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Abstract

Air traffic communication is one of the most vital systems for air traffic management
controllers. It is used every day to allow millions of people to travel safely and efficiently
across the globe. But many of the systems considered industry-standard are used without
any sort of encryption and authentication meaning that they are vulnerable to different
wireless attacks.

In this thesis vulnerabilities within an air traffic management system called ADS-B will
be investigated. The structure and theory behind this system will be described as well as
the reasons why ADS-B is unencrypted. Two attacks will then be implemented and per-
formed in an open-source air traffic management simulator called openScope. ADS-B data
from these attacks will be gathered and combined with actual ADS-B data from genuine
aircrafts. The collected data will be cleaned and used for machine learning purposes where
three different algorithms will be applied to detect attacks.

Based on our findings, where two out of the three machine learning algorithms used
were able to detect 99.99% of the attacks, we propose that machine learning algorithms
should be used to improve ADS-B security. We also think that educating air traffic con-
trollers on how to detect and handle attacks is an important part of the future of air traffic
management.
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1 Introduction

In this section, the reader will be introduced to the subject with a motivation of why the
subject needs to be investigated and the aim of the thesis. The research questions that the
thesis strives to answer will also be presented as well as any encountered delimitations and
related studies in related areas.

1.1 Motivation

Aviation is a rapidly growing industry projected to increase by 4.3% each year for the next 20
years. It is expected that by around the year 2035, 200,000 flights will be expected to land and
take off each day. With the increase in flight traffic, the need for infrastructure to support the
growth is important. There is a need for better, future-proof technology that can handle the
increased flight traffic in a sustainable, secure, and efficient way [22].

Something that is currently being changed to help satisfy the mentioned need is the wire-
less technologies used for communicating and transmitting data between aircraft and Air
Traffic Control (ATC). The future for Air Traffic Management (ATM), mandated by the Eu-
ropean Union and countries like the United States, Australia, India, etc., with countries like
Canada and China soon to follow, is Automatic Dependent Surveillance-Broadcast (ADS-B)
[12]. ADS-B is a surveillance technology that, in real-time, transmits an aircraft’s data, such
as GPS location, altitude, ground speed, and ID, once per second. This data can be received
by ATC and other aircraft, with the proper equipment, almost immediately [4].

According to the Federal Aviation Administration (FAA), moving from radar technology
and ground tracking to satellite tracking using ADS-B, aviation safety and efficiency have
been enhanced [1]. While ADS-B has increased both of these factors, security regarding the
system is somewhat questionable since ADS-B is missing basic security features like encryp-
tion and authentication, meaning that the ADS-B system is vulnerable to several wireless
attacks.

1.2 Aim

The underlying purpose of the thesis is to explore the security flaws within aircraft com-
munication. We will aim to implement an impersonation and sybil attack within an ATM
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1.3. Research questions

simulator. These two attacks should work as they would in a real-life scenario or as close as
possible. The attacks should be integrated continuously into the code base for the simulator
and not prevent or disturb any other functionalities that already have been implemented. A
dataset containing data from the affected aircrafts and data from genuine aircrafts will be col-
lected and used for machine learning purposes, where the goal is to learn identifying attacks.

1.3 Research questions

The research questions that this bachelor thesis will answer are the following:

1. How does an impersonation and sybil attack work within the context of aircraft com-
munication?

2. How can an impersonation and a sybil attack be realized in an air traffic management
simulator?

3. Is it possible for a machine learning model to detect an impersonation or a sybil attack?

4. Can a machine learning model be used to increase the security of ADS-B?

1.4 Delimitation

Since this is a bachelor thesis, there is a set time limit. The attacks will not be performed on
real aircrafts but using a simulator, meaning that in reality there may be some differences
compared with the simulator. Another reason why this is not possible is that it is illegal,
and clearance from the responsible government agency is needed to practice these attacks
on real aircrafts. Another delimitation is the fact that the codebase is written in JavaScript.
Due to the properties of JavaScript, values that are needed to be changed for the attacks to
be implemented are not easily changed. A constant property can not be reassigned, meaning
that special cases are needed for each constant.

1.5 Related work

The security issues within air traffic communication have been addressed before, both in
terms of discussion of ADS-B as well as other air traffic communication protocols. Chen et al.
have discussed the benefits of deploying ADS-B together with the vulnerabilities it presents
within the field [11]. Gurtov et al. also investigated other air traffic technologies within air
traffic communication, and how these worked in regards to security [15].

Strohmeier et al. discuss and present the security issues with ADS-B and address example
scenarios and a summary of the different attacks that ADS-B could be exposed to, and what
measures have been presented to address these vulnerabilities [27]. This together with Riahi
Manesh et al. who provided a risk analysis of the ADS-B protocol, resulted in a deeper un-
derstanding of the ADS-B technology and how attacks could be executed [19]. Stroheimer et
al. presented a summary of the different attacks that ADS-B could be exposed to, and what
measures have been presented to address these vulnerabilities [27].

Blåberg et al. presented a paper in which they took a similar approach to ADS-B vulnera-
bilities as this thesis. They also implemented attacks in the openScope simulator [7].

Khan et al. developed Blåbergs openScope simulator further, in which they added ad-
ditional attacks and used machine learning to try to see if there was a possibility to detect
different kinds of attacks [18]. This extended simulator will be the foundation for this thesis
and developed further.

For the impersonation attack, Yilmaz et al. have provided a thorough description of how
the impersonation attack works in ordinary networks, which we relied on to translate to air
traffic communication [36].
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1.5. Related work

Zhukabayeva et al. and Chandavarkar et al. disclosed an elaborate description of how
sybil attacks would work in different kinds of networks. Both explained the purpose of the
attack, as well as how it would be executed. This information was the foundation for the
definition of how the sybil attack would work in air traffic communication [37] [10].
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2 Theory

In this chapter, the background regarding this thesis subject will be presented together with
all the needed background information for further understanding of the paper. Information
will mostly be collected from published research papers and other trusted sources within the
scientific community.

2.1 ADS-B

ADS-B is a system that has been developed to help support ATC around the world when the
air traffic load is increasing. ADS-B compared with conventional radar covers larger areas
and allows ATC to control aircrafts with greater precision and therefore more efficiently. By
using the Global Navigation Satellite System (GNSS) aircrafts fetch their information such
as position and velocity from the GNSS. This information as well as altitude, flight number,
and other data is transmitted to other aircrafts and ADS-B ground receivers using a digital
datalink, broadcasting on 1090 MHz. From the ADS-B ground receivers, the data is in turn
transmitted in real-time to ATC, allowing for more secure and precise tracking of aircrafts
with more frequent updates. ADS-B also displays ground traffic and as mentioned has a
greater range in comparison to radar systems. ADS-B is automatic since position and velocity
are automatically sent every second without any input from the flight crew. It is a dependent
system since the transmissions require proper onboard equipment. The transmitted data is
surveillance data since it consists of the aircraft position, velocity, and other data, which is
broadcast to other aircrafts and also ADS-B ground receivers [26]. Figure 2.1 visualizes how
aircrafts using ADS-B receive their GPS information and communicate with each other and
ground receivers.

