f) SE2 2020 Hourly electricity price,
total load and total production in

price area SE2.

Figure A.5: Final time series for 2018, 2019 and 2020 in price area SE2.
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(a) SE3 2018 Hourly wind, solar and
nuclear production in price area SE3.

(b) SE3 2018 Hourly electricity price,
total load and total production in

price area SE3.

(c) SE3 2019 Hourly wind, solar and
nuclear production in price area SE3.

(d) SE3 2019 Hourly electricity price,
total load and total production in

price area SE3.

(e) SE3 2020 Hourly wind, solar and
nuclear production in price area SE3.

(f) SE3 2020 Hourly electricity price,
total load and total production in

price area SE3.

Figure A.6: Final time series for 2018, 2019 and 2020 in price area SE3.
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(a) SE4 2018 Hourly wind, solar and
nuclear production in price area SE4.

(b) SE4 2018 Hourly electricity price,
total load and total production in

price area SE4.

(c) SE4 2019 Hourly wind, solar and
nuclear production in price area SE4.

(d) SE4 2019 Hourly electricity price,
total load and total production in

price area SE4.

(e) SE4 2020 Hourly wind, solar and
nuclear production in price area SE4.

(f) SE4 2020 Hourly electricity price,
total load and total production in

price area SE4.

Figure A.7: Final time series for 2018, 2019 and 2020 in price area SE4.
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A.3 Differentials
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Regime 1 (SE3) Regime 2 (SE3)
Hour ∂Price

∂Wind
∂Price
∂Solar

∂Price
∂Nuclear

∂Price
∂Wind

∂Price
∂Solar

∂Price
∂Nuclear

00 -24.25 -19.17 50.04 -21.08 -78.07 -2.18
01 -24.74 -19.60 50.40 -21.12 -78.12 -2.22
02 -25.16 -19.95 51.03 -21.26 -78.57 -2.25
03 -23.53 -18.49 50.17 -21.43 -78.21 -2.61
04 -23.20 -18.34 47.76 -23.00 -80.98 -3.77
05 -23.93 -19.32 43.44 -28.80 -97.94 -5.88
06 -23.96 -19.30 44.13 -39.07 -132.65 -8.04
07 -22.41 -18.07 40.97 -39.67 -137.27 -7.31
08 -23.15 -18.76 41.01 -35.14 -121.48 -6.51
09 -23.34 -18.96 40.63 -33.69 -115.73 -6.49
10 -23.94 -19.56 40.05 -32.99 -112.75 -6.54
11 -24.54 -20.13 39.96 -31.59 -108.47 -6.10
12 -24.43 -19.95 40.98 -30.70 -106.24 -5.65
13 -25.11 -20.55 41.60 -27.93 -98.15 -4.64
14 -25.29 -20.69 42.03 -29.88 -105.21 -4.90
15 -25.14 -20.47 43.07 -31.62 -111.52 -5.13
16 -24.38 -19.80 42.59 -35.17 -123.65 -5.83
17 -23.94 -19.52 40.65 -35.08 -121.85 -6.31
18 -23.37 -19.05 39.73 -26.31 -91.96 -4.55
19 -23.54 -19.17 40.27 -23.40 -82.00 -3.97
20 -23.21 -18.69 42.86 -22.21 -79.35 -3.27
21 -23.06 -18.33 45.95 -20.61 -75.97 -2.25
22 -24.43 -19.41 48.99 -21.14 -77.70 -2.39
23 -24.13 -19.10 49.31 -20.79 -76.71 -2.25

Table A.1: Derivatives SE3, 2018-2020.
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Regime 1 (SE4) Regime 2 (SE4)
Hour ∂Price

∂Wind
∂Price
∂Solar

∂Price
∂Wind

∂Price
∂Solar

00 -282.90 -293.62 -62.89 -105.06
01 -285.75 -296.56 -70.77 -115.60
02 -294.44 -305.56 -80.37 -128.44
03 -283.77 -294.51 -66.28 -109.30
04 -266.13 -276.23 -65.58 -108.75
05 -267.15 -277.28 -88.68 -140.86
06 -282.93 -293.56 -119.05 -189.43
07 -269.46 -279.61 -105.98 -174.85
08 -251.48 -261.06 -93.00 -154.98
09 -234.93 -243.96 -80.88 -137.74
10 -218.66 -227.16 -69.79 -122.38
11 -214.60 -222.99 -56.05 -103.29
12 -205.96 -214.07 -49.81 -94.68
13 -202.60 -210.61 -45.03 -87.08
14 -205.99 -214.13 -47.14 -91.64
15 -199.32 -207.22 -55.84 -105.68
16 -202.65 -210.66 -61.14 -115.80
17 -197.10 -204.89 -77.80 -136.57
18 -200.92 -208.80 -74.18 -125.08
19 -207.40 -215.52 -72.13 -117.74
20 -232.16 -241.12 -59.33 -100.32
21 -239.51 -248.69 -48.70 -86.47
22 -268.88 -279.13 -52.40 -91.67
23 -271.35 -281.66 -59.70 -100.41

Table A.2: Derivatives SE4, 2018-2020.
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