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Abstract

The current standard for remote identification of unmanned aircraft does not contain any
form of security considerations, opening up possibilities for impersonation attacks. The
newly proposed Drone Remote Identification Protocol aims to change this. To fully ensure
that the protocol is secure before real world implementation, we conduct a formal verifica-
tion using the Tamarin Prover tool, with the goal of detecting possible vulnerabilities. The
underlying technologies of the protocol are studied and important aspects are identified.
The main contribution of this thesis is the formal verification of session key secrecy and
message authenticity within the proposed protocol. Certain aspects of protocol security
are still missing from the scripts, but the protocol is deemed secure to the extent of the
model. Many features of both the protocol and Tamarin Prover are presented in detail,
serving as a potential base for the continued work toward a complete formal verification
of the protocol in the future.
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Introduction

As more and more aspects of society implement technology and the internet, cybersecurity is
gaining traction and becoming more important than ever before. Many industries are start-
ing to realize the devastating effects of cyberattacks and are focusing more on cybersecurity,
developing new protocols and protecting their data as best they can. One branch that is lack-
ing in cybersecurity, however, is the aviation industry. Most messages sent between aircraft
and ground controllers are not encrypted at all, and therefore can be intercepted and read
by anyone. The case is even worse for unmanned aircraft (UA) such as drones. When these
drones send messages regarding their position, they can be freely read and since they imple-
ment no form of authentication, anyone can easily spoof these messages and broadcast false
information [4].

Currently, drones use the ASTM Remote ID specification for creating messages containing
information about the drone [4]. However, these messages do not currently provide secure
authentication of the drones. In order to further improve this specification a new protocol, the
Drone Remote Identification Protocol (DRIP) has been proposed in order to provide a secure
way to remotely identify unmanned aircraft.

1.1 Aim

The purpose of this thesis is to implement and formally verify the security of DRIP using
the state-of-the-art verification tool Tamarin Prover. Once DRIP is fully incorporated into
real world usage, the security of standard for Drone Remote Identification will be drastically
improved. Both civilians and officials stand to benefit from being able to capture data sent
by drones and thereby identify them, their positions and their owner. Beyond security, the
protocol would also add a form of verification of the drones, meaning that impersonation
attacks are harder to carry out. The proposed DRIP scheme will be thoroughly tested using
Tamarin Prover, with the purpose of formally verifying the protocols security features and
underlying algorithms. This tool has previously been used to formally verify the encryption
protocols such as TLS 1.3 [13], so using Tamarin to prove the security of DRIP will grant
increased credibility to our results.



1.2. Research questions

There are technical limitations that prevent us from fully testing the proposed DRIP scheme
that may influence the results of our work, the main one being that Tamarin is a relatively
new tool with limited resources and documentation relating to certain DRIP-specific features
and attacks. Additionally, DRIP is as of writing this thesis currently just a proposal and is
in the process of being reviewed by authorities for approval. As such, certain details may
get revised and other features may get added to DRIP that were not taken into consideration
when writing this thesis.

1.2 Research questions

In preparation for the work, the following research questions were formulated;
e How does formal verification of a protocol work?

¢ Is the proposed Drone Remote Identification Protocol secure?

1.3 Approach

First, the proposed DRIP will be studied through RFC’s and previous scientific work. Once
a sufficient understanding of the protocols architecture is achieved, further study will be
put into important details of the protocol such as encryption and signature algorithms. A
thorough understanding of how to model and prove security protocols using Tamarin Prover
is also required. Next, a detailed schema of the important parts of DRIP will be created to use
as reference when modelling DRIP in the Tamarin language. When complete, the security of
the model will be examined to identify possible attacks. If any limitations to this protocol are
found these will be listed and, if possible, addressed.



Background and Related Work

Security protocols exist to protect data being sent over a network from adversaries that want
to gather information or insert fake information on the data stream. Without such protocols,
it would be possible for any entity in a network to read any message being sent between any
other two entities. In case the data sent is sensitive this could have disastrous consequences.
If no security is implemented, it is also easy for adversaries to send messages imitating one
of the participants in a connection. This way, malware can be inserted into the information
stream and cause further harm. Security protocols exist to mitigate the possibility of such
attacks by way of encryption of data, setting up secure sessions between users and creating
means of authentication of the original sender. In this way, compromised messages or totally
fake ones can be identified and either flagged to the user or ignored altogether.

2.1 Classification of attacks

Security protocols are usually designed with two or more roles in mind that communicate
with each other, for example a client and a server. Different roles follow different rules while
establishing a secure connection and during the communication itself. In addition to these set
roles, there are also attackers which do not necessarily have to follow any of the rules. In the
context of security protocols, attackers can be divided into two main groups, passive attackers
and active attackers. Passive attackers operate from the shadows and stealthily intercept and
listen to communication, while active attackers can alter, impersonate, delete and redirect
messages. Further categorization of attacks is possible, such as dividing them into attacks
that try to break the underlying cryptographic properties or attacks that exploit the general
architecture of the protocol [5]. When formally verifying the security of a protocol, the hope
is to detect all types of attack, but one may need different tools to detect different types of
weaknesses.



2.2. Post-compromise security

2.2 Post-compromise security

Post-compromise security (PCS) addresses how a protocol handles previous successful at-
tacks on a participating entity. Given two users running a protocol, what happens if one
has previously had their secrets leaked to an adversary? This concept has been defined and
examined by Cohn-Gordon et al [11]. PCS can be achieved in several different ways when
one or more of the communicators have been compromised. The standard case often consid-
ered, is one where the two communicators” secrets must remain secure but every other long
term key can be compromised. There are however also protocols that achieve PCS through
their perfect forward secrecy, meaning that long term keys can be compromised after the ses-
sion has ended without risk for the session’s contents to be in danger. Even cases where one
agent’s long term key has been revealed to an adversary may implement a form of PCS, if
there has previously been a secure session between the two agents where they agreed upon
a shared value. If this value is used in the new session, the adversary will still not be able to
impersonate the agent. In the context of DRIP, PCS would mean that even if a long term key
of a drone operator has been compromised it could still set up secure sessions in the future
without risking leakage of vital drone information.

2.3 The Dolev-Yao model

This thesis will examine DRIP’s security using Tamarin Prover, which implements symbolic
protocol models also known as Dolev-Yao models. The focus of these models is on two-party
communication protocols and secrecy properties, for example key exchanges. A sufficient un-
derstanding of Dolev-Yao models is a prerequisite for understanding the Tamarin language.
A main point of these models is that the honest parties are stateless. This means that they
do not retain knowledge from previous messages. In every step of the protocol, which are
known as rules in the Tamarin context, the parties only have access to their initial knowledge
and the message they just received in that exact step. The adversary on the other hand, is
able to store values and maintain states. Another key feature of Dolev-Yao models is that
they allow for an arbitrary amount of concurrent protocol executions. Each party can partake
in many different communications with several parties, which allows the adversary to have
more options to exploit the system. This is one of the reasons why the symbolic Dolev-Yao
model gained popularity. When it was developed, similar models mostly focused on a single
execution of the protocol. Examining a single execution can be useful but it does not cover
all bases, as many of the harder to detect vulnerabilities exploit multiple sessions of the same
protocol, for example oracle attacks [29].

The adversary has great power in Dolev-Yao models, and is basically the network itself. The
adversary has access to public information or any message sent over the network, and is able
to receive, forward, block and replay messages. Honest parties are not able to know if the
message they received was from another honest party or if it was in fact received from the
adversary. This places a strong focus on encryption and signing to prove the integrity of the
message. However, in these models the cryptographic properties are assumed to be com-
pletely secure, meaning that encrypted data cannot be decrypted by the adversary without
having the correct decryption key. The adversary has full control of the public channels but
they cannot guess secrets or otherwise break the encryption [14]. As such, this thesis will only
examine the security of the general architecture of DRIP, not the underlying cryptographic al-
gorithms.