ADS-B In and Out

ADS-B consists of two features, ADS-B Out and ADS-B In. To broadcast the data containing
information about an aircraft ADS-B Out is used. ADS-B Out is the GNSS receiver on an air-
craft that fetches the current GPS position via satellite signals. This data is then processed and
the current velocity is produced. This information is then broadcast via an onboard transmit-
ter to the ADS-B ground receivers together with other relevant data. From the ADS-B ground
receivers, the ADS-B Out message is sent to the ATC [26]. ADS-B operates on 1090 MHz

4



2.1. ADS-B

GNSS

ADS-B Ground  
reciever Air Traffic Control

GPS data
Aircraft information

Aircraft 1 Aircraft 2

Figure 2.1: A simple figure showing how GPS data is received by an aircraft equipped with
ADS-B and shared with other aircrafts as well as ATC.

and requires a certified Mode S Extended Squitter transponder (called 1090ES according to
international standards) [23]. There are currently many different mandates for when an air-
craft needs to have an ADS-B Out receiver equipped. In Europe, 1090ES is required for all
aircrafts that have a maximum takeoff weight higher than 12,566 pounds (around 5670 kg) or
a maximum airspeed faster than 240 knots true airspeed [24]. In the United States, the FAA
mandates ADS-B Out to be used in most airspace the difference being the operating altitude.
For example, at 18,000 feet 1090ES is required, but from 10,000 feet to 18,000 feet 1090ES is
not required, but some sort of ADS-B transmitter is [3]. Other countries and administrative
regions that mandate or soon will mandate aircrafts to be equipped with 1090ES are for exam-
ple Australia, Canada, Indonesia, Mexico, Singapore, South Africa, Sri Lanka, Taiwan, and
Vietnam [24]. From 2020 all civil aviation aircraft in Europe and United States are required to
operate using ADS-B [28].

ADS-B In is not something currently mandated by any country. ADS-B In can in the US
provide an aircraft operator with Traffic Information Services - Broadcast (TIS-B), traffic in-
formation, seeing other airborne aircrafts with ADS-B Out capabilities and therefore creating
a higher flight awareness shared between aircrafts and ATC. Flight Information Services -
Broadcast (FIS-B) provides aircraft operators with current weather updates, turbulence, area
restrictions, and other pilot reports with many more features available [2].

ADS-B message

The ADS-B message is a 112 bit long data block containing five different parts shown in Figure
2.2 and explained in Table 2.1 [28].

The downlink format specifies what type of message is sent if it is an ADS-B message or
not. For civil aircrafts using ADS-B, the downlink format is 17, this is used to identify which
transponder is used. For example, an aircraft with an ADS-B system without a transponder
use downlink format 18. The transponder capability is a decimal number between 0 and 7
indicating the level of the transponder. ICAO (International Civil Aviation Organization) air-
craft address serves as the unique identifier, the call sign, for each aircraft. The ICAO address
is signed to the transponder of an aircraft and usually does not change. It can however be
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2.1. ADS-B

DF (5 bits) CA (3 bits) ME (56)ICAO (24 bits) PI (24 bits)

112 bit data block

Figure 2.2: The ADS-B message, a 112 bit data block [28]. The abbreviation are explained in
Table 2.1

Table 2.1: The ADS-B message structure [28].

Bit No. bits Abbreviation Information
1-5 5 DF Downlink format
6-8 3 CA Transponder capability
9-32 24 ICAO ICAO aircraft address
33-88 56 ME Message, ADS-B data
89-112 24 PI Parity

changed by for example an adversary, which is something that will be shown in this thesis.
The largest part of the message is the actual message, which contents change depending on
what information is being sent. Bits 33-37 (also called type code or TC) in the message block
specify what type the message is. This is a binary number that ranges from 1 to 31, what
each number is represented by is shown in Table 2.2. The type code gives information about
what information the following bits (38-88) contain, speed, altitude, position, etc [28]. The
last part of the message is the 24-bit parity, which is used to check for and fix bit errors and
also determine if the message should be discarded or not. If a message has more than five-bit
errors, then it should be dropped [19].

Table 2.2: ADS-B Type code and content in the message data frame [28].

Type Code Data frame content
1–4 Aircraft identification
5–8 Surface position
9–18 Airborne position (w/Baro Altitude)
19 Airborne velocities
20–22 Airborne position (w/GNSS Height)
23–27 Reserved
28 Aircraft status
29 Target state and status information
31 Aircraft operation status

Threats against ADS-B

The main issue with ADS-B is that the data sent in the transmissions are sent in plain text,
completely unencrypted, and without any sort of authentication used to check the validity
of the senders’ identity. Something that opens up to an array of possible attacks that could
be performed against ADS-B systems. Some of the general attacks that could be performed
against ADS-B are eavesdropping, jamming, flooding, message injection, message alteration,
and masquerading attacks [15]. For ADS-B four different security requirements could be
compromised depending on which of these attacks are performed, these are:

• Confidentiality: ADS-B data should not be available to unauthorized entities.

• Integrity: ADS-B data should not be modified or deleted in transmission.

6



2.2. Why no encryption?

• Availability: Authorized entities should always have access to ADS-B services.

• Authentication: The authorized entities transmitting should always be able to identify
each other correctly [19].

Eavesdropping is a possible attack against the confidentiality of ADS-B since the trans-
missions are sent in plain text without any encryption. This means that someone unautho-
rized, with a radio frequency transceiver that operates on 1090 MHz, can listen to the trans-
missions sent over the ADS-B network. This is the main issue with ADS-B and there is little to
do about it. Some countries like the United Kingdom have enacted laws against unintended
recipients listening to radio traffic. Imposing these laws, however, has proven to be difficult
[35].

Jamming is a denial of service (DOS), i.e an attack against the availability of ADS-B, where
an attacker can send large amounts of data over the frequency, filling it with noise, reducing
the capability of the ADS-B service. This can prevent aircrafts and ATC from receiving and
sending their data since the frequency will be filled with incomprehensible noise.

Flooding is an attack similar to jamming that also targets the availability of the service.
It is also a DOS attack but instead of filling the frequency with noise, the adversary targets a
specific node and sends the data there instead. This could be an aircraft or ATC tower that
then cannot send and or receive any data due to being overloaded [15].

Injection is an attack where an adversary injects fake messages into air traffic commu-
nications and attacks confidentiality, integrity, and availability. The attacker creates a faked
message containing falsified information about a non-existing aircraft such as speed, head-
ing, ID, etc. If the ATC and other aircrafts can not distinguish between a genuine aircraft and
a fake, injected one, the fake aircraft will be displayed on the network, posing as a real one.

Alteration is when the contents of a legitimate message are in some way changed, so it is
an attack against integrity. For example, a message can be intercepted by an adversary, and
the contents of the message, like position, altitude, and heading may be changed. For this
attack to seem legitimate many necessary steps are needed and therefore this is one of the
hardest attacks. The attacker needs to perform a combination of attacks, like preventing an
aircraft from transmitting, intercepting the messages, altering them, and then re-transmitting
them [35], so this attack can also target availability and confidentiality.

Masquerading is an attack where an adversary pretends to be either an aircraft or ATC,
making it an attack against authentication. For example, someone impersonating ATC could
send false information to an aircraft telling it to change direction, altitude, speed, etc [15].

2.2 Why no encryption?

There are several difficulties with retrofitting ADS-B with cryptographic security, the band-
width for ADS-B is limited meaning that adding encryption would possibly increase the
length of the ADS-B message. An increased message size means that there would be more
interference since there is a limitation to how many aircrafts ADS-B can handle, larger mes-
sages mean fewer aircrafts served. The keys used for encryption would also possibly be
available for malicious entities since the environment ADS-B operates on is cryptographi-
cally untrusted. Some cryptographic methods would not change the length of the ADS-B
message and therefore could be applied, for example, symmetric-key encryption with the
use of a secret key. The issue with this method is that the message would be unintelligible for
anyone without the secret key, something that is both positive and negative. This means that
other genuine aircrafts that do not know the secret key of a particular aircraft would not be
able to communicate with each other using ADS-B. The main argument for why ADS-B is not
encrypted is that cryptography would be burdensome to implement, impose and also most
likely open up to more interference in the spectrum [34].
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2.3. OpenScope

2.3 OpenScope

OpenScope is an open-source ATM simulator where users can practice simplified ATC pro-
cedures such as directing an aircraft for landing and take-off. The user is presented with a
screen that includes an airport, as well as several aircrafts. Combined with this screen and
a command line, the user can act as an air traffic controller (ATCo) giving commands to air-
crafts and managing the airspace.

