
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2022

A Deep Learning Approach
to Brain Tracking of Sound

Oscar Hermansson

Master of Science Thesis in Electrical Engineering

A Deep Learning Approach to Brain Tracking of Sound

Oscar Hermansson

LiTH-ISY-EX--22/5485--SE

Supervisor: Emina Alickovic
isy, Linköpings universitet

Johanna Wilroth
isy, Linköpings universitet

Examiner: Martin Skoglund
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2022 Oscar Hermansson

Abstract

Objectives: Development of accurate auditory attention decoding (AAD) algo-
rithms, capable of identifying the attended sound source from the speech-evoked
electroencephalography (EEG) responses, could lead to new solutions for hearing
impaired listeners: neuro-steered hearing aids. Many of the existing AAD algo-
rithms are either inaccurate or very slow. Therefore, there is a need to develop
new EEG-based AAD methods. The first objective of this project was to inves-
tigate deep neural network (DNN) models for AAD and compare them to the
state-of-the-art linear models. The second objective was to investigate whether
generative adversarial networks (GANs) could be used for speech-evoked EEG
data augmentation to improve the AAD performance.

Design: The proposed methods were tested in a dataset of 34 participants who
performed an auditory attention task. They were instructed to attend to one of
the two talkers in the front and ignore the talker on the other side and back-
ground noise behind them, while high density EEG was recorded.

Main Results: The linear models had an average attended vs ignored speech
classification accuracy of 95.87% and 50% for ∼30 second and 8 second long
time windows, respectively. A DNN model designed for AAD resulted in an av-
erage classification accuracy of 82.32% and 58.03% for ∼30 second and 8 second
long time windows, respectively, when trained only on the real EEG data. The
results show that GANs generated relatively realistic speech-evoked EEG signals.
A DNN trained with GAN-generated data resulted in an average accuracy 90.25%
for 8 seconds long time windows. On shorter trials the GAN-generated EEG data
have shown to significantly improve classification performances, when compared
to models only trained on real EEG data.

Conclusion: The results suggest that DNN models can outperform linear mod-
els in AAD tasks, and that GAN-based EEG data augmentation can be used to
further improve DNN performance. These results extend prior work and brings
us closer to the use of EEG for decoding auditory attention in next-generation
neuro-steered hearing aids.

iii

Acknowledgments

To start, I would like to give my supervisors Emina Alickovic and Johanna Wilroth
at Linköping University an enormous thanks for all the help, encouragement and
valuable insights on how to interpret the results and how to move forward. For
always taking time to answer my questions and doing so with a smile. Your sup-
port has been massively appreciated.

A huge thanks to my examiner Martin Skoglund at Linköping University for your
endless excitement on the progress, much needed feedback and positive attitude
through it all. Thank you Tobias Dorszewski at Oticon A/S for your much needed
advice, explanations and help with machine learning. Without it I would prob-
ably still be training faulty networks and I wish you good luck with your own
master thesis.

I would like to thank my friends at the department Joel Nilsson, Marco Ratta
and Gustav Zetterqvist. Thank you for always listening to me ramble when I
got stuck, giving interesting perspectives and making my time at the department
very enjoyable and I wish you all the best in your future studies.

My most heartfelt thanks to my friends who made my time both on and off cam-
pus the most enjoyable period of my life.

Finally, to my family, my parents Annika and Joakim Hermansson, my brother
Anton; thank you from the bottom of my heart for always believing in me, al-
ways supporting me and all the love you have given me through my life.

Thank you.

Linköping, June 2022
Oscar Hermansson

v

Contents

Notation ix

1 Introduction 1

2 Auditory attention decoding 5
2.1 The auditory domain in the brain 5
2.2 EEG for measuring the audio stimuli response 7
2.3 Auditory attention decoding . 9

3 Data set 13
3.1 Experiment setup . 14
3.2 Data preprocessing . 15

4 Linear models 17
4.1 Theory . 17

4.1.1 Infinite impulse response filter 17
4.1.2 Finite impulse response filter 18
4.1.3 Parameter estimation . 18
4.1.4 Regularisation . 20
4.1.5 Multiple inputs . 21

4.2 Implementation . 21
4.2.1 Finite impulse response . 21

5 Artificial neural networks 23
5.1 Theory . 23

5.1.1 Convolutional neural networks 28
5.1.2 Categorical cross-entropy 31
5.1.3 Adam . 31

5.2 Implementation . 31

6 Generative adversarial networks 35
6.1 Theory . 35
6.2 Approach to create more training data 37

vii

viii Contents

6.3 Evaluating the quality of the generated data 42

7 Results 45
7.1 GANs . 45
7.2 Linear models . 65

7.2.1 FIR models . 65
7.3 CNN for locus classification . 71
7.4 Summary of the results . 74

7.4.1 Results of GANs . 74
7.4.2 Results of linear models . 74
7.4.3 Results of CNN for locus classification 74

8 Discussion 75
8.1 GANs . 75
8.2 Linear models . 77
8.3 DNN for locus classification . 77

9 Conclusions and future work 81
9.1 Conclusions . 81

9.1.1 GANs . 81
9.1.2 Linear models . 82
9.1.3 CNN for locus classification 82

9.2 Future work . 83

A Proofs 87
A.1 Proof of linearity for activation function 87
A.2 Proof of optimality for the generator 87
A.3 Proof of convergence for the generator and discriminator 88

Bibliography 91

Notation

Abbreviations

Abbreviation Meaning

cpp Cocktail party problem
eeg Electroencephalography
ieeg Intracranial electroencephalography
meg Magnetoencephalography
aad Auditory attention decoding
ann Artificial neural network
dnn Deep neural network
gans Generative adversarial network
mse Mean square error
sd Standard deviation
iir Infinite impulse response
fir Finite impulse response
ls Least squares
siso Single input single output
miso Multiple inputs single output
sr Stimulus reconstruction
cca Canonical correlation analysis
tls Total least squares
svm Support vector machine
relu Rectified linear unit
elu Exponential linear unit
cnn Convolutional neural network
loa Locus of attention
adam Adaptive moment estimation

ix

1
Introduction

The human brain is a remarkably complex organ that allows solving intricate
problems every day, all the time, without us even noticing. How the brain does
this is still unclear but science have come a long way trying to understand how the
brain works. One area that is being researched is how the brain registers and pro-
cesses sound, which allows us to understand speech, amongst other things. The
main focus of this thesis is modeling the brain’s ability to enhance and suppress
different sounds at will from electroencephalography (EEG) data using nonlinear
models, such as, deep neural networks (DNN).

Our brain’s ability to focus on a specific sound and attenuate irrelevant sounds
in a natural environment filled with competing sounds gains one’s appreciation
when considering how well it works in practice. Let us imagine you find your-
selves in the middle of a cocktail party, having a nice conversation with an ac-
quaintance and surrounded by people doing the same thing. It is noisy, yet you
have no problem following the conversation at hand and ignoring the other irrele-
vant sounds. This is often referred to as the cocktail party problem, where the term
was first used in this context by Cherry in [12]. For most people, this is done sub-
consciously but for people with hearing impairment this is a difficult task. State-
of-the-art hearing aids are not enough to solve the problem [3, 32]. Some of the
proposed solutions are noise reduction (e.g., beamforming) and adaptive noise
cancellation methods [5, 25, 30]. Another proposed simple heuristic algorithms
tend to enhance the loudest sound or enhance the sound from the direction the
user is looking at from the brain signal [19]. These are not reliable methods as
they often enhance the wrong the wrong sound source in practical applications
[19]. For instance, using the direction the user is looking at will enchance the
wrong sound when talking to a passenger while driving a car [19]. It would
thus be beneficial to not have to assume the attended sound but instead detect it

1

2 1 Introduction

and and enhance that particular sound. A recent literature suggested that brain
signals captured with EEG instruments could be used to decode (i.e., classify)
whether a sound was focused on (attended) or not [36].

The brain is able to track the amplitude of speech and there is a noticeable differ-
ence in EEG measurements if the speech was attended or unattended [36]. The
cortical activity can also be measured by other techniques such as invasive in-
tracranial EEG (iEEG) [34] and non-invasive magnetoencephalography (MEG)
[17] but these are either invasive or expensive, in contrast to EEG which is widely
available and inexpensive. The paper by O’Sullivan et al. has lead to increasing
interest in the field and further development of identifying the attended speech
in a multispeaker environment using the measured cortical activity. When used
with EEG, the method revolves around creating a model, linear [2–4, 13, 19] or
non-linear [13, 16, 19, 39, 41], that use the EEG to determine the attended sound,
or the direction of the attended sound. This process is often referred to as audi-
tory attention decoding (AAD).

This thesis investigates deep learning network (DNN) methods for AAD to cap-
ture the non-linear structure of the brain [13] to create a more accurate model
with higher accuracy, compared to linear models that are currently popular due
to their simplicity and intuitiveness [2]. To train the neural network, a data set
has been provided by Oticon A/S with EEG measurements and the audio record-
ings. The data was gathered during an experiment were subjects attended to a
specific talker in a noisy environment. More information about the data is given
in the next paragraph. However, as neural network generally benefits from large
amount of training and that the process of gathering the data does not realis-
tically allow for large amount of training data, the performance of the neural
network will suffer. A potential solution to the lack of data that is studied in this
thesis is to use Genereative adversarial networks (GANs) to create artificial training
data.

The data set consists of measurement taken from subjects in an experiment that
simulated a cocktail-party environment in a controlled manner. The subject had
electrodes applied to the scalp and were seated in a room with two loudspeakers
in front, separated with an angle of +30◦and -30◦, and four equidistantly located
in the back. The two loudspeakers in the front played each a different news clip,
one with a male talker and one with a female talker of similar speech patterns.
The four loudspeakers in the back produced noise. The subject was then asked
to attend a specific loudspeaker, T1 in Figure 1.1, in the front and the EEG mea-
surements were recorded.

3

Figure 1.1: Visualisation of the experimental setup used for gathering data,
based on [4].

As the amount of real data is limited, it would be beneficial to create more
training data that can be used to train the neural network. In this thesis, the solu-
tion is to use GANs to create new training data based on the real data. GANs con-
sists of two neural networks, a generator that creates data, and a discriminator that
distinguishes real and generated data. The principle is that the generator creates
plausible data that is then compared to real data by the discriminator. The dis-
criminator learns which data is generated and punishes the generator for creating
implausible data, leading to the generator learning how to trick the discriminator.
With sufficient training, this leads to a generator that is able to create data that
the discriminator believes to be real.

The goal of the thesis is to implement DNN that can reconstruct and determine
the direction (left or right) of the the attended sound in a noisy environment
and compare the performance with different linear models, using EEG signals as
input and the attended, or the direction of the attended, sound as output. To
train the deep neural networks, provided training data and training data created
by GANs will be used. Further, the results from the training with and without
GANs are analysed to determine if it is a valid solution for the limited real data
available.

4 1 Introduction

This thesis tests three main hypotheses:

(H1) DNNs perform better than linear models.

(H2) GANs can be used to generate realistic speech-evoked EEG data.

(H3) GANs generated EEG data can be used to improve the performance of DNNs.

The performance of DNNs and linear models will be compared for different
amount of data available to draw a conclusion. The generated data will be com-
pared to real data to determine if it possible to create realistic data. The perfor-
mance of DNNs when trained with and without generated data will be compared
to conclude if the performance can be improved.

The outline for the thesis is the following. Chapter 2 contains the underlying the-
ory of how sound and EEG is measured as well as how the brain processes sound
and what can be measured by EEG. This chapter also includes the fundamental
mathematical formulation of the problem. Chapter 3 explains how the data was
collected and the preprocessing that has been done to remove unnecessary infor-
mation from the data. Chapter 4 details the theory of common linear models and
how to create them. Chapter 5 explains the theory of artificial neural networks
and what has been done with the method in this particular field before. The
chapter ends by explaining the details and design choices of the artificial neural
network that has been used in this thesis. Chapter 6 contains the theory behind
GANs and why it can be used to create more training data. Chapter 7 presents
the results of the thesis. This includes the accuracy of the artificial neural net-
works to determine the spatial origin of the attended sound for different amount
of data that is available to make a decision (decision windows). Also presented
is the affect of the generated data created by GANs on the accuracy when added
to the training data of the artificial neural network. Chapter 9 draws conclusions
from the results such as determining if GANs is a possible solution to gather
more training data. The chapter ends by discussing the future work. Lastly, the
appendix contains proofs related to the presented theory.

2
Auditory attention decoding

The term cocktail party problem (CPP) describes the challenge of focusing on a sin-
gle sound in a noisy environment while suppressing the unwanted sounds. The
problem of determining the sound that is focused on in environments with many
different sounds is called auditory attention decoding. It has been used for some
time and there have been many studies on AAD such as [2–4, 13, 16, 32, 34, 36,
39, 41] where it is used to solve the CPP. This is a complex problem as many
methods for solving AAD needs access to clean speech signals which is often not
available in practice [2] and the brain is non-linear [13]. As the problem is not
trivial, it is beneficial to understand the theory behind it.

This chapter presents the underlying theory of how sound is recorded and pro-
cessed by the brain as well as how EEG works and what it measures. Lastly, the
problem is formulated mathematically.

2.1 The auditory domain in the brain

The brains ability to process sound can be outlined as four processes involved
in the auditory domain [32]. The first is the detection of the sound; the second
is the process of intentional and attentional hearing; the third is the extraction
of meaning and information of the sound and the last is communication, mean-
ing an interactive and bidirectional way of exchanging meaning and information.
For the cocktail party problem specifically, the most important is processing of the
intentional and attentional hearing as well as the extraction of meaning and in-
formation. A crucial part of objective assessment is the ability to measure the
attention and listening effort when listening to speech in noise.

5

6 2 Auditory attention decoding

The main system used in the brain when processing sound is called the au-
ditory cortex which is part of the temporal lobe of the brain. When sound en-
ters the ear, the auditory information is processed and then used for identifica-
tion of words which is primarily done in the left temporal lobe. The processed
phonemes, meaning the minimal units that distinguish between words, are con-
tinuously compared with all the known words until only a single possible word
remains. The lexical information from the chosen word is then gathered from the
superior and middle temporal lobe and the spoken word is understood [10].

When multiple audio sources are present, the same procedure of the sound is
done however the brain segregates the attended and unattended sound. The au-
ditory cortex still processes both the attended and unattended sound while segre-
gating and amplifying the attended sound. Both the processed audio is then sent
for lexical identification however it is only done for the attended sound, meaning
that the lexical identification limits the number of audio sources can be under-
stood at a time [10].

Brodbeck et al. [10] studied how the brain processes sound and suggested the
same general structure of speech perception as [32] by first identifying the audio,
transforming it into linguistic information and lastly using that information to
access abstract word representation. The study suggests that the different stages
of speech perception are mostly localised in the superior and middle temporal
lobe and specifically around the auditory cortex. It was found that the response
latency relative to the phonetic onset was approximately 114 ms and thus the pho-
netic information is used for lexical processing almost as soon as it is available.
The process of identifying the spoken word is described as for a given auditory
sequence, all the word candidate competes for recognition until only one is left.
For example, if the sequence ”no” is spoken, both ”noble” and ”notable” are can-
didates for the recognised word. When the next part of the sequence is added
being a ”b”, ”notable” is no longer a valid candidate and thus discarded. Not
all plausible candidates are treated equally as it is shown that the frequency of
the word plays a role in how favourable that word is compared to the other candi-
dates. The results indicate that specifically the process of recognising words from
audio is mainly done in the left temporal lobe and the study also analysed the re-
sults when done in a cocktail party problem scenario. The results shows that for the
attended sound, the results are in accordance with the previous results but that
for the unattended sound, no processing is done to recognise the words of the in
the audio, suggesting that only one speech stream can be correctly processed at a
time [10].