2.4. Current state of drone remote identification

2.4 Current state of drone remote identification

Current drone identification implements no form of security protocols, meaning that spoofing
signals sent from UAs is trivial. Previous studies such as a paper by Bunse and Plotz from
2018 [8] show the relative ease that UAs can be attacked with. Attacks range from simple
denial of service attacks to intercepting and actually taking over control of the drone. Iden-
tification broadcasts are equally vulnerable. This needs to be addressed, as there is no value
in drones having an identification broadcast that cannot be trusted. One way of remedying
the issue is by implementing the proposed Drone Remote Identification Protocol (DRIP). The
main idea of DRIP is to introduce an integrity check for the identification broadcasts of the
drones. The messages are broadcast and can then subsequently be picked up by observers
in the area. These observers are then supposed to be able to look up information about the
UA in some sort of database. The full implementation details of this database are not yet
finalized, but there are some suggestions. One proposed way of fulfilling the database re-
quirements is by using the permission-based blockchain framework Hyperledger Iroha [18].
When receiving a broadcast from a drone using DRIP, the observer is ensured that the infor-
mation received from the broadcast is trustworthy and that the drone is who it claims to be.

DRIP is being developed by the Internet Engineering Task Force (IETF). The IETF is an inter-
national organization working toward making the Internet better [2]. This is accomplished
through publishing technical documents for specifying new proposed standards for devel-
opment and management of the Internet. The DRIP drafts are such experimental documents
which propose how to implement Remote Identification of UAs. IETF is an open organiza-
tion, meaning that anyone interested can read into ongoing work and also participate [2].
This means that work carried out by IETF is publicly available on the Internet, resulting in
easy access to necessary documents when working with the concepts discussed by the orga-
nization.

In addition to increasing the security of remote identification of drones, DRIP aims to cre-
ate a globally recognized standard for this purpose. Seeing as different regions today have
different requirements regarding what types of drones must identify themselves as well as
how this identification is carried out, this would make using imported drones easier every-
where. For example, in the European Union, only some sizes of drones are currently required
to adhere to the regulations regarding remote identification [34]. However, as work with the
proposed U-Space in the European Union carries on, more network identification of UAs may
become mandatory [35]. U-space is a proposed type of service, where drones are efficiently
and securely automated to carry out tasks in an airspace. Examples of such tasks could be
delivery of goods, food or healthcare. As such, current DRIP drafts are addressing the re-
quirements made by the European Union in order to fulfill the security and functionality
needs for U-space.



2.5. Related work

2.5 Related work

As the underlying cryptography and architecture of DRIP have not been thoroughly proven
to be fully secure, a formal verification of the protocol is needed to ensure protection against
all different types of attacks. DRIP builds upon and extends another technology called the
Host Identity Protocol (HIP) to deliver its identifier [10]. Previous research has been con-
ducted to formally verify HIP back in 2005 by Tschofenig et al. using the AVISPA verification
tool [33]]. A newer verification using a more modern tool while also implementing DRIP spe-
cific features would be of great benefit for the credibility of DRIP. The newer, state-of-the-art
tool Tamarin Prover is used in this thesis to formally verify DRIP and parts of the underlying
HIP protocol. Tamarin has previously been used by Maurer et al. [24] to verify a station-
to-station cell attachment procedure of another aviation protocol, LDACS, making Tamarin
an obvious choice for the formal verification of DRIP. This thesis implements parts of their
modelling procedure, such as building a clear two-party step-by-step schema of the protocol
to serve as a base for Tamarin rules.

There is a wide variety of attacks and security properties to examine in Tamarin, some of
which were tested on a vehicular group protocol called Ensemble by Boeira and Asplund
[7]. In the paper, the security properties were modeled as lemmata and subsequently proven
secure with the goal of ensuring liveness, secrecy and authenticity of the protocol. By using
Tamarin, they formally verified Ensemble and managed to identify parts of the protocol that
were susceptible to exploitation. Boeira and Asplund ran their lemmata four times with dif-
ferent configurations, mostly to examine the effectiveness and computational resource con-
sumption of the different configurations. The verification of DRIP presented in this thesis
does not employ any of these strategies and does not use helper-lemmata or oracles, as the
DRIP verification is not as computationally demanding.

Our work takes inspiration from Boeira and Asplund’s verification strategy when trying to
implement the different forms of secrecy and authenticity in Tamarin lemmata. Their paper
follows Lowe’s hierarchy for authenticity properties, namely liveness, weak agreement and
non-injective agreement are modeled via lemmata. DRIP functions a little differently than the
vehicular group protocol though, as Ensemble only allows a single session per vehicle. This
is the reason why only non-injective agreement is modeled but not injective agreement. In
the case of DRIP, it would be more interesting to model the stronger constraint in the form of
injective agreement. Successfully modelling injective agreement allows for a more thorough
security verification as DRIP allows entities to establish multiple concurrent sessions.



Theory

This section will introduce and give a theoretic background to both DRIP, Tamarin and their
underlying components, which is necessary to understand the rest of the thesis. High-level
overviews and in-depth details will be given for both technologies, as having knowledge of
both is useful for understanding the protocol model and security proof.

3.1 Host Identity Protocol

When a drone using DRIP broadcasts its ID to nearby observers, it does so in the form of
a Hierarchical Host Identity Tag (HHIT). This is an extension of a regular Host Identity Tag
(HIT) which is a part of the the Host Identity Protocol (HIP). HIP is a key feature to ensure
the security of DRIP, and is used for ensuring integrity and authentication. This is achieved
by generating a Host Identity (HI) from the public/private key-pair of every entity and using
this HI to verify and authenticate messages sent by this entity. The HI is essentially just the
public key of the entity, and the goal of the HI is to directly serve as an identifier of the host
sending a packet. The problem with this however, is that there are many different public key
algorithms that can be used to generate a key-pair, with many of them resulting in public
keys of different length. Having identifiers of different length is not desirable and may lead
to problems. Consequently, HIP solves the length problem by introducing Host Identity Tags
(HITs). HITs are derived directly from the HI by using a hash-function to ensure a uniform
length of 128 bits for all HITs. These tags can be broadcast to observers in a network as a form
of identification, similar to a license plate on a car. There are several key security properties
of HITs that make them desirable to use for DRIP broadcasting: HITs are self-certifying, the
probability for a collision of HITs is extremely low, and HITs are the same length as a standard
IPv6 address and can thus be used in protocols with fields designed for that specific length
[27].



3.1. Host Identity Protocol

3.1.1 HIP Base Exchange

Another key feature of HIP that makes it useful for DRIP is the HIP Base Exchange (BEX).
BEX is used by HIP to create an association and establish a secure connection between two
entities. It is predominantly based on the Diffie-Hellman key exchange with some additional
features to prevent denial of service attacks. BEX has two involved parties, the initiator and
the responder. The exchange has four stages with each stage representing a packet sent be-
tween the two parties. The key points of BEX is shown in Figure[3.1Here, "Key" refers to the
HI public key and "Sign" is a signature using that key. Certain parameters of the sent packets
is not shown in this figure.

11: Trigger exchange, HIT-I

—

Send mostly
precomputed R1
R1: Puzzle, DH, HIT-R, Key, Sign

—

Verify sign, solve
puzzle and compute
DH session key.

Stateless

12: Solution, DH, Key, Sign

—

Check solution, verify
R2: Sign sign and compute

DH session key.

