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Abstract

The interest in autonomous surveillance has increased due to advances in au-
tonomous systems and sensor theory. This thesis is a preliminary study of the
cooperation between ugvs and stationary sensors when monitoring a dedicated
area. The primary focus is the path planning of a ugv for different initial intru-
sion alarms. Cell decomposition, i.e., spatial partitioning, of the area of surveil-
lance was utilized, and the objective function is based on the probability of a
present intruder in each cell. These probabilities were modeled through two dif-
ferent methods: ExpPlanner, utilizing an exponential decay function. Markov
planner, utilizing a Markov chain to propagate the probabilities. The perfor-
mance of both methods improves when a confident alarm system is utilized. By
prioritizing the direction of the planned paths, the performances improved fur-
ther. The Markov planner outperforms the ExpPlanner in finding a randomly
walking intruder. The ExpPlanner is suitable for passive surveillance, and the
Markov planner is suitable for ”aggressive target hunting”.
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Notation

Sets

Notation Meaning

X Set of all conceivable states, i.e. a generic state space
Xf ree Set of all known states located within the free, unoccu-

pied space
Xocc Set of all known invalid states located within obstacles

or other invalid space
U(x(t)) Set of all possible actions from state x(t)

U All feasible actions over all states
K Index set of known, predefined, free nodes
S Index set of known, predefined free information re-

gions
Sx(t) Index set of all free information regions observable

from state x(t)
Sperim Index set of all free information regions along the

perimeter of scene
Smax Index set of information region(-s) with maximum tar-

get probability
S+ Index set of all free information regions with non-zero

probabilities
Mx(t) Index set of potential succeeding states that the ugv

can move to from state x(t)
Hx(t) Set of possible paths from state x(t), i.e. the whole

search tree from state x(t)
Gi Index set of permitted subsequent information re-

gions from region i
S The theoretical Markovian state space

xi



xii Notation

Symbols, functions & operators

Notation Meaning

x(t) The ugv’s state at time t
x̃(t) The ugv’s intermediate state after the probability up-

date but before the motion update at time t
ϕ(t) The ugv’s position, or coordinates, at time t
ci The coordinates to the centroid of region i
u(t) An action that changes the ugv’s state x(t)

fnext(x(t), u(t)) The motion update function, used in updating the
ugv’s state

γ(t) The region for which the target is located at time t
|Z| The cardinality of set Z, i.e., the size of set Z
N Number of free information regions, i.e., the cardinal-

ity of set S
Np Number of free perimeter information regions, i.e.,

the cardinality of set Sperim
K Number of free nodes, i.e., the cardinality of set K

pi(t), p
†
i (t) The probability of target being in information region i

at time t, prior resp. posterior to observation
p(t), p†(t) The target distribution at time t, prior resp. posterior

observation
vk , vi Position vector to node k resp. centroid of region i
pmax Index of the region with maximum target probability
Γ The probability update algorithm
λi The last time information region i was observed
T Time constant in seconds used as a tuning parameter
fs The samplings frequency in the number of steps the

ugv takes per second
Ts The sampling time in seconds between the ugv’s steps
h A path the ugv can move along, defined as a finite

sequence of states
h(t) A state in path h at time, or index t
m The prediction horizon of each path h
F (h) The failure probability of path h
V (h) The objective function
h?(t) The optimal path for the chosen horizon
r The detection radius of the ugv’s ambiguous sensor

configuration
P The transition probability matrix, or the transition ma-

trix
Xᵀ, xᵀ Transpose of matrix X or vector x
Xij Is the element at row i and column j in matrix X

gdc(Z) The greatest common divisor of the elements in set Z



Notation xiii

Acronyms & Abbreviation

Acronyms Meaning

ipp Informative path planning
rrt Rapidly exploring random tree
ugv Unmanned ground vehicle
4cg Four-connected graph
foi The Swedish Defence Research Agency
sv. The Swedish translation
amös Autonom övervakning med samverkande sensorer – a foi-

project
rhc Receding horizon control
cpu Central processing unit
fab Forward and backward





1
Introduction

The primary focus of this master’s thesis is the development, implementation,
and evaluation of path planners, with an appropriate objective function, collabo-
rating with stationary alarm systems for the considered application of informa-
tive path planning (ipp) [1]. The problem is to plan a path for an unmanned
ground vehicle (ugv) tasked to search for an intruder in an area of surveillance.
This chapter presents the basis of this project done in collaboration with the
Swedish Defence Research Agency (foi) and begins with a brief background
and motivation in Section 1.1. The purpose is presented in Section 1.2. The
problem is formulated in Section 1.3 and the evaluation criteria are presented
in section 1.4. Finally, the assumptions and delimitations used are presented in
Section 1.5.

1.1 Background & motivation

The last couple of decades have seen evident progress in the research and devel-
opment of autonomous platforms, e.g., self-driving cars [2]. This progress can not
only be seen in the civil sectors but also the military sectors, with the increased
investments in the research and development of unmanned vehicles for military
usage on an international scale [3].

The advantages of using ugv’s for surveillance are numerous; one prominent ad-
vantage is removing direct danger for patrolling security personnel or soldiers
in a military scenario. Deployed military personnel can focus on other impor-
tant tasks during missions instead of having multiple personnel patrol, e.g., the
surroundings of an encampment. The ugv could be used to monitor vital instal-
lations (sv. skyddsobjekt) against possible intruders. Thus, it is necessary that

1



2 1 Introduction

the ugv’s path planning is robust and reliable. The ugv should monitor the ded-
icated area efficiently while simultaneously avoiding obstacles. The performance
of the ugv should not vary much.

Research on the design of multi-sensor surveillance systems of collaborative mo-
bile and stationary units has been conducted at foi, in the autonomous surveil-
lance project, Autonom övervakning med samverkande sensorer (amös) [4]. The
multi-sensor surveillance systems were designed to autonomously detect, classify
and pursue threats, such as intruders, in a militarily challenging surveillance sce-
nario. amös examined, e.g., different positioning methods for aerial multi-sensor
systems and developed methods to detect and track moving objects, among other
things.

amös inspired this thesis to investigate how a path planner for an arbitrary ugv
collaborating with a stationary alarm system should be designed. The certainty
of alarm systems, i.e., their ability to locate an intrusion, varies between alarm sys-
tems in general. Thus, alarm systems with different certainty are evaluated. The
alarm systems provide the path planner with initial knowledge of the intruder’s
location. Subsequently, it is proposed that the intruder’s location is updated
through different probabilistic models. These models are designed depending on
the established knowledge of the intruder’s movement. Thus, a probabilistic ob-
jective function is a suitable choice. The models are: The ExpPlanner, modeling
an exponential decay of the target distribution. The Markov planner, modeling
the target distribution based on Markov chains.

The fundamental principles of Bayesian Search presented in [5] are another in-
spiration. In particular, the one-sided search problem, search theory, and the
usage of Markov models to describe motion. The differences between [5] and this
work are centered around the search method and the representation of the target
probability density. The related theories are presented in Sections 2.2 and 2.3.3.

The notion of representing target position through Markovian states has been
done before [6]. The idea of minimizing some function of the probability of not
observing a target was also studied in [6], albeit not the same way as this thesis.
[6] utilizes an iterative Forward And Backward (fab) to compute the optimal
search plan when the target’s motion is modeled by a discrete space and time
Markov chain.

In the case of monitoring the area of a permanent vital installation, the area’s
layout is predefined, i.e., the positions of the obstacles are known. In the case
of monitoring the perimeter around a temporary encampment, the area is most
likely unknown to the ugv. Therefore, the ugv will need to explore the area of
surveillance in addition to monitoring it, i.e., the positions of the obstacles are
unknown. Based on these two predominant cases, the ”mission” is divided into
different levels according to its complexity:
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Level 1 – Monitoring the area of surveillance without obstacles.

Level 2 – Monitoring the area of surveillance with known obstacles that do not
block the ugv’s line of sight.

Level 3 – Monitoring the area of surveillance with known obstacles that block the
ugv’s line of sight.

Level 4 – Monitoring the area of surveillance with unknown obstacles that block
the ugv’s line of sight.

This thesis study only the first three levels of mission complexity.

As previously mentioned, the thesis’s primary focus is the development, imple-
mentation, and evaluation of path planners collaborating with stationary alarm
systems. Thus, the details of the ugv’s controller were omitted.

1.2 Purpose

This master’s thesis is done in collaboration with foi in Linköping and can be
seen as a continuation of amös [4]. The purpose of this thesis is to serve as a
possible initial basis for ambiguous ipp implementations and the ugv-aspect of
foi’s continued evaluation and development of autonomous surveillance.

1.3 Problem formulation

Alongside the main purpose previously mentioned, the following problem state-
ments will be answered:

• How should the path planner for an autonomous ugv be designed to en-
sure a sufficiently robust and efficient behavior when monitoring different
(complex) scenarios?

– How should the path planner’s objective function be designed to en-
sure a sufficiently robust and efficient behavior?

• Which of the examined methods results in the highest likelihood to detect
an intruder (or similar measurement) for the different examined complex
scenarios?

– Are there any improvements to the performance by introducing knowl-
edge of the target’s movement?

These problem statements will be answered by evaluating and comparing some
criteria specified in Section 1.4 below.
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1.4 Criteria

The possible criteria used to evaluate the produced path planners are listed be-
low:

• The mean time it takes to detect an intruder and its standard deviation.

• Robustness: How consistent is the method’s performance, e.g., how com-
mon are outliers.

• The method’s computation time.

1.5 Assumptions & delimitations

The following assumptions are made to simplify the circumstances. The simplifi-
cation is due to the limited time.

• The ugv’s position is known.

• The ugv will move on a flat surface, i.e., a two-dimensional plane.

• The environment configuration for which the ugv is deployed guarantees
motion without slip and no external interference.

• The specification of the sensor components used by the ugv is left ambigu-
ous. The ugv has a 360◦ two-dimensional field of view, with a fixed radius:
a detection radius, denoted r. The resulting circle centered on the ugv is
called the detection area. The ugv’s sensor configuration can detect obsta-
cles and intruders within the detection area.

• The ugv’s kinematic properties are that of a holonomic rigid body.

• There is at most one mobile target with an unknown location present in the
area of surveillance.

• The individual probabilities of the target distribution are independent, and
the developed methods are based on these.



2
Theory

The following chapter presents the theory on which this master’s thesis is based.
Different quantities, notations, and terminology used throughout the master’s
thesis are presented.

The chapter begins with an introduction to discrete path planning in Section 2.1,
followed by the informative path planning (ipp) in Section 2.2. These are funda-
mental for the thesis, which is a form of application of discrete ipp. Section 2.3
presents the theory related to the developed model’s spatial and informative par-
titioning. Section 2.4 presents the theoretical basis of the ExpPlanner. The Exp-
Planner is used as a baseline for the final Markov planner. The theory related to
the Markov planner is relayed in Section 2.5.

2.1 Discrete path planning

The considered systems throughout the thesis are discrete both in time and space.
A straightforward approach to describe the basis of many planning problems is
the discrete feasible planning model that uses state-space models [7, Chapter 2.1].
Different planning models could be described through reasonable extensions of
the discrete feasible planning model. Each unique configuration of the ”world”
is called a state, denoted x, and all conceivable states form the set X, called state
space. The obtained state space must be countable – each state can be assigned
a unique integer – for the discrete planning model to be feasible. It is also essen-
tial to ensure that only relevant information is included when defining the state
space. Failing in doing so could lead to a solvable planning problem converting
to an unsolvable one. X needs to be large enough to ensure that the task at hand
is solvable. X is comprised of the free state space, Xf ree and the occupied state

5



6 2 Theory

space, Xocc, i.e.,

Xf ree ⊆ X, Xocc ⊂ X ⇒ X = Xf ree ∪ Xocc. (2.1)

By applying actions, denoted u, the planner can transform the configuration of
the ”world”. This configuration change can be seen as a new state x(t + 1) is
generated from the current state x(t) through a so-called state transition function
fnext . Here, fnext is used as a motion update function. This motion update is done
through the motion update equation:

x(t + 1) = fnext(x(t), u(t)). (2.2)

All actions applicable from state x(t) form the action space for each state x(t)
denoted U(x(t)) and u(t) ∈ U(x(t)). The same action may be applicable in multiple
consecutive states, i.e., for specific x(t), x(t + 1) ∈ X; U(x(t)) and U(x(t + 1)) are not
necessarily disjoint, U(x(t)) ∩ U(x(t + 1)) , ∅. Hence, it is beneficial to define the
set U, formed from all possible actions over all states:

U =
⋃
x(t)∈X

U(x(t)). (2.3)

Furthermore, a set of goal states Xgoal ⊂ Xf ree is often defined for planning prob-
lems. The planning algorithm is tasked to find a finite sequence of actions that
transform the initial state x0 to the goal to some goal state Xgoal .

2.1.1 Receding horizon control

Receding horizon control (rhc) is a common control strategy for industrial ap-
plications and is based on optimal control. rhc is widely acknowledged as a
successful and applicable control theory in academia [8]. The fundamental con-
cept of rhc revolves around a fixed finite prediction horizon m. At each time
instance t, the optimal control sequence for the time interval [t, t + mTs] is ob-
tained, where Ts is the sample time. Only the first control signal in the optimal
control sequence is utilized as the control signal at time t, the rest is discarded.
This is repeated for the subsequent time instances, e.g., for the succeeding time
instance t + Ts is the first control signal from the optimal control sequence on the
time interval [t + Ts, t + (1 + m) Ts] used as the control signal at time t + Ts [8].

2.1.2 Search algorithms

Graph search algorithms are commonly used when searching for feasible plans
in a 2D grid. A common form of a grid graph in 2D is the ”four-connected grid
graph” (4cg) and is presented in Figure 2.1. A finite 4cg is known as a ”square
grid graph” [9].
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Figure 2.1: An illustration of the connectivity between the discrete points of
the 4cg.

An important requirement for any search algorithm is to be systematic, including
the search algorithms presented in this section below. Finite graphs are restricted
either by a perimeter or a search horizon, e.g., rhc. For finite graphs, the require-
ment of systematic search algorithms is that the algorithm will visit every reach-
able state while keeping track of visited states. It is sufficient to ensure that no
redundant exploration is done for a search algorithm to be systematic. The fol-
lowing search algorithms are the two examined search algorithms that worked as
a basis for the final search algorithm used in this thesis. These are both forward
search type, with different sorting functions for the used queue q [7].