Figure 2.3: OpenScope gameplay footage.

Already implemented attacks

Last year, Thorn and Wahlgren [29] presented an extended version of openScope where three
attacks were implemented. These extensions were developed on a platform that in turn was
based on the previously extended version of openScope by Blåberg and Lindahl. Blåberg and
Lindahl implemented four attacks [8]. The attacks that have been implemented so far are
listed in Table 2.3.

Table 2.3: Attacks that previously have been implemented in the openScope simulator by
Blåberg and Lindahl and Thorn and Wahlgren [29] [8] [7].

Implemented attack Type of attack Description (if needed) Implemented by
Non-responding aircraft Jamming The aircraft will no respond to ATC commands Blåberg and Lindahl
Jumping aircraft Message modification The longitude and latitude data of an aircraft is changed Blåberg and Lindahl
Displaying false data Message modification The aircraft will display incorrect altitude and speed from time to time Blåberg and Lindahl
Flooding Flooding A large number of faked aircrafts are displayed Blåberg and Lindahl
Transponder code alteration Message modification The transponder code of an aircraft is changed to a emergency code Thorn and Wahlgren
Virtual trajectory modification Message modification The heading of an aircraft is changed to a random value. Thorn and Wahlgren
Duplicate aircraft Message injection A duplicate aircraft will spawn in with random values for speed, heading etc Thorn and Wahlgren

Another thing that also has been implemented into the extended version of openScope
is a graphical user interface that allows the player to choose which attacks that should be
running and how severe these should be. A mechanism for collecting data from the attacks
has also been implemented.
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2.4. Attack definitions

2.4 Attack definitions

The different attacks mentioned in Section 2.1 are all somewhat relevant to our thesis be-
cause parts of them are used for implementing the impersonation and sybil attacks. There is
however a problem with stating different attacks, there is not always a clear border between
attacks, and there is often a grey area in which different attacks overlap. For example, spoof-
ing attacks, which is attacks where a bad entity uses counterfeit or borrowed information to
lure the target to think that the bad entity is someone else. This attack can have a lot of differ-
ent forms or application areas. The main differences between the spoofing attacks are often
where they can be applied, for example, IP-spoofing, MAC-spoofing, Web-spoofing, etc. [17].
Furthermore, both impersonation and sybil attacks are two variations of spoofing attacks.
Spoofing attacks can also be categorized as masquerading attacks, which is where the issues
with categorizing attacks occur. For the purpose of the thesis, we will state a clear definition
of what an impersonation attack and sybil attack are within the air traffic communication
field.

Impersonation attack

An impersonation attack is a type of masquerading attack, where the main objective is for an
adversary to steal the identity of another node in a network and then pose with the stolen
identity [36]. For aircrafts, this means that the adversary aircraft will steal and transmit an-
other aircraft’s call sign, meaning there will be two aircrafts with the same call sign in the
airspace. The adversary aircraft will only take on one identity and will thereafter act as this
specific identity when communicating. For this attack the ADS-B traffic has to be eaves-
dropped on so that the adversary can steal call signs from another aircraft, then the adversary
has to alter the contents of their ADS-B message, changing the call sign to the stolen one.

A similar attack happened in 2020 when a US spy plane impersonated a Malaysian air-
craft whilst spying on Chinese military bases. Something that was done by changing the
transponder code of the military aircraft [20].

Sybil attack

In a sybil attack, an attacker can steal the identities of several nodes in a network and pose as
several nodes. The adversary creates several so-called sybil nodes forming a swarm of fake
nodes with stolen identities [37]. A sybil attack is primarily made to damage and degrade
the performance of a network and to ruin the trust in a network. This attack is also a form
of masquerading attack but to be performed correctly injection, eavesdropping, and also al-
teration attacks have to be performed. One could also argue that it also is a sort of flooding
attack since many aircrafts are created when the swarm is created. The ADS-B transmissions
have to be listened to for call signs to be stolen, then the data of the compromised aircraft has
to be duplicated, altered, and injected into the ADS-B traffic in different forms.

2.5 Machine learning

Since the ADS-B messages are unencrypted, there is a need to detect if an aircraft is under
attack or not, something that machine learning could solve. Machine learning can be used to
detect anomalies in the air traffic communication [18].

Data cleaning

Cleaned data is needed for machine learning algorithms to run more efficiently. If data is
mislabeled, missing, or in any way incorrect, issues may arise when analyzing the data. The
raw data needs to be transformed to a state where the requirements of the machine learning
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algorithms are met [9]. Pandas is a useful Python library used for data pre-processing and is
an essential tool when it comes to data cleaning. Pandas have functions that allow users to
merge datasets, remove missing fields, and normalize data [31].

K-nearest-neighbours

K-nearest-neighbours (kNN) is an algorithm used for the classification of data and machine
learning. It is a fundamental and simple classification method that is useful when little or
nothing is known about the data distribution [25]. KNN is a supervised machine learning
algorithm meaning that it needs labeled data for learning, the algorithm can produce an ap-
propriate output based on what it has learned when presented with unlabeled data [16]. The
algorithm is based on the Euclidean distance between a test sample xi and a training sample
xl . The distance is defined as

d(xi, xl) =
b

(xi1 ´ xl1)2 + (xi2 ´ xl2)2 + ... + (xip ´ xlp)2. (2.1)

Where (i = 1, 2, ..., n) and (l = 1, 2, ..., n) with n as the total number of test samples, and p is
the number of features for xi [25].

Naive Bayes

Naive Bayes is like kNN a simple but effective learning algorithm, like the name suggests it
uses Bayes rule but also an assumption that every set of features is conditionally independent
given a class, meaning that features have no impact on one another, hence giving it the name
"naive". The algorithm works by using sample data to estimate the probability P(y | x) where
y are the class variables and the features x = (x1, x2, ..., xn) and n is the total amount of
features. Naive Bayes is as mentioned given by Bayes’ rule

P(y | x) =
P(y) ˚ P(x | y)

P(x)
. (2.2)

Even though the independence assumption often does not work in practice, i.e. features are
dependent on each other, the algorithm has many good features such as being computation-
ally effective, having a low variance, and working when values are missing [33].

Decision tree

A decision tree is a model that is based on internal nodes and leaf nodes. The internal nodes
can be viewed as a test on the input data patterns, whereas the leaf nodes can be viewed as
categorized answers to these tests of the patterns [21]. The model takes data as input and then
uses the decision tree to later conclude the data. The data is filtered through multiple internal
and leaf nodes so that model can make an accurate conclusion about the data. The decision
tree model is a general description of the model, which can be built with different algorithms
for different purposes. The algorithm used in this thesis will be the classification and re-
gression tree algorithm (CART). This CART algorithm consists of three steps, construction of
a maximum tree, choosing the right tree size, and classification of new data using the con-
structed tree. The first step consists of splitting the data, which is the most time-consuming.
For this, the Gini splitting rule is used which can be stated as follows

i(t) =
ÿ

k‰l

p(k|t)p(l|t). (2.3)

Where k, l1...K is the index of class, and the p(k|t) is the conditional probability for k provided
that the algorithm is in t. The choice of right tree size step mainly ensures that there is not any
leaf or internal nodes that are unnecessary since the trees tend to get large and complex. Here
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sub-trees and nodes can be removed if they do not provide any useful insights or information.
The third step ensures that whenever data reaches a terminal node, the classification of that
node set the classification of the data [30].
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3 Method

This chapter will explain the method used in the paper. It will describe the thought process
and how this led to code implementation. This will also provide a clear description so that
the work can be replicated in the future.