Figure 3.1: HIP Base Exchange message procedure

The first message, 11, contains very limited information as the purpose of this message is just
to start the exchange. It contains the HIT of the initiator as well as the initiators preferred
Diffie-Hellman (DH) parameters. The responder replies with R1, containing a cryptographic
puzzle, the responders preferred DH parameters, their Host Identity Tag and their public key.
This packet is also signed to ensure integrity. The puzzles purpose is to deter denial of service
attacks. In 12, the initiator has to send the solution to this puzzle and only if it is correct will
the responder continue with the exchange. Since R1 contains mostly precomputed informa-
tion that the responder has on hand, the responder does not have to do any real work until
the initiator sends the solution. In this way, the computational burden is at first only on the
initiator and thus it is much harder to perform denial of service attacks [3].



3.2. Drone Remote Identification Protocol

3.2 Drone Remote Identification Protocol

Drone Remote Identification Protocol (DRIP) is a protocol that aims to improve upon the way
drones can be remotely identified by an observer. There are several proposed requirements
in order to provide secure and reliable identification. Unmanned aircraft must have a unique
identifier, similar to license plates on cars. This identifier is broadcast from the drone via
WiFi or Bluetooth in the form of a Host Identity Tag from the Host Identity Protocol. The tag
utilizes hashing in order to create a standard value for identifying hosts. This due to the fact
that the HIT is always 128-bits, meaning that different underlying technologies will always
yield the same tag, as opposed to using a host’s identity public key [10]. DRIP must also
provide verification to ensure that this ID is in a registry to allow lookup, and also specify
in which registry. DRIP needs to support using remote identification (RID) to access key
information about the drone, such as model, size and location. It is of utmost importance that
this identifier is verifiable and trustworthy and that it cannot be spoofed.

Additionally, it should also be possible to access information about the owner of the drone
and whether the operator is trusted or not. There is also a key separation in lookup methods
in that there must be both a public and a private lookup method. The general public should
only be able to access certain public information about the drone, while cognizant authorities
such as law enforcement and military need access to private information about the owner of
the drone [9].

A high-level overview of the structure in DRIP can be seen in Figure

Location

i =i updates ﬁ m

V'S

UA
Operator
Broadcast Location
RID updates I

Lookup RID v Manufacturer

|

v

A

'

v
“ Register UA

Return info

Observer :
about UA Registry

Figure 3.2: An overview of the parties involved in DRIP communication and how they relate
to each other.



3.2. Drone Remote Identification Protocol

3.2.1 DRIP broadcasting

Bluetooth is used in DRIP for its Bluetooth Low Energy (BLE) feature that has been around
since Bluetooth 4 was released. BLE lets a device broadcast a message to other devices in
the area. The size and range of these broadcasts were initially quite small, but with the re-
lease of Bluetooth 5 longer ranges and larger packet sizes were made possible. With the help
of commands found in the Bluetooth Core Specification [17], a device can be configured to
broadcast a certain message with a specified interval. Thus, BLE can be used to broadcast
the drone identification message to all nearby devices. If combined with an application that
receives these messages and inserts them into a database, quick lookup of a drone’s identity
and location can be made in said database.

In WiFi networks, when trying to connect to a network, a device will utilize the WiFi Beacon
functionality, where a router usually sends out a beacon in order to allow devices to connect
to it as well as broadcast messages about received packets. Similarly, the WiFi NaN (Neigh-
borhood Area Network) can be used in order to connect two devices without the need for
an access point between the two. Using the "publish" and "subscribe" functions, one device
can broadcast a service, say identification messages, that the other device will receive, as it
is listening for that service [16]]. This can provide the functionality needed for broadcasting
identification messages from a drone via WiFi. A drone will "publish" its information and
all nearby entities will "subscribe" to this service, thus identifying and tracking the drone re-
motely.

These remote identification technologies are preferred over existing technologies used in
manned aircraft due to the risk of congestion should a large amount of drones send data
over the same technology as planes flying in the airspace [28].

3.2.2 Hierarchical Host Identity Tags

Hierarchial Host Identity Tags (HHITs) are a form of identifier in the form of self-asserting
IPv6 addresses, created to extend the capabilities of HITs as identifiers in Remote Identifica-
tion [1]. A HIT lacks the ability to be registered to a specific Host Identity (HI), and thus,
different HIs might give the same HIT. This means that lookup of the drone identity is not
possible using just a HIT. Including text-based information about the hierarchy in which the
tag is registered, means that no other tag with the exact same ID will be accepted into any

registry, should a hash-collision occur. The HHITs are built up of a number of fields of data.
These fields are;

* AnIANA (IPv6) prefix.
¢ A Hierarchy ID (HID), which can be used for organization of HITs into a domain.
e A HHIT Suite ID, which includes information about Host Identity and hash algorithms.

e An ORCHID hash, which can include extra information, such as the hierarchical infor-
mation necessary for a HHIT.

The HHIT is visualized in figure[3.3]according to [1].

In the context of Remote Identification (RID) of drones, HHITs are often referred to by the
Internet Engineering Task Force as DRIP Entity Tags (DETs). The extra information included
in the DET is contained in a generated Overlay Routable Cryptographic Hash Identifier in
accordance with [21].

10



3.2. Drone Remote Identification Protocol

p bits 28 bits 8 bits 96 - p - 8 bits
IPV6 Prefix HID HHIT ORCHID
Suite ID | Hash

RAA HDA
£ >< —>
14 bits 14 bits

Figure 3.3: A Hierarchical Host Identity Tag as described in [1].

3.2.3 Hierarchy ID

A Hierarchy ID (HID) enables organization of HITs into different domains, and is built up
through a combination of Registered Assigning Authority (RAA) and Hierarchical HIT Do-
main Authority (HDA) [1]. A HDA is an organization that handles the services needed for
UAS registry management. A RAA, on the other hand, is an organization that manages a
registry of HDAs. These two thereby work together to provide the hierarchy needed for
DRIP to implement unique HHITs across different registries, in other words enabling global
uniqueness of drone IDs.

3.2.4 EdDSA authentication

Edwards-curve Digital Signature Algorithm (EADSA) is a signature scheme designed to be
fast and secure. EdDSA utilizes Twisted Edwards curves when generating keys [19]. When
the scheme is used, first the following are chosen;

* A finite field F over an odd prime power p

* An elliptic curve E over F, where the group E(F) of F-rational points has the order
#E(F) = 2°l, where [ is a large prime and 2° is the cofactor.

* A base-point B € E(F) with order !
e A hash function H with an output of 2b-bits, where 2!=1 > p

A private key k in EdDSA is a randomly chosen b-bit string. The public key for k is noted as
A = s- B, where s is the b least significant bits of H(k) as an integer. This means that A is a
curve point of E(F) encoded in b bits [19].

EdDSA’s role in DRIP is to create an extended version of HIT’s Suite ID for HHITs, where the
Suite ID is updated from 4 bits to 8 bits. These Suite IDs specify the Host Identity as well as
the hash algorithm used for generating keys [1].
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3.3. Tamarin Prover

3.3 Tamarin Prover

Tamarin Prover is a tool used for analysing and modeling security protocol using multiset
rewriting rules. Tamarin can automatically detect weaknesses and possible attacks on the
input, which is a security protocol model made up of rules and lemmata describing the pro-
tocol’s desired properties. If Tamarin detects an attack that would violate the rules of the
protocol, a counterexample will be generated showing the exact order of steps taken in the
form of an attack graph. If no attacks are detected by any combination of parallel actions and
instances, Tamarin can also construct a mathematical proof showing that the protocol fulfills
the specified properties [32]]. Previously, Tamarin has been highly successful and has been
used to verify the Transport Layer Security (TLS) protocol, where vulnerabilities were found
and subsequently handled [13].