Breadth-first – First-In, First-Out

This search algorithm sorts q according to the first-come-first-served principle,
often called First-In, First-Out (FIFO ) queue. The breadth-first approach results
in a uniform expansion, i.e., all plans of depth k must be examined before any
plan of depth k + 1 is examined [7].

Depth-first – Last-In, First-Out

This search algorithm sorts q according to the last-come-first-served principle,
often called Last-In, First-Out (FIFO ) queue. The depth-first approach results
in an aggressive graph search; that quickly expands straight for the depth of the
graph [7].
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2.2 Informative path planning

When addressing the problem of planning suitable paths for autonomous vehi-
cles dedicated to surveillance, it is a fundamentally sound approach to plan a
path that yields the most ”information” about the monitored area and potential
targets within. The problem of finding the path that yields the most ”informa-
tion gain” is called informative path planning (ipp) [1]. It can be viewed as a
subclass of the traditional motion planning problem, only with a different type
of performance criteria. ipp seeks the path that would yield the most informa-
tive measurements, contrary to traditional motion planning, which usually plans
towards a goal state or a set of goal states while continuously optimizing an objec-
tive function, e.g., the shortest path to the goal states [10]. The prospective gain in
knowledge or ”information” depends on what is already known or collected, i.e.,
ipp makes path-related decisions based on the prediction of future ”information
gain” from measurements [1].

Bayesian search

The Bayesian search in [5] uses a gradient search method (using gradient descent),
and different particle filters represent the target probability density. In this thesis,
graph search algorithms are utilized and the target probability distribution is
represented as probabilities distributed between predefined discrete regions, as
described in Section 2.3.

One-sided search problem is a category of search problems where only the searcher
(here: the ugv) has a strategy while the target does not, i.e., the target does not
react to the search. Search theory aims to optimize the distribution of limited
resources during a search for a target, given prior knowledge of the distribution
of the target’s position [5]. Planning based on maximizing the probability of de-
tecting a target is comparable to ipp if the ”information gain” of ipp is chosen as
the update of the (prior) target probability distribution after an observation, see
Section 2.3.3.

2.3 Model – Spacial and informative partition

This section describes the model used as a foundation throughout this thesis.
Configuration space is the state space for motion planning, and contrary to the
state space X for discrete path planning, described in Section 2.1, the configu-
ration space is a set of possible transformations applicable on the ugv [7]. The
concept of holonomic and nonholonomic systems are presented in Section 2.3.1,
followed by the theoretical basis of spatial partitioning or cell decomposition in
Section 2.3.2. Theory concerning the definition and quantification of the informa-
tion measurement is briefly mentioned in Section 2.3.3. Finally, in Section 2.3.4
is the essential graph theory relaid.
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2.3.1 Holonomic and nonholonomic systems

A robotic mechanism is defined as a composition of perfectly rigid bodies con-
nected ideally between themselves at joints. When describing the kinematics of
a robotic mechanism, one common approach is to describe the joint kinematics,
i.e., the freedom of motion between bodies within the robotic mechanism. A joint
where the connected bodies constrict their relative motion is called a kinematic
joint. This constraint of relative motion (usually) stems from the connected bod-
ies’ geometric properties. The majority of these constraints associated with the
kinematic joints can be expressed as equations of only the joint position variables,
called holonomic constraints. Constraints that cannot be expressed solely with
the joint position variables but also incorporate the time derivative of at least one
of the position variables are called nonholonomic constraints [11, Chapter 2.3].
Concisely, the robotic mechanism is under holonomic constraints if its orienta-
tion is not considered. Thus, the robot can move in whichever direction; it is
omnidirectional.

2.3.2 Spatial partition

One common approach to solve motion planning problems when the occupied
configuration space is polygonal is cell decomposition [12–14]. Cell decompo-
sition is defined as the partitioning of the ”space”, i.e., the area of surveillance,
into non-overlapping cells [7, Chapter 6.3]. ”Suitable” cell decomposition must
satisfy three criteria:

1. It should be trivially easy to connect two separated points within a cell. E.g.,
with every cell being convex, a straight line can be drawn between any two
points within each cell, with the whole line segment still within the cell.

2. Information about each cell’s neighbors, i.e., the cells’ adjacency informa-
tion, must be easily extracted to build a roadmap. A roadmap is defined as
a graph with a sufficient number of paths such that any motion planning
query is efficiently solvable.

3. Given two points ρ1 and ρ2, there exists an efficient way to determine which
cells contain them.

If these criteria are satisfied, the cell decomposition reduces the motion plan-
ning problem to a graph search problem between the partitioned cells [7, Chap-
ter 6.2.2]. After partitioning the surveillance area into cells, a suitable path, e.g., a
coverage path or a simple discrete path between measuring locations within each
cell, can be computed to manage the internal travel or movement within each cell
[12, 15].

A version of cell decomposition in 2D is a uniformly spatial partition of the world
into non-overlapping, square cells. The difference comes in the usage of the parti-
tion. Contrary to how cell decomposition simplifies a motion planning problem
to a graph search problem, spatial partitioning can also simplify the information
gathering; by discretizing the measurements of the information quantities to a
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single value for each cell and approximating a complete collection of all informa-
tion within the cell if the cell’s centroid is observed, described in Section 3.1.

2.3.3 Quantifying information

As previously mentioned in Section 2.2, ipp revolves around finding the path
that yields the most ”information gain”. The general convention of ”information
measurement” for ipp is the information matrix I , which is the inverse of the
covariance matrix of sensor measurements [10]. An alternative to this is simply
the combination of the probability of a present target and cell decomposition.
By modeling the probability of a present target distributed between the cells,
an approximation of the target’s location is obtained and used as information
measurements.

2.3.4 Graph configuration

Network science treats how entities are connected. These connections are typi-
cally represented as graphs. The graphs are made up of nodes connected to other
nodes through a link or edge [16]. Figure 2.2 shows examples of an undirected
and a directed graph presented.

1 2

34

Node

edge

(a) Undirected graph

1 2

34

Node

edge

Self-edge

(b) Directed graph

Figure 2.2: Example of an undirected graph and a directed graph with basic
terminology.

Definitions

Definitions related to network science and graphs are presented below [16].

Definition 2.1 (Adjacency matrix). Consider a system with N nodes. Then the
systems adjacency matrix, denoted A, is an N -by-N matrix with its elements
defined as;

Aji =

1, if there is a connection from node j to node i
0, otherwise

. (2.4)
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For undirected graphs the matrix A is symmetric; i.e., Aᵀ = A.

Note: The convention of A varies between literature. Here, row node j points to
column node i.

The two graph examples in Figure 2.2 have the following adjacency matrices:

(a) Aa =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 , (b) Ab =


0 1 1 0
1 1 1 0
0 0 0 1
1 0 1 0

 .
Note that for undirected graphs, the elements in the main diagonal of the ad-
jacency matrix A are zero. This characteristic is also true for directed graphs
without self-edges. The elements in A’s main diagonal are Aii , i = 1, .., N , i.e.,
node i points to node i, as per (2.4).

Definition 2.2 (Strongly connected component). A group of nodes within a di-
rected graph that fulfills the requirement that any node is reachable from any
other node by following the directions of the edges are called a strongly con-
nected component.

Definition 2.3 (Irreducible adjacency matrix). If the whole directed graph forms
a strongly connected component, the adjacency matrix A is said to be irreducible.

Definition 2.4 (Absorbing node). A node with no outgoing edges is called an
absorbing node.

The directed graph in Figure 2.2b is also a strongly connected component and
thus is Ab irreducible. Edges can have an associated weight attached to them.
These weights could symbolize a cost to traverse that specific edge. Weights are
often depicted as a (numeric) value beside the associated edge in the graph [16].

2.4 Exponential decay

A common approach when processing and handling temporal data is deteriorat-
ing the importance of the collected data based on its age, i.e., how much time has
passed since it was recorded, using a decay function [17]. One popular decay
function is the exponential decay

f (a) = e(−βa), (2.5)

where a is the data’s age and β is the decay rate. With the mean lifetime of the
data as τ , then β = 1/τ [17].
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2.5 Markov processes

In modern probability theory, it is well-established that previous outcomes influ-
ence the prediction of future events and should be considered in most real-world
cases for stochastic processes. Markov processes are fundamental in understand-
ing stochastic processes and the relation between past and future events [18].
Markov processes are used in various fields, e.g., meteorology, DNA analysis, and
economic phenomena [18–21].

A Markov process is, in fact, a stochastic process that fulfills the Markov property,
described in Definition 2.5 [22].

Definition 2.5 (Markov property). The Markov property declares that if the
state of a stochastic process at a given time instance t is known, then its past and
future states, relative to this time instance t, are independent. That is; if the state
x(t) of the process is known at a given time instance t, then the prediction of its
future state in regards to time instance t, denoted x(t + 1), does not change due
to any additional information about the past states x(t̃), t̃ < t.

The distinction between Markov chains and Markov processes is incoherent in
the studied literature, and it seems to be an established flaw within the field
[23, 24]. What is clear is that Markov chains are defined as a discrete version
of the Markov process. The vague distinction is whether the time [24] or the
state space (index set) [20, 22] is discretized. There is no particular agreed-on
restriction on the considered state space. Thus, the state space can be ambiguous,
but a finite or countably infinite state space is usually used. This thesis consider a
countable finite state space. A discrete-time Markov chain on a countable (finite
or countably infinite) state space is defined in Definition 2.6.

Definition 2.6 (Discrete-time Markov chain). A discrete-time Markov chain is
defined as a stochastic process, i.e., a sequence of stochastic variables: {Xt , t ∈ N0}
on a countable state space S, henceforth known as the Markovian state space. For
si ∈ S,∀i ∈ {0, 1, ..., t − 1, t} and t ≥ 1 it holds that:

P r(Xt = st | Xt−1 = st−1, ..., X0 = s0) = P r(Xt = st | Xt−1 = st−1),

where P r(Xt = st | Xt−1 = st−1) is the transition probability – conditional proba-
bility – from state st−1 to st , in accordance with Definition 2.5.
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Transition probability matrix

The probability notation for Markov chains is condensed through the use of a
transition probability matrix, denoted P , defined in Definition 2.7 [18].

Definition 2.7 (Transition probability matrix). The transition probability ma-
trix, P , also known as the transition matrix, is a square matrix with the number
of rows and columns equal to the cardinality (number of elements), |S |, of the
Markovian state space S. Each element is a non-negative real number represent-
ing the conditional probability to transition from one state to another. The sum
of the transition probabilities from a state i to all states (including itself) must be
1. P is also called the stochastic matrix or the Markov matrix.

Transition matrices occur as three different types [18];
(1) A right transition matrix, with the elements P r(Xt = j | Xt−1 = i) = Pij , i, j ∈
S. Pij is the transition probability from state i to state j. The requirement that
the sum of the transition probabilities from state i equals one results in the sum
of each row equal to one, ∑

j∈S
Pij = 1, ∀i ∈ S.

(2) A left transition matrix is the transpose of the right transition matrix.

(3) A doubly transition matrix is a square matrix where the sum of both rows and
columns equals 1.

Probability vector

The more common convention in the literature concerning stochastic processes –
or more specific Markov chains – of the previously mentioned three is the right
transition matrix accompanied with a stochastic vector; or probability vector
p(t) = [p1(t), p2(t), ..., p|S |(t)]. p(t) is a non-negative real row vector, with its ele-
ments summing to one, that depict the probability distribution of the Markovian
states, i.e., it specifies the probability that the system (Markov chain) is in each
Markovian state [18, 22, 25, 26].

As the sum of the probability vector equals one, the following holds,

|S |∑
i=1

pi(t) = 1, ∀t. (2.6)

The update of p occurs each time instance according to:

p(t + 1) = p(t) P . (2.7)
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State diagram

It is common to use state diagrams to visualize a Markov chain (stochastic pro-
cess) [18, Chapter 1.3]. There are some similarities between state diagrams and
graphs, as previously mentioned in Section 2.3.4. Figure 2.3 portrays an example
of a state diagram for a two-state Markov chain, for which the transition matrix
is given in (2.8).

A B

P =
A
B

[
0.3 0.7
0.8 0.2

]
.

(2.8)

Markovian states are represented as ”nodes”, and the transition probabilities
between Markovian states are represented through arrows – with accompanied
probability – between the Markovian states. Note the added labels for the rows
and columns of the transition matrix (2.8); these denote the two states in Fig-
ure 2.3.

A

B

0.3

0.2

0.7

0.8

Figure 2.3: State diagram for a two-state Markov Chain. The nodes repre-
senting the Markovian states are depicted as circles, and the arrows depict
the transition probabilities.

To describe Markov chains, some fundamental properties of Markov chains need
to be defined. Subsequent definition is used to describe the Markov chain utilized
by the Markov planner.
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Homogeneous Markov chains

One time-based property of Markov chains is homogeneity. The (time-)homogeneous
Markov chain is defined in Definition 2.8 [25].

Definition 2.8 (Homogeneous Markov chains). A discrete-time Markov chain,
{Xt , t ∈ N0}, defined as per Definition 2.6, is said to be (time-)homogeneous, if for
τ1 < τ2 < ... < τr < τ < τ + n the probability:

P r(Xτ+n = s | Xτ1
, Xτ2

, ..., Xτr , Xτ ) = P r(Xτ+n = s | Xτ ), where s ∈ S and n ∈ N

depend only on the time step n and not on the current time t.

Thus, for homogeneous Markov chains, a transition from one given state to an-
other during a unit of time n = 1 does not depend on the time, only between
which two states the transition is done. Furthermore, the transition probability
matrix can be constant, P (t) = P . This property of time-invariance of P for ho-
mogeneous chains facilitates the computation of the n-step transition probability
matrix as the n-th power of the transition matrix, P n [25].

Irreducible

A Markov chain can be irreducible as per Definition 2.9 [25].

Definition 2.9 (Irreducible Markov chain). If all states in a Markov chain are
reachable from any other state, the Markov chain is said to be irreducible.

Consequently, the related state diagram, which can be seen as a graph, is a strongly
connected component, as per Definition 2.2, in its whole. Then the associated
transition probability matrix P is irreducible, as per Definition 2.3 [22].

Recurrence and transience

Let τ(j) denote the number of transitions needed to arrive at Markovian state j,
where τ(j) is defined as

τ(j) = inf{n ≥ 1 | Xn = j},

where inf is the infimum and τ(j) = ∞ if the set is empty. The probability that

the first visit to state j starting in state i occurs after n transitions, denoted f (n)
i,j ,

is defined ∀i, j ∈ S and n ≥ 1 as

f
(n)
i,j = P r( τ(j) = n | X0 = i) = P r(Xn = j, Xk , j, 1 ≤ k ≤ n − 1 | X0 = i). (2.9)

Naturally, f (n)
i,i denote the probability that the first revisit of state i, from state i,

occurs after n transitions. Consequently, ∀i, j ∈ S and ∀n ≥ 1, it holds that
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(P n)ij = P r(Xn = j | X0 = i) =
n∑
k=1

f
(k)
i,j (P n−k)jj .