2.2 EEG for measuring the audio stimuli response 7

2.2 EEG for measuring the audio stimuli response

The brain consists of a network of neurons which, when activated, generates a
weak electrical impulse called postsynaptic potential [18]. Individually, these im-
pulses are too small and difficult to detect but when there is activity in a region
of neurons at the same time it is possible to measure it. EEG is a method that, by
placing electrodes on the scalp surface, is able to detect and measure this activity
in the brain [18]. Electrode gel is used for to obtain a good interface between the
skin and the electrodes. For faster application and almost identical placement on
different subjects, the electrodes can be mounted on to a cap and then applied to a
subject, which has the advantage of not needing a professional applying the elec-
trodes [18]. The voltage fluctuations measured by the electrodes are very small
so the recorded data is digitised and then inputted to an amplifier [18]. The am-
plified data can be saved for later use and be displayed as a sequence of voltage
values [18].

There are multiple methods to measure brain activity and specifically for AAD.
Methods such as iEEG [20, 34] and MEG [1, 17, 38] have been used successfully
for stimulus reconstruction. However, both these method have severe drawbacks
that hinders their use in practical applications. iEEG scans are invasive and gives
a restricted view of processing along the auditory hierarchy while magnetoen-
cephalography is expensive and rare. Compared to these methods, EEG has high
time resolution, are inexpensive and widely available but has poor spatial reso-
lution as an electrode measures the sum of many neuron activations [42]. This
is the reason why it was such a breakthrough when it was shown by O’Sullivan
et al. that is was possible to detect attended sound with EEG. This meant that
it might be possible to use the method in practical applications and further the
development of hearing aids controlled by the brain.

The placement of the electrodes on the scalp for EEG is important for a fair rep-
resentation of the activity all around the brain, unless an even representation is
not desired but rather a specific area being targeted, and being able to compare
the measurements with other subjects. When using EEG for AAD, most stud-
ies follow the international 10-20 system for the location of application of the
electrodes to the scalp, see e.g., [3, 4, 8, 13, 16, 19, 39]. An illustration of the
electrode setup can be seen in Figure 2.1. The details for the EEG such as number
of electrodes and sampling frequency varies between studies but common values
are 128 or 64 electrodes with a sampling frequency of 512 Hz or higher. New
methods suggest that it is possible to achieve competitive performance with as
few as 16 electrodes [35, 39]. As Su et al. mentions, not all electrodes give the
same amount of information and specifically for the cocktail party problem and au-
ditory processing, the electrodes over the frontal and temporal regions provides
the most information. These findings are consistent with conclusions drawn by
others such as [41]. Another important factor in the EEG measurements is the
delay from the sound being emitting to the corresponding reactions seen in the
measurements. Experiments indicate that a delay of around 200 ms is critical for

8 2 Auditory attention decoding

Figure 2.1: The international 10-20 system electrode placement, based on
Wikimedia Commons illustration.

solving the cocktail party problem in [36] where O’Sullivan et al. argues for this
with the results from the decoder weights and the correlation between behaviour
at different time-lags. The average decoder weights shows a clear pattern around
200-250 ms for the attended and unattended decoder meaning the model weighs
the samples at those time-lags as the most important samples. It is also shown
that the correlation between behaviour and reconstruction-accuracy were maxi-
mum at approximately 200-250 ms, with some maximums being at 100-150 ms
meaning the time-lag is not constant between trials and subjects. These results
makes O’Sullivan et al. draw the conclusion that the time lag around 200 ms has
the most information that can be used for AAD.

2.3 Auditory attention decoding 9

When creating the model for encoding, meaning predicting the EEG signals
from the audio, or decoding, meaning predicting the audio from the EEG signals,
of the auditory attention, it is important to know both the sound stimuli and the
response which is measured by EEG. The microphones used for recording the
sound is commonly sampled at 44100 Hz, and the samples contain the sum of
all sound signals at that time [2]. As the main goal is to determine the attended
speech in the recorded sound, the speech has to be extracted from the record-
ings. This can be done using different methods, see for example [6–8, 11, 23, 37].
With individual speech envelopes, the final step is to synchronise the EEG and
envelopes by downsampling them to the same sampling rate, 64 Hz in this thesis,
and filtering them with a bandpass filter, between 2-8 Hz in this thesis. These
values are recommended in [2].

2.3 Auditory attention decoding

Assume that for any given point in space, there exists a time-varying sound
pressure, that originate from nu sound streams, and can be defined as pi(t), i =
1, 2, ..., nu [2]. These sound streams can come from one or more sound sources
such as individual talkers or headphones. The resulting sound pressure can be
described as the sum of all the sound pressures as

p(t) =
Nu∑
i=1

pi(t) (2.1)

and this is what the ear decodes or what can be sampled by a microphone. When
sampling with a microphone, the resulting sound stream is transformed into a
discrete signal as p[k] = p(kTs) where k is the sample and Ts is the sampling time
from the previously mentioned typical sample rate of 44100 Hz defined as

Ts =
1

f
p
s

=
1

44100
s. (2.2)

From this, the individual sound streams is extracted and defined as ui[k], i =
1, 2, ..., nu [2].

The measurements from EEG with ny electrodes can be written as yj [k], j =
1, 2, ..., ny with a typical sampling rate of 512 Hz which is much lower than the
typical sampling rate for the microphone of 44100 Hz [2]. For the linear and non-
linear models, a sliding window of size 32 samples for the linear models and 17
samples for the non-linear models is used on the input EEG signals. This means
that for the stimulus reconstruction of the attended sound at sample k, the data
from the EEG signals at the 32 latest samples is used. The sliding window on the
EEG signals is implemented using the Hankel matrix which is defined as

[H(yj)]kn = yj [na + k − n], k = 1, . . . , N − na + 1, n = 1, 2, . . . , na (2.3)

10 2 Auditory attention decoding

for some channel j. Here N is the number of samples available and na is the
number or the last samples that is used [2]. As all the channels are used at the
same time in the models, the Hankel matrices are concatenated and the resulting
matrix is defined as

Y =

[H(y1)]kn
[H(y2)]kn

.

.

.
[H(yny)]kn

(2.4)

With the EEG and audio data, it is possible to create two different models being
an encoder, estimating the EEG data from the audio data, or a decoder, estimating
the audio data from the EEG data, where the latter is the focus in this thesis. The
problem is thus to create a model that uses EEG data to estimate the the attended
sound signal. The attended sound can either be directly or indirectly determined
using different models. Mathematically the general model can be defined as

û = F(Y,B) (2.5)

where B is a weight matrix, which is further explained in Chapter 4. Currently
popular methods for AAD are stimulus reconstruction (SR) and locus of attention
(LOA), both of which are studied in this thesis. SR uses the EEG signals to recon-
struct the attended sound which is seen in (2.5) and is then compared with the
attended sound candidates. In studies [2–4, 13, 16, 19, 36] both Pearson’s corre-
lation coefficient and the mean square error (MSE) are used. Pearson’s correlation
coefficient is a measurement of how correlated a sound source ui and and the
reconstructed attended sound û are and is defined as

rui ,û =
cov(ui , û)√

var(ui)
√

var(û)
(2.6)

where cov is the covariance between ui and û while var is the variance of the
respective set [40]. The correlation is defined in the range [−1, 1] where the sign
indicates if it is a positive or negative correlation and the magnitude indicates the
strength of the correlation meaning 1 is a perfect positive linear relationship, −1
is a perfect negative linear relationship and 0 is no correlation [40]. The MSE is an
application of the L2 norm and measures the average squared distance between
the two sets ui and û and is defined as

MSE =
1
n

n∑
k=1

(ui[k] − û[k])2 (2.7)

where n is the number of elements in the samples and the closer the value is to
zero, the smaller is the difference between the sets [31]. More details about the
implementation of SR is given in Chapter 4.

2.3 Auditory attention decoding 11

The second popular method LOA uses the EEG signals to classify if the at-
tended sound came from the left or the right and have been used in [13, 16, 19,
39, 41]. This results in a slight variation of (2.5) and the method can mathemati-
cally be defined as [

ûr
ûl

]
= F(Y, B) (2.8)

where ur and ul are the classification variables with certainties (ûr = 1 and ûl = 0
means 100% certainty the direction is from the right) that the attended sound
came from the left or right. For SR, the function F can be either linear or non-
linear but for LOA the function must be non-linear. Noteworthy is that more di-
rection can be added for more detailed localisation and by changing the problem
formulation, the audio streams are not needed when determining the direction
of the attended sound which is advantageous for a real life application. More
details about the implementation of LOA is given in Chapter 5.

It is also important to assess how accurate a method is at determining the at-
tended sound. This has been done with experiments with the setup resulting in
the attended and unattended sound being known. The experiment and the data
gathered from the experiment used in this thesis is described in more detail in
Chapter 3. As the attended sound is known for the data, the most common mea-
surement of the performance of AAD is the accuracy, how often it determines
the correct attended sound, and how much data is needed to draw a conclusion
of which sound stream is attended. Classification accuracy is a clear indicator of
how reliable the method is as the classification accuracy should be high in many
different scenarios and for many different people whom the data is gathered from.
The amount of data needed to draw a conclusion is an important measurement
for determining the practicality in a real implementation. For a real life appli-
cation, it should require the least amount of data possible to draw a conclusion
to not be noticeable for the user. Another common measurement is the time it
takes for the method to determine the new attended sound when switching be-
tween audio streams however, as the data used does not have this property, this
measurement is omitted in this thesis.

3
Data set

For the neural networks to perform well, good training data is essential and for
this thesis data has been provided by Oticon A/S. The dataset has already been
published in [5] and used in [4]. The data set is analysed again in this thesis using
other methods. The goal is that neural networks will be used in hearing aids and
can determine the attended sound with a minimum response time, preferably
not even noticeable. Thus, for the training data to be considered good it must
contain measurements similar to a real life situation and have a good variety to
include as much dynamics as possible. For this application specifically, the neu-
ral network should be able to function properly with the other features available
in hearing aids, and the training data should incorporate this. Results presented
by Alickovic et al. in [3, 4] suggests already existing features in hearing aids do
not interfere with AAD capability. In [3, 4] the effects of noise reduction algo-
rithms in hearing aids is determined to increase the neural response for attended
sound in a selective attention task.

The data provided contains measurements from EEG and the recordings of the au-
dio presented in an experiment with a talker speech, a masker speech and some
added background babble noise to represent a cocktail party environment. The
subjects of the experiment were experienced hearing aid users equipped with
hearing aids with noise reduction algorithms both on and off [3]. This chapter
explains how the experiment was conducted, what measurements was taken and
how the data was preprocessed before being used as training data.

13

14 3 Data set

3.1 Experiment setup

The subjects of the study consisted of 34 native Danish speakers (24 males) aged
between 21 and 84 years old (mean age of 64.2 and a standard deviation of 13.6).
They were all experience hearing aid users with either normal or corrected-to-
normal vision with no history of neurological disorders, dyslexia or diabetes
mellitus. All of them had mild to moderately severe symmetrical sensorineu-
ral hearing loss, with an average of 4-frequency pure-tone audiometry of 47.5 dB
hearing loss. All of the subjects were equipped with two identical hearing aids
(Oticon Opn S 1TM mini-Receiver-in-the-ear) with noise reduction algorithms im-
plemented [4].

Besides the hearing aids, the subjects were also equipped with electrodes for EEG
with a BioSemi Active Two recording system (Amsterdam, Netherlands) with a
sampling frequency of 1024 Hz. The were a total of 64 active electrodes placed
on the scalp according to the international 10-20 system with two additional elec-
trodes (an active electrode, common mode sense, and a passive electrode, driven
right leg) to function as reference electrodes and two additional electrodes over
the mastoids. For the best quality of the measurements, the electrodes were ad-
justed (added more gel) so that the absolute voltage of the electrode was below
50 mV [4].

When the participants were done with the preparations, they were placed in
a double walled sound-proof booth with controlled light conditions. They sat
down in the middle of the booth with a screen in front and six loudspeakers
placed at ±30◦, ±112.5◦ and ±157.5◦ azimuth relative to the participants [4]. The
experimental setup can be seen in Figure 1.1.

The two loudspeakers in the front (T1 and T2) played each a different speech
recording, one male and one female talker, where one was the attended speaker
and the other acting as distraction, also called masker. The four loudspeakers in
the back (B1 − B4) played 4-talker babble noise to increase the task complexity.
The screen was placed in front to minimise acoustic shadowing and displayed
which sound to attend and when the test was over, it displayed a simple 2-choice
question related to the attended speech to ensure the subject was focused on the
task. No instructions were given to the subjects regarding where to look during
the experiment and EEG signals relating eye movement were removed. [4].

The speech used for the experiment consisted of Danish news clip of neutral con-
tent to avoid any emotional response and was delivered by a male or female with
similar speech characteristics. To avoid long audio gaps, silence lasting longer
then 200 ms was reduced to 200 ms. The speech recordings were normalised
to the same root mean squared intensity. Each of the loudspeakers in the back-
ground played a different 4-talker babble consisting of two male and two female
talkers. Each trial had a unique 4-talker babble played from the background loud-
speakers. The speech of the loudspeakers in the front was played at 73 dB sound

3.2 Data preprocessing 15

pressure level and the background babble played at 64 dB sound pressure level,
leading to a total background noise level at 70 dB (64 + 10 log(4) = 70.02) sound
pressure level. The sounds were routed through a sound card (RME Hammerfall
DSP multiface II, Audio AG, Haimhausen, Germany) and were played through
six loudspeakers Genelec 8040A (Genelec Oy, Iisalmi, Finland) [4].

In total, the subjects listened to 80 trials divided into four blocks with each block
lasting for about 20 minutes. The four blocks were each collected for different lis-
tening conditions, those being noise reduction algorithm 1 OFF, noise reduction
algorithm 1 ON, noise reduction algorithm 2 OFF and noise reduction algorithm
2 ON. Each blocks were randomised and before testing, a training block of four
trials were done to familiarise the subject with the task. Each trial was done by
first playing the background babble and five seconds later the sound of the male
and female talker, and masker, started playing [4]. The setup, trial design and
study design of the experiment can be seen in Figure 1.1 and 3.1.

4×4 talker babble (B1-B4)

News clip (Masker, T2)

News clip (Target, T1)

2-choice

question

0 5 38

Trial

onset

Speech

onset

Speech

end

Time (s)
Trial

end

Figure 3.1: The procedure of the experiment, based on [4].

3.2 Data preprocessing

Because EEG measures all the brain activity, many features such as eyes blinking
can be seen in the measurements which is not necessary information for this ap-
plication and only provides excessive noise. Therefore the data set used has been
”cleaned”, leaving mostly information about the brain activity relevant for AAD.

The EEG signals were epoched from -15 to 58 s, relative to the onset of the target
and masker talker and ten seconds of EEG signals before and after any stimuli
were used as buffer zones for the filtering edge artifact. The EEG signals were
then referenced to the average of the two reference mastoid channels. Then, the
EEG signals were digitally bandpass filtered between 0.5-70 Hz (a zero-phase
Hamming window FIR, filter order: 3 fs

fc
, where fc is the lower cutoff frequency)

16 3 Data set

and an additional bandpass filter between 49-51 Hz (with the same filter param-
eters as the previous) aimed at removing the remaining power line noise. The
filters were applied both forward and backward using the filtfilt function in MAT-
LAB to eliminate any phase shifts or delays. The EEG signals were then down-
sampled to 256 Hz to reduce processing time and corrupt channels were visually
removed (average of 2.2 channels removed, SD = 2.3). To replace the removed
channels, data was interpolated from the surrounding clean EEG channels us-
ing the nearest neighbour method in the Fieldtrip toolbox. The next step was
to remove the artifacts in the signals resulting from heartbeats, blinking, single-
channel noise and such. This was done with a denoising and independent com-
ponent analysis and manually removed components related to the unwanted ar-
tifacts. On average 14.6 (SD = 4.6) components were removed, one participant
with excessive noisy data was removed from further study and one block for one
participant was removed due to technical problems [4].