3.3.1 Modeling a protocol

There are three key components to model a protocol in Tamarin. These components are terms,
facts and multiset-rewrite rules. A term is a message that is sent between two roles, such as
between a client and a server. Messages sent can contain constants, variables, or a mix of the
two. The final line in figure [3.4]is a term containing the client_hello -message and the public
key. Facts can be used to describe what internal states different roles are in, to serve as sort
of a checkpoint. There are also a few built-in facts in Tamarin, with the Out() fact being used
in the example below. Finally, a multiset-rewrite rule describes a transition from one state
to another of a protocol. For the purposes of this paper, whenever rules are mentioned in a
Tamarin context, it is always multiset-rewrite rules. Modeling a protocol is typically done
by specifying different rules for the protocol. The rules represent the actions the participants
take, what information they have, what they transmit and what they receive. These rules
specify certain parts of the protocol, such as how public and private keys are generated or
describing the handshake process between a client and a server. The rules are defined using
different states, showing exactly what messages will be sent over the network, as well as
what information the adversary has access to [31]. An example of a rule for a client initiating
a handshake with a server can be seen in figure

client hello
! ($client, clientltk, clientpk), ! ($server,
serverltk, serverpk)

Out(< , $client, $server, clientpk>)

Figure 3.4: Client Hello rule in Tamarin language

Rules are declared in the form of a left hand side and a right hand side with an arrow between
them. These two sides represent two different states of the protocol, with the left hand side
describing the situation before the rule is executed, and the right hand side showing the state
after execution. Information sent out to, and received from the network is modeled using the
out () and In () facts respectively. Any information sent out over the network at any time
using the out () fact will be treated by Tamarin as information known by the adversary.

In the example above we start with two identities, which can be seen as data structures having
aname, a long-term key and a public key. The exclamation marks before the identities signify
that these entities are persistent, meaning that they do not disappear after executing the rule
[26]. The client and server will of course still exist after initiating a handshake, hence we
prefix it with an exclamation mark. Any facts that are not in the right hand side or marked as
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3.3. Tamarin Prover

persistent will otherwise not exist after executing the rule. After execution, a hello-message
has been sent out to the network from the client to the server. For a full picture, one must also
write rules for generating identities and for the server receiving the hello-message. Important
to note is that as previously mentioned, these are multiset rules. In a multiset, elements are
non unique and several instances of the same element can exist more than once, meaning
that Tamarin can run these rules as many times as it wants, in any order that it wants with
the purpose of finding a security breach [30].

3.3.2 Security properties

The properties of the security protocol that one wants to evaluate can be expressed using
lemmata. This essentially means that one must formally describe each security feature of
the protocol in smaller chunks, similar to the rules mentioned in the previous section. The
difference between rules and lemmata is that rules describe how the protocol works, while
lemmata are the security goals one wants to examine if they hold using the rules. For exam-
ple, one might have a protocol that guarantees the secrecy of the clients long-term key when
connecting to a server. One can then write a lemma that specifies that there cannot exist a
trace where a client has set up a connection with a server, and the adversary has learned the
long-term key of the client unless it has access to the server.

For instance, the example lemma described above may be modeled as in figure

client_ltk_secrecy

not(Ex S 1tk #i #j.
(s, ltk) i & K(1tk) i
& not(Ex #m (S) @m)
)

Figure 3.5: Long term key secrecy lemma in Tamarin language

While this may look abstract at first glance, it can be broken down into more understandable
text. The whole lemma is encapsulated by the not () function to which the input cannot be
true. In this case, the input states that there exists a session S between a server and a client
with long-term key Itk. The long-term key is used by the client for the session. The adversary
is globally modeled in Tamarin by a set of multiset rewriting rules. In practice, the knowl-
edge of the adversary is represented by the K() action fact. Here it is stated that the adversary
knows the long-term key. Finally, it is stated that a long-term key reveal has not occurred
on the session S. The not() function which encapsulates the whole lemma negates the whole
input and says it cannot be true. In essence, it is stated that it cannot be that a session ex-
ists between a client and a server, such that the adversary knows the clients long-term key
without it already having been revealed. Temporal variables i, j, and m are also declared.
These represent time points for when actions occur. Temporal variables are a necessary part
of setting up lemmata, specifying if actions take place at the exact same time or if they occur
separately. It is also possible to order temporal variables, stating that a certain action must
always happen before another [32].

3.3.3 Proofs in Tamarin

Finally, after modeling the security protocol using rules and specifying what security prop-
erties one wants to test using lemmata, Tamarin can start trying to prove or disprove the
given lemmata. The two main types of lemmata that exist are all-traces lemmata and
exists-trace. The difference between these two is that al1-traces is proven to be true
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if the examined property hold for all traces while exists-trace is true if there exists just a
single trace that fulfills the lemma. Tamarin proves lemmata via constraint solving. There are
two main methods of proving lemmata that one can use, there is the option of manually guid-
ing Tamarin in what to do next or one can use the auto-prove feature. Tamarin’s auto-prove
automatically chooses the next fact to examine using preconfigured based on heuristic meth-
ods and equational reasoning.[32] If this does not succeed or if one has a certain trace they
want to examine for a exists-trace lemma, manual proofs can be an effective option. As-
suming everything is set up correctly, Tamarin will either give a proof that the property holds,
or give a specific counterexample that violates the property [15].

Tamarin also has a graphical interface that can be accessed via a locally hosted web server.
There, one can view the proofs and attack-graphs, as well as additional options to alter the
heuristics used.

3.4 Protocol security

Security of a protocol can be defined in multiple ways depending on the context. When dis-
cussing the security of an Internet protocol, it is most often defined as no adversary being able
to receive secret messages or inject false messages. This can be achieved in multiple ways, for
example by ensuring privacy of the cryptographic keys used for encryption of messages sent
between communicating users. By ensuring the data sent is safe, several different types of at-
tacks on the protocol can be mitigated and it can as such be classified as "secure" in the aspect
of those attacks. G. Lowe presents several different forms of authentication, meaning that
all messages are verified to come from the correct sender without being tampered with [22].
One example of such authentication forms is aliveness, which means that if a client A has run
the protocol with a client B, then B must have run the protocol at some point. This authenti-
cation guarantees that random clients can not be impersonated by an adversary, essentially
meaning that a random identity can not be generated to trick clients. Further authentication
is provided by agreement. Agreement can cover several different cases and protect against
different types of attacks. For example, weak agreement is an improvement upon aliveness
where every time an initiator A runs a protocol with a responder B, the responder has at some
point also run the protocol with A. This type of agreement does not necessarily mean that the
two participants have had the same roles in both runs of the protocol. Authenticating that
the runs of the protocol are in fact in the same session is called injective agreement. There is
also non-injective agreement, where the roles are correctly corresponding but the runs may
not have occurred in the same session.
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Method

To gain an understanding of the work, the proposed version of DRIP was studied through
RFC’s and previous related works, such as the report written in the fall of 2021 by Suleman
Khan et al [20]. In order to properly write a Tamarin model for the proposed scheme, a deeper
understanding of both DRIP and Tamarin was required. The Tamarin Prover manual [32]
proved to be helpful for understanding the basics of the tool, however specific instructions
for implementing certain features not discussed in the manual were harder to find. Previous
Tamarin work in the form of a formal verification of a cell attachment in 2021 by Méruer et al.
[24] included some information that proved crucial in understanding how to model certain
features in the Tamarin language.