Let fi,j denote the probability that arriving at state j from state i occurs in a finite
number of transitions and is defined as

fi,j = P r( τ(j) < ∞ | X0 = i) =
∞∑
k=1

f
(k)
i,j . (2.10)

The properties recurrent and transient are related to whether it is possible to
revisit a Markovian state or not. The two properties are defined in Definition 2.10
and Definition 2.11 below [22].

Definition 2.10 (Recurrent state). A Markovian state i ∈ S is said to be recur-
rent if, starting from i, the probability that the subsequent return to i occurs at a
finite time, fi,i = 1. In other words, the Markovian state i is revisited an infinite
number of times when time t →∞.

The Markovian state i is recurrent if and only if:
∞∑
n=1

(P n)ii = ∞⇒ lim
n→∞

(P n)ii , 0. (2.11)

Definition 2.11 (Transient state). A Markovian state i ∈ S is said to be transient
if, starting from i, the probability of returning to i at a finite time, fi,i < 1. In
other words, the Markovian state i is revisited a finite number of times when
time t →∞.

If the Markovian state j is transient then, ∀i ∈ S,
∞∑
n=1

(P n)ij < ∞⇒ lim
n→∞

(P n)ij = 0. (2.12)

If all Markovian states for a Markov chain are recurrent, respectively transient,
then the Markov chain is said to be recurrent, respectively transient, itself.

For a recurrent Markovian state, the first return time will be a stochastic variable
called the recurrence time. The mean recurrent time for state i is

µi =
∞∑
n=1

n f
(n)
i,i , (2.13)

and if the µi is finite, then state i is said to be positive-recurrent [25].



2.5 Markov processes 17

Periodicity

The periodicity of a Markovian state is closely related to recurrence and is defined
in Definition 2.12 [22].

Definition 2.12 (Period of Markovian state). Markovian state i has the period

d(i) = gdc(n > 1 | (P n)ii > 0), (2.14)

where gdc(X) is the greatest common divisor of X. d(i) is essentially how often it
is possible to return to state i.

Note: (P n)i,i = 0⇒ d(i) = 0, ∀n ≥ 1.

State i is said to be aperiodic if d(i) = 1. If all states in a Markov chain are
aperiodic, then the Markov chain is said to be aperiodic.

If all Markovian states in a Markov chain X = {Xi , i ∈ S} have ”self-edges”; Pii ,
0, ∀i ∈ S, the Markov chain is then aperiodic.

Ergodicity

Ergodic processes include or visit all states in the state space given an adequate
amount of time, enabling a statistical representation of the process through a
fairly large collection of states [27]. Ergodicity from a Markovian perspective is
defined in Definition 2.13 [25].

Definition 2.13 (Markovian ergodicity). A Markovian state is said to be ergodic
if it is aperiodic, Definition 2.12, and positive-recurrent, (2.13).

If all states in an irreducible Markov chain are ergodic, is the whole Markov chain
said to be ergodic.

Stationary Markov chains

Ergodic finite Markov chains have a unique probability vector π called equilib-
rium distribution that denotes the limitations on the probability distribution and
is defined in Definition 2.14 [25].

Definition 2.14 (Equilibrium (stationary) distribution). For an ergodic Markov
chain, the equilibrium distribution π is defined by

lim
n→∞

P n =


π
π
...
π


π is the stationary distribution that a homogeneous (finite) Markov chain con-
verges to independently of the initial conditions, such as the initial probability
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distribution p(t = 0). If the initial probability distribution is π, then the proba-
bility distribution for all the subsequent time instances remain π, i.e., π P = π⇒
π P n = π.

Random walk

Random walk is just that, a walk where each step is taken in a random direction.
Random walk is one of the most straightforward stochastic processes out there.
Assume a person initially is located in state X0. X0 can be seen as a physical
point. At each time instance t, the person takes a step Ut , where {Ut , t ∈ N} is
a stochastic process of mutually independent, identically distributed stochastic
variables. A Random walk that satisfies the Markov property in Definition 2.5 is
a Markov chain [25].

One version of Random walk utilizes a uniform distribution of the feasible steps
from each state Xi , ∀i ∈ N0, i.e., all feasible steps from each state are equally
likely.



3
Method

This chapter describes the considered scenario and the approach used to develop
the objective functions for two different path planners and the associated search
algorithms. Important quantities, notations, and terms are distinguished through
emphasis. The developed method can be partitioned into six main components:

• Section 3.1: The description of the scenario and the configuration of the
simulation environment.

• Section 3.2: The different approaches to representing the probability distri-
bution of a present intruder. These representations are the main difference
between the two examined models.

• Section 3.3: The considered search methods for operating the ugv and the
expanded search tree are presented.

• Section 3.4: The developed objective function that is mutually used as the
foundation for the path search by both models. The two fundamental algo-
rithms for traversal and path search are outlined.

• Section 3.5: A short description of the developed simulation environment
used for evaluation and presentation.

• Section 3.6: The methods used to evaluate the different path planners are
presented.

The ugv’s and the surveillance area’s configurations are kept as ambiguous as
possible to accommodate a broader range of different implementations and sen-
sor platforms.

19
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3.1 Scene description

The following sections present the configuration of the simulation environment
and the premise upon which this thesis builds.

3.1.1 Scene decomposition and probabilities

The area of surveillance, henceforth known as the scene, is assumed to be known
before deployment. The scene is uniformly decomposed (partitioned) into N non-
overlapping cells, henceforth known as information regions, or simply regions,
see Figure 3.1. The partitioning is done before deployment as the scene’s dimen-
sions are known. Each region is assigned an index i ∈ S, where S is the index set
of known, predefined, free regions with the size |S| = N . A free region is defined
as a region with an unoccupied centroid.
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Figure 3.1: An example of the uniform decomposition of the scene. The
example depicts a decomposition with: Nx = Ny = 10⇒ N = Nx×Ny = 100.
The dimension of each region is thus 10 × 10 meters. The blue, transparent
crosses represent each information region’s centroid.

It is assumed that if the ugv observes the centroid of an information region, then
the whole information region is observed, and complete knowledge of its content
is obtained. This complete knowledge includes the knowledge of whether or not
a target is located in the information region. The probability that a target at time
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t ∈ N0 is in the information region i = 1, 2, 3, ..., N is given by pi(t).

Consequently, pi(t) is the probability prior to any observation made at time t.
The probability vector p(t) = [p1(t), p2(t), ..., pN (t)] depicts the probability distri-
bution of the target’s presence in the regions at time t. This distribution is called
the target distribution. At t = 0, the target distribution is initialized as p(0).

3.1.2 Nodes and information handling

Independent of which path planner is used, the ugv plans its path between fixed
discrete points, or coordinates, henceforth known as nodes, see Figure 3.2. The
nodes are assigned an index k ∈ K, where K is the index set of known, predefined,
free nodes, with the size |K| = K . Let ϕ(t) = [x, y] denote the ugv’s position at
time t. Theugv’s state at time t is denoted x(t) = [ϕ(t),p(t)]ᵀ, and x(t) ∈ Xf ree,∀t.
The ugv is seen as a holonomic system, capable of moving in any direction. At
any given time t, the ugv is located at some node k. Therefore, it is equivalent
to saying that the ugv plans its path between states. Furthermore, the actual
movement between the discrete states is not treated, i.e., only the straight path
between states is planned, not the ugv’s motion along the path. At t = 0, the
ugv’s state is initialized as x(0) = [ϕ(0),p(0)]ᵀ.
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Figure 3.2: An example of the uniform decomposition of the scene overlaid
with nodes. The example depicts a quadratic decomposition of N = 100 and
K = 361. The translucent dots represent each node.
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Suppose a robot moves on a 2D grid described by the previously mentioned
4cg, depicted in Figure 2.1. The robot moves between discrete grid points or
nodes denoted by integer coordinates (i, j). The possible action the robot can
take at each grid point is taking a discrete step in one of the four directions;
up, right, down, left. Resulting in either increments or decrements of one of
the integer coordinates i and j. The action space, given in (2.3), is in this case
U = {(0, 1), (1, 0), (0,−1), (−1, 0)}. An adjacency matrix of the connectivity can be
formulated using Definition 2.1. The resulting graph is undirected. The cost of
traveling along an edge is equal for all edges. The motion update function fnext
uses the obtained adjacency matrix A to represent the action space U from (2.3).

The state update consists of two parts; the probability update and the motion up-
date. First, when the ugv has arrived at a new position, it observes its surround-
ing. Thus, updating the target distribution p(t). The details of the update depend
on the used model, but the basis of the update of p(t) is an observation of the
neighboring information regions from the ugv’s current state x(t) = [ϕ(t),p(t)]ᵀ.
The observed regions from state x(t) are represented by the set Sx(t), defined as

Sx(t) = {i ∈ S | ‖ci − ϕ(t)‖ ≤ r}, (3.1)

where ci is the coordinates to the centroid of region i, ci = [x, y]i . The ugv ob-
serves the surrounding through its ”ambiguous” sensor configuration, defined
only by a detection radius r. This observation is done through a simple ray-
casting approach in 2D space based on [28], described further in Section 3.1.3.
Each separate observation of the neighboring information regions i ∈ Sx(t) have
two possible posterior probabilities; If a target is found in information region
i, then p†i (t) = 1, else p†i (t) = 0, where the dagger symbol, †, indicates that the
probability is posterior an observation.

Let Γ be the probability update algorithm. The update of p(t) can thus be gener-
alized as

p(t + 1) = Γ (p(t), Sx(t)). (3.2)

A temporary state x̃(t) is thus obtained after the probability update as

x̃(t) = [ϕ(t), Γ (p(t), Sx(t))]
ᵀ =

[
ϕᵀ(t)

pᵀ(t + 1)

]
. (3.3)

The second and final part of the state update is the motion update, where the
ugvmoves to a new position. The position is updated as



3.1 Scene description 23

x(t + 1) = fnext(x̃(t), u(t)) =
[
ϕᵀ(t) + u(t)

pᵀ(t + 1)

]
=

[
ϕᵀ(t + 1)
pᵀ(t + 1)

]
, (3.4)

where u(t) ∈ U(x̃(t)).

3.1.3 Obstacle handling

The definition of obstacles and the different effects they have on the studied sce-
nario are presented in this section. For the first three mission complexity levels
mentioned in Section 1.1, the ugv knows the positions of the obstacles in the
scene.

Definition of obstacles

Each individual obstacle is defined as a convex closed four-sided, black polygon1,
with its sides parallel to the scene’s coordinate axes, see Figure 3.3a. A concave
closed obstacle is created by combining intersecting convex polygons2, and Fig-
ure 3.3b shows an example.
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(a) An example of the scene’s configu-
ration with obstacles (black polygons).
The original configuration was N = 100
and K = 361, but with the obstacles are
N = 96 and K = 300.
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(b) An illustration of how multiple con-
vex closed obstacles overlap to create a
concave closed obstacle. The separate
polygons’ borders are emphasized as red
lines.

Figure 3.3: Example of different obstacle placements and how to create a
concave obstacle.

1MATLAB object polyshape
2By applying the polyshape object method union
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Occupied regions and states

An information region is deemed occupied if an obstacle covers its centroid. Sim-
ilarly, a node is deemed occupied if it is located within an obstacle. The occupied
state space Xocc is represented by the combined occupied space comprised of all
obstacles as one whole (disjoint) polygon1. A check3 whether a point is inside the
Xocc is made for all centroids and nodes before deployment. All points located
within Xocc are removed from the corresponding sets S and K. Note that N = |S|
and K = |K|; consequently, N and K decrease with every removed region and
node, respectively. Thus, K is kept as the index set of the free nodes and states,
and S is kept as the index set of the free regions. This leads to Xf ree ∩ Xocc = ∅
and Xf ree∪Xocc = X, where X is the set of all conceivable states, i.e., the complete
state space, which coincides with (2.1).

Occultation

Obstacles obstruct the ugv from observing regions within the detection radius
r, i.e., an occultation of regions occurs. Different methods to handle this obstruc-
tion of the ugv’s sight-lines were examined. The examined preexisting MATLAB
function4 does not classify the ugv’s sight-lines as obstructed when tangent to
an obstacle’s corner. However, obstacles’ corners should obstruct the ugv from
observing regions.

Thus, the occultation of regions is implemented through a simple ray-casting
approach in 2D space. Theugv’s sight-lines are lines drawn from theugv to each
region’s centroid within the detection radius. Subsequently, all line segments in
the scene are extracted: the borders of all obstacles and the perimeter. Regions
for which the corresponding sight-line from the ugv to its centroid intersects any
of the extracted line segments are deemed blocked by said line segment, thus not
observed.

As previously mentioned, the implementation is based on [28]. Two minor alter-
ations to the method presented in [28] are made:

• 0 ≤ T1 ≤ 1 and 0 ≤ T2 ≤ 1 are used instead of T1 > 0 and 0 < T2 < 1, respec-
tively. This alteration is done to ensure that the region is included in the
observation when the ugv is located at the said region’s centroid. The alter-
ation also accommodates that the rays from the ugv (the aforementioned
sight-lines) are limited to the detection radius.

• T1 and T2 are split into corresponding components along each respective
coordinate axis. Thus, becoming more manageable, especially when the
sides of all obstacles are parallel to the coordinate axes.

The scene’s layout is known before deployment for the first three mission com-
plexity levels mentioned in Section 1.1. Thus, the mentioned calculations are

3By applying the polyshape object method intersect
4The polyshape object method intersect
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done before deployment for all of the ugv’s possible positions, i.e., all free nodes,
K.

Obstruction of movement

The nodes located within an obstacle are not reachable from any other node. The
ugv cannot move to a node located within or on the other side of an obstacle. This
obstruction of movement also applies to the propagated probability used by the
Markov Planner and by the identifiable target’s random walk. This obstruction
is implemented by modifying the adjacency matrix A, zeroing the elements for
which the associated edge is blocked. Similarly, the transition matrix P used by
the target and the propagation of probabilities is modified before normalizing
the transition probabilities.