3.1 Implementation

The extended version of the openScope simulator is available on GitLab1

Updating the simulator

The first thing done was to update the extended version of openScope to the latest official
version, a project still being worked on by many people online and is available on GitHub2.
The update was done to fix possible existing bugs and add missing features implemented on
the main version of the simulator. This was done by merging the extended version with the
latest official version on GitHub.

Impersonation attack

The second thing done was implementing the impersonation attack. As previously men-
tioned, the identity of another aircraft is stolen during an impersonation attack, meaning that
to ATC and other airplanes in the airspace, there will seem to be two of the same aircraft.
For this attack, an aircraft was randomly selected to be the impersonator, under the condition
that it had not already been impersonated, was an impersonator, or was grounded. A second
aircraft was selected under the same conditions. This second aircraft was the one that was
going to be impersonated. For both of these aircrafts, a variable called attackType was set to
the appropriate number for the attack. In this case, eight, since there are six previously im-
plemented attacks, where attackType = 0 means that the aircraft is not being attacked. The call
sign of the impersonator was changed to the call sign of the impersonated aircraft.

Due to the limitations of JavaScript mentioned in Section 1.4, the attribute call sign is not
re-assignable. Each aircraft consists of an airline ID (for example, SAS) and a unique flight

1Code base: https://gitlab.liu.se/axebo861/openScopeAttacks
2Official openScope code: https://github.com/openscope/openscope
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number (for example, 1337), which together make up the call sign (that would be SAS1337).
The call sign for the aircraft selected to be impersonated was saved into a local variable for
the impersonator aircraft. When an aircraft was selected to be the impersonator, a boolean
saved for the impersonator called isImpersonator was set to true. In the function retrieving
the call sign for the impersonator, an if-statement was added to check this boolean. If it were
true, then the call sign of the impersonated aircraft would be returned instead of the actual
call sign of the impersonator. The code for this method can be seen in Listing 3.1.

/**
* @for AircraftModel

* @property callsign

* @return {string}

*/
get callsign() {

if (this.isImpersonator && this.fakecallsign[0] != undefined) {
return this.fakecallsign[0];

}
return ‘${this.airlineId.toUpperCase()}${thisflightNumber.toUpperCase()}‘;

}

Listing 3.1: Function for retrieving an aircrafts callsign.

To maintain which aircraft is which, each aircraft was given another boolean, isImperson-
ated. When an aircraft correctly was selected to be impersonated, these variables would be
changed to true. This was then checked together with isImpersonator when selecting a new
random aircraft that would be an impersonator or would be impersonated.

Sybil attack

The implementation of the sybil attack started with choosing a random aircraft. This aircraft
was the adversary aircraft called the main sybil aircraft. Next, data from another random
aircraft in the airspace such as call sign, transponder code, aircraft model, and the airline was
collected. This was executed by a function called getRandomSybilAircraft that also ensured
that the random aircraft was not currently being attacked by a sybil attack, the code for this
function can be seen in Listing 3.2. Two booleans were used to ensure this, isMainSybilNode
for the adversary aircraft and isSybilNode for the spawned in aircrafts. This aircraft would be
one sybil aircraft spawned around the main sybil aircraft.

/**
* Function for retrieving a random sybil aircraft that currently is not under a

sybil, duplicate or impersonation attack

* @for AircraftController

* @returns {aircraft}

*/
getRandomSybilAircraft() {

let aircraftList = slice(this.aircraft.list);
var rnd = Math.floor(Math.random() * aircraftList.length);
var n = 0;

while (n != aircraftList.length) {
if (aircraftList[rnd].mainSybilNode || aircraftList[rnd].isImpersonator

|| aircraftList[rnd].isDuplicated || aircraftList[rnd].isDuplicate)
{
n++;
rnd = Math.floor(Math.random() * aircraftList.length);

} else {
return aircraftList[rnd];

}
}

}

Listing 3.2: Function that finds a random aircraft that is not currently affected by a sybil
attack.
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3.1. Implementation

Next, the positions for the sybil aircraft to spawn in on was selected. For this a function
called getRandomPoint was created. A circle was created as a boundary around the main sybil
aircraft, and a random point was selected within this circle. To evenly spread the spawned
sybil aircrafts within the circle, the inverse of a cumulative distribution function (CDF) was
used [32]. For this function, an integer R was calculated

R = r
?

a. (3.1)

Where r is the radius of the circle and where 0 ă a ă 1. An angle θ was also calculated

θ = 2πb. (3.2)

Where 0 ă b ă 1. These variables were then used together with the coordinates of the main
sybil node, x0 and y0, to calculate the two random points within the circle, x and y where

x = x0 + cos θ + R (3.3)

y = y0 + sin θ + R. (3.4)

In Figure 3.1, the distribution of positions is visualized with and without using an inverse
CDF [5]. By using an inverse CDF, the positions are more evenly distributed within the circle.

-5 0 5
-5

0

5

(a) Distribution using an inverse CDF.

-5 0 5
-5

0

5

(b) Distribution without using an inverse CDF.

Figure 3.1: Figures with, (a), and without, (b), using an inverse CDF with a radius of 5 length
units.

The sybil aircraft was spawned in on these selected coordinates with a stolen identity. This
entire process was repeated until a swarm of five faked aircraft was spawned around the main
sybil aircraft. To prevent the simulator from being flooded and potentially crashing, only five
sybil aircraft were allowed to spawn. Also, since the spawned aircraft were prone to make
the simulator crash if they remained for long periods, a timer was implemented. The decision
to create a timer was mainly made so that the swarm would never get to a stage where they
would land at an airport since this could make the simulator crash. The timer was created so
that every minute, new airplanes were targeted with a new swarm, and the old swarm was
removed. For this timer, the built-in functions in JavaScript Date.getTime() were used, which
returned the time which has passed since January 1st, 1970, in milliseconds.
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Sixty thousand milliseconds were added to this Date.getTime() and stored as an attribute
for the airplane as sybilTimeUntilReset. In the update function, it was then checked if the cur-
rent time has passed the sybilTimeUntilReset and if that was true, new airplanes were selected,
and thereafter, a new swarm was spawned around this airplane.

To maintain which sybil aircraft were owned by which main sybil aircraft, a list was cre-
ated for each aircraft. When the sybil aircraft were created, they were pushed to this list so
that if the attack type changed for the main sybil aircraft, the sybil aircraft were removed.

Cleaning the code and fixing bugs

When the impersonation and sybil attacks were implemented, some bugs were discovered
when running all attacks at the same time. The duplication attack, a previously implemented
attack by Thorn and Wahlgren, did not work at all and crashed the simulator each time.
This particular attack was patched by small changes to the logic of the attack, to a solution
similar to the logic behind both the impersonation and sybil attack. This attack was fixed
by creating a list within each aircraft called duplicateAircraft. When a duplicate aircraft was
created, the information of the duplicate was saved in this list for the duplicated aircraft.
Booleans were also added to the aircraft, isDuplicated and isDuplicate and these were set to
true or false depending on which aircraft was which.