4.1 Setting up Tamarin Prover

A lot of preparations were required for setting up Tamarin Prover on Windows 10 . Various
different programs such as Windows Subsystem for Linux, Git Bash and Windows Power-
shell had to be installed. With the help of these programs, a virtual environment could be set
up, where Homebrew, a packet management application, was installed. Using Homebrew,
Tamarin Prover could be installed and set up in the virtual environment. From this environ-
ment test scripts for Tamarin can be run to formally verify the security protocols written in
them. In order to write these scripts, Sublime Text 3 and Sublime Merge were also installed
as an IDE and as a version control handler, respectively.

4.2 Modelling DRIP in Tamarin

Before translating DRIP into the Tamarin language, a clear step-by-step schema of the DRIP
authentication process had to be created. The schema details exactly what is done and how
it is done when an observer initiates a connection with a broadcasting drone. This method of
constructing a clear schema to base our rules and lemmata off of has been used in previous
formal verification work using Tamarin, such as the previously mentioned work of verifying
an attachment procedure of LDACS in 2021 by Maurer et al [24]. To construct such a schema,
the latest DRIP drafts along with various other IETF meeting documentation were carefully
studied.
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To ease the process of formulating rules, the previously mentioned schedule was split up into
two parts. One part being the HIP BEX schema seen previously in figure [3.1|and the other
one detailing the registration process for a new UA. The schema serve as step-by-step guides
of how DRIP is supposed to work. Having extremely detailed instructions to derive the rules
from proved vital for the modelling process. As honest agents in the Dolev-Yao model do not
retain information between rules, the slightest error or gap in knowledge could essentially
invalidate the whole model. The two schemas do not cover every part of DRIP, but they were
deemed as the most necessary parts and they served as a guide through modeling the more
complicated parts of DRIP. Not every single DRIP feature could be modeled in Tamarin, and
other parts were straightforward enough to understand that a detailed schema would have
been unnecessary. The schema detailing the UA registration process can be seen in figure[4.1}

——

) (
c:ﬁ (6) Registry adds ‘ ‘

HHIT etc. to DNS.
QW2 UA

DNS \

(8) Send AC.
Send UA's keypair.

(7) Receive CR from registry.
(5) Send UA's HHIT etc. Receive AC from registry.
Send CR.

Send AC.

(3) Receive CO and CUA. (2) Send CO and CUA.

(1) Generate HI keypair for himself.
m Generate certificate for himself (CO).
Generate HI keypair for UA.

Generate certificate for UA (CUA).
(4) Validate CO and CUA. “

Add UA to registry. Operator
Create proof of registration (CR).
Create authentication component (AC).

Registry

Figure 4.1: A detailed view of the registration process of a new UA to the registry.

First off, the owner/pilot of a drone needs to generate HI, HIT and private/public keys both
for itself and the UA. From these keys, a certificate for both the operator and the UA are
created. These certificates are then sent to a registry, where they are verified and subsequently
stored for future lookup. The registry then creates a new certificate which it sends back to the
operator, who then gives it to the unmanned aircraft system (UAS). The DET is at this point
also registered to DNS to allow for lookups by observers receiving broadcasts. Lastly, the DET
is broadcast from the UA to observers in the airspace. Said observers can also use the received
DET to look up information about the drone in either a public or a private registry. To start,
certificate generation at the operator and subsequent registration at a registry using HIP Base
Exchange (BEX) was attempted. However, there are not many resources for certificates in
Tamarin, resulting in the model registering the drones via the underlying public key used to
generate the certificates instead.

Several more rules were written in to model the BEX in Tamarin. The safety of registration of
a new drone was a big worry specified in the DRIP drafts, namely the leakage of a drone’s
private key from the manufacturer. This would mean that a drone could be imitated by
someone else and that they could use the drone’s private key to encrypt DRIP broadcasts
and pose as the registered authentic drone. When modeling BEX as a Tamarin script, four
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rules were established. Two of these rules, called Initatior 1 and Initator 2, describe what
the initiator does and what it sends to the responder. The other two rules, Responder 1 and
Responder 2, describe the actions taken by the responder. Furthermore, a lemma was written
to verify secrecy of session keys, this was done to specify a case where someone had obtained
the session keys and could as such pose a threat to secure communications. Such an attack
could lead to leakage of a UAs private key, which would in turn enable impersonation attacks
on the UA.

Next, rules to specify the broadcasting of a DET were written. The rules let a drone broadcast
its DET and observers receive the tag. Another rule was written to register a drone’s keypair
to a registry over a secure connection established via BEX. Since the tag is encrypted with
the drone’s private key, the observer would then receive the public key of the drone from the
registry and subsequently be able to decrypt the identification message. To ensure that this
worked, a lemma was created to test that an observer could successfully look up a drone’s
identity in this way and that no other entity could have received the drone’s private key and
thus impersonate it.

4.3 Formal verification

In order to formally verify the Tamarin scripts, one also has to write lemmata for Tamarin to
test. The lemmata can represent certain types of attacks such as man-in-the-middle (MITM)
attacks or desirable security properties of the protocol such as making sure that a shared se-
cret is not leaked. The written lemmata focused on proving two main security properties,
session key secrecy and DET authenticity. Proving these two properties also indirectly ad-
dresses MITM attacks and impersonation attacks via leakage of a drones private key. One
more lemma was written which tested the executability of the rules. It is of utmost impor-
tance that all rules are run correctly. Upon execution, Tamarin collects all rules and turns
them into a set of states. The execution traces that Tamarin generates are transition relations
between these states. If one or more of the rules are malformed, the underlying algorithms
and logic of Tamarin may choose to skip over some states while assessing the models se-
curity properties. The risk of this occurring is especially high when using using Tamarin’s
automatic proving mode, which is what was used to verify DRIP. The Tamarin team speci-
fices ways to counteract this problem though, with one such method being the construction
of an additional lemma to ensure that all rules are run to completion [12]. This method has
previously been used to great success in the previously mentioned paper which formally ver-
ified LDACS in Tamarin [24] and is also the method used in this thesis.

An attempt was also made to write lemmata specifying the different forms of authentication
as described by G. Lowe in [22]. This however proved difficult, and was ultimately non-
successful. The different forms of authentication described by Lowe were attempted as a
means to not only verify protection against some attacks, but also verify the absence of whole
classes of attacks on the protocol. Aliveness, weak agreement and injective agreement were
all attempted but could not be proven to be true.

After all rules and lemmata were written, the model was run through the Tamarin Prover
application by issuing terminal commands entered into the Ubuntu kernel hosted by Win-
dows subsystem for Linux. This opens a local web server, where the user has the option of
what lemmata should be attempted to prove. Using the auto-prove feature allows Tamarin
to run the code and look for vulnerabilities in the architecture. If one is found, this results
in Tamarin marking the code as red as well as showing a graph of where the weakness oc-
curred. If a weakness is found, the lemma in question is classified as "false". If no weaknesses
are found, the lemma is classified as "true" and the code is colored green instead. In such
cases, a graph will still be generated but it will instead only show the flow between states of
the model.
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Results

The results presented in this section showcase the Tamarin scripts written, in the form of rules
and lemmata for testing. The output from Tamarin Prover is also presented to graphically
show what the tool gives when running a proof.