3.2 Target distribution

The only differences between the ExpPlanner and the Markov planner are the rep-
resentation and handling of the target distribution. Both planners make use of an
”alarm system” described in Section 3.2.1. The first method models the target dis-
tribution between all free regions based on an exponential expression, described
in Section 3.2.2. The second method uses a Markov chain to represent the target
distribution and propagates it through the scene, described in Section 3.2.3.

Let p†(t) = [p†1(t), p†2(t), ..., p†N (t)] denote the posterior probability vector, which
depicts the probability distribution of the target’s presence in the regions at time
t, posterior to an observation. It is worth clarifying that the ugv can only identify
a target from its ”true” position, i.e., observations of the target is not available
during the path search phase. Hence, a target cannot be identified during the
path search phase, resulting in only one possible posterior probability, p†i (t) = 0,
see Algorithm 3 and Algorithm 4. The posterior probability p†i (t) = 0 is thus
utilized as the notion that the information region i is observed.

3.2.1 Alarm system

The alarm systems inform that an intrusion has occurred by providing the ini-
tial target distribution p(0) with different degrees of certainty depending on the
alarm system. The three different utilized alarm systems are given below.

One specific alarm region

The intruder enters the scene from the outside setting off an alarm in the perime-
ter region α ∈ Sperim, that it enters through, where Sperim is the set of free perime-
ter regions, with the size Np = |Sperim|. This alarm can be interpreted as an alarm
from, e.g., a seismic sensor in that α, indicating the presence of a potential in-
truder. There exist two versions of this alarm system; The confident and the
uncertain alarm system. The difference between these is the initialization of
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the probabilities (target distribution). The confident alarm system initializes the
probabilities as,

pi(0) =

 1, i = α

0, otherwise
. (3.5)

The confident alarm system initiates all probability in α; there is no doubt that
the intrusion occurred in region α.

The uncertain alarm system initializes the probabilities as,

pi(0) =

 0.9, i = α
1−0.9
N−1 = 0.1

N−1 , ∀i , α
. (3.6)

The uncertain alarm system initiates one region as the most probable of having a
target present with the probability pα(0) = 0.9 and distributes the remaining 0.1
between all other free regions.

Uniformly along the perimeter

The intruder enters the scene from the outside setting off an alarm uniformly
along the perimeter Sperim. This alarm can be interpreted as an alarm that ”some-
thing has entered the scene”, without specifying where it entered. This alarm
system is called the perimeter alarm system and initializes the probabilities as,

pi(0) =

 1
Np
, ∀i ∈ Sperim and Np = |Sperim|

0, otherwise
. (3.7)

3.2.2 ExpPlanner, Exponential-based planner

The exponential-based planner ExpPlanner is used as a baseline and reference
when examining the usefulness of the Markov Planner described in Section 3.2.3.
For the ExpPlanner, it is assumed that pi(t) is independent of pj (t̃) whenever t , t̃
or i , j, as per the last assumption in Section 1.5. Furthermore,

N∑
i=1

pi(t) = 1, ∀t. (3.8)

Prior to observation, the target probability pi(t) is proposed to follow

pi(t) =
1 − e

(λi−t)
T fs

N∑
j=1

(
1 − e

λj−t
T fs

) , (3.9)
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where λi < t, i = 1, 2, ..., N denote the last time information region i was ob-
served, the tuning parameter T is a time constant in seconds designed based on
the estimated mobility of the target, and fs is the sampling frequency in the num-
ber of steps the ugv takes per second. Let Ts = 1/fs denote the sampling time,
i.e., the time in seconds between the ugv’s steps. For a more compact notation
λ = [λ1, λ2, ..., λN ]. The initial value of p(0) from equations (3.5), (3.6) and (3.7)
results in λ being initialized according to either:

λi(0) =

 −∞, i = α

0, ∀i , α
, (3.10)

λi(0) =

 T ln (0.1), i = α

T ln (1 − 0.1
N−1 ), ∀i , α

, (3.11)

or λi(0) =

 T ln (1 − 1
Np

), i ∈ Sperim
0, otherwise

(3.12)

respectively.

The probability pi(t) depends on λi , the last time information region i was ob-
served, as stated in expression (3.9). Thus, expression (3.9) can be called the
”last-seen” function. Let h denote the planned path and let h be defined as a fi-
nite sequence of states. λi depends in turn on the previous states in the path h
through the relation

λi(t) = max
t̃<t

t̃ s.t. i ∈ Sh(t̃), (3.13)

where Sh(t̃) is the set of observed regions from state h(t̃). The definition of a path h
is further explained in Section 3.3.2. The expression (3.9) was proposed because
it is ”well-behaved” and describes an exponential increase in the probability of
the target relocating to information region i. Furthermore, the resemblance be-
tween (3.9) and a normalized version of the exponential decay function (2.5) is
not a coincidence. (3.9) can be seen as modeling the ugv’s uncertainty that a
previously observed region is still empty.

For the ExpPlanner, the probability update algorithm Γ in (3.2) is proposed to
adhere to Algorithm 1.



28 3 Method

Algorithm 1 Probability update algorithm (ExpPlanner)

Require: X, Xf ree, Xocc, S and Ts
Observation is done from position ϕ(t)
Input: time t, observed regions j ∈ Sx(t) and λ
Output: p(t + Ts) and prior target distribution pobs(t)

1: pobs(t) = {pj (t) | ∀j ∈ Sx(t)} . Save prior target distribution
2: p(t + Ts)← Update p(t) as per (3.9)
3: for all j ∈ Sx(t) do
4: λj = t . Update λ for observed regions j
5: end for
6: return [p(t + Ts), pobs(t)]

Note that the posterior probability p†j (t) = 0, where j ∈ Sx(t) is done indirectly
through the update of λj in line 4 in Algorithm 1.

The tuning parameter T can be seen as a ”stress parameter” for the ugv when it
travels through the scene using the ExpPlanner. This parameter regulates how of-
ten the ugv revisits regions. With the previously mentioned similarities between
(3.9) and the exponential decay function given in [17], T ∗ fs can be seen as the
mean lifetime of the ”certainty” that the target has not returned to a previously
observed region. Thus, the lower the T , the more ”stressful” the ugv behaves.

3.2.3 Markov planner

The second path planner Markov planner utilizes a Markov chain to model the
target’s possible position, i.e., the target distribution. The modeling takes the
form of propagation of the probability of a present target between neighboring
regions. Consequently, the Markov planner’s modeling of the target distribution
is equivalent to modeling the target’s estimated movement. Thus, it can be seen
as an introduction of knowledge of the target’s movement compared to the Exp-
Planner in Section 3.2.2.

Single target handling

The target is represented by a homogeneous discrete-time Markov chain {Xt , t ∈
N0} on the Markovian state space. Here, the Markovian state space is the finite
index set for all free information regions, S = {1, 2, ..., N }, where N is the total
number of free regions. Each free region is seen as a Markovian state. The N -by-
N transition matrix P is constant due to the homogeneity of the Markov chain,
and its dimensions derive from S being finite. P is a right transition matrix; thus,
the sum of each row in P is equal to one, as per
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N∑
j=1

Pij = 1, ∀i ∈ S. (3.14)

The transition probabilities from region i are chosen to be uniformly distributed
between all permitted subsequent regions (Markovian states) from region i, i.e.,
all transitions from i are equally likely. This includes the ”transition” to i itself,
i.e., staying at i. Gi denotes the set of all permitted subsequent regions from i.
Thus, a permitted subsequent region j ∈ Gi is defined as a region where an un-
obstructed straight line segment can be drawn between the centroid of i and the
centroid of j. In other words, there must be an absence of obstacles between two
regions’ centroids for them to be permitted subsequent regions to each other. The
same connectivity used between the nodes for 4cg is utilized between regions,
see Figure 2.1.

P for a Markov chain with uniform transition probabilities is obtained by taking
the related adjacency matrix A for the grid of regions and normalizing the ele-
ments with the sum of the corresponding row. All non-zero elements in A are
unweighted and thus equal to one. Thus, this is equivalent to normalizing each
row with the number of non-zero elements in each row, as per

Pij =
Aij
N∑
j=1

Aij

, ∀i ∈ S. (3.15)

All free regions are made reachable from any other free region; thus, the Markov
chain and its transition matrix P is irreducible as per Definition 2.9. As per Defi-
nition 2.12 and (2.13), all reachable regions are aperiodic and positive-recurrent.
Thus, the entire Markov chain is ergodic, as per Definition 2.13.

Figure 3.4 depicts a state diagram for the associated Markov chain of a scene
uniformly decomposed into nine non-overlapping regions yielding a 3-by-3-grid.
The related transition matrix is given in (3.16), with the zero entries omitted.
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Figure 3.4: The state diagram for a Markov chain with uniform transition
probabilities and S = {1, 2, ..., 9}.
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(3.16)

The probability vectors p(t) = [p1(t), ..., pN (t)] and p†(t) = [p†1(t), ..., p†N (t)] de-
scribe the probability distribution that the target is present in one of the infor-
mation regions at time t, i.e., the target distribution, prior respectively posterior
an observation, as previously mentioned in Section 3.1.1 and Section 3.1.2. It is
assumed that a target is present somewhere in the scene, characterized by the
sum of the probability vector always equals 1, as per (2.6).

After the initial target distribution from the ”alarm systems” previously men-
tioned in Section 3.2.1, the probability propagates according to the previously
mentioned Markov chain with the uniform transition matrix P described in (3.15).
The target distribution is represented in the probability vector p(t). The propa-
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gation of the probability vector p(t > 0) – the update of its individual elements,
pi(t > 0), i = 1, 2, ..., N – are described in Algorithm 2. Thus, the probability
update algorithm Γ in (3.2) is proposed to adhere to Algorithm 2.

One fundamental theorem in probability theory is Bayes’ law which describes
how prior knowledge influences the conditional probability of an event happen-
ing. Bayes’ law is presented in Theorem 3.1 below [29].

Theorem 3.1 (Bayes’ law). Let H1, H2, ..., Hn be pairwise disjoint events and
H1 ∪ H2 ∪ ... ∪ Hn = Ω, where Ω is the sample space, i.e., only one event Hi , i ∈
{1, 2, ..., n}, can happen during a trial. Then with an event A, the conditional
probability that Hi is true if A is true is given by:

P r(Hi | A) =
P r(Hi)P r(A | Hi)
n∑
j=1

P r(Hj )P r(A | Hj )
(3.17)

.

Let γ(t) denote the actual region of the target at time t. The observation at time t
is done from state x(t) = [ϕ(t),p(t)]ᵀ. Bayes’ law is used to update, or normalize,
the non-zero posterior probabilities p†i (t) with the following definitions:

Hi = {γ(t) = i}, which describes the event that ”the target is in the non-observed
region i ∈ S+”, where S+ = {s ∈ (S \ Sx(t)) | p†s (t) > 0}. A = {γ(t) , j}, which
describes the event that ”the target is not in the observed region j ∈ Sx(t)”.

This update results in the allocation of the probability of the observed region
j ∈ Sx(t) prior to the observation at time t > 1, to the non-observed regions i ∈ S+

with the non-zero posterior probability, p†i (t) , 0, as

p†i (t) = P r( γ(t) = i | γ(t) , j)

(1)
=

P r( γ(t) = i) P r( γ(t) , j | γ(t) = i)
N∑
k=1

P r( γ(t) = k) P r( γ(t) , j | γ(t) = k)
(3.18)

(2)
=

P r( γ(t) = i)∑
k∈ S+

P r( γ(t) = k)
.

The second equality (1) in (3.18) is Bayes’ law, as per Theorem 3.1, for the condi-
tional probability P r( γ(t) = i | γ(t) , j), which denotes ”the probability that the
target is in region i if it is known that the target is not in region j”. At the third
equality (2) in (3.18) is P r( γ(t) , j | γ(t) = k), which denote ”The probability that
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the target is not in region j if it is known that the target is in region k” with

P r( γ(t) , j | γ(t) = k) =

 1, if j , k
0, if j = k

, ∀j, k ∈ S.

This is done in Algorithm 2 on line 6.

Algorithm 2 Probability update algorithm (Markov Planner)

Require: X, Xf ree, Xocc, S, Ts and P
Observation is done from position ϕ(t)
Input: Time t and observed regions j ∈ Sx(t) and p(t)
Output: p(t + Ts) and prior target distribution pobs(t)

1: ρ(t) = p(t) P . Propagate the target distribution p(t)
2: p†(t) = ρ(t)
3: for all j ∈ Sx(t) do
4: p†j (t) = 0
5: end for
6: Update p†i (t) according to (3.18) . i ∈ S+
7: pobs(t) = {ρj (t) | ∀j ∈ Sx(t)} . Save prior target distribution
8: p(t + Ts) = p†(t)
9: return [p(t + Ts), pobs(t)]

Intuitively, the Markov planner prefers an initial target distribution that is as
confident as possible to model the target movement more accurately. Thus, the
confident alarm system from (3.5) is predicted to be preferred.

3.2.4 Target’s random walk

As previously mentioned, γ(t) denotes the region for which the target is located
at time t. The random walk performed by the identifiable target is executed using
the uniform transition probability matrix P given in (3.15) for both ExpPlanner
and Markov planner. The probabilities Pγ(t),j , ∀j ∈ S, act as weights for the
target’s random walk. Let ςγ(t)(j) denote the cumulative sum of Pγ(t),j , ∀j ∈ S.
ςγ(t)(j) is defined as

ςγ(t)(j) =
j∑
k=1

Pγ(t),k . (3.19)

Subsequently, by generating a random value distributed uniformly on the inter-
val [0, 1], and selecting the target’s succeeding region γ(t+ 1) based on the bound-
aries of ςγ(t). Trivially, it could be seen as picking a random element (region)
uniformly from the set Gγ(t).
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3.3 Graph search

The considered graph search methods are presented below. These methods are
used to find the path that optimizes the objective function. The examined search
methods are presented in Section 3.3.1. The expanded search tree is described in
Section 3.3.2.

The graph search’s general structure and basic implementation are based upon
existing code from the repository provided in the course TSFS12, Autonomous Ve-
hicles: Planning, Control and Learning Systems, given at Linköping University [30].
Some alterations include (but are not exclusive to): A more efficient memory us-
age for the two search strategies. The search is done for a prediction horizon in-
stead of the whole graph. The objective function is based on a failure probability
instead of a travel cost. The target distribution, which is the basis of the objective
function, changes between iterations is also an implemented modification. The
mentioned alternations are presented in Section 3.3.1.

3.3.1 Search method

Two strategies of the Forward search were considered for the basis of the graph
search; breadth-first and depth-first. Both strategies perform an exhaustive search
of the given depthmwithin the graph, i.e., they both constructs a complete search
tree of depth m. Thus, both methods are systematic – all reachable nodes will be
visited. The difference between the two strategies is the sorting function used for
the queue q, as mentioned in Section 2.1.2.