The data is further preprocessed before it is used to create models. Firstly accord-
ing to Alickovic et al. in [2], the EEG signals and audio recordings are downsam-
pled to the same frequency and synchronised, chosen as 64 Hz in this application.
If not done, there is the possibility of incorrect correlation being detected in the
data. The last preprocessing part is to bandpass filter the EEG signals and the au-
dio between 2-8 Hz using a third-order butterworth filter. According to Alickovic
et al. in [2], the brain processes the auditory information mostly in the frequency
range 1-8 Hz which is why that specific interval is used for the linear models.
For the non-linear models, it has been shown in [16] that neural networks bene-
fit from a larger frequency spectrum which and thus the EEG signals and audio
are filtered between 2-32 Hz instead. For non-linear models, the sampling rate
is also increased to 128 Hz. In conclusion, the EEG signals and audio recordings
are downsampled to 64 Hz and bandpass filtered in the interval 2-8 Hz for the
linear models and downsampled to 128 Hz and bandpass filtered in the interval
2-32 Hz for the non-linear models.

4
Linear models

For AAD, linear models are a popular choice because of its simplicity and how
relatively easy they are to understand and interpret. Recently there have been dif-
ferent linear methods proposed for AAD such as [2–4, 19]. This chapter aims to
explain the theory behind linear models for this application. Here two common
methods used in different studies with good results are described in more details.

4.1 Theory

This sections explains the theory behind linear models, how to estimate the pa-
rameters, regularisation of the model and how to expand the model for higher
dimensions.

4.1.1 Infinite impulse response filter

For simplicity, when explaining the infinite impulse response filter (IIR filter), the
shift operator q is introduced, defined as q−nx[k] = x[k − n] and qnx[k] = x[k + n]
for all n. An IIR filter can be written as

Aj (q)yj [k] = Bi(q)ui[k]⇔

(1 + aj1q
−1 + · · · + ajnaq

−na)yj [k] =

yj [k] + aj1yj [k − 1] + · · · + ajnayj [k − na] = Bi(q)ui[k]⇔
yj [k] = −aj1yj [k − 1] − · · · − ajnayj [k − na] + Bi(q)ui[k]

. (4.1)

With this formulation, a backwards model can be defined as

ui[k] =

ny∑
j=1

Aj (q)

Bi(q)
yj [k] + ei[k] (4.2)

17

18 4 Linear models

where ei[k] is the noise at sample k. As all the roots of the polynomials Aj and Bi
are outside the unit circle, inverting the backwards model is not causally stable
forward in time meaning that A and B are not the same for both forward and back-
ward models. Noteworthy is that noise has been added in the models to account
for measurements errors and model imperfections and that positive exponents
are used for q in the backward model [2].

4.1.2 Finite impulse response filter

IIR models are largely unexplored for this application. On the contrary, FIR mod-
els have been used successfully in studies such as [2–4, 13, 19, 32, 36]. In these
implementations, maximum time lags of 250 ms or 500 ms were used. The FIR
model is a restricted version of the IIR model where the denominator Bi(q) = 1
in (4.2). This leads to the FIR model to be defined as

û[k] =

ny∑
j=1

Aj (q)yj [k] + ei[k] (4.3)

for the backward model. The estimates from (4.3) will now be referred to as
reconstructed stimulus. A visual representation of the forward and backward
model can be seen in Figure 4.1 and the studies [2–4, 13, 19, 32, 36] have tested
both forward and backward modelling for AAD.

4.1.3 Parameter estimation

A good model should have a small estimation error ui[k] − û[k] which is used
to estimate the parameters of the model [2]. As this thesis uses backward mod-
els, the theory presented assumes backwards models are being used. From the
estimation error, it is possible to define a so-called loss function as

W (Aj) = ∥ui[k] −
ny∑
j=1

Aj (q)yj [k]∥22 (4.4)

that will be minimised [31]. This loss function is often referred to as the MSE,
similar to (2.7) with the constant outside the sum being one, and is a quadratic
function in the parameter and minimisation provides the least squares (LS) esti-
mate of the parameter in the decoding models as

Âb
j = arg minW (Ab

j) (4.5)

according to Alickovic et al..

4.1 Theory 19

Figure 4.1: Illustration of the differences between decoding (backwards
model) and encoding (forward model), based on [2].

20 4 Linear models

The FIR models are implemented using the mTRF-Toolbox [14] which imple-
ments the FIR filter using convolution. The toolbox estimates the model Âj by
minimising the MSE between the the real audio ui[k] and the estimated audio
û[k] as described in (4.4) and (4.5). To solve the LS problem, the matrix opera-
tions

Âj = (RT R + λI)−1RT ui[k] (4.6)

are used. The regularisation parameter λ is discussed in further detail in the
next section. The matrix R is the lagged EEG signals yj [k], which for this imple-
mentation has been chosen as 32 samples of lag. For ny channels, R is defined
as

R =

y1[1] · · · yny [1] 0 · · · 0
... · · · · · · y1[1] · · ·

...
... · · · · · ·

... · · · 0
... · · · · · ·

... · · · yny [1]
... · · · · · ·

... · · ·
...

y1[N] · · · yny [N] y1[N − 1] · · · yny [N − 32]

(4.7)

where N is the number of samples available [14].

4.1.4 Regularisation

As described in [31], a good model should minimise the prediction error and
thus the parameters should be chosen as defined in (4.5). Another important fac-
tor that needs to be considered is the number of parameters in the model. If more
parameters are used, the model will be able to capture more dynamics of the sys-
tem. This is fine in theory, however for practical implementation of models, it
should have a low prediction error for new data not used to estimate the param-
eters. This leads to the problem of overfitting, where a model has been made to
fit the estimation data to a negative extent so that it also models the noise in the
specific data set instead of only the system dynamics. This leads to worse perfor-
mance on new data as the noise is not the same as the training data, meaning
there is a transition from capturing the system dynamics to capturing the noise
[31].

To regularise the estimate Âj , Tikhonov regularisation, also called ridge regres-
sion, is used which consists of the regularisation parameter λ in (4.6). By weight-
ing the diagonal before inversion, both ill-posed problems and overfitting are
mitigated at the expense of a potentially biased solution. The parameter λ is cho-
sen in practice using cross-validation to maximise the correlation between the
real audio ui[k] and the estimated audio ûi[k] [14].

4.2 Implementation 21

4.1.5 Multiple inputs

So far, the theory has considered single input single output (SISO) models how-
ever, for AAD there are multiple inputs (EEG signals) and single output (the
estimated speech envelope), a so-called MISO model [2]. Luckily, it is relatively
simple to extend the model for multiple inputs. As stated before, (4.7) is defined
for ny channels were each columns represent a separate recording channel. The
regularisation works the same on both the SISO and MISO model because of the
way the different EEG channels have been concatenated in R [14].

4.2 Implementation

With the necessary theory of FIR models for SR, the following sections present
how it is implemented.

4.2.1 Finite impulse response

As previously stated, the FIR models in this thesis have been implemented us-
ing the mTRF-toolbox which utilises the previously presented theory for the FIR
models.

The structure of the method is to use one trial in a block for validation and train
the FIR model using the remaining trials in the block with their corresponding
attended sound. With the FIR model trained, the EEG signals from the validation
trial is used as input to estimate the attended sound. The Pearson’s correlation
coefficient between the estimated sound and the attended sound, as well as the
correlation between the estimated sound and the unattended sound is calculated
and compared. The sound with the highest correlation is determined to be the
attended sound and if the prediction is correct or not is saved. Then the next
trial in the block will be the validation trial and the remaining trials will be used
for training, resulting in 20 models and 20 predictions per block. This process is
repeated for every block and for every subject resulting in a total of 2540 predic-
tions as the data from one subjects block is not used. The results are presented in
Chapter 7 and the algorithm is presented down below as Algorithm1.

22 4 Linear models

Algorithm 1 Training the FIR models.

Input the model parameters, EEG signals and sound recordings
for number of subjects do

for number of blocks do
for number of trials do

One trial is used for validation and the rest in the block is used for
training.

λ =

10−6

10−4

10−2

100

102

104

106

Âb

j = (RT R + λI)−1RT uattended[k]

ûattended[k] =

ny∑
j=1

Âb
j yvalidationj [k] + ebi [k]

ruattended ,ûattended
=

cov(uattended , ûattended)√
var(uattended)

√
var(ûattended)

Use the reconstructed stimulus with the highest correlation

ruunattended ,ûattended =
cov(uunattended , ûattended)√

var(uunattended)
√

var(ûattended)

Attended sound = max[ruattended ,ûattended , ruunattended ,ûattended]

Repeat for the next trial in the block as validation trial.
end for

end for
end for
Calculate and output the average accuracy of the predictions of the attended
sound and the average correlation between the attended sound and the recon-
structed stimulus.

5
Artificial neural networks

The brain is highly non-linear and thus non-linear models should in theory be
able to capture more dynamics than linear models. Artificial neural networks
(ANNs) are non-linear models that have shown to capture non-linear effects in
ADD [13, 16, 19, 39, 41]. Furthermore, EEGNet presented in [29] has shown
good results when applied to other tasks where EEG data was recorded. These
studies have shown that non-linear models can outperform the best performing
linear model (CCA) both with reconstruction the speech and determining the lo-
cus of attention. However, it is non-trivial to design an artificial neural network
that performs well because of all the different design parameters. This chapter
will explain the theory of ANNs, how they have been implemented for AAD pre-
viously together with reported results, and lastly the architecture chosen in this
project and why it is chosen for this thesis.

5.1 Theory

To implement the ANN for LOA, the predefined network EEGNet is used which is
presented in [29]. EEGNet is a convolutional neural network (CNN) that is used
to classify the direction of the attended sound which in this implementation is ei-
ther left or right. It uses a total of 16 layers, which can be seen in Figure 5.6, with
three different activation functions. To understand the network, the necessary
theory about machine learning and detailed description of EEGNet is presented
in this Chapter.

Goodfellow et al. describe the fundamental idea of machine learning in [22] as
an algorithm that can learn from data. An algorithm that can learn is defined
in [22] as ”A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at tasks

23

24 5 Artificial neural networks

in T , as measured by P , improves with experience E”. There are many kinds
of different tasks, measurements and experiences that can be used for different
implementations of machine learning. Some examples of different tasks would
be classification, regression and density estimation. The performance measure is
vital for a machine learning algorithm and it is surprisingly difficult to choose a
good performance measurement because it should lead to the desired behaviour
of the system. There might also be problems with deciding between two different
measurements or the desired measurement is impractical to measure or not avail-
able. The experience for machine learning is also referred to as the training data
used by the algorithm during the learning process. They can generally be divided
into two different categories of learning: supervised and unsupervised learning.
Supervised learning contains the data with the features but also the correspond-
ing target value or label which is used to train an algorithm to predict values or
labels from some features such as classification tasks. For unsupervised learning,
there is no guide for the algorithm and it has to find the useful properties in the
data on its own, for example used for denoising [22].

In summary, machine learning is a tool for creating models and is thus also sus-
ceptible to the same problems mentioned in Chapter 4 such as how to estimate
parameters as well as how to avoid under- and overfitting. If the performance
measurement of the machine learning algorithm is the same as the loss function
for the linear models, then the algorithm will also use gradient descent to learn
what values of the parameters minimise the loss function. Machine learning algo-
rithms suffering from either under- or overfitting will have the performance on
validation data suffer which is visualised in Figure 5.1.

Figure 5.1: Typical relationship between capacity and error, based on [22].

5.1 Theory 25

Some parameters in the machine learning algorithm are purposefully not esti-
mated by the algorithm but instead determined by the user. This is done as if the
algorithm would estimate these as well it would overfit the model. These param-
eters are called hyperparameters. An example of the hyperparameter is the step
length in the gradient descent used for parameter estimation, also called learning
rate [22]. There are many different ways to avoid model overfitting such as using
so-called dropout layers that purposefully negate activations in the network [16].
Furthermore, Vandecappelle et al. in [41] argues that using data from other sub-
jects avoids overfitting.

Artificial neural networks used in this thesis share the same principles previously
mentioned. There are different types of artificial neural networks but the most
straightforward is the deep feedforward networks. The goal of these networks
is to approximate a function f ∗ that for example maps some input x to the class
y with parameters θ as y = f ∗(x, θ). The task of the network is thus to learn
the best value of the parameters θ that results in the best approximation func-
tion. This model can be extended to consist of multiple functions combined as
f (x) = f 3(f 2(f 1(x))) for example. This creates what is called the depth of the
model, which is where the terminology deep learning comes from. In this exam-
ple, f 1 is called the first layer (also referred to as the input layer), f 2 is called
the second layer (also referred to as the hidden layer) and f 3 is called the output
layer. During training of the neural network, f (x) is driven to match f ∗(x) where
the training data consists of noisy approximate examples of f ∗(x) evaluated at
different training points. In the case that it is supervised learning, meaning there
is a corresponding label y ≈ f ∗(x), the output layer is forced to produce a result
that is similar to y. As the training data does not directly show the desired out-
put of the other layers is the reason they are often referred to as hidden layers [22].

The neural part of the name deep neural networks stems from the fact that they
are loosely based on neuroscience. Another way of representing the deep neural
network instead of using vector valued functions is to think of the network as
built up of multiple layers and in each layer a number of units are working in
parallel, which can be seen in Figure 5.2.

26 5 Artificial neural networks

Hidden layers

Input layer Output layer

Layer 1 Layer j

I_2

I_1

z_1

z_2

z_N1-1

z_N1

z_1

z_2

z_Nj-1

z_Nj

O_1

w_N1

w_11

w_Nj

w_1j

Figure 5.2: Visualisation of the artificial neural network with its layers and
neurons.

The dimensionality of the vector-valued function corresponds to the number
of units in each layer and defines the width of the model. The units in each layer
play an analogous role to neurons that uses the output from the neurons in the
previous layer as input with a specific weight w, compute its own activation value
and the output of the neuron is used by the neurons in the next layer and repeat
the process for every neuron in every layer. The structure of neural networks has
taken some inspiration from neuroscience but the goal is not to create a perfect
model of the brain but rather to create approximation machines that are designed
to achieve statistical generalisation [22].

A neuron’s output is determined by that neuron’s specific activation function.
The neuron sum the weighted outputs of all the neurons in the previous layer
and the value is used as input to the activation function to determine the output
of the neuron. This process can be represented mathematically as

znj =

Nj−1∑
k=1

wk,nj zk

g(znj) = max[0, znj]

(5.1)

where wk,nj is the weight on the output from neuron zk that exists in the previous
layer j − 1 that has a total of Nj−1 nodes. Note that the weight on the output is
specific to the neuron nj . The sum of all the weighted outputs from the previous
layer for the neuron nj is znj , which is then the input to the activation function

5.1 Theory 27

g(znj), which in this example has been chosen as the very common, and recom-
mended as default, rectified linear activation function, seen in Figure 5.3.

Figure 5.3: The rectified linear activation function, based on [22].

The ReLu activation function, with others, is used in the networks in [19, 41]
while the networks in [13, 39] use the very similar exponential linear activa-
tion function (ELu) instead. The main difference between the two is that ELu
can have negative values which can be advantageous in certain implementations.
The network EEGNet in [29] uses both ReLu and ELu activation functions. The
non-linearity in the model produced by the network is introduced with the non-
linear activation function and thus the choice of activation function is important
to achieve the desired behaviour. The proof for this is shown in Appendix A.
Another common choice of activation function is the Tanh function defined as

g(znj) =
e
znj − e−znj

e
znj + e

−znj
(5.2)

that bounds the output in the interval [−1, 1] according to Goodfellow et al.[22].
This activation function is used by the networks in [13, 16, 19, 39].

The architecture of the neural network (meaning the number of layers and neu-
rons in each layer, the connection between neurons and so forth) is a complex
task and there is no general solution that works for every application [22]. This
means that to find a good architecture, some trial and error have to be done [22].
Even so, it is important to understand the effects of the hyper parameters such
as the previously mentioned learning rate and the number of layers and neurons
in each layer. A simple way of thinking about their effects on the network is

28 5 Artificial neural networks

that each layer is a function that is chained together with other functions and the
number of neurons in each layer determines the complexity of that function. For
example, a problem can be solved with a neural network that uses many simple
functions to represent the desired function meaning many hidden layers with few
neurons in each. Another valid solution is also to use a single, but very complex,
function to represent the same desired function meaning a single hidden layer
with many neurons.