5.1 Tamarin model of the Drone Remote Identification Protocol

The protocol is modeled using Tamarin’s symbolic rule-based language. Rules can produce
facts and events based on the inputs and outputs. The events can later be used for examining
the security via lemmata. As per the Dolev-Yao model, Tamarin can instantiate the state-facts
infinitely many times, creating a situation with an arbitrary number of drones, receivers and
registries. The first rule models the public key infrastructure and allows entities to be gener-

ated. See figure[5.1}

create_identities
pubkey = ~privkey

Fr(~privkey) ! ($A, ~privkey, pubkey), Out{pubkey)

Figure 5.1: Rule for creating identities and generating keypairs

At this point, the rules are divided into two parts. The first part focuses on establishing a
secure connection with a HIP Base Exchange while the second part focuses on implementing
DRIP-specific features such as broadcasting a remote ID, receiving a HHIT and communicat-
ing with registries. Only the DRIP specific sections of the Tamarin model will be discussed
here. The HIP BEX, while important to the functionality of DRIP, has been formally verified
before [33]. The full source code for the Tamarin model is accessible on GitHub

The first DRIP specific rule, shown in figure represents an unmanned aircraft broadcast-
ing its entity tag in the form of a HHIT. We first generate a fresh ID and hash it to form our

1h’ttps: / / github.com/Jakaho/DRIP-tamarin, accessed 26-04-2022
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HIT. To convert the HIT into a HHIT we asymmetrically encrypt it using the UA’s private key.
The hashed and encrypted ID is then broadcast over the network for everyone, including the
adversary, to see.

UA broadcast DET
hit = h(~id)
hhit = agenc(hit, privkeyDrone)

Fr(~id), Identity($Drone, privkeyDrone, pubkeyDrone),

Identity($0bserver, privkeyObs, pubkeyObs)
CreateUA($Drone, ~id)

Out(< , hhit>)

Figure 5.2: Rule for generation and transmission of HHITs from drones.

The next logical continuation would be an observer receiving the broadcast HHIT, which
must also be written in the form of a rule. When an observer receives a HHIT they cannot
immediately gain any relevant knowledge on their own and must instead contact the reg-
istry to learn the drones public key. Only once the observer possesses both the drone’s HHIT
and public key can they decrypt the HHIT using the public key. See figure Since the
decryption process relies upon a registry sending the drones public key, this must also be
represented in a rule, see figure @

observer_receive_ HHIT
I Tdentity($0bserver, privkeyObs, pubkeyObs), Tn(< , hhit>)

Observerlookup($0bserver, hhit),
Out(hhit),
In(pubkeyDrone)

DecryptHHIT($0bserver, privkeyObs, pubkeyObs, adec(hhit, pubkeyDrone))

Figure 5.3: Rule representing an observer receiving the broadcast HHIT and decrypting it
using the drones public key acquired via a registry.

registry send pubkey
| Tdentity($Registry, privkeyDrone, pubkeyDrone), In(hhit)

RegistrySendPubkey($Registry, privkeyDrone, pubkeyDrone, hhit)

Out ( pubkeyDrone)

Figure 5.4: Rule for instantiating the registry and relaying a drones public key after receiving
its HHIT.

Finally, there must also be a rule for the first time registration of a new drone to the registry.
This is arguably the most dangerous part of the protocol that is prone to vulnerabilities, as the
drones actual private key must be broadcast. Before the private key can be broadcast from
the UA, there must exist an established secure connection between the UA and the registry.
In terms of Tamarin rules, this is done by using previous session facts from the HIP base
exchange. The modeled registration rule can be seen in figure
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register_drone

encpriv = aenc(privkeyDrone, sesskey2)

y($Drone, privkeyDrone, pubkeyDrone),
ssion($Registry, $Drone, sesskeyl), Session($Drone, $Registry, sesskey2)

RegisterDrone($Registry, $Drone, privkeyDrone, pubkeyDrone)

Out(<encpriv, pubkeyDrone:>)

Figure 5.5: Rule for registering a drone to a registry in the form of its keypair.

5.2 Tamarin Lemmata

To prove that the protocol modeled with rules is secure, there must also be lemmata to test
desired security properties. The first lemma ensures that the code can actually be run all
the way through without skipping any steps. This is essentially an insurance that boosts the
credibility of the other two lemmata, meaning that security is not only achieved through im-
possible scenarios. See figure

executable

skey2 D id Re pkD pD hhit #i #j #k #1 #m.
i ié&
j &

m

Figure 5.6: Lemma for ensuring that the code can be run.

The first real property to examine is session key secrecy. This ensures that the session keys
cannot be learned by anyone else when two parties establish a connection during the HIP
Base exchange. In cryptography, secrecy is achieved when an adversary’s knowledge of
the contents of a message is the same both before and after inspecting the message. Simply
put, it is encrypted well enough that the adversary cannot learn anything from the message
even if it gets intercepted. There are several types of secrecy, such as computational secrecy
which is achieved if the adversary cannot learn anything from the message within a practical
time even with the fastest computer on earth. Perfect secrecy is when the adversary cannot
learn anything even with infinite time and computing power [23]. Since Tamarin is based on
Dolev-Yao models, the degree of secrecy is not examined further as any type of encryption
is assumed to be unbreakable. Instead, secrecy is achieved if the message is encrypted at all
and the adversary cannot gain access to the correct decryption key. If secrecy is not achieved,
several attacks become possible, for example MITM attacks. The lemma that guarantees the
secrecy of session keys can be seen in figure
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session_key secrecy

ALL Initiator Responder sesskeyl sesskey2 #i #7.
(
reSession(Initiator, Responder, sesskeyl) ié
Res reSession(Responder, Initiator, sesskey2) j &
J
not (Initiator = Responder)
& not (Ex C #r . PrivkeyReveal (C) r)

==> not(Ex #kl #k2 . K(sesskeyl) kl & K(sesskey2) k2)

Figure 5.7: Lemma for ensuring session key secrecy.

Lastly, a lemma for verifying the integrity of Drip Entity Tags is created. Maintaining the
integrity proves that if a DET broadcast is received by an observer, they can be sure that the
information received is in fact correct. The protocol is structured in a way where all lookups
are done without the observer knowing the drone’s public key must therefore contact the
registry to learn it after receiving a DET broadcast. Being able to impersonate a registered
drone can be done gaining access to the drone’s private key, and this lemma aims to prove
that the private key cannot be leaked from the broadcasts. The lemma uses facts from almost
every rule, and tests basically the whole DRIP process from creation and registration of UA’s
to the broadcast and observation of HHITs. See figure

DET_authenticity

ALL Registry sesskeyl Drone privkeyDrone pubkeyDrone id hhit sesskey?2
Observer #i #j #k #1 #m #n.

(

1&

up(Observer, hhit) m &
key(Registry, privkeyDrone, pubkeyDrone, hhit) n &
ivkeyReveal (C) r)

'

o . K(privkeyDrone) o)

Figure 5.8: Lemma for ensuring that drones are not impersonated.

Together, these three lemmata allow Tamarin to examine the specified protocol in search of
traces where execution of the code is not possible, where session key secrecy is not estab-
lished or if drone lookup can result in impersonation attacks. When compiling the code with
Tamarin, the user must choose what lemma to prove, one at a time. The user also has the
option of manual or automatic proving. Tamarin Prover version 1.6.1 in the automatic prov-
ing mode is used for the evaluation of these three lemmata. All lemma results and constraint
systems presented in this section are from the same compilation, ensuring that all lemmata
are true simultaneously.
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An overview of the results can be seen in table The scope column in the table specifies
whether the given property holds for at least one trace or for all traces. The Tamarin manual
recommends that one lemma should be proven in exists-trace mode before other security
properties are tested using all-traces, to make sure everything runs smoothly [32]. This is the
role of the "executable"-lemma. All three lemmata were proven to hold, meaning that the
symbolic model of DRIP also hold under the tested properties.