To make sure aircraft that somehow displayed any information about another aircraft
would not have their attack type altered unless the attack changed for the primary aircraft,
checks for each boolean were added to the function called assignAttackValue, this was the
function that assigned the attack value to an aircraft. So if an aircraft, for example, was an
impersonated aircraft, the attack value of this aircraft would only change if the attack value
changed for the impersonator. So if the attack value of the impersonator was changed, the
attack value of the impersonated aircraft was set to zero, and each corresponding boolean
was also changed to the correct information.

3.2 Proposed machine learning workflow

In Figure 3.2 the proposed workflow for the machine learning is visualized. Each step of the
process is further described in this section.

Attack Data

Genuine Data

Dataset Generation Data Pre-processing Data Shuffle Machine Learning

Replacing Missing
Values

Data Transformation

Removing Outliers

Training + Validation

Testing + Validation

Detection Analysis

Figure 3.2: Proposed machine learning workflow.
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Dataset generation

To train the machine learning algorithm to detect if an aircraft was affected by an attack or not,
data from the attacks and genuine aircraft was needed. After the data had been collected for
both authentic and attacked aircrafts, it was be combined into one dataset using the Pandas
merge function.

Attack data

To collect attack data, the already implemented data collection mechanism by Thorn and
Wahlgren [29] was modified and then used. The collected data is very similar to the ADS-
B message. However, it also displays what type of attack is performed against the specific
aircraft. The data was collected for a fixed period and then downloaded as a .csv file. The
data for the attacks needed to be clearly labeled for the machine learning to be effective. This
was simply done by adding if-statements to the data collection function, checking the value
of attackType and also if the message was from an impersonator, impersonated, sybil, or main
sybil aircraft. This was done by checking if the booleans added to each aircraft were true or
not. The checks for duplicate or duplicated aircraft were also updated since the mechanism
for this attack had been changed. So for example, an aircraft with attackType == 8 and isIm-
personator == true would be labeled "Impersonator". Data for the attacks was collected for two
hours, with all attacks turned on, including attacks previously implemented by Thorn and
Wahlgren as well as Blåberg and Lindahl. The collected data consisted of multiple columns
of data, including ICAO, call sign, time, position, time of last contact, longitude, latitude and
barometric altitude, attack label, and attack type, very similar to the ADS-B message.

Genuine data

No data of the genuine aircraft in the simulator was needed to be collected since data from ac-
tual ADS-B traffic was collected in 2021 by Thorn and Wahlgren. The genuine data was from
real ADS-B and Mode S messages within air traffic communication. The data were collected
from the OpenSky Live API endpoint, where they had set a limit to focus on the airspace over
central Europe. The formatting of the collected data from openScope was heavily inspired by
the structure that OpenSky provided, so the datasets were similar [29].

Data pre-processing

Next, the data needed to be cleaned. Cleaned data simplifies the learning process for the
machine learning algorithm. Three pre-processing steps were applied to the dataset.

Removing missing values

In some cases, the ADS-B messages could have fields where data was missing. As most of the
fields were numbers, one could apply the mean to fill these empty fields. However, this could
potentially result in some strange values if there was a big variance with outlying values.
Rows with missing values can be removed using Pandas dropna function, which iterates over
each cell and removes the corresponding row if it contains missing values.

Data normalization

For the machine learning model, the data was normalized using the following formula

zi =
(xi ´ min(x))

(max(x) ´ min(x))
. (3.5)

Where zi is the i:th normalized value in the dataset, xi the i:th value in the dataset, max(x)
the largest value in the dataset and min(x) the smallest value within the dataset. This was

16



3.2. Proposed machine learning workflow

executed to ensure that all values were in the same range, between zero and one, so that the
machine learning model easier could iterate over the numbers and compare values with each
other. For example to normalize the column containing longitude data this line of code was
used df[’long’] = (df[’long’] - df[’long’].min()) / (df[’long’].max() - df[’long’].min()) where df is the
dataset. This was done for each column except the column consisting of the attacktype.

Removing outliers

There could also be outlying values in some fields in the ADS-B messages, which contained
out-of-place data. If these values remained, they could impact the results from the machine
learning model or even prevent the model from running. The outliers can be replaced with
the median of the entire column.

Machine learning

After the dataset was cleaned, it was shuffled and divided into two parts where 70% of the
dataset was used for training and validation, and the remaining 30% was used for testing
and validation. The machine learning tests ran using Google Colab, which is a browser IDE
that allows users to run Python code in their browser and offers free computing resources,
removing the strain from the user’s computer [14]. To run the machine learning algorithms
mentioned in Section 2.5 a Python machine learning extension called scikit-learn was used.
The three algorithms were imported from this extension and were then run with the dataset.

K fold cross validation

After the data was separated into two parts, 70% and 30%, K fold cross-validation was also
implemented on both parts of the dataset. This was to ensure that the model did not mem-
orize any of the data locations, but instead learned to create patterns and make connections.
The K fold cross-validation is a method to separate the data into parts, so-called K folds, and
use each of these folds once as a test set of the data while the other remaining parts are used
to learn the model [13]. For this thesis, the K was five, which meant that the data were sepa-
rated into five parts, and while one was used as a test set, the remaining four were used for
learning. This was iterated until all five parts had been used as a test set once.

17



4 Results

In this chapter, the results of our work are presented. This includes the development of the
simulator and results from the data collection and machine learning.

4.1 Implementation

Updating the framework

At the beginning of the thesis, the build of the simulator was outdated and some previously
implemented attacks were not working as expected. This meant that there was a need for
some work before implementing any new attacks. The code was successfully updated to the
latest openScope build, which was running version 6.27.0, found on the openScope GitHub1.
Changes were also made to some of the older attacks, so that all attacks could be run at the
same time, further described later in this chapter.

Impersonation attack

The main part of the thesis was to implement the two different attacks in the simulator, which
was successfully done. For the impersonation attack, a random aircraft steals the call sign off
another random aircraft and thus displays itself to have another identity than it has. This will
confuse any ATCo trying to control the air traffic.

In Figure 4.1 the attack menu is visualised. The user can choose between different attacks
to run. In this menu, there is also an option to color-code the attacks to further get a visual
understanding of how the attack is working. Both the impersonation and sybil attack are
turned on. The attacks are started by first choosing how many aircraft should be affected by
the attack. The choice is between no, a few, a normal amount, many, or almost all aircrafts
affected, which correlates to the percentages 0%, 5%, 20%, 50%, and 90%. Next, the weight of
the attack is chosen, which is a number between zero and five. The weight is to choose how
the attacks will be distributed among the selected amount of aircraft that will be attacked.
The aircraft attack selection system was implemented by Blåberg and Lindahl [8].

In Figure 4.2 the impersonation attack is visualized with color-coding turned on. The
aircrafts affected by an attack are colored in different colors depending on which attack is

1Official openScope code: https://github.com/openscope
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Figure 4.1: Attack menu with impersonation and sybil attacks turned on, further visualized
in Figure 4.2 and Figure 4.3.

active. For the impersonation attack, the impersonated aircraft is colored orange, and the
impersonator is colored yellow. The yellow aircraft in Figure 4.2 with the call sign ASA8129
has therefore stolen the call sign from the orange aircraft with the same call sign. The orange
aircraft with the same call sign is the genuine aircraft.

Figure 4.2: Gameplay footage from the impersonation attack where the impersonator is
marked as yellow and the impersonated aircraft is marked as orange.

Sybil attack

For the sybil attack, an aircraft was randomly selected using the same aircraft attack selection
method used for the impersonation attack. This aircraft was the main sybil aircraft. Next
a swarm of five aircrafts, the sybil aircrafts, were spawned around the main sybil aircraft.
Gameplay footage of the sybil attack is visualized in Figure 4.3 where the main sybil aircraft
is colored pink and the sybil aircrafts are colored lime green. The sybil aircrafts have stolen
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identification information from other aircrafts in the airspace but have the same speed, desti-
nation, and route as the main sybil aircraft.