The breadth-first approach specifies q as a FIFO queue, and the depth-first ap-
proach specifies q as a LIFO queue, defined in Section 2.1.2. Some alternations
are done to the two strategies to adjust them to the considered scenario. Visited
nodes are tracked but not excluded from being revisited; however, reversing to
the previous node is only allowed if no other action is feasible. This alteration
is done due to the target distribution changing between iterations, thus inducing
the possibility that revisiting a node could yield a path with the lowest objective
value. An exhaustive search is essential to ensure that all viable paths are exam-
ined due to the target distribution is continuously changing, and the path search
relies on probabilities.

Both methods lead to at least local optimality for the chosen prediction horizon
m as they ensure that all reachable nodes are visited. The performance difference
lies within the memory usage and the execution time. The breadth-first approach
results in a uniform expansion from the initial root node, i.e., all plans of depth
k must be examined before any plan of depth k + 1 is examined. This approach
could be interpreted as ”unnecessary” data being saved between each increment
of depth during the path search phase and thus is the memory usage suboptimal.

A difference in the target distribution between branches of the same depth is
virtually guaranteed. The extent of the difference between branches is related
to how recent – measured in depth – they branched off from each other. The
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more significant the difference in depth between the branch-off and the examined
branches’ nodes, the greater is the difference between the two branches’ target dis-
tributions. Therefore, evaluating each branch to its end is a more efficient usage
of the memory than uniformly evaluating each branch, i.e., it is more efficient to
use the depth-first approach than the breadth-first for the considered scenario.
It is significantly more efficient, borderline necessary to use the depth-first due to
the propagation of the target distribution of the Markov planner in Section 3.2.3.
Thus, the search method is based on the depth-first approach chosen.

3.3.2 Search tree

From each newly visited node at time t0, a search tree of potential paths h ∈ Hx(t0)
is expanded from the ugv during the path search. Hx(t0) is the set of all allowed
paths from state x(t0), i.e., the whole search tree from state x(t0).

The complete path h that originates from state x(t0) is defined as a finite sequence
of states, h(t) ∈ Xf ree, where t = {t0 +τTs | τ = 0, 1, 2, ..., m} andm is the number of
states in h, i.e., the prediction horizon. The set Mx(t) is the succeeding states that
the ugv can move to from state x(t), that is, with x(t) = h(t)⇒ h(t + Ts) ∈ Mh(t).
The state update, or the transition from state x(t) to state x(t + Ts) is described
in Section 3.1.2. Once again, it is emphasized that it is equivalent to say that the
ugv plans its path between nodes or states.

The branching factor b, where no reversing and idling is allowed, is defined in
(3.20), even though the graph’s connectivity is that of 4cg in Figure 2.1.

b(t) = |Mh(t)| =

 ≤ 3, for t > 1
≤ 4, for t = 1

. (3.20)

That is, only at the initial branching at t = 1 can b be equal to 4 if none of the
neighboring nodes are obstructed by an obstacle. The average branching factor
b̄ for t > 1, where reversing or idling is not allowed, is obtained through the
adjacency matrix A as

Ai =
N∑
j=1

Ai,j ,

b̄ =

N∑
i=1

(Ai − 1)

N
. (3.21)

The size of the search tree Hx(t0) follows
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|Hx(t0)| = 1 +
m−1∑
M=0

t0+MTs∏
t=t0

b(t). (3.22)

Where m is the prediction horizon and t0 is the base time when the path search
is initiated. The average branching factor in (3.21) can be seen as the average
increase of the search tree Hx(t0).
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3.4 Objective function

An objective function related to the ugv’s movement in the scene is utilized dur-
ing each decision-making stage of the path search. The objective function is min-
imized by minimizing the probability of failing to find a target. This probability
is called failure probability and is described in Section 3.4.1. The improved and
final objective function is presented in Section 3.4.2. Both path planners use the
presented objective function. At any time t, the ugv is located at a node with
position ϕ(t). In Section 3.4.3 the two algorithms for respective graph traversal
and path search are outlined, see Algorithm 3 and Algorithm 4, respectively.

3.4.1 Failure probability

Each path h has a failure probability F (h), which is the probability that the ugv
fails to find the target through its sensor when it moves along the path h. F (h) is
defined as

F (h) =
t0+mTs∏
t=t0

∏
i ∈Sh(t)

1 − pi(t). (3.23)

Note that pi(t) is the prior probability. Initially, to minimize the risk of failure to
find the target, the path with the lowest probability of failure

h? = arg min
h ∈Hx(t0)

F (h), (3.24)

will be chosen for the ugv to follow. Where h? denote the optimal path for the
chosen horizon. In the unlikely case of multiple paths being optimal for the
chosen horizon, i.e., multiple h? are obtained, a prioritizing ”protocol” will be
initiated. This ”protocol” prioritizes paths with the longest initial straight line;
and if there still exist multiple h? , one is chosen at random uniformly amongst
them. This is outlined in Algorithm 4 on line 29.

3.4.2 Correction factor

There is a possible drawback with the Markov planner’s representation of propa-
gating the target probability when using the confident alarm system in (3.5). The
possible scenario that the ugv and the target start at a sufficient distance from
each other, that none of the paths in the initial search tree Hx(0) reaches a node
from which the ugv can observe a region with non-zero probability within its
detection radius r. This results in the dilemma of deciding what to do when all
paths have an equal failure probability F (h) = 1, ∀h ∈ Hx(0).

Initially, the uncertain alarm system in (3.6) was implemented to prevent this
dilemma. A semi-heuristic, where the ugv moves towards the alarm region α
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if F (h) = 1, ∀h ∈ Hx(0), was introduced as an alternative. Some simulations of
this gave promising results suggesting an improved performance if the direction
of travel is considered. Thus, the improved objective function with a directional
prioritization is suggested as

V (h) =
(
1 + ε

|vmax − vh(t0+mTs)|
|vmax − vh(t0)|︸                  ︷︷                  ︸

Q

) t0+mTs∏
t=t0

∏
i ∈Sh(t)

(1 − pi(t)) = (1 + Q) F (h). (3.25)

The parameter ε is a scaling factor ensuring that the added correction factor Q
is kept relatively small (around 0) so that it does not become too invasive on
F (h). vh(t0) = [x, y]h(t0) is the position vector to state h(t0). vmax = [x, y]pmax is the
position vector to the region with the maximal probability at the initial search
time t0,

pmax ∈ Smax = arg max
i∈S

p(t0). (3.26)

The variable pmax is a random element selected uniformly from Smax. Q is only
applied once for each path h and resembles a form of heuristic, where movement
in the direction of the initial maximal target probability is prioritized. Thus, h?

is obtained through,

h? = arg min
h ∈Hx(t0)

V (h). (3.27)

Note that (3.23) and (3.25) coincide when ε = 0; and consequently, (3.24) and
(3.27) also coincide. Henceforth, if nothing else is mentioned, the scaling factor
is considered ε = 0 in this thesis.

When the ugv arrives at the first state in h? at time t1, x(t1) = h?(t1), the remain-
ing states in h? will be discarded, and a new search tree Hx(t1) will be generated
from state x(t1); and a new h? is generated through the new path search phase.
This is repeated indefinitely or until an intruder is found, similarly to rhc de-
scribed in Section 2.1.1.

The decision to use a prediction horizon was made because searching for a plan
from a starting point to an endpoint at a reasonable distance from the starting
point requires extensive computational power. Especially in the case of no identi-
fiable target present in the scene, as the absence of a possible endpoint causes the
path planners to run indefinitely. With an identifiable target present, path plan-
ning is terminated when: the target is found, a predefined termination time is
reached, or a manual termination is received. Thus, m can be seen as an essential
computational necessity.
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3.4.3 Algorithms

A general outline of the developed algorithms are presented below. Algorithm 3
outline the ugv’s graph traversal and Algorithm 4 outline the path search algo-
rithm.

Algorithm 3 Graph traversal algorithm

Require: X, Xf ree, Xocc, S, Sperim, Ts and P
Initiate:
Alarm system as per (3.5), (3.6) or (3.7)
t = 0
γ(0) ∈ Sperim, as per the initiated alarm system . Target’s true region
x(0) = [ϕ(0),p(0)]ᵀ ∈ Xf ree
F (x(0)) = 1 . Initiate failure probability
success = f alse

1: repeat
2: Sx(t) ← Observe from state x(t) = [ϕ(t),p(t)]ᵀ

3: if γ(t) ∈ Sx(t) then . Target found?
4: p†γ(t)(t) = 1
5: success = true
6: else
7: h? ← pathSearch(x(t), t) . Call the search algorithm,

see Algorithm 4.
8: x̃(t) = [ϕ(t),p(t + Ts)]ᵀ . Update the p(t)
9: Define u?(t) as the action to move to the first state in h?

Move to the first state in h? :
10: x(t + Ts)← fnext(x̃(t), u?(t)) . u(t) ∈ U(x̃(t))

Random walk of target:
11: γ(t + Ts)← randomWalk(y(t)) . As per Section 3.2.4
12: t = t + Ts
13: end if
14: until success

The success criterion on line 5 in Algorithm 3 is chosen to be the event that the
target is actually found and identified. Since the modeling of the target distri-
bution, previously mentioned in Section 3.2, is the basis of the path planning,
the path planners can run indefinitely, as there is no ”need” for an identifiable
intruder to be present.
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Algorithm 4 Path search algorithm

Require: S, m, Ts
Input: Time of calling t0 and initial state x(t0)
Output: h?

Initiate:
1: x(t0).depth = 0 . Initiate the depth parameter to 0
2: p̂(t0) = p(t0) . Save initial target distribution

Position vectors for Q in (3.25)
3: vx(t0) = [x, y]x(t0)
4: Smax = arg max

i∈S
p(t0)

5: pmax ← PickRandomFrom(Smax) . Handle case of |Smax | > 1
6: vmax = [x, y]pmax
7: q = LIFO() . LIFO queue
8: Hx(t0) = ∅ . Initiate the search tree from state x(t0) as empty
9: q.Insert(x(t0)) . Place the initial state x(t0) on queue

10: while q , ∅ do
11: x̂← q.P opLast() . The ugv’s hypothetical state x̂ ∈ Xf ree
12: t = t0 + x̂.depth Ts . Update the local time t
13: h(t) = x̂
14: if x̂.depth ≥ m then
15: Hx(t0) = (Hx(t0) ∪ h) . If horizon m is reached,

save branch h to search tree Hx(t0)
16: else
17: Sh(t) ← observe from state h(t) = [ϕ(t),p(t)]ᵀ

18:
[x̂.p,pobs(t)]← Update the local target distribution x̂.p as per

Algorithm 1 or 2

19: Update objective value V (h) as per (3.25) using pobs(t)
Generate succeeding states x̂(t + Ts) ∈Mx̂(t) :

20: for all u(t) ∈ U(x̂(t)) do
21: x̂(t + Ts)← fnext(x̂(t), u(t))
22: x̂(t + Ts).p = x̂(t).p . Inherit the parent state’s target distribution
23: x̂(t + Ts).depth = x̂(t).depth + 1
24: q.Insert(x̂(t + Ts))
25: end for
26: end if
27: end while
28: h? = arg min

h ∈Hx(t0)

V (h) . As per (3.27)

29: if multiple(h?) then
30: Prioritize the path with the longest initial straight line.
31: If still multiple h? pick one uniformly.
32: end if
33: return h?
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3.5 Simulation environment

The simulation environment that was developed alongside the path planners is
presented here. The simulation environment can handle different decomposi-
tions and dimensions of the scene. It is not necessary for the decomposition of
the nodes and regions to overlap. The user has considerable freedom when creat-
ing a scene related to its complexity, for example, the scene depicted in Figure 3.5.
The target distribution is illustrated by a (cluster) heatmap where each region is
colored according to the probability that the target is present in said region. The
mapping of probability to color goes from white/light blue to dark grey with
an increasing probability value. an descriptive colorbar is given alongside the
heatmap. Examples of simulation environment are given in Section 4.3. Note
that the ugv has moved to the first node of the previously obtained h? for every
presented example. After finding the target, it is possible to generate the path
the ugv traversed to find said path.
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Figure 3.5: An example of a possible complex indoor scene. The decomposi-
tion is 25 × 25 resulting in regions with dimension 4 × 4 meters.
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3.6 Path planner evaluation

Different methods to evaluate path planners exists, one of which is the Monte-
Carlo simulations described in Section 3.6.1.

3.6.1 Monte-Carlo simulations

Monte-Carlo simulations are essentially the method of extracting statistical prop-
erties, such as the mean and variance, of a stochastic process from a sufficiently
large collection of random simulations, in accordance with the (weak) law of large
numbers. The law of large numbers declares that the arithmetic mean,

t̄n =
1
n

n∑
i=1

ti , (3.28)

of a sequence of mutually independent and identically distributed stochastic
variables {ti} converges toward the expected value of each stochastic variable
E(ti) = t̄, ∀i = 1, 2, .. for large enough n [29]. As such, the mean time to lo-
cate the target, the mean detection time t̄, and the standard deviation σ can be
obtained as evaluation parameters. As stated in Section 3.2.3, the used Markov
chain is ergodic, and thus, the process can be represented statistically.

3.6.2 Evaluation of robustness

The general concept of robustness within control engineering is often related
to how the controlled system handles model errors [31]. Although a possible
approach for evaluation, e.g., evaluating of how well the Markov planner can
handle ”model errors” by altering either the target’s random walk or the transi-
tion matrix P so that they differ from each other, and analyzing the performance.
This thesis defines robustness as; ”the consistency of the method’s performance.”
The number of outliers among the Monte-Carlo simulations quantifies the con-
sistency of the performance. Outliers are defined as simulations that take an
unreasonably large amount of iterations to find the target compared to the mean
detection time t̄. What defines an ”unreasonably large amount of iterations” de-
pends on the size of the world and the density of the cell decomposition. These
outliers derive from unwanted behavior, such as; moving back and forth, moving
irrational, e.g., moving away from the target, only partially exploring the scene.

3.6.3 Computation time

The computation time tcpu is also an evaluation parameter. Hence, the developed
methods cannot be too computationally heavy and thus impossible to implement
on a real ugv in the future.
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3.6.4 Evaluation

The developed path planners are evaluated based on parameters obtained pri-
marily through Monte-Carlo simulations described in Section 3.6.1. The primary
approach of the simulations is to introduce an identifiable fictive target for which
the movement follows a typical random walk, described in Section 2.5. 1000 sim-
ulations are done for each examined configuration and path planner if nothing
else is mentioned. The configuration is defined as:

• The scene’s layout.