Table 5.1: Results of the Tamarin proof.

| Lemma | Scope | Result |

Executable Exists-trace | Verified
Session_key_secrecy | All-traces Verified
DET_authenticity All-traces | Verified

5.3 Symbolic security proof

When running the code with Tamarin Prover in the automatic proving mode, a constraint
system is generated as output. The constraint system visualizes how the protocol flows from
state to state and highlights any potential weaknesses in the system. The constraint system
showing the HIP Base Exchange can be seen in figure The constraint system showing
the broadcasting of DETs is found in figure This is the result of what was generated
by Tamarin when proving all three lemmata. As Tamarin was not able to generate a specific
counterexample of when one of these lemmata do not hold, this can instead serve as a sym-
bolic proof showing that the modeled protocol is secure. In the constraint system we can
see what information is accessible from where, and deduce where the adversary may try to
attack. The three lemmata used in this proof mostly focused on making sure that the private
keys are not leaked. If Tamarin had managed to find a case where the adversary managed to
gain access to a private key, parts of the constraint system would be colored red illustrating
how the key was obtained.

The constraint system for the HIP Base exchange in figure[5.9]shows the process of an initiator
setting up a secure connection to a responder by exchanging key information and negotiat-
ing session keys. There was also a similar constraint system generated that represents the
responder counterpart of the HIP base exchange, but no figure is included as it is very similar
to figure The attempts of the adversary are also visible in the system, where the adver-
sary’s knowledge is represented by the K-fact in the figure below. The adversary accesses the
initiator’s public key but is not able to sign the message as he does not know the initiator’s
private key and cannot gain access to it. As the responder is not able to validate the signature
sent by the adversary, the exchange between them is halted.
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KU(x ) @ #vk.17

IKU( Initiatorl ) @ #vk22

C’_': #vlk o c_sign[IKU( signi<'responder_hello', $Responder, Initiator 1, pkix)=, x) 1] _______________"_'_'D

Fri ~initprivkey )

#vr: create_identities[]

lldentity( $Initiator, ~initprivkey, 'g' ™ ~initprivkey ) Outl 'g' ™ ~initprivkey )

v

: o A In{ signi{=<='responder hello', $Responder,
lldentity( $initiator, ~initprivieey, =
'g'~~initprivicey Initiator.l, phkixf=,

%)
! )

#i: initiator_2[Eql true, true ),
InitiatorCreateSession( $Initiator, $Responderl, pkix)~ ~initprivicey 1]

Outl sign(<'initiator_helle', $initiator, $Responderd,
'g' " ~initprivikeey=,
initprivkey.1)

Session( $Initiator,
$Responder, pkix) ™ ~initprivkey

Figure 5.9: Tamarin Constraint System for HIP Base Exchange

The constraint system for DET broadcasting (figure shows how two identities are cre-
ated (the two green boxes). They look the same with the exception of the names, as these
boxes represent two instances of the same rule. These two identities are then used for broad-
casting a DET (shown in the yellow box). Which identity relates to drone or observer is shown
by the two gray arrows pointing from each identity to their counterpart in the DET broadcast
rule. As the broadcast of a drone’s DET does not open up possibilities for any attacks no
adversary attempts to access information are shown.

In the constraint system generated by Tamarin, there was also a third graph which repre-
sents the registration of drones and the subsequent verification of DETs. This is not included
here, as the graph looked very similar to figure 5.9since the HIP Base Exchange is utilized in
the registration rule in order to guarantee a secure connection when sending a drone’s pri-
vate/public keypair to a registry.
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Fri ~privkey ) Fr{ ~privkey.1 )
#wr2 : create_identities[] #vr.3 : create_jdentities([]
lldentity( $Drone, ~privkey, 'g' ™ ~privkey } | Outl 'g'~ ~privkey ) lldentity( $Observer, ~privkey.1, 'g' ™~ ~privkey.1 ) | Outi 'g' ™ ~privkey.1 )

—

lldentityl $Drone, ~privkey, | !dentityl $Observer, ~privkey.1, D.
Fri ~id ) 'g' "~ ~privkey 'g' " ~privkey.1
) )

#k : UA broadcast DET[CreateUAl $Drone, ~id 1]

Outl ='broadcast’, aenclhi~id), ~privkey)= )

Figure 5.10: Tamarin Constraint System for DET broadcast

While Tamarin’s constraint systems can be interesting, they are mostly useful if a lemma is
disproven, meaning that the security property does not hold for one or more traces. If that
is the case, one can examine the constraint system to get a better idea of how the adversary
managed to exploit the system. A similar strategy has been used previously to detect and
confirm attacks, for instance in 2021 the Tamarin team managed to prove the existence of
a card brand mix-up attack involving MasterCard and Visa credit cards [6]. The attack was
similar to MITM attack and revolved around tricking the payment terminal to bypass the PIN
requirement of MasterCard cards during contactless payment. There was already suspicion
as to how this attacked worked, but by using Tamarin they were able to confirm how the
attack works and suggest proven countermeasures.

If a lemma is proven when compiling the code with Tamarin Prover, the generated constraint
system may look very similar to if it is disproven. If the user is only interested in whether
the security property holds up or not, there are easier ways to tell than by looking at the con-
straint system. For instance, in the Tamarin graphical UI, the entire code of the lemma will be
colored green if it is secure, and red if it is not. The resulting constraint system can be used as
some form of symbolic proof though, to show that the system is secure.
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Discussion

In this section the implications of the results will be analysed and discussed. The results will
also be evaluated in terms of trustworthiness. Furthermore, the method will be assessed and
critiqued. We will also look at the work in a wider, ethical and societal context as well as
present thoughts about future work in the area.

6.1 Results

The results presented in this paper are a start to complete formal verification of the Drone
Remote Identification Protocol. The HIP Base Exchange, which much of the DRIP architec-
ture relies on was tested and proven secure to the extent of the tests that were carried out.
The lemmata were written to protect against leakage of session keys resulting in drone pri-
vate keys being compromised. As these keys are used for encryption of DRIP Entity Tags,
leakage of the private key would allow for these tags to be imitated, meaning that someone
could falsely pose as a drone matching a legitimately registered drone. Through these lem-
mata, the integrity of the DET broadcast is stated to be upheld and thus most attacks where
a bad entity imitates a drone should not be possible. However, this does not address replay
attacks, where authentic messages are replayed in order to confuse an observer as to where
the drone is actually located. Currently, the proposed fix to this problem is a short lifespan of
the DET broadcast. The inclusion of a not-after timestamp set only a couple of minutes after
the current time could make these replay messages trivial to detect. However, implementing
this in Tamarin proved difficult and ultimately no such rules and lemmata were constructed.
Even without a formal verification this should be secure, though, as a simple timestamp check
should not open up the protocol to any new attacks. Furthermore, as long as a drone’s private
key is secure, no meddling in messages should be possible and thus all timestamps included
in replay attack messages will be authentic and accurate.

The rules and lemmata resulting from the work are currently able to be executed from start
to finish securely. However, as Tamarin does not verify the functionality this does not nec-
essarily mean the code is one hundred percent correctly written. It proved hard to find any-
one knowledgeable in both DRIP and Tamarin Prover, as such, proofreading of the Tamarin
scripts was left up to the writers. As no apparent errors were found, the results are valid to
the best of our knowledge. In Tamarin, the underlying cryptographic algorithms of the pro-
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6.2. Method

tocol such as the encryption of the HHIT or the signature algorithm is always assumed to be
true. This implies that the computational soundness of these algorithms cannot be verified in
Tamarin as they are assumed to hold, and serve as a baseline for the purposes of the proof.