The openScope simulator is a quite comprehensive simulator with many features, mean-
ing that many edge cases can cause errors. The sybil attack caused many errors for example
when the main sybil node landed or left the airspace. To fix many errors, the sybil attack
was updated every minute, which resulted in no crashes instead the attack type was updated
for all aircrafts. Due to all edge cases in the simulator and time limitations, this was seen
as the best way of fixing these errors. However, with unlimited time, each edge case would
preferably have been fixed individually.

Figure 4.3: Gameplay footage of the sybil attack where the main sybil aircraft is colored pink
and the sybil aircrafts are colored limegreen.

Making all attacks run at the same time

After tweaking and fixing bugs in the new and previously implemented code, all attacks were
able to run simultaneously. In Figure 4.4 all attacks are turned on, and each color with its
corresponding attack is presented in Table 4.1. Note that even though every attack is turned
on, it does not mean that every attack is active.

Table 4.1: Table with the corresponding color to each attack.

Attacktype Attack Color
1 Not responding Red
2 Changing position Purple
3 False altitude and velocity Blue
4 Not moving Olive green
5 False squawk Maroon red
6 False heading Teal
7 Duplicated Dark green
7 Duplicate Light blue
8 Impersonator Yellow
8 Impersonated Orange
9 Main sybil aircraft Pink
9 Sybil aircraft Limegreen

4.2 Data collection and cleaning

The data was successfully collected during a two-hour time period which resulted in around
300,000 rows of data, where each row represents one ADS-B transmission sent from one air-
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Figure 4.4: Gameplay footage with all attacks turned on.

craft that is affected by an attack. All attacks, even the previously implemented attacks by
Thorn and Wahlgren [29] and Blåberg and Lindahl [8], were turned on during the collection.
The collected data was combined with the authentic data, mentioned in Section 3.2, and the
total dataset contained over 550,000 rows of data.

Table 4.2 displays the head of the pre-processed dataset. Pre-processing included remov-
ing rows with empty fields, changing all values to integers, even strings, changing outliers to
the median of the column, normalizing the data, and shuffling all rows.

Table 4.2: Head of dataset after data pre-processing.
icao callsign time_position last_contact long lat baro_alt on_ground velocity true_track vertical_rate geo_alt squawk label

232939 0.941260 0.004206 0.000000 0.717453 0.013072 0.103448 0.273911 0 0.788216 0.740059 0.469305 0.263660 0.800566 12
478093 0.352029 0.048528 0.909091 0.997431 0.954248 0.344828 0.330655 19 0.546874 0.748159 0.475393 0.353580 0.697698 0
73450 0.939833 0.002912 0.000000 0.285251 0.013072 0.137931 0.205883 0 0.613142 0.735641 0.470320 0.193908 0.979427 12
155089 0.942688 0.016014 0.000000 0.474382 0.006536 0.241379 0.109599 0 0.335590 0.738586 0.475393 0.108778 0.406841 9
39240 0.943300 0.012617 0.000000 0.176558 0.013072 0.275862 0.109599 0 0.335590 0.739323 0.475393 0.108778 0.726115 7

Figure 4.5 displays the box plots for the latitude, barometric altitude, and geometric al-
titude before and after the outliers were removed. The circles in Figure 4.5a represent the
outlying values, these were set null and were then overwritten to the median of the entire
column. The median is represented by the line within each of the boxes, the boxes represent
the middle half of the sample and the end of each whisker is the maximum or minimum
value of the sample.

The amount of data collected for each attack (including authentic aircrafts) is shown in
Figure 4.6. The most common attack is the sybil attack, something that was expected because
six aircrafts will be affected each time the attack is executed. The impersonation and sybil
attack was also chosen to have a higher weight since these attacks were the ones implemented
for this thesis, something that also affects the amount.
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(a) Box plot with outliers.
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(b) Box plot without outliers.

Figure 4.5: Box plots for the latitude, barometric and geometric altitude with 4.5a and without
outliers 4.5b.
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Figure 4.6: Amount of collected data for authentic and attacked aircrafts. Each entry is one
ADS-B message.

4.3 Machine learning

The three machine learning models mentioned in Section 2.5 were applied to the data col-
lected and each yielded different results.

K-nearest-neighbour

KNN was successfully implemented on the data. In Figure 4.7 the learning and training
graph of the kNN is displayed. The learning graph represents how the model learns to dif-
ferentiate data and how well it can detect attacks and the training graph represents how well
the model performed when the model was exposed to new data. As mentioned in Section 3.2
the learning set contained 70% of the data while the training set contained 30% of the data.

Additionally as previously explained in Section 3.2 K fold cross-validation was applied
within both of these datasets. In the learning graph in Figure 4.7a, the red line represents the
testing score, as in how well the model learns from the data used in the set, while the red line
in the testing graph in Figure 4.7b visualize how well the model performed when exposed to
new data. The green line represents the K fold cross-validation score, which is how well the
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model performed when tested against the data within the dataset for both the learning and
testing set.
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(a) Learning graph for kNN.
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(b) Testing graph for kNN.

Figure 4.7: The learning and testing graph for the K-nearest-neighbour model.

From the testing graph, a confusion matrix was created as shown in Figure 4.8. The true la-
bel marks the column with the actual information, in other words, what attacks the airplanes
were exposed to. The assigned label will instead show what attacks the machine learning
model thought the airplanes were exposed to. This was used together with a heat map to
clearly show how much data that were in each field.

The confusion matrix in Figure 4.8 shows how the fields were labeled by the kNN algo-
rithm. The total accuracy for the kNN was 99.9% which is very high. The sheer amount of
data is something that makes it easier for the model to learn to identify attacks. The authentic
data was around 50% of the testing dataset which might make it quite easy for the model
to identify authentic aircrafts, only 24 out of 57,202 messages were mislabeled. So the kNN
model made some errors, but an overwhelming majority was correct.
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Figure 4.8: Confusion matrix for the K-nearest-neighbour model.
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4.3. Machine learning

Naive Bayes

The Naive Bayes machine learning model was also successfully applied on the data where
the learning and training curve are displayed in Figure 4.9.
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(a) Learning graph for Naive Bayes.

20000 40000 60000 80000 100000 120000
Testing examples

0.70850

0.70875

0.70900

0.70925

0.70950

0.70975

0.71000

S
co

re

Testing score
Crossvalidation score

(b) Testing graph for Naive Bayes.

Figure 4.9: The learning and testing graph for the Naive Bayes model.

The confusion matrix for the Naive Bayes model is displayed in Figure 4.10. This model
had a general accuracy of 71.2% which is quite good. Looking closer at the confusion ma-
trix one can see that some attacks were labeled poorly and the main reason for the general
accuracy is because of the authentic aircrafts for which all were correctly labeled.

The model never labeled any messages as main sybil nodes and labeled many as duplicate
or duplicated aircrafts. One reason behind this model’s accuracy might be the fact that the
model is built upon a fundamental principle that all data is independent. Since the dataset is
not independent, the accuracy was probably affected.
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Figure 4.10: Confusion matrix of the Naive Bayes model.
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4.3. Machine learning

Decision tree

Lastly, the decision tree model was also applied to the data. This application also turned
out successfully and the learning and training graphs can be visualized below in Figure 4.11.
The graphs show that the model had a steady incline in the learning phase resulting in high
accuracy.
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(a) Learning graph for the decision tree.
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(b) Testing graph for the decision tree.

Figure 4.11: The learning and testing graph for the decision tree model.