– The placement of obstacles.

– The scene’s decomposition and dimensions.

• The scaling factor ε in (3.25).

• The prediction horizon m.

• The detection radius r.

• The tuning parameter T , used by the ExpPlanner.

• The transition matrix P , used by the Markov planner.

Both path planners use the same 1000 starting positions for the ugv and the
target; an array of these starting positions is henceforth referred to as starting
array. Each simulation is executed until the target is found and identified, at
which point the time t, or more accurately, the number of iterations it took to
find the target is stored. When all 1000 simulations are done, the mean detection
time t̄ and the standard deviation σ of the number of iterations it took to find the
target are calculated.

The Monte-Carlo simulations are outlined in Algorithm 5. The sample time Ts =
1 is chosen for simplicity and represent an arbitrary discrete time step to the next
time instance, in each simulation.

It is worth emphasizing the fact that the random walk performed by the target is
based on the same transition matrix P used by the Markov planner to propagate
the target distribution. Hence, the Markov planner has no model error when it
propagates the target distribution.
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Algorithm 5 Monte-Carlo simulations

Require: X, Xf ree, Xocc, K, Sperim, P and ε
Input: Number of simulations: nSamples
Output: Mean: t̄ and standard deviation: σ
Initiate:
results = zeros(nSamples, 1)

1: for i=1:nSamples do
Initiate for each simulation:

2: Alarm system as per (3.5), (3.6) or (3.7)
3: t = 0

Spawn Target:
4: γ(0)← PickRandomFrom(Sperim) . Target spawns in random

free perimeter region, γ(0)
Spawn ugv:

5: x(0)← PickRandomFrom(Xf ree) . ugv spawns in random free state,

x(0) = [ϕ(0),p(0)]ᵀ

6: while true do
7: Sx(t) ← Observe from state x(t) = [ϕ(t),p(t)]ᵀ

8: if γ(t) ∈ Sx(t) then . Target found?
9: p†γ(t)(t) = 1

10: break
11: else
12: h? ← pathSearch(x(t), t) . Call the search algorithm,

see Algorithm 4.
Move to the first node in h? :

13: x(t + 1) = h?(t + 1)← fnext(x(t), u(t)) . u(t) ∈ U(x(t))
14: end if

Random walk of target:
15: γ(t + 1)← randomWalk(y(t)) . As per Section 3.2.4
16: t = t + 1 . Iterate one step
17: end while
18: results(i) = t
19: end for
20: Mean: t̄ = Mean(results) . As per (3.28)
21: standard deviation: σ =

√
V ar(results)

22: return [t̄, σ ]





4
Results

Here are the results of the thesis presented. Section 4.1 presents the results used
as the basis of the determination of T . The main results presented are primarily
centered around the evaluation of the developed methods to model the target
distribution for a specific scene and are presented in Section 4.2.

4.1 The time constant T
The variable T depends on the target’s mobility, the number of steps it takes
compared to the number of steps the ugv takes per second (fs); and also the size
and other ”dimension-related parameters” of the scene, e.g., the ratio between
the number of free nodes K and free regions N . This makes it very difficult to
produce a function over how T relate to all of these parameters. Thus, a suit-
able T is determined through an empirical study, by simulating an intrusion into
an empty scene 1000 times for incremental values of T , with the ugv starting
from a random node and the intruder entering from a random perimeter region,
γ(0) = α ∈ Sperim. The uncertain alarm system, given in (3.6), is used. The
decomposition is 20 × 20 for both regions and nodes; the nodes share the co-
ordinates with the regions’ centroids. These simulations are repeated for three
different starting configurations.

Table 4.1 presents the results from the empirical study to determine a suitable
value for the time constant T . The mean number of iterations it took to find
target t̄ and the standard deviation σ were used as evaluation parameters. Three
different sets of starting positions (starting array) for the ugv and target are used
to ensure the robustness of the empirical study. The determination of T is done
in an empty scene as seen in Figure 4.1.

45
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Figure 4.1: The empty scene used to determine T , the decomposition is Nx =
Ny = 20 ⇒ N = Nx × Ny = 400 for both regions and nodes. The nodes
overlap with the regions’ centroids. Regions have dimensions 5 × 5 meters.

Table 4.1: The results from the empiric study to determine a suitable T .
1000 simulations were done for each starting array. t̄ is the mean detection
time, and σ is the standard deviation. The results for the chosen T = 450 are
highlighted.

T [s] starting array 1 starting array 2 starting array 3

t̄ σ t̄ σ t̄ σ
50 30.368 25.029 30.798 26.028 31.297 26.902

100 28.810 24.970 28.329 24.658 28.891 25.873
150 26.804 24.538 26.435 23.327 25.836 23.778
200 25.759 23.590 26.262 22.576 24.749 22.994
250 24.302 20.906 24.918 21.607 24.132 21.869
300 24.323 21.300 25.470 22.190 23.795 21.552
350 24.121 21.172 25.191 21.926 23.816 21.640
400 24.004 21.012 25.279 23.153 23.509 21.525
450 24.254 21.015 24.744 22.357 23.386 20.533
500 24.768 21.490 25.429 21.923 24.084 22.447
550 24.110 21.447 25.545 23.461 23.393 20.450
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A general decrease of both t̄ and σ can be seen with increasing T , for each starting
array up to around 350, after which t̄ and σ start to fluctuate. t̄ and σ for starting
array 2 and 3 reach their minimum (for the examined T ) at T = 450.

4.2 Sparse obstacle placement

Figure 4.2 depicts the examined configuration, Sparse obstacle placement. The
decomposition used was 20×20 for both regions and nodes. The ExpPlanner used
T = 450 from Section 4.1, and the Markov planner used the uniform transition
matrix P described in Section 3.2.3. The detection radius is r = 16m.

x [m]

y 
[m

]

Figure 4.2: Obstacle layout and cell decomposition of the Sparse obstacle
placement N = K = 396.

Three different starting arrays of 1000 starting positions for the ugv and the tar-
get were examined to ensure a large enough sample collection to evaluate the
methods’ robustness. The evaluation parameters are the mean number of itera-
tions it took to find the target t̄, the standard deviation σ , and the computation
time tcpu. Thus, t̄ is the mean detection time. (3.21) gives Sparse obstacle place-
ment the average connectivity for t > 1, b̄ ≈ 2.62, which could be seen as the
average increase of the search tree’s size when increasing the horizon m for m > 1
as per (3.22). For each combination of alarm system and scaling factor ε, incre-
mental values of the prediction horizon m are examined. Tables 4.2-4.6 present
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the results.

4.2.1 Confident alarm system

The results for the confident alarm system given in (3.5) are presented in Tables
4.2, 4.3, and 4.4. Figure 4.3 illustrates the confident alarm system’s initial target
distribution and possible starting positions for the ugv and the target.
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Figure 4.3: Possible initialization of the confident alarm system. Here, the
ugv starts in state x(0) = [ϕ(0),p(0)]ᵀ with position ϕ(0) = [72.5, 37.5] and
the target starts in region γ(0) = 201. The red crosses around the ugv are
the centroids of the observable regions from position ϕ(0), i.e., Sx(0).
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Table 4.2: The results for the confident alarm system (3.5) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 42.378 33.706 186.21 19.066 14.144 64.16
2 42.124 34.310 186.72 18.513 14.583 62.62
3 42.454 34.898 187.83 18.630 14.266 63.02

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 36.996 32.083 408.81 17.306 13.113 148.96
2 40.384 35.381 450.83 16.837 12.855 143.33
3 37.409 32.228 417.80 17.112 12.901 146.99

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 32.662 30.017 952.99 16.093 12.892 361.49
2 34.851 32.786 1002.22 15.621 11.541 343.73
3 32.424 29.376 924.68 15.703 11.275 350.57

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 27.942 26.558 6177.30 14.294 9.876 2371.40
2 30.083 28.761 6412.17 14.004 9.037 2286.28
3 27.928 27.005 6047.76 14.422 9.618 2393.01

Both planners exhibit an improvement in performance with increasing horizonm,
which is consistent with the theory of rhc, see Section 2.1.1; the further ahead
the planning is done, the better the path planning will be able to predict and
adjust. The results in Table 4.2 show that the Markov planner outperforms the
ExpPlanner substantially for every examined horizon, resulting in a mean de-
tection time t̄ and standard deviation σ approximately half of the ExpPlanner’s
corresponding parameters.

The computation time (for 1000 simulations) tcpu for the Markov planner is al-
most a third of the computation time for the corresponding ExpPlanner.
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Table 4.3: The results for the confident alarm system (3.5) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.01.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 27.734 27.794 118.06 13.254 7.727 43.90
2 28.793 28.555 126.07 13.030 7.707 43.26
3 26.770 26.822 115.18 13.546 8.589 45.03

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 33.775 33.427 376.48 13.469 9.304 114.69
2 35.980 34.630 392.51 12.920 7.421 109.81
3 33.572 32.471 374.68 13.534 8.431 115.65

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 27.262 27.451 789.27 13.529 10.041 301.72
2 31.128 30.536 893.64 13.083 7.805 290.49
3 28.358 27.703 827.16 13.551 8.478 299.22

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 21.869 23.253 4901.79 13.554 9.377 2307.75
2 23.650 26.099 5359.32 13.223 7.859 2282.86
3 21.946 24.417 5018.19 13.579 8.320 2283.04

As seen in Table 4.3, compared to the case of ε = 0, see Table 4.2, both planners’
performance is improved for every horizon with the introduction of Q with ε =
0.01. The ExpPlanner’s performance follows the expected trend of rhc except for
a deterioration in performance when increasing the horizon from m = 4 to m = 5.
The performance of the Markov planner does not improve with the increasing
horizon, contrary to the expected trend of rhc. The Markov planner’s t̄ and σ
are essentially consistent for every horizon.

The computation time tcpu is improved for both planners when the correction
factor Q is introduced, which is to be expected with the improved performance
of both planners. Nevertheless, the tcpu for the Markov planner is half of that of
the corresponding ExpPlanner.
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Table 4.4: The results for the confident alarm system (3.5) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.1.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 17.299 18.673 75.11 13.346 8.105 42.74
2 18.409 21.353 77.83 12.985 7.568 42.13
3 17.917 20.631 81.02 13.503 8.321 44.29

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 20.445 25.376 227.54 13.266 7.970 110.08
2 23.248 30.276 261.24 12.976 7.578 108.27
3 20.435 23.881 224.87 13.568 8.445 113.54

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 19.877 23.778 583.73 13.403 9.004 294.70
2 22.556 31.288 632.91 13.154 8.203 300.32
3 20.041 26.099 566.13 13.606 8.571 308.73

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 21.544 25.856 4762.66 13.553 9.310 2308.48
2 22.898 29.405 5037.75 13.245 7.879 2236.54
3 21.263 25.767 4670.20 13.664 8.725 2320.70

Compared to the case with ε = 0.01 in Table 4.3, the ExpPlanner’s performance
is improved further for every horizon except m = 8 with ε = 0.1 in Table 4.4. Al-
though its behavior does not follow the expected trend of rhc, see Section 2.1.1
and fluctuate seemingly arbitrarily between the different horizons. The perfor-
mance of the Markov planner is virtually unchanged compared to the case of
ε = 0.01 in Table 4.3. The tcpu for the Markov planner is half of that of the
corresponding ExpPlanner.
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Figure 4.4 shows the distribution of the detection time t for starting array 2 when
the ExpPlanner is used with the confident alarm system and ε = 0.1. Figure 4.5
shows the corresponding results for the Markov planner. A simulation with a
detection time t > 100 is deemed an outlier, i.e., a failure, per the definition in
Section 3.6.2.
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(a) m = 4, 18 outliers.
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(b) m = 5, 49 outliers.
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(c) m = 6, 39 outliers.
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(d) m = 8, 33 outliers.

Figure 4.4: The distribution of the detection time t for starting array 2 when
the ExpPlanner is used with the confident alarm system and ε = 0.1 for the
different horizons.
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(a) m = 4, 0 outliers.

0 10 20 30 40 50

detection time, t [# of iterations]

10
0

10
1

10
2

10
3

o
c
c
u

ra
n

c
e

(b) m = 5, 0 outliers.
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(c) m = 6, 1 outlier.
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Figure 4.5: The distribution detection time t for starting array 2 when the
Markov planner is used with the confident alarm system and ε = 0.1 for the
different horizons.
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4.2.2 Uncertain alarm system

The results for the uncertain alarm system given in (3.6) are presented in Tables
A.1, A.2, and A.3. Figure 4.6 illustrates the initial target distribution for the un-
certain alarm system and possible starting positions for the ugv and the target.
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Figure 4.6: Possible initialization of the uncertain alarm system. Here, the
ugv starts in state x(0) = [ϕ(0),p(0)]ᵀ with position ϕ(0) = [72.5, 12.5] and
the target starts in region γ(0) = 2. The red crosses around the ugv are the
centroids of the observable regions from position ϕ(0), i.e., Sx(0).

Note that in Figure 4.6, the probabilities for all regions except the alarm region
α = 2 are pi(0) = 0.1

N−1 ≈ 2.53 · 10−4, ∀i ∈ {S \ α} as per (3.6).

The performance of the ExpPlanner remains unchanged compared compare to
the confident alarm system in Table 4.2. The performance of the Markov planner
has improved slightly compared to the confident alarm system with ε = 0 in
Table 4.2. Comparing Table A.2 with Table 4.3, and Table A.3 with Table 4.4, the
performance of both planners is virtually the same as their performance with the
confident alarm system with ε = 0.01 and ε = 0.1, respectively.

Both planners follow the convention of rhc with improved performance with
increasing horizon m. There is no apparent difference in the computation time
(tcpu) between the confident alarm system with ε = 0 in Table 4.2 and the uncer-
tain alarm system in Table A.1 for both planners. The Markov planner’s tcpu is
still a third of the ExpPlanner’s tcpu.
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4.2.3 Perimeter alarm system

The results for the perimeter alarm system given in (3.7) are presented in Ta-
bles 4.5, 4.6, and 4.7. Figure 4.7 illustrates the initial target distribution for the
perimeter alarm system and possible starting positions for the ugv and the tar-
get.
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Figure 4.7: Possible initialization of the perimeter alarm system. Here, the
ugv starts in state x(0) = [ϕ(0),p(0)]ᵀ with position ϕ(0) = [52.5, 87.5] and
the target starts in region γ(0) = 6. The red crosses around the ugv are the
centroids of the observable regions from position ϕ(0), i.e., Sx(0).