The attempted authentication lemmata, based on Lowe’s hierarchy, are not present in this
thesis, but can be found in the authors” GitHub repository ﬂ The result of these lemmata
can be attributed to a multitude of factors. Seeing as the protocol should provide authentica-
tion through BEX, there is likely some form of error in the Tamarin script. What the error is
proved diffucult to identify, seeing as the authors just recently started working with the tool.
Ultimately, these authentication lemmata were left unproven due to a lack of time to identify
whether the error lies in the lemmata or the rules they are based upon.

6.2 Method

Working with this thesis has been rather difficult. Tamarin is a new;, state of the art tool and
as such, there is not much material online detailing how to use it for your own specific needs.
Getting a deeper understanding for both DRIP and Tamarin Prover required much reading,
trial-and-error testing and discussion. Furthermore, while understanding the Tamarin lan-
guage proved do-able, the proofs generated while autoproving include a lot of information
about every step taken which turned out to be a lot harder to understand. An even deeper
understanding of Tamarin Prover would have helped immensely, especially in the case of at-
tempting to write new functions and equations in order to implement new algorithms. How-
ever, given the conditions in terms of former knowledge and available material, we feel that
we have found relevant information which helped us reach a sufficient understanding of both
DRIP and Tamarin Prover for the purpose of searching for weaknesses in the current drafts.
When running into problems, seeing as we had no one experienced in Tamarin to consult, the
only option was to find a suitable solution ourselves. For this reason, some compromises had
to be made. One such compromise was the exclusion of the HIP Base Exchange puzzle, which
exists to mitigate denial of service attacks. This was due to the fact that no suitable way to
include the puzzle generation algorithms was found. Completely stopping denial of service
attacks is also generally not possible and as such Tamarin is not equipped for testing against
these types of vulnerabilities. Furthermore, instead of using EADSA for signing, we utilized
the existing signature functionality in Tamarin as implementing new algorithms proved dif-
ficult and was deemed unnecessary. Since the important part of EADSA is to provide speed
and security, a slower but just as secure signature algorithm should provide the same result
in formal verification. Another important detail is that the lemmata were tested separately at
first and then all together. This was done in order to rule out any edge-cases where secure
procedures carried out in one would result in vulnerabilities in another. When running the
Tamarin script, only the security is considered and not the effectiveness of the proof as done
by Boeira and Asplund [7]. We do not measure execution time, memory usage or other re-
source consumption when conducting the proofs. This due to the fact that the DRIP model
is relatively small scale and therefore the time it takes to run is inconsequential. While the
Tamarin proof created in this thesis might be significantly smaller and test for less properties
than the model created by Boeira and Asplund, it does still remain the size of other compara-
ble Tamarin verification models, such as the one created for LDACS by Méurer et al [24].

When searching for information about DRIP and Tamarin, some scientific papers were found.
Most information that exists about DRIP is in form of internet drafts published by the Inter-
net Engineering Task Force and papers written at Link&ping University. These internet drafts
are often updated, and as such might be made redundant after some time has passed. There-
fore, only the latest drafts were studied, as well as recent papers relating to features still
present in current drafts. Regarding Tamarin, the manual proved to be a great way to learn.

1https: //github.com/Jakaho/DRIP-tamarin, accessed 12-05-2022
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6.3. The work in a wider context

Several academic papers utilizing Tamarin Prover are listed on their website, however these
did not provide much useful information for the purposes of this thesis. However, GitHub
repositories containing Tamarin scripts, specifically from Maurer et al. [24] [25]], provided in-
formation about how to write certain features in the Tamarin language. YouTube tutorials by
independent creators were also of great help when initially trying to understand the syntax
of Tamarin language and how to generate keys for later usage.

6.3 The work in a wider context

Proving security of DRIP means that if the protocol becomes widely used in the future, con-
cerns about security and integrity can be mitigated. Drone identification has received some
mixed reactions, as drone pilots might not want to be "monitored” and feel that this is an
intrusion of their privacy. When information about the pilot is also registered to the drone,
even more questions about integrity might be raised. Others feel like registering a drone and
its owner is not so different from registering a car with a license plate to an owner. Verified
security of DRIP would mean that the concerns of personal information leaking from the reg-
istries could be addressed, as only authorized personnel should be able to see all information
contained about a person. It would also mean a more secure and safe society, as no one should
be able to frame someone else’s drone for flying in a restricted area or over private property.
If a drone constantly broadcast its position and owner, they would also not be able to be used
for spying on neighbors without them knowing about it. Once again, this would result in
people feeling safer when seeing a drone fly by. The question, however, is if all drones would
need to abide by the protocol regardless of who the owner is. If government owned drones
would require less information than personal ones, this could instill a debate about personal
integrity versus national security.

6.4 Future work

The work presented in this thesis aims to start the process of formally verifying the safety of
DRIP. While the presented tests do not completely cover all possible attacks on a network,
they do however address the most detrimental ones. This being the leakage of a UA’s private
key to an adversary and compromise of session keys. Further work needs to be carried out
in the area, and as such the tests and code created during our work could be of use when
implementing more parts of DRIP or even new parts introduced in future drafts. Seeing as
a lot of DRIP features rely on the Host Identity Protocol, the HIP Base Exchange created for
the purposes of this paper might be of value in order to ease the process for future Tamarin
testing. For future work in the field it is important to implement more features of DRIP and if
possible, the specific signature algorithms such as EADSA. More testing of additional scenar-
ios would also be of relevance, to cover all possible types of attacks on the protocol. When
writing the test scripts, it would also be beneficial if knowledgeable individuals both about
DRIP and Tamarin Prover were consulted. This would mean that the task force working on
DRIP could verify that the models are correct and the Tamarin experts would make sure that
the code was correctly written.

As previously stated, a complete formal verification of the finished version of DRIP would
give credibility to the protocol and showcase just how much of an improvement upon former
standards DRIP would supply. In order to achieve this, the current issues in the Tamarin
scripts would need to be identified and handled. Further implementation of different types
of authentication should rule out types of attacks not proven secure as of this thesis.
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Conclusion

This thesis set out to improve the trustworthiness of the underlying security structure of
DRIP via a formal verification of the protocol using Tamarin Prover. Formally verifying a
security protocol in the development stages allows for possible vulnerabilities to be detected
and rectified before they can do any actual damage. The HIP Base exchange and key features
of DRIP were modeled, including drone broadcast and an observer receiving the broadcast
and performing a lookup. The security properties examined were session key secrecy and au-
thenticity of the broadcasts. These properties were proven to be true, meaning attacks such as
man-in-the-middle attacks and impersonation attacks via a drones leaked private key should
not be possible. The results indicate that the current proposed version of DRIP is secure to
the extent mentioned above. The results are not entirely conclusive though, in the sense that
not all DRIP functionality was added to the Tamarin model and only a few security prop-
erties were tested. There may also have been slight errors in the Tamarin model due to the
authors’ inexperience with DRIP and Tamarin Prover. Certain parts of DRIP were left out of
the model intentionally due to them not having relevance to the proofs, and some parts could
not be accurately modeled due to the limited resources and libraries in Tamarin. Future work
may include confirming the correctness of our model, while also including more details to it.
Correctly modeling additional parts of DRIP to get a more complete verification of the full
DRIP process could also be useful. Specifically, functionality relating to registries, certificates
and first-time registration of drones are currently lacking and could be added to the model.
Writing lemmata for other types of security properties may also be of interest to extend the
verification further. Possible security properties to examine are injective agreement, recent-
ness, as well as others from Lowe’s taxonomy [22]. Properties related to post-compromise
security could also be relevant [11]. As Tamarin is mostly suited for key exchanges and sim-
ilar processes, it currently has quite limited support for some of parts of DRIP. If further
verification is needed, some of those parts may have to be examined using other tools.
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