For the decision tree, another confusion matrix in Figure 4.12 was created to clearly show
the results of the model. The decision tree had an accuracy of 99.9% which is high. This
result may also be to a large amount of authentic data, and as seen in the confusion matrix all
authentic messages were assigned correctly, but as seen in the learning and testing graph the
model learns quickly how to differentiate the different attacks.
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Figure 4.12: Confusion matrix for the decision tree model.
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5 Discussion

This chapter contains the discussion of the results and method, the work in a wider context
will also be presented as well as possible future work in the subject area.

5.1 Results

Implemented attacks

The implemented attacks worked as expected from theory but the used attack model might
be different if executed in a real-life scenario. Especially the sybil attack which was imple-
mented with a timer that updated the attack each minute, which could update all attacks for
all aircrafts. While this method yielded a lot of data for all attacks it would most likely not
be executed like this in a real scenario, the sybil attack could instead fulfill other purposes,
like creating confusion. However the impersonation attack could be executed similarly in a
real scenario, and has been, as mentioned in Section 2.4 when a US spy plane impersonated
a Malaysian aircraft whilst spying on China. The actual implementation of the attack would
of course be different in a real scenario, but the actual attack would on paper probably not
differ too much.

Machine learning application

Out of the three machine learning models, two models were very accurate in identifying
attacks, 99.9%. The difference in the accuracy might be since the Naive Bayes method is built
on an assumption that all the fields are independent, which is not the case with the collected
data.

One thing that could have altered the accuracy of all machine learning models is the share
of authentic messages in the dataset. Since the share of authentic data was larger than all other
parts of the dataset, combined with the fact that these messages are the simplest to figure out
as seen in the confusion matrices, this could have increased the accuracy percentage of all
machine learning models.

To make it harder for the machine learning algorithms to label attacks, the data could
have been collected in some different ways. The validity of the data can be questioned since
in a real scenario the attacks would most likely not change a whole lot, while the attacks for
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5.2. Method

this thesis changed each minute. As previously mentioned in Section 4.3 this was because of
the many errors the sybil attack caused, and to prevent errors this method was chosen. This
method was considered valid due to the data pre-processing since the data was shuffled, nor-
malized, and divided into parts for the machine learning meaning that the general structure
of the data no matter how it was collected would be very different when presented to the
algorithms.

In comparison to previous years students, Thorn and Wahlgren had an accuracy of
91.49%. One reason behind the different accuracy might be the way the attacks were exe-
cuted. Thorn and Wahlgren executed the attacks once and then collected data within a time
frame while the simulator was running normally, as previously mentioned for this thesis the
attacks were updated every minute, resulting in more data for the machine learning algo-
rithm to learn from, increasing the accuracy. Also, different machine learning algorithms
were used in previous years work compared to this year’s work which might yield a more
accurate result [29].

5.2 Method

The method used was at multiple stages changed since there were discoveries within the
code-base as well as new limitations that were discovered with the code and the used pro-
gramming language. The replicability of the method regarding implementing the attacks is
very strong and the results from the method will also be similar to our results depending
on how the impersonation and sybil attack is interpreted when executed against air traffic
communication. Since no attacks were executed on real aircrafts the validity regarding real
scenarios might be questioned, however since the data was formed to replicate actual ADS-B
messages the machine learning could be applied to a real scenario. The difference from a real
scenario is that the attacks would be executed in a completely different manner.

The validity can also be discussed in regards to the use of the openScope simulator. open-
Scope is a simulator where there have been a lot of contributions from different people, it can
not be said with certainty that the openScope simulator is an accurate simulator for air traffic
management. This is since it is an open-sourced project meaning that anyone can contribute
to the project. For open-sourced projects there often is a form administrator who checks the
commits before merging with the main branch. There is an administrator in most cases, but
we can not ensure that all commits to the project have been thoroughly examined and neither
that in the case of an administrator, the administrator is competent within the area. Therefore
the simulator is of a low scientific standard, which decreases the validity of the method.

Sources used in the method can also be reviewed within the context of validity. The attack
definitions were concluded from the theory where the sources were of a scientific grade. With
that said, there had never been a scientific paper published on a sybil attack within the air
traffic communication field before but only papers on sybil attacks in the context of other
forms of networks. This meant that we had to create our own definition of how a sybil attack
would work in an aircraft communication network. This might differ from how others would
define a sybil attack since it is originally an attack to get a majority in a network to for example
change the outcome of voting results. We would still argue that the method used for sybil
attack is scientific since the model for the attack was drafted together with the knowledge
of how sybil attack works in other networks together with our supervisor who is highly
knowledgeable within the area.

5.3 The work in a wider context

This thesis has only been made for academic purposes. It studied an area that could present
itself as dangerous if used in the real world. The reason for writing this thesis was to explore
and dissect the ADS-B protocol since it is a technology that is being widely adopted in ATM.
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5.4. Future work

One of the goals of this thesis was to find and point out certain areas of ADS-B technology
that could be exploited and therefore shed some light on these vulnerabilities to create a
discussion regarding the safety of air traffic communication. Writing this thesis could be
seen as an ethical problem since it may present ideas to potential adversaries who could use
some part of this thesis for illegal activities and possibly self-beneficial purposes. However,
since the attacks in real life could be executed differently and would require a high technical
knowledge this thesis can not by any means be used as a blueprint to perform these attacks
on real aircrafts.

Another purpose the attacks could be used for is educational purposes, where the open-
Scope simulator with the implemented attacks could be used for training air traffic controllers
(ATCos). Something that could be seen as highly beneficial in regards to the security mindset
of ATCos. The simulator can expose ATCos to different kinds of attacks during training which
might result in future ATCos having a deeper understanding of how attacks are executed and
what they can do when they are exposed to them.

Since encryption of ADS-B most likely will not be implemented even though there have
been propositions of technical solutions for this matter [6] and due to the reasons presented
in Section 2.2 we, therefore, think that our work within this area is justified for the sake of
educating future ATCos but also that machine learning could play a vital part in detecting
and preventing attacks and should therefore be further investigated to increase the security
of ADS-B.

5.4 Future work

Since this thesis partially has addressed areas that have not previously been studied before,
many questions have surfaced that could not be answered in this thesis. A large area which
the thesis revolves around is how a sybil attack would be executed in air traffic communica-
tion and especially with real aircrafts. Similar questions, like what the purpose of the sybil
attack would be and how it technically would be executed are some fields that require future
work.

Regarding the ADS-B protocol, which currently is being deployed, some areas could be
investigated further. One main takeaway from this paper is that the attacks addressed and
implemented in the openScope simulator are viable, so a field that requires future work is if
there is a need for a prevention system regarding security and to which extent this prevention
system should work.

If there is a need for a prevention system, the machine learning models used in this paper
require some extended work. An examination of machine learning models, with more data
and preferably attack data collected from real-life aircrafts, would be suitable. As seen in the
results, the machine learning models also performed differently, so an examination regarding
which machine learning models are most suitable for this kind of task is also needed.

The openScope simulator would also need some extended work. Both in terms of cleaning
up the logic behind the code and attacks, but also an expert within the ADS-B and air traffic
communication field would need to take a closer look at the attacks to confirm or deny the
validity of the attacks and provide their expertise within the area.
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6 Conclusion

In this thesis, we have shown that it is possible to execute impersonation and sybil attacks
against ADS-B technology. Even though this was made in a simulator, these attacks could be
executed in a real-world scenario, but to make sure that this is possible future work is needed.
The implementation of the attacks points out vital security flaws with ADS-B that have to be
addressed by implementing new technological features in ADS-B.