5.1.1 Convolutional neural networks

A common variant of neural networks that has been used succesfully in [13, 19,
29, 39, 41] are convolutional neural networks (CNN). CNNs use convolution in-
stead of general matrix multiplication for at least one layer according to Goodfel-
low et al.. For machine learning implementation, most data is discrete and the
discrete convolution is defined as

s[k] = (x ∗ w)[k] =
∞∑

a=−∞
x[a]w[k − a] (5.3)

where x is often referred to as the input and w as the kernel. In machine learning
applications, the input is often a multidimensional array of data and the kernel
is often a multidimensional array of parameters that are adapted by the learning
algorithm. These multidimensional arrays are further referred to as tensors. In
practice, the structure of the input and the kernel where the information is stored
in a finite set and everything else is zero, meaning that the infinite sum is then a
sum of finite elements. The discrete convolution can be seen as a multiplication
by a matrix, but the matrix has several entries constrained to be equal to other
entries meaning that unless the network is dependent on the structure of the ma-
trix, convolution should work as well [22].

There are three important properties of convolution that makes it useful for ma-
chine learning applications, these being sparse interaction, parameter sharing and
equivariant representations. Traditional neural network using matrix multiplica-
tion leads to describing the interaction between every input- and output unit,
but by making the kernel smaller than the input, sparse interaction (or sparse
weights, meaning that most weights are zero) is achieved with convolution. This
leads to fewer parameters being stored and the model improves its statistical ef-
ficiency. Even with fewer connections, for most application the performance is
still good enough to validate the reduction in complexity. Effects of sparse inter-
action can be seen in Figure 5.4. Parameter sharing means that the weights in the
network are tied to each other and used multiple times instead only onces as in
traditional neural networks. This leads to a drastic reduction of parameters used
and only one set of parameters needs to be learned. The last important property
is equivariant representation meaning that any change to the input changes the
output the same way. Convolution is not naturally equivariant to all transforma-
tions and need some other mechanism to handle those transformations [22].

5.1 Theory 29

Figure 5.4: Sparse connectivity between the neurons compared to fully con-
nected neurons, based on [22].

According to Goodfellow et al. the final part of a convolutional layer is pooling
that alters the output of the layer at a certain location with a summary statistic
of the nearby outputs. Pooling is used by all the CNNs in the studies [13, 19, 29,
39, 41]. This is done to make the network invariant to small translations of the
input. This means that the network is generally better at detecting if a feature ex-
ists than at detecting the exact position of the feature. The usefulness of pooling
varies between applications but is nonetheless an important part of the convolu-
tional layer. An example of how pooling allows the network to be invariant to
rotation of a feature can be seen in Figure 5.5.

30 5 Artificial neural networks

Figure 5.5: Example of learned invariances, based on [22].

5.2 Implementation 31

5.1.2 Categorical cross-entropy

Just as for the linear models, DNN needs a loss function to measure and improve
its performances. The network EEGNet which is used utilises the categorical
cross-entropy loss function for classification tasks [29]. Categorical cross-entropy
is a measurement of the similarity of two distributions which is used determine
how accurate the predictions are to the known category. In this thesis there are
only two classes and the output (predictions) of the network can be defined as

Ĉ =
[
ĉ1
ĉ2

]
(5.4)

where c1 and c2 are values in the range [0, 1] corresponding to the networks cer-
tainty that the input belongs to the class and the sum is equal to one. This output
is then compared to the known category of the input also represented as a vector
defined as

C =
[
c1
c2

]
(5.5)

where c1 and c2 are either one or zero depending on the true category. With this,
the categorical cross-entropy loss function is defined as

W = −
2∑
i=1

Ci ln(Ĉi) (5.6)

with a negative sign as to decrease the value of the loss function when the real
category and the prediction become more similar [9].

5.1.3 Adam

Another important aspect of a DNN is what optimisation method is used to
minimise the loss function. For EEGNet, adaptive moment estimation, abbre-
viated as Adam, is used [29]. The method is summarised in Algorithm 2 from
[28] and requires a stepsize α, exponential decay rates for the moment estimates
β1, β2 ∈ [0, 1), error ϵ, stochastic objective function f (θ) with parameters θ and
initial parameter vector θ0.

5.2 Implementation

In this thesis, the main goal is to study the effects on accuracy of LOA when using
generated data from GANs to train neural networks for AAD. The generated data
produced in this thesis only consists of EEG signals and thus it cannot be used for
SR-DNN as the corresponding attended sound does not exist. This is one of the
main advantages of the method proposed by Vandecappelle et al. in [41] which
only uses the EEG signals to decode the attended sound (i.e., to determine if the
attended sound originates from the left or right). As such this is the method that
is studied in this thesis.

32 5 Artificial neural networks

Algorithm 2 Adam optimisation.

Initialise the parameters m0, v0, t as zero
while θt not converged do

t ← t + 1
gt ← ∇θft(θt−1) (Gets gradients w.r.t stochastic objective at timestep t).
mt ← β1mt−1 + (1 − β1)gt (Update biased first moment estimate).
vt ← β2vt−1 + (1 − β2)g2

t (Update biased second raw moment estimate).
m̂t ←

mt
1−βt1

(Compute bias-corrected first moment estimate).

v̂t ←
vt

1−βt2
(Compute bias-corrected second raw moment estimate).

θt ← θt−1 −
αm̂t

(
√
v̂t+ϵ)

(Update parameters).

end while
return θt (Resulting parameters).

The principle of the method is to create a neural network for classification, but
instead of classifying which sound stream the reconstructed sound stream is the
most similar to, it classifies whether the attended sound came from the right
or the left side, where the structure can be expanded to cover more directions.
This method is called locus of attention classification and has been studied with
good results in [19, 39, 41]. As explained by Vandecappelle et al. in [41], this
method has the advantage of not needing the original sound stream as it does
not compare two sound streams which is done in stimuli reconstruction. This is
an important property as it is generally not possible or very difficult to gather
the original sound streams in a practical scenario. Vandecappelle et al. further
explains that while the accuracy of existing methods is good, they are to slow to
determine the attended sound to be functional in a practical application. By di-
rectly determine locus of the attended sound the decision time has been able to
be drastically reduced. It is shown that the minimal expected switch duration to
reach a stable volume switch between two speakers is 22.6 s for linear methods
and 0.819s for Vandecappelle et al.’s method.

A recent study by Su et al. [39] was based on the similar principle as the method
proposed in Vandecappelle et al. but further improved it. The difference between
the two studies is that Su et al. argues that there is valuable information in spa-
tial and temporal attention that was not used by Vandecappelle et al. The results
shows that the neural network proposed by Su et al. (denoted as STAnet) per-
forms competitively with as few as 16 EEG channels and for one 1 s decision
window outperforms CNN with 10 s decision window (90.1% accuracy to 84.1%
and 71.9% accuracy to 63.3% for the two data sets analysed).

A comparative study was made by Geinaert et al. in [19] that compared the pre-
sented linear and non-linear methods concluding that decoding the spatial locus
of the attended sound is needed to reduce the decision window to an acceptable

5.2 Implementation 33

level in a practical implementation. The performance however varies dramati-
cally between different data sets and work needs to be done for a more general
neural network. Further, it is also mentioned that unsupervised learning would
be preferable for practical use which none of the neural networks presented cur-
rently uses.

For locus of attention classification, the network used in this thesis is EEGNet,
instead of the network proposed by Vandecappelle et al. for easier and faster
implementation, proposed by Lawhern et al. in [29]. EEGNet is an adaptable con-
volutional neural network specifically designed for different tasks utilising EEG
signals as input, for example classification. EEGNet uses the sparse categorical
cross-entropy loss function and uses the Adam optimiser to fit the model [29].
The architecture of the network can be seen in Figure 5.6 and more details are
presented in [29].

Figure 5.6: Architecture of EEGNet, based on [29].

The method used to implement the DNN for AAD is similar to that of the FIR
models described in Chapter 4. Two different versions are tested with longer, 32
seconds long, and shorter, dividing the 32 seconds long trials into four segments
of 8 seconds, trials to compare the performance with the linear models. The
methodology is almost identical for both with the main difference being the data
chosen for validation. One trial is chosen as test trial while the remaining trials
in the block are used for training and validation. For the first 10/40 (10 for long
trials, 40 for short trials) trials choose the following 3/12 trials from the test trial
as validation trials and for the trials in the later half, choose the previous 3/12
trials for validation trials. The remaining trials in the block is used for training

34 5 Artificial neural networks

with additional 10/40 trials from another block from the same subject to avoid
overfitting. To test the effect of using generated data for training, the 10/40 trials
from another block is replaced by generated data. The network then trains for
25/50 epochs with a minibatch size of 2/8 and kernel size of 17 which acts as a
moving window of length 17 samples. The number of epochs means how many
iterations the network the network trains on the data. To improve computational
performance, the data is divided into smaller batches called minibatches. The
minibatch size refers to the number of trials in every minibatch. During training,
the weights that results in the lowest value of the loss function on the validation
data is saved and then the optimal weights are loaded when training is complete.
Lastly the test trial is used as input to the train network and the prediction of if
the attended sound came from the or left is done. This process is repeated for all
trials resulting in 2540/10160 predictions and the average accuracy is calculated.
The method is also presented in Algorithm 3 with long trials as an example.

Algorithm 3 Train block specific CNN for every subject. Minibatch size = 2, num-
ber of epochs = 25, kernel length = 17.

for number of subjects do
for number of blocks do

for number of trials do
One trial is used for testing, rest for training/validation.
Save the EEG values and label (left or right) for the test trial.
Xtest = y(testindex)
Ytest = y(testindex).label

Save the EEG values and labels for the validation trials.
Xvalidation = y(testindex : testindex + 3)
Yvalidation = y(testindex : testindex + 3).label

Train with remaining EEG values in block and 10 from other block.
Xtrain = y(currentblock + otherblock(1 : 10))
Ytrain = y(currentblock + otherblock(1 : 10)).label

Train EEGNet with the training and validation trials.

Predict the locus of attention on the test trial.
Ĉ = EEGNet(Xtest)

end for
end for

end for
Calculate the average accuracy of the predictions on the locus of the attended
sound.

6
Generative adversarial networks

As previously mentioned, the data available is relatively small for training a deep
neural network, but as explained in Chapter 3, it is not reasonable to collect hours
of data. When training neural networks, more training data is preferable as to not
overfit the model such that the performance on the validation data will suffer. In
this thesis, generative adversarial networks is used to produce more data that is
similar to the training data and use these to train the network. At the time of
writing this thesis, no study was found that used GANs for this application in
this field meaning that the results of it is effectiveness could be important for
future development. This chapter explains the theory of GANs and how it will
be implemented in this thesis.

6.1 Theory

For the generated data to be more effective when training DNN than adding noise
to the input, it needs to be realistic and inherit the features of the real data. It
has been shown by Hartmann et al. in [24] that it is possible to create realistic
EEG signals using GANs for a single channel. Hartmann et al. mentions that
the next step would be to create multi-channel EEG signals (like in this thesis)
but that the impact of the design choices will become even more important than
for single channel. As an example, Hartmann et al. noted a strong influence of
convolutional size onto which frequency ranges are correctly expressed by the
generator.

Goodfellow et al. presents a framework for estimating generative models with
the use of an adversarial process called GANs in [21]. The principle behind the
framework is rather intuitive where two neural networks compete to best each
other. The first network is the generator that produces data and the second net-

35

36 6 Generative adversarial networks

work is the so-called discriminator that compares the generated data with real
data and determines how likely it is to be real data. The problem is a minmax
two-player game where the discriminator wants to minimise the number of times
it determines the produced data as real data while the generator wants to max-
imise the number of times the discriminator makes mistakes. The process can be
thought of as counterfeiters trying to fool the police. The counterfeiters want to
produce better fake currency and use it without detection while the police wants
to get better at determining the fake currency from the real and the process is
visualised in Figure
6.1 [21].

Figure 6.1: Visualisation of the process between the generator and the dis-
criminator competing with each other.

In the beginning, the discriminator has no problem identifying the generated
data from the real and punishes the generator for producing bad data. This will
lead to the generator producing more convincing data while the discriminator
gets better at determining real data from fake. This works well when both net-
works improve in synchronicity. However, if the generator is trained too much
too fast then it will lead to the produced data being very similar to each other and
not have enough diversity do reproduce the real data. Similarly if the discrimina-
tor learns to fast, the generator will never be able to trick the discriminator and
thus always be punished. An important advantage over other similar methods is
that the competition between the two networks is in the sole training criterion

6.2 Approach to create more training data 37

and enough for training the network [21].

The mathematical representation of the process is most straight forward when
both models are multilayer perceptrons. To learn generator’s distribution pg over
data x, from the input noise variables z, one needs to define a prior as pz(z), and
then represent a mapping to data space as G(z; θg). G is a diffrentiable func-
tion represented by a multilayer perceptron with parameters θg . The second
perceptron is defined as D(x; θd) that outputs a single scalar representing the
probability that x came from the data and not pg . The goal of the training is to
maximise the probability of D determining the correct class to the real data and
the produced data while G wants to minimise log(1 − D(G(z))). This leads to the
minmax problem to be defined with a value function as

min
G

max
D

V (D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (6.1)

To avoid G learning too much, the implementation of GANs uses k steps for op-
timising D and one step for optimising G which results in D being close to it is
optimal value as long as G changes slowly. This is shown in Algorithm 4 with
k = 1 as Goodfellow et al. found it to be the least expensive option.

An important question to ask is if the optimal value to the minmax problem
is the desired results. Goodfellow et al. proves that the optimal solution to the
problem is that pg = pdata, meaning the generated data is identical to the real
data, and with enough capacity, the generated data will converge to the optimal
solution. The proofs Goodfellow et al. presents can be found in Appendix A.

6.2 Approach to create more training data

Two GANs are created, each specialising in reproducing EEG signals from a cer-
tain direction of the attended sound. This means that one GANs replicates the
training data when the attended sound was played from the right side of the sub-
ject and analogously, a GANs for when the attended sound was played from the
left. This is done by sorting the training data into different groups depending on
if the attended sound was from the right or left. As GANs are mostly used for
generating images, this mindset is adopted for the implementation and the data
consisting of 64 EEG channels recorded for 3968 samples is treated as pictures
of size 64 × 3968 pixels with the recorded value as pixel the value. This leads to
some noticeable differences compared to normal images which has three layers
for the RGB-values where every pixel is bounded between zero and 255, as the
images for this application only has one layer and the pixel value is unbounded.

The generator takes a random vector, normal distributed with mean zero and
variance of one, of size 100 that is transformed using a fully connected layer and
a reshape operation. The transformation is upscaled to a 64 × 3968 matrix using
a series of transposed convolutions, batch normalisation and ReLu layers. The
generator uses a filtersize of five with a total of 64 filters. The structure of the

38 6 Generative adversarial networks

Algorithm 4 Minibatch stochastic gradient descent training of generative adver-
sarial nets.

for number of training iterations do
Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise

prior pz(z).

Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distri-
bution pdata(x).

Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[logD(x(i)) + log(1 − D(G(z(i))))].

end for
Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise
prior pz(z).

Update the generator by descending its stochastic gradient:

∇θg

1
m

m∑
i=1

[log(1 − D(G(z(i))))].

The gradient-based updates can use any standard gradient-based learning rule.
Adam was used which have already been defined in Algorithm 2.

6.2 Approach to create more training data 39

generator can be seen in Figure 6.2.

Figure 6.2: The structure of the generator from Mathworks example on
GANs but with the last tanh-layer removed, based on [33].