Note that the scale of the heatmap over the probability of a present intruder in
Figure 4.7 is different from that in Figure 4.3 and Figure 4.6. This is because the
target probabilities for the perimeter regions are pi(0) = 1

Np
= 1

76 ≈ 1.32 · 10−2 as

per (3.7).
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Table 4.5: The results for the perimeter alarm system (3.7) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 45.940 33.576 198.65 31.510 23.281 105.30
2 47.382 34.150 207.39 33.788 24.767 112.71
3 45.342 32.760 195.11 30.728 23.222 102.17

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 47.367 34.203 512.84 31.939 24.406 266.80
2 48.671 34.365 523.98 33.849 24.711 284.29
3 46.267 32.072 508.13 30.534 22.782 255.73

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]
1 44.245 30.316 1249.69 31.499 23.860 671.80
2 46.729 32.962 1310.57 33.605 24.836 708.89
3 43.383 30.276 1205.39 30.437 22.878 648.48

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 45.683 32.165 9328.25 31.417 22.760 4752.24
2 44.851 31.989 9074.50 33.391 24.476 5065.04
3 45.120 31.325 9113.08 30.790 23.665 4672.99

As seen in Table 4.5, the performance of both planners does not follow the conven-
tion of rhc and does not improve with an increasing horizon; t̄ and σ practically
stay unchanged. By examining the mean t̄ and σ of all three starting arrays for
each horizon, the lowest mean values of t̄ and σ were obtained with m = 6, not
m = 8, for both planners.

Figure 4.8 shows the distribution of the detection time t for starting array 2 when
the ExpPlanner is used with the perimeter alarm system and ε = 0. Figure 4.9
shows the corresponding results for the Markov planner. A simulation with a
detection time t > 100 is deemed as an outlier, i.e., a failure, per the definition in
Section 3.6.2.
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(a) m = 4, 47 outliers.
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(b) m = 5, 45 outliers.
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(c) m = 6, 40 outliers.
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(d) m = 8, 40 outliers.

Figure 4.8: The distribution of the detection time t for starting array 2 when
the ExpPlanner is used with the perimeter alarm system and ε = 0 for the
different horizons.
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(a) m = 4, 14 outliers.
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(b) m = 5, 13 outliers.
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(c) m = 6, 14 outliers.
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(d) m = 8, 12 outliers.

Figure 4.9: The distribution of the detection time t for starting array 2 when
the Markov planner is used with the perimeter alarm system and ε = 0 for
the different horizons.
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Table 4.6: The results for the perimeter alarm system (3.7) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.01.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 45.468 32.858 183.31 32.166 25.810 102.74
2 44.643 32.002 185.53 34.056 24.630 109.51
3 44.771 32.894 185.77 31.380 23.882 100.69

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 46.322 32.503 492.68 32.124 24.488 258.63
2 47.930 33.807 500.57 33.693 24.694 271.41
3 45.469 33.248 468.91 30.711 23.039 246.85

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]
1 43.766 31.265 1205.98 31.419 24.129 644.99
2 49.155 35.489 1330.29 33.534 24.626 690.75
3 45.214 31.976 1244.89 30.518 22.672 626.04

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 44.115 30.619 9016.17 31.420 23.293 4599.91
2 45.804 32.517 9292.06 32.638 24.200 4790.03
3 43.182 30.895 8789.20 30.936 23.572 4548.19

Comparing Table 4.6 with Table 4.5 shows that the performance is virtually un-
changed for both planners with the introduction of Q with ε = 0.01.
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Table 4.7: The results for the perimeter alarm system (3.7) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.1.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 52.035 34.525 213.41 32.240 24.354 101.09
2 55.749 38.865 221.12 34.054 25.067 106.53
3 53.807 37.972 215.33 32.733 24.788 103.02

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 54.006 38.093 552.53 33.101 25.398 266.69
2 56.007 38.900 593.81 34.302 25.503 274.87
3 54.956 39.329 577.42 32.528 25.802 265.74

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]
1 53.718 38.351 1463.19 32.957 25.103 678.43
2 55.244 36.925 1495.85 34.723 25.800 714.85
3 56.737 44.146 1530.46 32.125 23.636 657.83

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 58.029 56.916 11987.38 32.699 24.885 4804.45
2 56.929 38.714 11780.22 34.960 25.530 5128.23
3 56.681 39.673 11709.00 35.086 27.426 5157.83

Comparing Table 4.7 with Table 4.6 shows that the performance of ExpPlanner
deteriorates with the introduction of a correction factor Q with ε = 0.1. Further-
more, the performance of the ExpPlanner deteriorates with an increasing horizon,
contrary to the convention of rhc. The Markov planner’s performance does not
change much between the different values of ε; furthermore, it remains consistent
for all horizons, contrary to the convention of rhc.



4.3 Simulations 61

4.3 Simulations

Examples of the simulations in the developed simulation environment are pre-
sented in this section.

4.3.1 ExpPlanner, simulation

As previously mentioned in Section 3.2.2, the ExpPlanner model the target distri-
bution between all free regions; that is, it allocates a probability that the target
is present in each region based on the last time the region was observed λ. Fig-
ure 4.10 shows an example of how the simulation could look when the ExpPlan-
ner is used together with the confident alarm system (3.5), ε = 0.1, and m = 6.
The apparent difference in the heatmap’s color scheme between 4.10c and 4.10d
is due to the rescaling of the colorbar’s limits.



62 4 Results

x [m]

y 
[m

]

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
ab

ili
ty

 o
f 

p
re

se
n

t 
in

tr
u

d
er

UGV
Target

(a) t = 15

x [m]

y 
[m

]

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
ab

ili
ty

 o
f 

p
re

se
n

t 
in

tr
u

d
er

UGV
Target

(b) t = 20

x [m]

y 
[m

]

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
ab

ili
ty

 o
f 

p
re

se
n

t 
in

tr
u

d
er

UGV
Target

(c) t = 25

x [m]

y 
[m

]

0

0.002

0.004

0.006

0.008

0.01

P
ro

b
ab

ili
ty

 o
f 

p
re

se
n

t 
in

tr
u

d
er

UGV
Target

(d) t = 29, the target is found.

Figure 4.10: Example of extracted time instances from a simulation using
the ExpPlanner with the confident alarm system (3.5), ε = 0.1, and m = 6.
The red crosses around the ugv are the observable regions, i.e., Sx(t). The
target is found at t = 29.
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Figure 4.11 illustrates an example of how the simulation could look like using the
ExpPlanner together with the perimeter alarm system (3.7), ε = 0.01, and m = 6.
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(c) t = 10

x [m]

y 
[m

]

0

0.002

0.004

0.006

0.008

0.01

P
ro

b
ab

ili
ty

 o
f 

p
re

se
n

t 
in

tr
u

d
er

UGV
Target

X 47.5
Y 2.5

(d) t = 15

Figure 4.11: Example of extracted time instances from a simulation using
the ExpPlanner with the perimeter alarm system (3.7), ε = 0.01, and m = 6.
The coordinates of the vmax = [x, y]pmax is marked. The red crosses around
the ugv are the observable regions, i.e., Sx(t). The target is found at t = 39.
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The path traversed by the ugv in both simulation examples, Figure 4.10 and
Figure 4.11, are shown in Figure 4.12a and Figure 4.12b, respectively.
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(a) The traversed path of the confident
alarm system example.
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(b) The traversed path of the perimeter
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Figure 4.12: The traversed paths of (a) the confident alarm system example
in Figure 4.10, and (b) the perimeter alarm system in Figure 4.11, generated
using the ExpPlanner.
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4.3.2 Markov planner, simulation

As previously mentioned in Section 3.2.3, the Markov planner propagates the
probability of a present target between neighboring regions. Figure 4.13 shows
an example of how the simulation could look when the Markov planner is used
together with the confident alarm system (3.5), ε = 0.1, and m = 6.
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(b) t = 15.
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(c) t = 16.
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(d) t = 17, the target is found.

Figure 4.13: Example of extracted time instances from a simulation using the
Markov planner with the confident alarm system (3.5), ε = 0.1, and m = 6.
The red crosses around the ugv are the observable regions, i.e., Sx(t). The
target is found at t = 17.
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Figure 4.14 illustrates an example of a simulation using the Markov planner to-
gether with the perimeter alarm system (3.7), ε = 0.01, and m = 6.
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(b) t = 5.
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(c) t = 10.
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(d) t = 15.

Figure 4.14: Example of extracted time instances from a simulation using
the Markov planner with the perimeter alarm system (3.7), ε = 0.01, and
m = 6. The coordinates of the vmax = [x, y]pmax are marked. The red crosses
around the ugv are the observable regions, i.e., Sx(t). The target is found at
t = 49.
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The path traversed by the ugv in both simulation examples, Figure 4.13 and
Figure 4.14, are shown in Figure 4.15a and Figure 4.15b, respectively.
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(a) The traversed path of the confident
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(b) The traversed path of the perimeter
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Figure 4.15: Traversed paths of (a) the confident alarm system example in
Figure 4.13 and (b) the perimeter alarm system in Figure 4.14. They are
generated using the Markov planner.





5
Discussion

The results presented in Chapter 4 are discussed in Section 5.1. The used method
in Chapter 3 is discussed and evaluated in Section 5.2.

5.1 Results

The obtained results are discussed below in the order it is presented in Chapter 4.

5.1.1 The time constant T
It should be noted that after T = 250, the changes in t̄ and σ are relatively small
between the different examined T . Hence, any 250 ≤ T ≤ 500 would probably
suffice as a suitable ”stress parameter” for a ugv in a scene with similar decom-
position, and sparse obstacle placement.

5.1.2 Confident alarm system

Scaling factor ε = 0.01

The increased values of both t̄ and σ for the ExpPlanner with m = 5 compared
with the rest of the horizons are perplexing. One hypothesis is that with a horizon
of m = 4, some initial search trees Hx(t) are not large enough to reach α, and their
paths’ failure probabilities F (h), ∀h ∈ Hx(t), are small enough for Q to direct
the ugv towards the pmax = α. However, for m = 5, some of the initial search
trees Hx(t) are large enough to make the contribution of Q in (3.25) negligible
compared to that from F (h), but still not large enough to reach α. For some
of these initial search trees, the initial state could be located away from α and
the target; thus, prioritizing paths that deviate from the shortest path to α from
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h(t0). The ExpPlanner’s performance is practically the same for m = 4 and m = 6,
with the exception of the expected increased tcpu with m = 6. This suggest that
the ExpPlanner does not gain anything with the introduction of Q with ε = 0.01
when m . 7.

Scaling factor ε = 0.1

The fluctuation of the performance of the ExpPlanner between the horizons, is
probably a consequence of ExpPlanner’s characteristic of allocating the observed
probabilities pi(t), ∀i ∈ Sx(t) to all free regions. Consequently, if the initial alarm
region α is observed, the allocation of pα will give rise to the case where an arbi-
trary region is designated as the region with the maximal probability pmax. This
is reinforced by the uniform and random selection of pmax from Smax in (3.26);
this can be seen in Figure 4.10d. With this possible arbitrary pmax, a more ran-
domized behavior is obtained when using the ExpPlanner if the correction factor
Q interferes a lot with the failure probability F (h) in (3.25), allowing the direc-
tional prioritization too much influence. Furthermore, the ExpPlanner generally
prioritizes the number of observed regions |Sx(t)| as shown in Figure 4.12a. Nev-
ertheless, for the examined case, the performance of the ExpPlanner improved
with ε = 0.1 in Table 4.4 compared to ε = 0.01 in Table 4.3.

The path generated by the Markov planner in Figure 4.15a is almost the shortest
path to the target from the ugv’s starting position; depending on the target’s
previous position, it could even be the shortest path. Further analysis of the
Markov planner’s optimality is needed to draw definite conclusions.

A comparison of Figure 4.4 and Figure 4.5 also suggests that the Markov planner
is more robust (more consistent) than the ExpPlanner when using the confident
alarm system with ε = 0.1.

The confident alarm system overall

The Markov planner benefits from the introduction of Q when using the con-
fident alarm system. The consistency of the Markov planner’s performance sug-
gests that a directional prioritizing renders the usage of a long prediction horizon
obsolete for the Markov planner. The Markov planner performs just as well with
a horizon of m = 4 as with m = 8.

The ExpPlanner demonstrates general monitoring that prioritizes coverage and
complete exploration, whereas planning utilizing the Markov planner exhibits a
behavior similar to an aggressive guard dog, going straight for the intruder.

5.1.3 Uncertain alarm system

Scaling factor ε = 0

The slight improvement of the Markov planner’s performance compared to the
confident alarm system with ε = 0 in Table 4.2 is to be expected as the purpose of
introducing the uncertain alarm system in (3.6) was to handle the possible cases
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of the initial search trees Hx(t0) not reaching a node where the ugv can observe
non-zero probabilities, as previously mentioned in Section 3.4.1. A comparison
of the confident alarm system with ε = 0.1 and the uncertain alarm system with
ε = 0 is given in Section 5.1.5.

The uncertain alarm system overall

There is essentially no difference between the confident and the uncertain alarm
system with the introduction of the correction factor Q.

5.1.4 Perimeter alarm system

Scaling factor ε = 0

The consistent performance of both planners in Table 4.5 is because of the uni-
form property of the initial target distribution. The more uniform the target
probabilities are distributed between the regions, the more random the ugv will
behave for either planner.

Comparing Figure 4.8 and Figure 4.9 suggests that the performance of the Markov
planner is more robust (more consistent) than that of the ExpPlanner when the
perimeter alarm system is used with ε = 0. Although, both planners struggle
with planning when they use the perimeter alarm system.

Scaling factor ε = 0.01

That the introduction of Q does not affect the performance of both planners is
not surprising. Comparing Table 4.6 and Table 4.5, a correction factor Q with
ε = 0.01 does not affect V (h) in (3.25) enough to randomize further the already
random behavior of the ugv when Q is omitted.

The uniform distribution between the perimeter regions initially compels the
ugv to plan its path along the scene’s perimeter. It is only a question of whether
the direction along the perimeter closes the distance to the target or extends it.
Figure 4.14 illustrates an example of this when the Markov Planner is used. Here,
the size of Smax is small, but its elements are scattered between the different cor-
ners of the scene.