The input to the discriminator is an image of size 64 × 3968 with the output
being a scalar prediction score of how likely it is to be real data. This is done by
using a series of convolution layers, batch normalisation and leaky ReLu layers.
Some noise is added to the input by using dropout with a 50% chance, also the
discriminator uses a filtersize of five with a total of 64 filters and a scale of 0.2
for the leaky ReLu layers. The structure of the discriminator can be seen in Fig-
ure 6.3. Note that the output is scaled to be in the interval [0, 1] using a sigmoid
function when calculating the model gradients.

The networks are trained for 25 epochs with a minibatch size of 128. The train-
ing uses Adam optimisation with a learning rate of 0.0002 for the generator and
0.00002 for the discriminator, gradient decay factor of 0.5 and a squared gradient
decay factor of 0.999. There is also an option for the flipfactor which inverts some
of the discriminators guesses on the real data in an attempt to avoid it learning to
fast. In this implementation, the flipfactor is set to 0.3, meaning there is a 30%
that a real label is inverted.

40 6 Generative adversarial networks

Figure 6.3: The structure of the, based on [33].

6.2 Approach to create more training data 41

The scoring of the networks is based upon the predicted probabilities from the
discriminator on the generated and the real data. The score of the discriminator
is the mean value of correct predictions that the input is either real or fake. The
score of the generator is the mean value of the predictions that the discriminator
makes a mistake and guess that the generated data is real. The loss function used
for the networks are very similar to how their scores are calculated but it is in-
stead the negative mean of the logarithm of the probabilities.

The approach to generating new data is described in Algorithm 5 that is repeated
for both the version on the left and right, the difference being the training data
used.

Algorithm 5 Train a generator and a discriminator on EEG signals. Minibatch
size = 128, number of epochs = 25, fliprate = 0.3.

Downsample the EEG signals.
y64Hz = downsample(y, 64)

Bandpass filter EEG signals (ignore if filtering after instead).
yf iltered = downsample(y64Hz , [2 − 8])

Train the generator and network
for number of epochs do

ygen = generator(randn(100))
predgen = discriminator(ygen)
predreal = discriminator(yf iltered)

Calculate the score and gradients of the networks.[
scoreg

gradientg

]
= evalgenerator(predgen)[

scored
gradientd

]
= evaldiscriminator(predgen,predreal)

Update the network parameters
generator = adamupdate(generator, gradientg)
discriminator = adamupdate(discriminator, gradientd)

end for
(Bandpass filter the generated data if no filtering was done before).
ygen:f iltered = downsample(ygen, [2 − 8])

42 6 Generative adversarial networks

6.3 Evaluating the quality of the generated data

To try and improve the quality of the generated data to be as realistic as possible,
different measurements are used that each describes the quality of some aspect
of the generated data. The trivial measurement is visual comparison of the gener-
ated data compared to real data in both the time and frequency domain. This is
done channel-to-channel as plotting all the channels at the same time results in
unreadable plots. Visual comparison is not an objective or detailed measurement
but it is able to quickly determine if the generated data is realistic or not. With
generated data that visually looks realistic, more objective and detailed measure-
ments needs to be used to compare the performance. One of the measurements
chosen is the channel-wise Pearson’s correlation coefficient. The idea is that the
correlation between the generated data and some real data should be similar to
that of the correlation between two real data sets. If the correlation is too big,
then the generated data is just recreating the training data and if it is too low,
then the generated data is to different from the training data. Generating real-
istic EEG signals using GANs has been studied in [24] where a total of four per-
formance measurements were used being the Inception score, Frechet inception
score, Euclidean distance and the Wasserstein distance. Hartmann et al. argues
that no single measurement on its own is able to determine the quality of the
generated data but combined the overall quality of the generated data can be con-
cluded. Out of the four performance measurements, the Euclidean distance and
the Wasserstein distance were determined to be the most informative and thus
these two are used in this implementation as well. The theory behind the Eu-
clidean distance is that the distributions of the minimal sample-wise Euclidean
distance (absolute value of the error) over all channels should be similar when
comparing the generated data with some real data and when comparing two real
data sets [24]. This is another measurement that measures how much the gener-
ated data is replicating the training data. The last measurement is to compare
the channel-wise Wasserstein distance between the generated data and some real
data with the channel-wise Wasserstein distance between two real data sets. The
Wasserstein distance is a measurement of the cost to transform one distribution
to another for a given loss function and a low value (lowest being zero) means
that the distribution have similar appearance and variation [24]. It is defined as

w2(pg , pdata)2 =

1∫
0

(Pgicdf (p) − Pdataicdf (p))2 dp (6.2)

where pg , pdata are the distributions of the generated and real data respectively.
Both Pgicdf , Pdataicdf are inverse cumulative density function defined as

Pgicdf = inf{x : Pgcdf (x) > p} (6.3)

and
Pdataicdf = inf{x : Pdatacdf (x) > p} (6.4)

6.3 Evaluating the quality of the generated data 43

where Pgcdf , Pdatacdf are the standard cumulative density functions. By compar-
ing the Wasserstein distance between the generated data and real data with the
Wasserstein distance between two real data sets, it can be determined that the
distribution is not too similar to the training data or to different.

7
Results

This chapter presents and discusses the results from the implementation of GANs,
linear models and neural networks.

7.1 GANs

As described in Chapter 6, two separate combinations of generators and discrimi-
nators were trained with EEG signals from when the attended sound was on the
left or right respectively to create generators specifically designed to generate data
from their corresponding direction. This was done so the generators could iden-
tify the specific features from the real data when the attended sound was on the
left or right. Another valid option would be to train a single generator that could
generate data for both, but this was not tested. The architecture of the networks is
shown in Figures 6.2 and 6.3 and the values of the hyperparameters for the archi-
tectures was presented in Chapter 6 and are the same for both the right and left
version. The code used in the implementation was based on the code provided by
Mathworks in [33] which focuses on using GANs to generate pictures of flowers.
Most of the architecture of the networks and the values of the hyperparameter
was left the same but changes had to be made for this implementation specifi-
cally. The EEG signals may have been treated as pictures but the values of each
”pixel” had to be unbounded compared to the original where it was normalised.
This resulted in the last tanh layer of the generator being removed and not nor-
malising the real data but instead remove the mean. As the augmentation of the
real ”pictures” used in [33] was deemed unnecessary for this implementation it
was removed. The last major change made was to decrease the learning rate of
the discriminator to be 10% that of the generator (0.00002 compared to 0.0002) as
testing often resulted in the discriminator learning to fast and the generator pro-
ducing very unrealistic data.

45

46 7 Results

Figure 7.1: Comparison between real data and the generated data on the first
channel for generator20.

Through testing it was found that the networks are sensitive to scaling of the
input, with the best performance being when scaling the noise vector input to
the generator containing random values, normal distributed with mean zero and
variance one, with a factor of 0.05. The effect of scaling the input can be seen in
Figures 7.1 to 7.4.

The output of the generators have not been scaled in Figures 7.1 to 7.4 but test-
ing with scaling was done to see if the performance of the generator trained with
20 times scaling of the input would improve. Scaling by an approximate of 10 on
the output gave better results but not as good as the generator scaled with 0.05
on the input thus that version was chosen as the better performing. Important
to note is the training of the networks was done on EEG signals not bandpass fil-
tered between 2-8 Hz, as described in 3, to study the effects of filtering the data
with the results presented later in this chapter. As such the output was processed
further before being compared to the real data.

The results were generators that produced good generated data that is however
unstable. When testing the output from the generators with different noise input
vectors, often (approximately) the last 200 samples were many times larger then
the rest on a chosen channel. This is illustrated in Figure 7.5. Fortunately, the
last samples can be removed as the generated data purposefully contains more
samples then the real EEG signals used for the linear models and DNNs. As such,
it was not a problem for the later implementations.

7.1 GANs 47

Figure 7.2: Zoomed in comparison between real data and the generated data
for generator20.

Figure 7.3: Comparison between real data and the generated data on the first
channel for generator0.05.

48 7 Results

Figure 7.4: Zoomed in comparison between real data and the generated data
for generator0.05.

Figure 7.5: The low robustness of the generator can sometimes produce
highly unrealistic data for the last 50-200 samples.

7.1 GANs 49

In Chapter 3, the preprocessing of the EEG signals was described as down-
sampling to 64 Hz and bandpass filtering between 2-8 Hz and 2-32 Hz for linear
models and DNNs, respectively. For GANs however, it was of interest study the
effects from using filtered and unfiltered EEG signals as training data. Filtering
the output allows for an adaptable generator that does not need to be retrained
when another frequency range is considered while on the other hand training
on filtered data should be easier for the network to train on. Two different ver-
sions of the left and right GANs were tested where one was trained on the filtered
EEG signals and the other on the unfiltered EEG signals with a bandpass filtered
between 2 and 8 Hz applied on the output. Even though the main goal of the
generated data was to be used for training in the DNN, the setup to compare
the performance was not made with a bandpass filter between 2-32 Hz and 128
Hz sample rate as described in 3. Instead, a bandpass filter between 2-8 Hz was
used to get a more noticeable effect of the filtering on the data. The EEG signals
and output used a sample rate of 64 Hz instead of 128 Hz to reduce the training
time. For an accurate measurement of the performance, 10 trials were randomly
chosen from the attended sound on the left and right respectively that could be
compared with the generated data. When comparing two real trials, 20 trials
were randomly chosen from when the attended sound was on the left and right
respectively. The mean values from the trials were then calculated to remove any
potential biases such as if the attended sound was spoken by a male of female.

The first version tested was to train the network on unfiltered data and then band-
pass filter the output. During training the scores of the generator and discrimina-
tor were checked so that no network learned too fast and that they converged to
a constant score. The comparison between the generated data to the real data on
a randomly chosen trial and channel can be seen in Figures 7.6 to 7.9.

50 7 Results

Figure 7.6: Comparison between real data and the generated data with the
attended sound on the left.

Figure 7.7: Zoomed in comparison between real data and the generated data.

7.1 GANs 51

Figure 7.8: Comparison between real data and the generated data with the
attended sound on the right.

Figure 7.9: Zoomed in comparison between real data and the generated data.

Visually, the generated data looks realistic for both the left and right generator
and the frequency spectra can be seen in Figures 7.10 and 7.11.

52 7 Results

Figure 7.10: Comparison between the spectra of the real and generated sig-
nals for the attended sound on the left.

Figure 7.11: Comparison between the spectra of the real and generated sig-
nals for the attended sound on the right.

7.1 GANs 53

There is a clear difference between the spectra of the real and generated data
for both the left and right generator. Both contain most of its frequency content
in the range 2-8 Hz which is to be expected as they have been filtered with the
same filter. The real data has a peak at around 2 Hz that progressively decreases
down to 8-10 Hz. The generated data has a relatively even distribution of the
frequency content between 2-9 Hz with a very distinct peak at 8 Hz. A smaller
peak can also be seen at 16 Hz.

The next metrics was the Pearson’s correlation coefficient between the generated
data and real data. For a baseline correlation, Persons correlation coefficient was
also calculated between data from two real trials. The correlations were then com-
pared and the results can be seen in Table 7.1. The generated data has correlation,

Table 7.1: Average Pearson’s correlation coefficients.

Attended sound on the left Attended sound on the right
Generated: -0.000952 Generated: -0.004694

Real: 0.003900 Real: 0.002867
Variance generated: 0.000984 Variance generated: 0.000909

Variance real: 0.000774 Variance real: 0.000866

and variance of the correlation, in the same order of magnitude as the real data
with the difference that the correlation is negative.

The next metric was the Euclidean distance between the generated data and
the real data over all channels for every sample. This was done for data from
two real trials as well for comparison. The distributions were plotted compared,
which can be seen in Figures 7.12 and 7.13.

54 7 Results

Figure 7.12: Comparison between the distributions of the sample-wise min-
imum euclidean distance for when the attended sound was on the left side.

Figure 7.13: Comparison between the distributions of the sample-wise min-
imum euclidean distance for when the attended sound was on the right side.

The X-axis of the graphs represents the value of the data while the Y-axis rep-
resents the probability of a specific value of the data. The blue crosses are the

7.1 GANs 55

values of the data. The red line that can be seen in the background represents the
normal distribution, meaning that the blue crosses should follow that line to be
a normal distribution. As the figures show neither distributions are normal dis-
tributed but they are similar being skewed to the right. The real data has values
that are approximately 2-4 times higher than that of the generated data which is
in the approximate interval of 0-1.5 compared to 2-4. This can also be seen in the
slope of the normal distribution line being approximately twice as steep for the
real data than the generated data. The last measurement was the Wasserstein dis-
tance and the results can be seen in Table 7.2. The Wasserstein distance between

Table 7.2: Average Wasserstein distance.

Attended sound on the left Attended sound on the right
Generated: 1.434 Generated 1.402

Real: 1.816 Real: 1.232
Variance generated: 0.893 Variance generated: 1.006

Variance real: 0.567 Variance real: 0.399

the generated data and real data is in the same order of magnitude and similar
for when the attended sound was on the left and right. The notable difference is
that the variance of the Wasserstein distance is slightly higher for the generated
data compared to the real data on both the left and right generator.

After implementing and creating generators trained on the unfiltered data the
next version of GANs was trained using filtered data instead which should opti-
mally result in no processing needing to be done on the output. The comparison
between the generated data to the real data on a randomly chosen trial and chan-
nel can be seen in Figures 7.14 and 7.15.

56 7 Results

Figure 7.14: Comparison between real data and the generated data.

Figure 7.15: Zoomed in comparison between real data and the generated
data.

7.1 GANs 57

As the figures show, the generated data looks very unrealistic consisting mainly
of peaks at different time intervals with much higher amplitude than the real
data. Zooming in reveals that the generated data has a higher frequency than
the real data. Because of the poor results, only the right generator was trained
and studied compared to both from the previous version. The comparison of the
spectra can be seen in Figure 7.16.

Figure 7.16: Comparison between the spectra of the real and generated sig-
nals for the attended sound on the left.

The quick variations noted in the time domain can clearly be seen in the spec-
tra where the generated data consists of frequencies higher than that of the real
data. In the previous version, peaks were observed at 8 and 16 Hz. Peaks at these
frequencies were also observed here but in addition included peaks at 24, 32 and
even 0 Hz. The average Pearson’s correlation coefficient were calculated and com-
pared as earlier and the results can be seen in Table 7.3. The correlation is similar

Table 7.3: Average Pearson’s correlation coefficients.

Attended sound on the right
Generated: -0.000350

Real: 0.002867
Variance generated: 0.000165

Variance real: 0.000866

to that of the previous version while also being negative. The Euclidean distance
can be seen in Figure 7.17.

58 7 Results

Figure 7.17: Comparison between the distributions of the sample-wise min-
imum euclidean distance for when the attended sound is on the right.

The distributions are similar with both being skewed to the right and is ac-
tually more similar to the real data than the previous version. As the previous
version, the real data has values that are higher than that of the generated data,
but the slope of the normal distribution line is now similar with the generated
data only having slightly steeper slope. The last measurement is the Wasserstein
distance between the distributions of the generated data and the real data. The
results of the comparison can be seen in Table 7.4. The results show that the

Table 7.4: Average Wasserstein distance.

Attended sound on the right
Generated: 4.815

Real: 1.232
Variance generated: 15.178

Variance real: 0.399

distribution of the generated data is dramatically different compared to the real
data. The difference is a fairly larger than for the previous version, but the biggest
difference can be seen when comparing the variance. The generated data has a
noticeably larger variance than the real data and the previous version. To make
sure that the architecture of the networks and the values of the hyperparameters
were the main reason for the low performances, different version was also tested
but the performance did not improve. This lead to the generator trained on the
unfiltered data being selected to create the generated data for the DNN.

7.1 GANs 59

As the generated data was trained and output values sampled at 64 Hz, the out-
put of the generated data was upsampled and the last samples removed to get
length of 4096 samples which is used by the DNN. The comparison between the
real and generated data can be seen in Figures 7.18 to 7.21.

Visually the upsampling of the data did not result in any critical resamplig arte-
facts for both the left and right generator. The frequency spectra can be seen i
Figures 7.22 and 7.23.

Figure 7.18: Comparison between real data and the generated data with the
attended sound on the left side.

60 7 Results

Figure 7.19: Zoomed in comparison between real data and the generated
data.

Figure 7.20: Comparison between real data and the generated data with the
attended sound on the right side.

7.1 GANs 61

Figure 7.21: Zoomed in comparison between real data and the generated
data.

Figure 7.22: Comparison between the spectr of the real and generated sig-
nals for the attended sound on the left side.

62 7 Results

Figure 7.23: Comparison between the spectra of the real and generated sig-
nals for the attended sound on the right side.

7.1 GANs 63

The difference in spectra for the left and right generator is still noticeable. The
generated data also has more clearly defined peaks in the spectra at 8, 16, 24 and
32 Hz.

After the spectra the Pearson’s correlation coefficients were calculated and the
results can be seen in Table 7.5. As with the previous results, the correlation for

Table 7.5: Average Pearson’s correlation coefficients.

Attended sound on the left Attended sound on the right
Generated: -0.001337 Generated: -0.001925

Real: 0.004234 Real: 0.001136
Variance generated: 0.000484 Variance generated: 0.000489

Variance real: 0.000639 Variance real: 0.000478

the generated data is still in the same order of magnitude but negative. The next
measurement was the Euclidean distance which can be seen in Figures 7.24 and
7.25.

Figure 7.24: Comparison between the distributions of the sample-wise min-
imum euclidean distance for when the attended sound was on the left.

64 7 Results

Figure 7.25: Comparison between the distributions of the sample-wise min-
imum euclidean distance for when the attended sound was on the right.

The generated data is skewed less compared to the previous version and to
the real data. An outlier can be seen at around five for booth generators and
the slopes of the normal distribution lines are very similar to the real data. The
last measurement was the Wasserstein distance which can be seen in Table 7.6.
The average Wasserstein increased slightly from the previous versions for both

Table 7.6: Average Wasserstein distance.

Attended sound on the left Attended sound on the right
Generated: 2.479 Generated 3.102

Real: 1.783 Real: 1.949
Variance generated: 3.222 Variance generated: 8.086

Variance real: 1.264 Variance real: 0.761

the left and right generator but still in the same order of magnitude. A more
noticeable difference is with the variance which has increased to higher levels
than before. Some preliminary testing was also done on the training time when
training GANs with the data sampled at 128 Hz instead of 64 Hz. This change
resulted in an increase of the training time from approximately 12-13 hours per
generator to almost a week of training per generator with the same structure and
on the same hardware.

7.2 Linear models 65

The main goal of this thesis is not to generate the most realistic EEG data
possible. Instead, the goal with this thesis is to compare the performance of linear
models and neural networks for AAD while also studying the effectiveness of
using generated data combined with real data for training the neural networks.
With this in mind, the results of GANs were deemed sufficient to determine if the
method can be used to increase the performance of the neural networks for AAD.
This is discussed in more detail when presenting the results of the deep neural
networks.

7.2 Linear models

The FIR-models were implemented using the mTRF-toolbox, which has prede-
fined functions to create models and plot the results. This drastically reduces the
complexity of the implementation. The results of the linear models are presented
below.

7.2.1 FIR models

While the concept of creating a model to reconstruct the attended sound and
then compare it to the present sounds is relatively intuitive, how to implement it
is not. As previously stated in Chapter 4, the FIR models were created using the
predefined functions in the mTRF-toolbox. This decreased the complexity of the
implementation.

Many different versions were tested such as trying to create a general model
using all the data available or dividing every trial into smaller segments and cre-
ating an average model. Of the versions tested, most resulted in accuracy at ap-
proximately chance level for different reasons, which was far lower than expected.
The optimal regularisation parameter for every individual model was chosen be-
tween 10−6 and 106 and the time lags were between 0 ms and 500 ms. The first
versions implemented aimed to determine which data should be used to train the
model/models.

The first trial in the first block for the first subject was chosen as validation trial
for all the three versions. The three versions were trained on either all the trials in
the first block, all the trials for the first subject or all the trials from all subjects.
The comparison between the reconstructed stimulus and the actual (attended)
sound for the three different versions can be seen in Figures 7.26 to 7.28.

66 7 Results

Figure 7.26: Comparison between the attended sound and the reconstructed
audio trained with trials from the same block.

Figure 7.27: Comparison between the attended sound and the reconstructed
audio trained with trails from the same subject.

7.2 Linear models 67

Figure 7.28: Comparison between the attended sound and the reconstructed
audio trained with all the trials.

68 7 Results

Figure 7.29: Comparison between the three different reconstructed audio.

For easier comparison of the three different reconstructed audio, they have
been combined into a single plot which can be seen in Figure 7.29. As can be
seen in these figures, using trials from other blocks and subjects lead to less ac-
curate reconstructions. This also lead to the problem where the correlation was
not the highest with the attended sound. Testing showed that for the models
trained on all the trials for all subjects had a similar average correlation between
all the sounds, including the background babble noises. In more obvious cases
the correlation of the attended sound would be negative which resulted in the
average correlation of the attended sound to be small and accuracy at approxi-
mately chance level. These results were the basis for the decision to only use the
trials in the same block to train all the FIR models.

The next implementation aimed to determine how much the dividing the data
into smaller segments affected the performance of the method which was tested
by dividing the trials into 1,2,4,8 and 16 segments of length 32, 16, 8, 4 and 2 sec-
onds. The performance was tested by calculating the average performance on the
trials in the first block of a randomly chosen subject, 17 in this case, as doing it
for all subjects would have taken to much time and one block is sufficient to show
the difference in performance. The results can be seen in Figures 7.30 and 7.31
and in Table 7.7.

7.2 Linear models 69

Figure 7.30: Comparison between the average accuracy rates when dividing
the data into different segment lengths.

Figure 7.31: Comparison between the average correlation with the attended
sound when dividing the data into different segment lengths.

The highest average accuracy and correlation were when the trials were not
divided at all into smaller segments and a trend can be seen with decreasing

70 7 Results

Table 7.7: The average accuracy and correlation for the different sized seg-
ments.

Number of segments Accuracy Correlation
1 95% 0.18517
2 70% 0.04578
4 45% 0.03237
8 45% 0.01428

16 25% -0.04788

correlation and accuracy down to lower than chance level accuracy and negative
average correlation at 16 segments. Testing was done on additional subjects with
similar results, suggesting that the the results are general.

The final implementation of the FIR models used the previous knowledge to max-
imise the performance. Only trials in the same block as the validation trial were
used and the 32 seconds long data was not divided into segments. Every trial
was validation trial once, resulting in 2540 (20 trials for each of the four blocks
for 32 subjects. One block of data were discarded so 2540 = 20 × 4 × 32 − 20)
different models in total. The correlation between the reconstructed audio was
than compared to the talker and masker audio and the prediction of the attended
sound was the one with the highest correlation which resulted in a total of 2540
predictions. The average accuracy and talker correlation is presented in Table 7.8.

Table 7.8: Average accuracy and talker correlation.

Measurement Performance
Accuracy 95.86661%

Correlation 0.1871

7.3 CNN for locus classification 71

7.3 CNN for locus classification

The method of using a CNN for classification of the EEG signals to determine if
the attended sound originates from the left or the right was based on the work
and results reported in [39, 41]. These studies have shown that LOA can achieve
good accuracy while also not needing as much data (length of the decision win-
dow) as linear models. In this implementation, the network used is called EEG-
Net from [29]. EEGNet is a versatile CNN specifically developed for EEG data.
The network is versatile as it can be used on many different tasks with good per-
formance such as determining if the subject saw an irregular image or what body
part they were thinking of moving from the EEG signals. In an example of how
to use EEGNet, the network was trained to distinguish if the subject saw a visual
stimuli on the left or right or if they heard audio stimuli on the left or right, where
the last two classes are very similar to the desired implementation. The network
performed well with an accuracy of 91-94% (91% using EEGNet and 94% by de-
coding the tangent space with a linear regression) for the four different classes.
The main difference between their example task and the task in this thesis is that
in the example, the audio stimuli is an irregular impulse compared to the con-
tinuous audio on either the left or right side. Impulses in a classification task
are stated by Lawhern et al. to be easier for the network to learn on compared to
continuous signals.

An important part of the networks was to decide what should be training/validation
data and what should be testing data. Vandecappelle et al. states that in their im-
plementation two main ways of dividing the data were done, the first was to save
some trials for a target subject and use the rest for training and validation while
the other method was to not train on any trial from the target subject. The first
will in theory have higher performances as the data used for training would be
similar to that of the test data but in a real life implementation, the other method
has the advantage that the whole network does not need to be retrained when
presented with new data. In this thesis, the performance is of interest and as
such training was done with trials from the same subject. Another factor of im-
portance was what trials should be used for training, validation and testing. To
follow a similar method structure as FIR models, one trial was chosen as the test
trial. The validation data was chosen as three different trials in the same block as
the test trial to ensure that the training with the validation data is a good repre-
sentation of the test trial. The trial used for testing varied but the remaining 16
trials in the block were always used for training with a varying amount of other
trials. The tested versions included only using trials from the same block, only
using trials from the same block plus ten additional trials from another block for
the same subject and using three of the four blocks of data per subject. The last
version tested was also to include the previously generated data to study the ef-
fects on the performance. Furthermore, the performance was tested for trials of
32 seconds which is the same as for the linear models, and shorter versions where
the trials have been divided into four segments of 8 seconds.

72 7 Results

The testing started with comparing the performance using long trials with per-
formance of the linear models. The first version tested used one trial for testing
and the remaining for training and trained for 50 epochs per model. This re-
sulted in the average accuracy being 50.6693%. Studying the value of the loss
function and the accuracy on the training data suggested that the models became
overfit on the training data. The next version tested aimed to study if decreasing
the number of epochs would limit the amount of overfit on the training data and
reduce the training time.

When training with 25 epochs, the average accuracy was 51.2205%. This was
then compared to training with 50 epochs which had an average accuracy of
50.6693%. The difference in performance was negligible and while training with
25 epochs reduced the training time in half. As such, the conclusion was drawn
that 25 epochs were enough to train the models sufficiently. The next version
tested was to introduce some validation data during training.

The next iteration was to see if the performance could be improved by using three
trials as validation trials during training to increase the accuracy on the test trial.
The method was to chose the three following, or previous depending on if the test
trial was in the first or latter half of the block, trials after the test trial as valida-
tion. The models were trained for 25 epochs and the optimal model weights lead
to lowest value of the loss function on the validation data. This lead to the aver-
age accuracy of the method being 35.6299% which is significantly lower than the
performance from the previous versions. As the results suggests that the model
overfits on the training data, the next version tested if trials from other blocks
(from the same subject) contained useful information that to improve the perfor-
mance.

By using trials from the subjects in other blocks in the training data, the mod-
els should be more generalised. Ten trials from other blocks were added to the
training data and always from the same subject being either from the following
of previous block. An important part to note is that the three validation trials are
still used, despite the previous bad results, and are always in the same block as
the test trial so they share similar features. The data was also shuffled between
epochs to further avoid the model overfitting. The results were an average accu-
racy of 82.3228% accuracy which is higher than the previous versions. To test
if trials from other blocks contain valuable information for the network to learn,
testing was done when training with two blocks of additional data.

When adding trials from two other blocks for training, the percentage of highly
valuable is lower than half compared to only adding ten trials. If trials from other
block contains useful information, then adding them to the training data would
improve the performance, otherwise the data varies to much from block to block.
The results was an average accuracy of 76.4567% which is lower compared to
the previous version with 82.3228% accuracy. With the best performance found
when using only real data, the performance was compared with training the net-

7.3 CNN for locus classification 73

work with generated data.

As the highest accuracy with real data was found to be 82.3228% when using
additional ten trials from another block, ten trials of generated data was used to
compare the performance. The average accuracy was 58.0709% which is lower
than 82.3228%. Important to note is that the performance is higher than any of
the three versions only using trials from the same block. A noted advantage of
using CNN instead of FIR models is that the performance is comparatively higher
for shorter trials, this was tested as well.

The shorter trials were gathered by dividing the 32 seconds long trials into 4
segments of 8 seconds, resulting in four times the number of trials and total pre-
dictions. The two versions that were tested were the previous best version of
using ten trials from another block and when using generated data to see how it
affects training on shorter trials. To accommodate for the increased number of
trials, the number of validation trials were increased to the following or previous
12 trials from the test trial and training was done with the remaining trials in the
block plus additional 40 trials from another block. With the increase of the num-
ber of trials available, the minibatch size was increased to eight from two and the
number of epochs increased from 25 to 50. The average accuracy was 58.0315%
which is lower than 82.3228% for the long trials. Lastly, the performance of using
generated data on shorter trials were tested to study the impact of trial length on
the performance.

When training with the generated data the same methodology was used as before
while instead using ten trials of generated data, evenly distributed on the left and
right. The results was an average 90.2461% accuracy. This was the highest accu-
racy with DNN recorded, even being higher than 82.3228% that was trained on
longer trials. The performance was still not as good as the best linear models at
95.8666% for longer trials, but much better than approximately 50% for shorter
trials.

As the four times increase in number of predictions could have resulted in overly
optimistic results, testing was done with only the first of the four segments per
trial as testing trial, resulting in the same number of predictions as for the longer
trials. This resulted in the slightly lower accuracy of 88.7795% accuracy. Lastly,
the testing was done with the generated data on even shorter trials of 2 seconds
length by dividing the trials into 16 segments and with the same changes made
as before to get the same number of predictions. The average results was an ac-
cuarcy of 87.4409%.

74 7 Results

7.4 Summary of the results

The most important results presented in this chapter and answers to the hypothe-
ses presented in Chapter 1 are summarised below.

7.4.1 Results of GANs

Training the network with data sampled at 64 Hz followed by upsampling and
bandpass filtering the generated data resulted realistic multi channel EEG signals.
Visually it looks similar to real data, which can be seen in Figures 7.18, 7.19, 7.20,
7.21, 7.22, 7.23, 7.24 and 7.25. The average correlation and Wasserstein distance
between the generated and real data can be seen in Tables 7.5 and 7.6. The results
show that the second hypothesis was correct and GANs can be used to generate
realistic speech-evoked EEG data.

7.4.2 Results of linear models

The FIR models had high accuracy and the average accuracy and correlation with
the attended sound can be seen in Table 7.8. The results also suggests that only
training the models on 32 second long trials in the same block resulted in the
highest accuracy.

7.4.3 Results of CNN for locus classification

The results show that when training the DNN on 32 second long trials, only us-
ing real data had an average accuracy of 82.3228% while training with additional
generated data had an average accuracy of 58.0709%. When instead training on
8 second long trials, the real data had an average accuracy of 58.0315% accuracy
while training with generated data resulted in an average accuracy of 90.2461%.
It was also shown that further decreasing the trial length decreased the perfor-
mance. Relating the results to the first hypothesis in presented in Chapter 1,
DNNs perform better than linear models on shorter trials however not on longer
trials. For the third hypothesis it was shown that GANs generated EEG data can
be used to improve the performance of DNNs on shorter trials but not on longer
trials.

8
Discussion

This chapter discusses the results presented in Chapter 7. Reasons for the re-
sults are presented such as to why the accuracy increased with generated data
on shorter trials. Also discussed is how the results compare to the documented
results presented in the literature.

8.1 GANs

By analysing the performance measurements it is clear that training the networks
on unfiltered data and then filter the output results in the most realistic generated
data. Visually in both the time and frequency domain, the generated data looks
more realistic than that of the networks trained on the filtered data. Why this is
the case is not known but the most probable reason is that the architecture of the
network and values of the hyperparameters favor training on the unfiltered data.
If more time had been dedicated to testing other structures, it might have been
able to produce better results. There is also the possibility that the generator is
not able to produce data with the desired frequency spectrum and as such must
be filtered. The spectra of the different networks shows that the generated data,
in this implementation, has clearly defined peaks at frequencies that is multiples
of 8 Hz. Even though the generated data has been filtered between 2-8 Hz, there
is still a noticeable peak at 8 and 16 Hz which suggests that this is a network
specific issue. This problem is also discussed by Hartmann et al. in [24] which
mentions that the convolution size has a strong influence on the frequency repre-
sentation of the generated data, which strengthens the theory above.