As previously mentioned, the ExpPlanner demonstrates more general monitor-
ing than the Markov planner. Figure 4.11 illustrates an example of a simulation
where this behavior occurs using the perimeter alarm system. The deviation to-
wards the scene’s center in Figure 4.11d is most likely due to the higher infor-
mation gained because of the increased number of regions observed, |Sx(t)|. The
location of pmax and its effect through the correction factor also contribute to this
deviation from the perimeter.
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Scaling factor ε = 0.1

The deterioration in performance for the ExpPlanner with ε = 0.1 in Table 4.7
compared to ε = 0.01 in Table 4.6 is most likely due to the uniform property
of the perimeter alarm system’s target distribution, in tandem with the invasive
Q. The uniform property of the target distribution results in multiple instances
where a large number of regions obtain the maximal probability of a present
target at the initial search time t0, i.e., Smax is large.

A probable reason for the consistent performance of the Markov planner is that
the uniform property of both the initial target distribution and the Markov plan-
ner’s probability propagation does not necessarily lead to a large Smax. However,
the elements in Smax are scattered around the ugv, illustrated in Figure 4.14.
This combination of the uniform property of the probability propagation and an
invasive Q induces a random behavior.

The deterioration of the performance of the ExpPlanner with an increasing hori-
zon is probably due to it facilitating a larger distance between the starting node
vh(t0) and the end node vh(t0+mTs) of each branch h ∈ Hx(t0); thus, increasing the in-
vasive nature ofQ. This increase ofQ’s invasive nature does not affect the Markov
planner, probably because the uniform initialization of the perimeter alarm sys-
tem propagates the target distribution to more regions than what the ugv can
observe and neutralize. As previously mentioned, the correction term Q is not
compatible with the uniform initialization of the perimeter alarm system.

The perimeter alarm system overall

A large Smax in combination with pmax being selected uniformly and randomly
from Smax may induce a random behavior of the ugv through the invasive Q if
the elements of Smax are scattered in different directions from the ugv. It could
be detrimental even if Smax only has a few elements, as long as there are multiple
elements and they are scattered around the ugv. Both planners struggle with
planning when they use the perimeter alarm system.

5.1.5 Comparison of alarm systems

By comparing the results of the Markov planner using the confident alarm sys-
tem with the correction factor Q with ε = 0.1 in Table 4.4 with the case of only
using the uncertain alarm system in Table A.1, it is concluded that the former
performs better than the latter. Furthermore, the Markov planner’s performance
is enhanced by introducing the directional prioritizing with the confident alarm
system, see Section 4.2.1.

The results from Figure 4.5 and Figure 4.9 suggest that the robustness of the
Markov planner’s performance depends on the confidence of the initial alarm
system and if a directional prioritizing is utilized. This dependence on the initial
alarm system’s confidence probably originates from the used Markov chain being
ergodic, see Definition 2.13, and the transition matrix P being uniform, see (3.15).
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The more the (initial) target distribution is (uniformly) spread out amongst multi-
ple regions, the closer the target distribution p(t) is to the stationary distribution
π. The closer the initial p is to π, the faster the Markov chain approaches station-
arity. As previously mentioned, the closer the Markov chain is to stationarity, the
less accurate, and thus the less useful, the Markov planner becomes.

5.1.6 Comparison of planners

The Markov planner outperforms the ExpPlanner in all examined scenarios. Fur-
thermore, a comparison of the number of outliers of the Markov planner in Fig-
ure 4.5 and Figure 4.9 with the ExpPlanner in Figure 4.4 and Figure 4.8 hints that
the Markov planner is more robust than the ExpPlanner. These results also indi-
cate that the more uniform the target probabilities are distributed between the
regions, the more random the ugv will behave, leading to more outliers. Thus,
the performance is improved by introducing knowledge about the target’s move-
ment.

5.2 Method

Some of the more prominent shortcomings of the used method are:

• The number of features that were discretized.

• The absence of a controller and, thus, the absence of motion modeling be-
tween the discrete nodes.

• The lack of variation in the studied scene, i.e., the layout of the scene, thus,
damaging the study’s robustness and reliability.

As mentioned, the mean detection time t̄ is not a true time value; instead, it is the
mean number of iterations. Another aspect that is heavily simplified through dis-
cretization is the complete observation of a region when its centroid is observed.
Although, a more accurate description of the scene will be obtained when the
size of the regions tends to zero, leading to more valid results. The different dis-
cretized aspects do contribute to more reliable results. Furthermore, the absence
of a sensor model excludes any consideration of sensor error or possible environ-
mental influence.

No controller was developed due to no consideration of the motion between the
discrete nodes. As such, the validity of the results could be questioned, but the
purpose of the study is to act as a preliminary evaluation of how multi-sensor
systems should be designed, as stated in Section 1.2.

Due to time limitations, only one obstacle layout is examined, as mentioned in
Section 4.2. Multiple simulations of various obstacle layouts are necessary for
more reliable results.
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5.2.1 Source criticism

Sources’ credibility was constantly considered during the literature study. Sources
by authors with multiple works done in the same field were deemed credible.
Course literature from related courses at Linköping University and articles from
well-established journals were also chosen as credible sources. Multiple sources
were analyzed when searching for sources related to Markov chains due to the in-
coherence related to the definition of and difference between Markov chains and
Markov processes as described in Section 2.5. The multiple sources related to the
Markov chain and its properties were cross-examined to validate the material.



6
Conclusions

Presented in this chapter are all the conclusions drawn in this study. Section 6.1
and Section 6.2 shortly present conclusions related to the ExpPlanner and the
Markov planner. Conclusions related to the objective function are presented in
Section 6.3, and general conclusions related to the problem formulation in Sec-
tion 1.3 are presented in Section 6.4. Finally, in Section 6.5 are suggested contin-
uations of this thesis presented.

6.1 ExpPlanner

The ExpPlanner’s purpose was to work as a baseline for the Markov planner. Still,
some conclusions for the ExpPlanner are drawn. The planning done by the Exp-
Planner exhibits general monitoring that prioritizes the number of observed re-
gions |Sx(t)|, and a larger covered area. The ExpPlanner benefits from a confident
initial alarm system.

6.2 Markov planner

One of the main conclusions is that the Markov planner seems to need a confident
initial knowledge of the target, i.e., the initial target distribution must be confined
to a few, relatively close alarm regions, preferably only one initial alarm region,
α, as the confident alarm system in (3.5) does. A Markov planner should be
implemented so that the number of regions with non-zero probability |S+| is kept
small.

The introduction of the correction factor Q in (3.25) further improves the Markov
planner’s performance. The scaling factor ε should be chosen low enough for Q
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not to intrude on the failure probability F (h), (3.23), which is the fundamental
objective value. A scaling factor of 0.01 ≤ ε ≤ 0.1 would suffice for desirable per-
formance. The introduction of directional prioritizing through Q also shortens
the length of the needed prediction horizon m.

6.3 Objective function

With proper conditions, a probability-based objective function is considered suit-
able for path planning a ugv for monitoring an area. These conditions are pri-
marily a confident initial alarm system and some directional prioritizing incor-
porated in the objective function. One possible flaw with the correction factor
is that if multiple elements in Smax are scattered around the ugv, then an inva-
sive correction factor could induce a random behavior through the uniform and
random selection of pmax in (3.26).

6.4 General conclusions

One of the main conclusions is that both path planners benefit from a confident
initial alarm system, and both planners are not suitable for a uniformly uncer-
tain alarm system, such as the perimeter alarm system (3.7). The knowledge of
the target’s movement that the direct modeling of the Markov planner provides
improves the performance distinctly compared to the performance of the more
general ExpPlanner. From comparing Figure 4.4 and Figure 4.5, along with the
comparison of Figure 4.8 and Figure 4.9, it is concluded that the Markov planner
is more robust and more likely to detect an intruder than the ExpPlanner. The
Markov planner has a smaller number of failures, i.e., outliers, compared to the
ExpPlanner.

It is suggested that a monitoring ugv plan its path utilizing an ExpPlanner when
in a general monitoring mode, e.g., a sort of passive surveillance mode, and when
an alarm is registered, the path planning switches to the Markov planner, en-
abling the ”aggressive guard dog” mode. The Markov planner is suitable for
time-critical cases where urgent path planning is essential, e.g., during an intru-
sion into vital installations. A confident alarm system that pinpoints the location
of the intrusion is necessary.

Partitioning the surveillance area into cells is a well-examined simplification
in autonomous control. Nevertheless, modeling the target distribution through
Markov chains is a suitable approach with spatial partitioning. Albeit a tried
simplification, spatial partitioning is deemed a still relevant tool in autonomous
control; the density can be increased by decreasing the size of each cell and in-
creasing the number of cells to converge to a continuous representation of the
surveillance area.

Further investigations of the collaboration between stationary sensors and mo-
bile sensor platforms such as the ugv are needed. An initial suggestion is a
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probability-based representation of the target’s position, possibly with Markov
chains as a foundation to propagate the target distribution when the target moves
outside the collaborative sensing area. In a collaboration between stationary sen-
sors and mobile platforms, a stationary sensor is best utilized to indicate the tar-
get’s position by directly manipulating the probability values for the monitored
cells. The stationary sensors can also keep track of the number of targets in the
surveillance area. These usages make it necessary to implement a centralized
sensor network.

6.5 Future work

A more thorough analysis of the objective function with different configurations
is desired to get a complete picture of the performance of the Markov planner,
e.g., changing the detection radius r, the decomposition, the step length of the
ugv, the obstacle placement, and so forth. A more realistic scenario with a target
with a purpose, i.e., the target no longer moves according to a uniform random
walk and instead moves towards a specific coordinate or goal, would be especially
interesting. Rarely do intrusions into vital installations occur where the intruder
randomly walks around. It would be interesting to study different transition
matrices P that either; coincide or differ with the true transition matrix of the
target’s movement. To examine the robustness related to model error, a transition
matrix that differs from the target’s true transition matrix can be applied. The
reuse of the search tree is highly recommended in future work for a more efficient
implementation.

The structure of the Markov planner enables the modeling of multiple targets si-
multaneously. By representing each target with an individual target distribution
(Markov chain) pT (t), where T is the target index. Subsequently, by concatenat-
ing these target distributions to a matrix P(t) = [pᵀ

1 (t),pᵀ
2 (t), ...,pᵀ

Tmax
(t)]ᵀ is the

new representation obtained. Tmax denotes the number of present targets. Each
region i will then be assigned the sum of the i:th column of P(t); consequently,
the value in each region will be the expected value of the number of targets within
that region as per

Ei


Tmax∑
j=1

Xj

 =
Tmax∑
j=1

Ei{Xj }. (6.1)

Where Xj is the stochastic variable that target j is present. Furthermore,

Ei{Xj } =
∑
k

k ∗ P rXj ( k ) = P rXj (6.2)

where k is the number of present targets from the Markov chain represented by
Xj , which is either 0 or 1. This results in the expected number of intruders in
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each region i being just the sum of the probability that each ”active” intruder is
present in region i. The only possible complication is that the transition matrix
P becomes a diagonal block matrix of the P used for one intruder, most likely
resulting in unreasonable computation time. This could be avoided by reusing
the past search tree, as long as no new intruders are introduced; if so, a new
search tree must be generated.

The final proposed continuation is to change the correction factor Q in (3.25)
from only considering one region with the maximal probability to considering
kernel-based prioritizing. Instead of prioritizing paths in the direction of the
region with the single highest probability, Q will prioritize paths in the direction
of the area or kernel (collection of regions) with the highest total probability. One
suggested approach is to combine regions within an area with a diameter equal
to the ugv’s detection radius r, see Figure 6.1.

d

r

UGV

Figure 6.1: The proposed kernel size for future work using kernel-based
correction factor Q. d is the proposed diameter of the kernel, which is equal
to the ugv’s detection radius r.
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Tables

The tables containing the less interesting results from the evaluation of the devel-
oped methods to model the target distribution.

81
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A.1 Uncertain alarm system

The results related to the uncertain alarm system are presented here.

Table A.1: The results for the uncertain alarm system (3.6) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 42.307 33.614 185.50 18.524 15.097 63.56
2 42.187 34.248 184.28 17.401 13.749 60.24
3 42.712 34.902 180.68 18.429 14.369 63.56

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 37.314 32.560 412.84 15.924 12.313 141.64
2 39.938 34.787 450.17 15.092 10.730 135.53
3 37.968 33.177 413.82 15.819 11.015 141.60

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 32.425 29.335 943.41 14.584 11.932 347.63
2 35.063 32.629 1019.36 14.232 9.250 333.61
3 32.889 29.661 936.35 14.824 11.617 348.64

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 28.221 26.907 6030.48 14.146 9.787 2484.45
2 29.787 28.555 6376.55 13.931 9.238 2424.75
3 27.746 26.818 6000.34 14.298 9.766 2526.16
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Table A.2: The results for the uncertain alarm system (3.6) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.01.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 27.348 27.202 116.91 13.922 9.788 47.69
2 28.472 27.004 118.14 13.746 10.780 48.24
3 26.670 26.094 113.43 14.188 11.088 49.11

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 33.710 33.206 352.22 14.057 10.188 126.16
2 35.565 34.183 370.57 13.490 8.420 120.19
3 33.352 31.996 351.10 14.116 9.600 126.91

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]
1 26.963 27.560 751.16 14.059 10.309 328.46
2 30.414 29.284 839.46 13.714 9.170 321.43
3 28.146 26.983 792.42 14.186 10.967 335.51

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 22.027 22.797 4840.55 13.982 9.243 2518.62
2 23.862 26.375 5218.62 13.792 8.647 2457.65
3 22.129 24.786 4883.69 14.193 9.614 2558.62
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Table A.3: The results for the uncertain alarm system (3.6) with incremental
m. tcpu is the computation time for 1000 simulations in seconds. The scaling
factor used was ε = 0.1.

m = 4
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 17.408 18.832 75.50 13.529 8.802 45.83
2 18.939 23.297 83.12 13.142 7.838 44.45
3 17.967 23.182 77.65 13.611 8.512 46.15

m = 5
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 20.347 25.002 214.95 13.486 8.634 116.71
2 23.146 30.987 243.74 13.234 7.780 115.24
3 20.120 24.236 215.44 13.763 8.695 119.82

m = 6
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 20.280 24.845 568.14 13.707 9.644 310.58
2 22.229 28.963 627.37 13.388 7.950 303.15
3 19.969 23.291 562.95 13.968 9.437 320.97

m = 8
ExpPlanner Markov planner

starting array t̄ σ tcpu [s] t̄ σ tcpu [s]

1 21.477 25.586 4653.44 13.830 8.867 2403.62
2 23.672 30.281 5121.46 13.900 9.283 2399.74
3 20.737 24.749 4553.85 14.322 10.013 2512.60
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