When upsampling and bandpass filter between 2-32 Hz, the conclusion from the
results is that the performance of the generated data is not quite as good as 64
Hz sampling rate and filtered between 2-8 Hz but still relatively realistic. When

75

76 8 Discussion

filtering with a wider frequency range, the peaks in the spectra similar to that of
Figure 7.16 can bee seen, suggesting that it is a consequence of the structure of
the networks. A peak can also be seen for the real data at around 50 Hz, even
though that frequency should be dampened by the filter applied. The most rea-
sonable assumption is that the affect of the powerline, acting at around 50 Hz,
has not been completely removed. A big difference could also be seen when com-
paring the distributions of the Euclidean distance which is now less skewed to
the right. The Wasserstein distance also increased slightly but still remains rela-
tively similar to that of the real data. Overall, the measurements show that the
generated data is relatively realistic.

As the performance of the generated data became slightly worse when upsam-
pling it is of interest to determine the how much time could be saved on train-
ing the networks compared to the performance. The increase in training time
when using data at 128 Hz sampling rate is almost a week compared to 12-13
hours when using data at 64 Hz sampling rate on the same setup. For the chosen
method, two generators needs to be trained which means that the total training
time would be doubled. With this is mind it was concluded that training with
lower sampling rate and then upsample the generated data is the best option de-
spite the decrease in performance.

Many of the results and discussion presented in [24] is applicable for the results
presented in Chapter 7. Different measurements has to be used for an accurate
representation of the quality of the generated data and difficulties representing
the correct frequency spectrum of the real data. Comparing the generated EEG
signals from [24] with the presented results shows that Hartmann et al. managed
more realistic single channel EEG signals. The most obvious difference is the sim-
ilar frequency spectra between the generated and real EEG signals. Hartmann
et al. managed to remove the unnatural spikes in the spectra while replicating
the spectrum of the real data.

The difference in quality of the generated data makes it interesting to compare
the performance measurements to identify if they are reliable. The largest dif-
ferences of the measurements between the versions, except visual, is the average
Wasserstein distance. An increase could be seen when the generated data had a
much different distribution compared to the real data and especially on the vari-
ance. This aligns with the expected results and as such this measurement can
be considered reliable. For both the Pearson’s correlation coefficients and the Eu-
clidean distance the difference was not especially noticeable. Both the average cor-
relation and variance of the correlation are very similar with the generated data
from the generator trained on filtered data having slightly higher correlation and
slightly lower variance. The problem is that the values are small and as such it is
difficult to determine if the measurements are informative and how informative
they are. A difference can be seen when comparing the Euclidean distance but
the distribution of the worse data is actually more similar to the real data than the
other which should not be the case. As such, only studying the Euclidean would

8.2 Linear models 77

be highly misleading. As stated by Hartmann et al., no measurement alone is
able to give a concrete answer to the quality of the performance and the most in-
formative measurements seem to be plotting the single channel data, plotting the
frequency spectra and calculating the Wasserstein distance. In [24], the most in-
formative measurement was the Wasserstein distance. The presented results also
shows that Wasserstein distance was one of the more informative measurement.

8.2 Linear models

As the main goal of including the linear models in the thesis was to use it as a
baseline performance for the DNNs may lead to unrealistic expectations on the
neural networks. Important to remember is that the FIR models approach works
in theory but have some major disadvantages compared to DNNs in a real life ap-
plication. Also shown by the results, the performance is heavily affected by the
length of the data used to train the models. It is not reasonable with a 32 second
long decision window before determining the attended sound in a real life appli-
cation, event though that prediction might be accurate. As the DNN approach
is able to use a much smaller decision window for acceptable accuracy, DNNs
has a big advantage. The other advantage with DNN is that with classification of
the locus of attention, the original audio is not needed which is troublesome to
extract in a real life scenario. As such the results of FIR models are surprisingly
good but as a baseline performance measurement also put unrealistically high
expectations on the DNNs.

As shown by the results, when implemented correctly, FIR models perform well
on the specific data set used. As described in other studies such as [19, 39], the
performance of the methods vary for different data sets and as such there is no
guarantee that the high performance will be achieved on other data sets. When
comparing the performance of the FIR models to other studies, the documented
results of 95.86661% is higher than every other study. In [4] the average accuracy
was 63% with noise reductions scheme off and 69.2% with the noise reduction
scheme on and was done on the same data set. In [2] the average accuracy was
approximately 80% with another dataset. In [13] the average accuracy was 66%
and lastly [36] had an average accuracy of 89%, both studies on different datasets.
As such the accuracy of 95.86661% is higher then the documented results using
the same method but most on different datasets.

8.3 DNN for locus classification

When using long trials, the performance of the FIR models is noticeably higher at
95.8666% accuracy compared to 82.3228% accuracy for the DNN. These results
are interesting as the theory and other studies suggests that the DNN should
have performed higher. The most probable reason for the results is that the per-
formance of the FIR models were surprisingly high compared to the documented

78 8 Discussion

results and that the DNN were not optimally implemented. To reduce the com-
plexity of implementing the network, EEGNet was used instead of the already
documented networks specifically designed for locus of attention decoding. If
more time were available, more testing with different values of hyperparameters
and method structure could have improved the performance further however
that was not the case. The results suggests that only using trials from the same
block leads to the models overfitting on the training data which is mitigated by
adding more trials from other blocks. The overfitting is also suggested by the
drop in performance when adding three trials for validation. Because of the way
the trials are stored, the three following or three previous trials will in majority of
the time have the same direction as the test trial. This in theory is good, however
this leads to the training data being imbalanced during training. If for example
the test trial was recorded with the attended sound on the left and the same for
the three validation trials, the remaining trials would be 10 on right and only
6 on the left. This would result in the models being trained mainly of trials of
the opposite direction and as such would predict, if overfitted, the locus of the
attended sound coming from the opposite direction. There are different solutions
to imbalanced training data however this was not implemented and tested.

As the performance decreased from using more trials from other blocks com-
pared to when the majority of the trials were from the same block as the test trial,
it suggests that the trials generalise the models instead of containing valuable
information. As such, even though the generated data is not optimal it could be
used for the same purpose of generalising the models, which the results suggests
however not as well. The decrease in performance from using ten generated tri-
als instead of ten real trials is not surprising. The generated data has been shown
to have noticeable differences to that of real data which in this case is from the
same subject during slightly different conditions. An important thing to note as
that the performance did increase from chance level when only using trials from
the same block. This suggests that while the generated data might not be as good
real data, it does generalise the otherwise overfit models.

The most interesting results of the thesis is the increase in performance had when
training with generated data on shorter trials compared to adding trials from an-
other block. As both versions use the same amount of data for testing, validating
and training it suggests the difference lies in the content of the data used. A pos-
sible explanation is that the shorter trial length dampens the negative effects of
it being fake data while containing the important features for locus of attention
decoding. To further this, the generator have been train on the on all the trials
including the test trial which introduces bias, even though the generated data is
not the same. However as the generator have been trained with 2540 trials, the
bias can be considered negligible. Another factor is the previously mentioned
imbalanced training data. The generated data added for training has an equal
amount of trials on the left as right and as such the training data is more bal-
anced than when using real data. Regardless as why the performance is good, it
is noticeably higher than approximately 50% for 8 second long trials for FIR mod-

8.3 DNN for locus classification 79

els. The results from the DNN on shorter trials suggests that for higher accuracy
on shorter trials, DNN for locus of attention decoding is preferable to FIR models.

The performance of the DNN using generated data is high however it is compara-
ble to the results presented of the CNN and STAnet in [39]. On the KUL dataset,
the accuracy of the CNN on 10 second and 2 seconds long trials were 87.9% and
85.7% while STAnet had an accuracy of 93.9% and 91.4%. On the DTU dataset,
the accuracy of the CNN on 10 second and 2 seconds long trials were 67.8% and
65.2% while STAnet had an accuracy of 75.8% and 73.7%. Compared with these
with the results from the generated data had an accuracy of 88.7795% for 8 sec-
ond long trials and 87.4409% for the 2 second long trials. The results decreased
with similar magnitude to that of the reported results from [39]. As the results
have been replicated multiple times with slightly different circumstances and
similar performance is presented in [39], the results are more believable.

The results from the DNNs are surprising as the documented results from stud-
ies [19, 39, 41] differs. For ten seconds long trials, the accuracy was documented
to be 85.1% in [41], 87.9% and 67.8% respectively for the two different datasets
used in [39] and approximately 75% in [19]. Compared to these, the performance
of only using real data at 58.0315 is lower while using generated data with an ac-
curacy 90.2461% is more aligned with the documented results. The accuracy is
only beaten by STAnet presented in [39] on the KUL dataset with an impressive
93.9% accuracy. As mentioned earlier, further decreasing the trial length down
to 2 seconds lowered the accuracy with very similar level of magnitude to that
which was reported in [39] for both CNN and STAnet on both datasets.

9
Conclusions and future work

This chapter aims to draw conclusions, discuss the results and suggest areas of
improvement for future work.

9.1 Conclusions

The conclusions are based on the results presented in Chapter 7 regarding GANs,
the linear models and the deep neural networks. In summary, GANs are able to
generate relatively realistic EEG signals, FIR models perform well on the data set
and the DNN performs better on shorter trials. Training with generated data gen-
eralises overfit models and can improve the performance noticeably on shorter
trials.

9.1.1 GANs

By analysing the performance measurements it is clear that training the networks
on unfiltered data and then filter the output results in the most realistic generated
data. Both the plots of the generated data in the time and frequency domain
shows a distinct difference in quality between the two versions of the generated
data. The Wasserstein distance represents the quality of the generated data well
and is as predicted smaller for higher quality generated data. When comparing
the training time of GANs between training on data sampled at the two different
sampling rates, training with 64 Hz and then upsample the generated data is
preferable. With a reduced training time of 12-13 hours compared to almost a
week for 128 Hz for one of the two generators necessary, the slight decrease in
performance is acceptable in most cases for the lower training time. Relating this
to the second hypothesis presented in Chapter 1 shows that GANs can be used to
generate realistic speech-evoked EEG data.

81

82 9 Conclusions and future work

9.1.2 Linear models

With the results from training a FIR model with different amount of data, it sug-
gests that the data from subject to subject, and even block to block, varies. As the
results from training the model with all the data available shows, it becomes to
general to properly reconstruct the attended sound. The impact of the length of
the decision window on the accuracy aligns with what has been noted before and
is the main problem when trying implement the method in a real life scenario.
When all put together to produce the best results, the linear models perform well
with higher accuracy than expected.

9.1.3 CNN for locus classification

When training on longer trials, the results suggest that the biggest problem is
how to avoid the models overfitting on the limited training data. Only using
trials from the same block show signs of overfitting which is mitigated by us-
ing trials from other blocks for training. The performance of the FIR models
is noticeably higher at 95.8666% accuracy compared to 82.3228% accuracy for
the DNN. When instead of using ten trials from other blocks, using ten trials of
generated data decreased the accuracy to 58.0709%. The noticeable decrease in
performance show that for longer trials, generalising the models using real data
is preferable to using generated data. Interestingly, the performance shifted dra-
matically when instead evaluating the models on shorter trials. Using only real
data decreases the accuracy down to 58.0315%, which is still slightly higher than
the chance level performance of the FIR models. Contrary, using generated data
increased to performance to 90.2461%, which is even higher than that for the
longer trials. Further testing was also done to make sure that the results were
replicable and further decreased with even shorter trial length, which it does on
both accounts.

The final conclusion that can be drawn from the result of the DNN is that for
longer trials, the performance of FIR models and DNN are similar while for
shorter trials, DNN have slightly higher performance that of FIR models. As such
the conclusion regarding the first hypothesis in Chapter 1 is that DNNs perform
better than linear models on shorter trials. For longer trials, the linear models
performed better than DNNs whose results could have been improved with more
testing. There is also room for improvement of the DNN to increase the accuracy
on shorter trials further which supports the conclusions drawn by previous stud-
ies [19, 39, 41] that DNN for locus of attention is the preferred method for a real
life application. Lastly, the results from training with generated data suggests
that GANs can be used to generate data which generalises the models to improve
the performance. Relating this to the third hypothesis presented in Chapter 1,
the conclusions is that GANs generated EEG data can be used to improve the
performance of DNNs on shorter trials. For longer trials, only using real data is
preferable.

9.2 Future work 83

9.2 Future work

The results show that using generated data combined with real data to train the
neural networks has a noticeable impact on the performance even with moder-
ately realistic data generated from GANs. As there is room for improvement of
GANs to generate more realistic data, it would be interesting to study the results
when more realistic generated data is used for training the neural networks. The
quality of the generated data might also improve if the networks are trained with
real data sampled at 128 Hz instead of 64 Hz. Furthermore, it is of interest to
study the impact of GANs when used on different data sets as DNN for AAD
is known to have high variance in the performance depending on the data sets
used. It may be so that using GANs could lead to a reduction of the variance
in the performance on different data sets. The current implementation uses all
the data from available to create a generator that can in theory create EEG signals
that works for all subjects. However, as the results show, the EEG signals vary
widely from subject to subject (and even block to block) which is why better in-
crease in performance might be had with subject-specific generator. It could also
be interesting if it is possible to create audio related to the generated data which
would increase the applicability of the GANs for AAD or also add the attended
sound for the EEG to perhaps increase the performance. Another interesting
idea worth exploring is to input the signals frequency representation instead of
its time representation to improve the similarity between the real and generated
signals frequency spectra.

As the field of AAD has experienced an increase of interest during the last couple
of years, the state-of-the-art methods changes rapidly meaning that comparative
work, such as this, quickly becomes outdated. It would be interesting to study the
results when using the more complex DNN state-of-the-art methods that is avail-
able or will be available in the future that is specifically designed for AAD. One
area of the current implementation that could be improved is the data chosen for
training and validation. As the amount of informative data is relatively small, the
training data often becomes unbalanced which can be mitigated by scaling cate-
gory weights or more carefully chosen validation data. Neither was done in this
implementation which uses the three following or prior trials of the test trials as
validation trials which is no guarantee that they will be from the same direction.
In future work with implementing EEGNet specifically more experimentation
can be done to optimise the hyperparameters. No deep analysis was done in this
implementation to find the optimal values for the kernel length, minibatch size
or number of epochs. Optimising these should lead to higher accuracy, however
the impact of the increase is unknown.

Appendix

A
Proofs

Here, the proofs are presented for the different topics of the thesis.

A.1 Proof of linearity for activation function

Proposition: Goodfellow et al. claims that if the activation function for a neural
network is linear, then the whole network will remain linear.

Proof : Imagine the stucture of a neural network as h = f 1(x; W, c) and y =
f 2(h; w, b) with the complete model being

f (x; W, c,w, b) = f 2(f 1(x)). (A.1)

If the function f 1 is linear on the form f 1(x) = WT x and similar for the function
f 2 as f 2(h) = hT w. When using this in Equation A.1 the complete model can be
written as

f (x; W, c,w, b) = xT Ww = xT w′

where w′ = Ww, resulting in a linear model.

A.2 Proof of optimality for the generator

Proposition: Goodfellow et al. proposes that the global minimum of the vir-
tual training criterion C(G), where D can be interpreted as maximising the log-

87

88 A Proofs

likelihood for estimating if the data comes from pdata or pg , defined as

C(G) = max
D

V (G, D)

= Ex∼pdata [logD∗G(x)] + Ez∼pz [log(1 − D∗G(G(z)))]

= Ex∼pdata [logD∗G(x)] + Ex∼pg [log(1 − D∗G(x))]

= Ex∼pdata

[
log

pdata(x)
pdata(x) + pg (x)

]
+ Ex∼pg

[
log

pg (x)

pdata(x) + pg (x)

] (A.2)

is achieved if and only if pg = pdata.

Proof : Goodfellow et al. proves the proposal as, for pg = pdata, D
∗
g (x) = 1

2 . Hence,
by inspecting Equation A.2 at D∗g (x) = 1

2 leads to C(G) = log 1
2 + log 1

2 = − log 4.
To see that this is the best possible value of C(G), reached only for pg = pdata,
observe that

Ex∼pdata [− log 2] + Ex∼pg [− log 2] = − log 4

and that by subtracting this expression from C(G) = V (D∗g , G) obtains:

C(G) = − log 4 + KL
(
pdata||

pdata + pg
2

)
+ KL

(
pg ||

pdata + pg
2

)
where KL is the Kullback-Leibler divergence. The previous expressions contains
the Jensen-Shannon divergence between the model’s distribution and the data
generating process:

C(G) = − log 4 + 2JSD(pdata||pg).

Since the Jensen-Shannon divergence between two distributions is always non-
negative, and zero if and only if they are equal, it’s shown that C∗ = − log 4 is
the global minimum of C(G) and that the only solution is pg = pdata, i.e., the
generator perfectly replicating the data distribution.

A.3 Proof of convergence for the generator and
discriminator

Proposition: Goodfellow et al. proposes, if G and D have enough capacity, and at
each step of Algorithm 4, the discriminator is allowed to reach its optimum given
G, and pg is updated as to improve the criterion

Ex∼pdata [logD∗G(x)] + Ex∼pg [log(1 − D∗G(x))]

then pg converges to pdata.

Proof : Goodfellow et al. proves this as, consider V (G, D) = U (pg , D) as a func-
tion of pg as done in the criterion above. Note that U (Pg , D) is convex in pg .
The subderivatives of a supremum of convex functions include the derivative

A.3 Proof of convergence for the generator and discriminator 89

of the function at the point where the macimum is attained. In other words, if
f (x) = supα∈A fα(x) and fα(x) is convex in x for every α, then ∂fβ(x) ∈ ∂f if
β = arg supα∈A fα(x). This is equivalen to computing a gradient descent update
for pg at the optimal D given the corresponding G. supD U (pg , D) is convex in
pg with a unique global optima as proven above, therefore with sufficiently small
updates of pg , pg converges to pdata.

Bibliography

[1] Sahar Akram, Alessandro Presacco, Jonathan Z Simon, Shihab A Shamma,
and Behtash Babadi. Robust decoding of selective auditory attention from
meg in a competing-speaker environment via state-space modeling. Neu-
roImage, 124:906–917, 2016.

[2] Emina Alickovic, Thomas Lunner, Fredrik Gustafsson, and Lennart Ljung.
A tutorial on auditory attention identification methods. Frontiers in neuro-
science, 13(153), 2019.

[3] Emina Alickovic, Thomas Lunner, Dorothea Wendt, Lorenz Fiedler, Hi-
etkamp Renskje, Elaine Hoi Ning Ng, and Carina Graversen. Neural rep-
resentation enhanced for speech and reduced for background noise with a
hearing aid noise reduction scheme during a selective attention task. Fron-
tiers in neuroscience, 14(846), 2020.

[4] Emina Alickovic, Elaine Hoi Ning Ng, Lorenz Fiedler, Sébastien Santurette,
Hamish Innes-brown, and Carina Graversen. Effects of hearing aid noise
reduction on early and late cortical representations of competing talkers in
noise. Frontiers in neuroscience, 15(636060), 2021.

[5] Asger Heidemann Andersen, Sébastien Santurette, Michael Syskind Peder-
sen, Emina Alickovic, Lorenz Fiedler, Jesper Jensen, and Thomas Behrens.
Creating clarity in noisy environments by using deep learning in hearing
aids. In Seminars in Hearing, volume 42, pages 260–281. Thieme Medical
Publishers, Inc., 2021.

[6] Ali Aroudi and Simon Doclo. Cognitive-driven binaural beamforming using
eeg-based auditory attention decoding. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28:862–875, 2020.

[7] Ali Aroudi, Eghart Fischer, Maja Serman, Henning Puder, and Simon Do-
clo. Closed-loop cognitive-driven gain control of competing sounds using
auditory attention decoding. Algorithms, 14(10):287, 2021.

[8] Wouter Biesmans, Neetha Das, Tom Francart, and Alexander Bertrand.
Auditory-inspired speech envelope extraction methods for improved eeg-

91

92 Bibliography

based auditory attention detection in a cocktail party scenario. IEEE Trans
Neural Syst Rehabil Eng., 25(5):402–412, 2017.

[9] Christopher M. Bishop. Pattern recognition and machine learning. Springer
Science+business Media, LLC, first edition, 2006.

[10] Christian Brodbeck, L: Elliot Hong, and Jonathan Z. Simon. Rapid trans-
formation from auditory to linguistic representations of continuous speech.
Current Biology, 28(24):3976–3983, 2018.

[11] Enea Ceolini, Jens Hjortkjær, Daniel D.E. Wong, James O’Sullivan, Vinay S.
Raghavan, Jose Herrero, Ashesh D. Mehta, Shih-Chii Liu, and Nima
Mesgarani. Brain-informed speech separation (biss) for enhancement
of target speaker in multitalker speech perception. NeuroImage, 223:
117282, 2020. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.
2020.117282. URL https://www.sciencedirect.com/science/
article/pii/S1053811920307680.

[12] Edward Cherry. Some experiments on the recognition of speech, with one
and with two ears. Journal of the Acoustical Society of America, 25:975–979,
1953. URL https://psycnet.apa.org/doi/10.1121/1.1907229.
(visited on 2022-02-16).

[13] Gregory Ciccarelli, Michael Nolan, Joseph Perricone, Paul T. Calamia,
Stephanie Haro, James O’sullivan, Nima Mesgarani, Thomas F. Quatier, and
Cristopher J. Smalt. Comparison of two-talker attention decoding from eeg
with nonlinear neural networks and linear methods. Nature, 9, 2019.

[14] Michael J. Crosse, Giovanni M. Di Liberto, Adam Bednar, and Edmund C.
Lalor. The multivariate temporal response function (mtrf) toolbox: A mat-
lab toolbox for relating neural signals to continous stimuli. Frontiers in
neuroscience, 10(00604), 2016.

[15] Alain de Cheveigné, Daniel D.E. Wong, giovanni M. Di Liberto, Jens
Hjortkjær, Malcolm Slaney, and Edmund Lalor. Decoding the auditory brain
with canonical component analysis. NeuroImage, 172:206–216, 2018. URL
https://doi.org/10.1016/j.neuroimage.2018.01.033. (visited
on 2022-03-16).

[16] Tobias de Taillez, Birger Kollmeier, and Bernd T. Meyer. Machine learn-
ing for decoding listeners’ attention from electroencephalography evoked
by continuous speech. European Journal of Neuroscience, 51(5), 2017.

[17] Nai Ding and Jonathan Z Simon. Neural coding of continuous speech in
auditory cortex during monaural and dichotic listening. Journal of neuro-
physiology, 107(1):78–89, 2012.

[18] Bryn Farnsworth. What is eeg (electroencephalography) and how does it
work? URL https://imotions.com/blog/what-is-eeg/. (visited
on 2022-01-24).

https://www.sciencedirect.com/science/article/pii/S1053811920307680
https://www.sciencedirect.com/science/article/pii/S1053811920307680
https://psycnet.apa.org/doi/10.1121/1.1907229
https://doi.org/10.1016/j.neuroimage.2018.01.033
https://imotions.com/blog/what-is-eeg/

Bibliography 93

[19] Simon Geinaert, Servaas Vandecappelle, Emina Alickovic, Alain
de Cheveigné, Edmund Lalor, Bernd T. Meyer, Sina Miran, Tom Fran-
cart, and Alexander Bertrand. Electroencephalography-based auditory
attention decoding toward neurosteered hearing devices. IEEE processing
magazine, 38, 2021.

[20] Elana M. Zion Golumbic, Nai Ding, Stephan Bickel, Peter Lakatos, Cather-
ine A. Schevon, Guy M. McKhann, Robert R. Goodman, Ronald Emer-
son, Ashesh D. Mehta, Jonathan Z. Simon, David Poeppel, and Charles E.
Schroeder. Mechanisms underlying selective neuronal tracking of attended
speech at a “cocktail party”. Neuron, 77(5):980–991, 2013. ISSN 0896-6273.
doi: https://doi.org/10.1016/j.neuron.2012.12.037. URL https://www.
sciencedirect.com/science/article/pii/S0896627313000457.

[21] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Proceedings of the International Conference on Neural
Information Processing Systems, pages 2672–2680, 2014.

[22] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org (visited on 2022-02-
04).

[23] Cong Han, James O’Sullivan, Yi Luo, Jose Herrero, Ashesh D. Mehta, and
Nima Mesgarani. Speaker-independent auditory attention decoding without
access to clean speech sources. Science Advances, 5(5):eaav6134, 2019. doi:
10.1126/sciadv.aav6134. URL https://www.science.org/doi/abs/
10.1126/sciadv.aav6134.

[24] Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. Eeg-gan:
Generative adversarial networks for electroencephalograhic (eeg) brain sig-
nals. URL https://arxiv.org/abs/1806.01875. (visited on 2022-02-
09).

[25] Simon Haykin and K.J Ray Liu. Handbook on Array Processing and Sensor
Networks. John Wiley & Sons, inc, 2009.

[26] Ya-lin Huang, Chia-Ying Hsieh, Jian-Xue Huang, and Chun-Shu Wei.
Exbrainable: An open-source gui for cnn-based eeg decoding and model in-
terpretation. URL https://arxiv.org/abs/2201.04065. (visited on
2022-02-18).

[27] Laurent Valentin Jospin, Wray Bruntine, Farid Boussaid, Hamid Laga, and
Mohammed Bennamoun. Hands-on bayesian neural networks – a tutorial
for deep learning users. URL https://arxiv.org/abs/2007.06823.
(visited on 2022-01-24).

[28] Diedrick P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic opti-
mization. In Proceedings at the 3rd International Conference for Learning
Representations, 2015. URL https://arxiv.org/abs/1412.6980.

https://www.sciencedirect.com/science/article/pii/S0896627313000457
https://www.sciencedirect.com/science/article/pii/S0896627313000457
http://www.deeplearningbook.org
https://www.science.org/doi/abs/10.1126/sciadv.aav6134
https://www.science.org/doi/abs/10.1126/sciadv.aav6134
https://arxiv.org/abs/1806.01875
https://arxiv.org/abs/2201.04065
https://arxiv.org/abs/2007.06823
https://arxiv.org/abs/1412.6980

94 Bibliography

[29] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gor-
don, Chou P Hung, and Brent J Lance. Eegnet: a compact convolutional
neural network for eeg-based brain–computer interfaces. Journal of Neu-
ral Engineering, 15(5):056013, 2018. URL http://stacks.iop.org/
1741-2552/15/i=5/a=056013.

[30] Harry Levitt. Noise reduction in hearing aids: a review. Journal of Rehabil-
itation Research and Development, 38(1):111–121, 2001.

[31] Lennar Ljung and Torkel Glad. Modellbygge och simulering. Studentlitter-
atur AB, second edition, 2003.

[32] Thomas Lunner, Emina Alickovic, Carina Graversen, Elaine Hoi Ning Ng,
Dorothea Wendt, and Gitte Keidser. Three new outcome measures that tap
into cognitive processes required for real-life communication. Ear and hear-
ing, 41(Suppl 1):39S, 2020.

[33] Mathworks. Train generative adversarial network (gan). URL
https://se.mathworks.com/help/deeplearning/ug/
train-generative-adversarial-network.html. (visited on
2022-02-08).

[34] Nima Mesgarani and Edward F Chang. Selective cortical representation of
attended speaker in multi-talker speech perception. Nature, 485(7397):233–
236, 2012.

[35] Jair Montoya-Martínez, Jonas Vanthornhout, Alexander Bertrand, and Tom
Francart. Effect of number and placement of eeg electrodes on measurement
of neural tracking of speech. Plos one, 16(2):e0246769, 2021.

[36] James O’Sullivan, Alan J. Power, Nima Mesgarani, Siddharth Rajaram,
Jogn J. Foxem, Barabara G. Shinn-Cunningham, Malcolm Slaney, Shihab A
Shamma, and Edmund C. Lalor. Attentional selection in a cocktail party
environment can be decoded from single-trial eeg. Cerebral Cortex, 25(7):
1697–1706, 2015.

[37] James O’Sullivan, Zhuo Chen, Jose Herrero, Guy M McKhann, Sameer A
Sheth, Ashesh D Mehta, and Nima Mesgarani. Neural decoding of at-
tentional selection in multi-speaker environments without access to clean
sources. Journal of neural engineering, 14(5):056001, 2017.

[38] Krishna C Puvvada and Jonathan Z Simon. Cortical representations of
speech in a multitalker auditory scene. Journal of Neuroscience, 37(38):
9189–9196, 2017.

[39] Enze Su, Siqi Cai, Longhan Xie, Haizhou Li, and Tanja Schultz. A spatiotem-
poral attention network for decoding auditory spatial attention from eeg.
IEEE TBME, 2022.

http://stacks.iop.org/1741-2552/15/i=5/a=056013
http://stacks.iop.org/1741-2552/15/i=5/a=056013
https://se.mathworks.com/help/deeplearning/ug/train-generative-adversarial-network.html
https://se.mathworks.com/help/deeplearning/ug/train-generative-adversarial-network.html

Bibliography 95

[40] Kent State University. Spss tutorials: Pearson correlation. URL https:
//libguides.library.kent.edu/SPSS/PearsonCorr. (visited on
2022-04-22).

[41] Servaas Vandecappelle, Lucas Deckers, Neetha Das, Amir Hossein Ansari,
Alexander Bertrand, and Tom Francart. Eeg-based detection of the locus of
2 auditory attention with 3 convolutional neural networks. eLife, 10, 2021.

[42] Elana Zion-Golumbic. What is eeg? URL https://www.mada.org.il/
brain/articles/faces-e.pdf. (visited on 2022-03-03).

https://libguides.library.kent.edu/SPSS/PearsonCorr
https://libguides.library.kent.edu/SPSS/PearsonCorr
https://www.mada.org.il/brain/articles/faces-e.pdf
https://www.mada.org.il/brain/articles/faces-e.pdf

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	2 Auditory attention decoding
	2.1 The auditory domain in the brain
	2.2 EEG for measuring the audio stimuli response
	2.3 Auditory attention decoding

	3 Data set
	3.1 Experiment setup
	3.2 Data preprocessing

	4 Linear models
	4.1 Theory
	4.1.1 Infinite impulse response filter
	4.1.2 Finite impulse response filter
	4.1.3 Parameter estimation
	4.1.4 Regularisation
	4.1.5 Multiple inputs

	4.2 Implementation
	4.2.1 Finite impulse response

	5 Artificial neural networks
	5.1 Theory
	5.1.1 Convolutional neural networks
	5.1.2 Categorical cross-entropy
	5.1.3 Adam

	5.2 Implementation

	6 Generative adversarial networks
	6.1 Theory
	6.2 Approach to create more training data
	6.3 Evaluating the quality of the generated data

	7 Results
	7.1 GANs
	7.2 Linear models
	7.2.1 FIR models

	7.3 CNN for locus classification
	7.4 Summary of the results
	7.4.1 Results of GANs
	7.4.2 Results of linear models
	7.4.3 Results of CNN for locus classification

	8 Discussion
	8.1 GANs
	8.2 Linear models
	8.3 DNN for locus classification

	9 Conclusions and future work
	9.1 Conclusions
	9.1.1 GANs
	9.1.2 Linear models
	9.1.3 CNN for locus classification

	9.2 Future work

	A Proofs
	A.1 Proof of linearity for activation function
	A.2 Proof of optimality for the generator
	A.3 Proof of convergence for the generator and discriminator

	Bibliography