Two out of three machine learning models used in this thesis had very high accuracy for
detecting attacks, reaching 99.9% in accuracy. Even though these results are yielded from a
non-scientific simulator, more work with these machine learning models could be useful in
the real world as well. One important takeaway from these tests is that the fundamentals of
the machine learning model are crucial to yielding the results needed. This can be visualized
by comparing the Naive Bayes model to the kNN model, where Naive Bayes scored an accu-
racy of 71.2%, quite good, but when dissecting these results it was discovered that this model
only was good at detecting authentic aircrafts whilst the kNN model could detect all attacks
very well.

Since encryption protocols could be implemented [34] [6], but most likely will not be, we
propose this as our main conclusion:

Machine learning detection systems should be used to improve ADS-B security.

In addition to our main conclusion, we also think that educating ATCos to understand,
detect and handle attacks is a good way of improving ADS-B security and would also like to
highlight this as an important part of the future of ATC and ATM.

29



Bibliography

[1] Federal Aviation Administration. ADS-B Frequently Asked Questions (FAQs). URL:
https : / / www . faa . gov / nextgen / programs / adsb / faq / #g1 (visited on
02/21/2022).

[2] Federal Aviation Administration. ADS-B In Pilot Applications. URL: https://www.
faa.gov/nextgen/programs/adsb/pilot/ (visited on 02/23/2022).

[3] Federal Aviation Administration. Airspace. URL: https://www.faa.gov/nextgen/
equipadsb/research/airspace/ (visited on 02/23/2022).

[4] Federal Aviation Administration. Ins and Outs. URL: https : / / www . faa . gov /
nextgen/equipadsb/capabilities/ins_outs/ (visited on 02/21/2022).

[5] aioobe. Generate a random point within a circle (uniformly). URL: https : / /
stackoverflow.com/questions/5837572/generate-a-random-point-
within-a-circle-uniformly (visited on 04/25/2022).

[6] J. Baek, E. Hableel, Y. Byon, D. S. Wong, K. Jang, and H. Yeo. “How to Protect ADS-B:
Confidentiality Framework and Efficient Realization Based on Staged Identity-Based
Encryption”. In: IEEE Transactions on Intelligent Transportation Systems 18.3 (Mar. 2017),
pp. 690–700. DOI: 10.1109/tits.2016.2586301. URL: https://doi.org/10.
1109/tits.2016.2586301.

[7] A. Blaberg, G. Lindahl, A. Gurtov, and B. Josefsson. “Simulating ADS-B Attacks in
Air Traffic Management”. In: 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC). IEEE, Oct. 2020. DOI: 10.1109/dasc50938.2020.9256438. URL: https:
//doi.org/10.1109/dasc50938.2020.9256438.

[8] A. Blåberg and G. Lindahl. “Simulating ADS-B attacks in air traffic management”.
In: (July 2020). URL: https://www.diva- portal.org/smash/get/diva2:
1452531/FULLTEXT01.pdf.

[9] J. Brownlee. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and
Data Transforms in Python. Machine Learning Mastery, 2020. URL: https://books.
google.se/books?id=uAPuDwAAQBAJ.

[10] B. R. Chandavarkar and T K Shantanu. “Sybil Attack Simulation and Mitigation in
UnetStack”. In: 2021 12th International Conference on Computing Communication and Net-
working Technologies (ICCCNT). IEEE, July 2021. DOI: 10.1109/icccnt51525.2021.
9579859. URL: https://doi.org/10.1109/icccnt51525.2021.9579859.

30

https://www.faa.gov/nextgen/programs/adsb/faq/#g1
https://www.faa.gov/nextgen/programs/adsb/pilot/
https://www.faa.gov/nextgen/programs/adsb/pilot/
https://www.faa.gov/nextgen/equipadsb/research/airspace/
https://www.faa.gov/nextgen/equipadsb/research/airspace/
https://www.faa.gov/nextgen/equipadsb/capabilities/ins_outs/
https://www.faa.gov/nextgen/equipadsb/capabilities/ins_outs/
https://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
https://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
https://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
https://doi.org/10.1109/tits.2016.2586301
https://doi.org/10.1109/tits.2016.2586301
https://doi.org/10.1109/tits.2016.2586301
https://doi.org/10.1109/dasc50938.2020.9256438
https://doi.org/10.1109/dasc50938.2020.9256438
https://doi.org/10.1109/dasc50938.2020.9256438
https://www.diva-portal.org/smash/get/diva2:1452531/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1452531/FULLTEXT01.pdf
https://books.google.se/books?id=uAPuDwAAQBAJ
https://books.google.se/books?id=uAPuDwAAQBAJ
https://doi.org/10.1109/icccnt51525.2021.9579859
https://doi.org/10.1109/icccnt51525.2021.9579859
https://doi.org/10.1109/icccnt51525.2021.9579859


Bibliography

[11] Y. Chen and L. Zhou. “Vulnerabilities in ADS-B and Verification Method”. In: 2020 IEEE
2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT.
IEEE, Oct. 2020. DOI: 10.1109/iccasit50869.2020.9368812. URL: https://
doi.org/10.1109/iccasit50869.2020.9368812.

[12] SESAR Deployment Manager supported by Eurocontrol. Automatic Dependent Surveil-
lance – Broadcast. URL: https://ads-b-europe.eu/ (visited on 02/21/2022).

[13] T. Fushiki. “Estimation of prediction error by using K-fold cross-validation”. In: Statis-
tics and Computing 21.2 (2011), pp. 137–146. URL: https://doi.org/10.1007/
s11222-009-9153-8.

[14] Google. Colaboratory: Frequently Asked Questions. URL: https://research.google.
com/colaboratory/faq.html (visited on 04/27/2022).

[15] A. Gurtov, T. Polishchuk, and M. Wernberg. “Controller–Pilot Data Link Communica-
tion Security”. In: Sensors 18.5 (May 2018), p. 1636. DOI: 10.3390/s18051636. URL:
https://doi.org/10.3390/s18051636.

[16] O. Harrison. Machine Learning Basics with the K-Nearest Neighbors Algorithm. Sept. 2018.
URL: https : / / towardsdatascience . com / machine - learning - basics -
with- the- k- nearest- neighbors- algorithm- 6a6e71d01761 (visited on
04/27/2022).

[17] K. Jindal, S. Dalal, and K. K. Sharma. “Analyzing Spoofing Attacks in Wireless Net-
works”. In: 2014 Fourth International Conference on Advanced Computing & Communi-
cation Technologies. IEEE, Feb. 2014. DOI: 10.1109/acct.2014.46. URL: https:
//doi.org/10.1109/acct.2014.46.

[18] A. Khan, J. Thorn, A. Wahlgren, and A. Gurtov. “Intrusion Detection in Automatic
Dependent Surveillance-Broadcast (ADS-B) with Machine Learning”. In: 2021 IEEE/A-
IAA 40th Digital Avionics Systems Conference (DASC). IEEE, Oct. 2021. DOI: 10.1109/
dasc52595.2021.9594431. URL: https://doi.org/10.1109/dasc52595.
2021.9594431.

[19] M. R. Manesh and N. Kaabouch. “Analysis of vulnerabilities, attacks, countermeasures
and overall risk of the Automatic Dependent Surveillance-Broadcast (ADS-B) system”.
In: International Journal of Critical Infrastructure Protection 19 (Dec. 2017), pp. 16–31. DOI:
10.1016/j.ijcip.2017.10.002. URL: https://doi.org/10.1016/j.ijcip.
2017.10.002.

[20] K. Mizokami. “U.S. Spy Plane Impersonates Malaysian Aircraft, Apparently to Fool
China”. In: (Sept. 2020). URL: https://www.popularmechanics.com/military/
aviation / a33970936 / us - spy - plane - impersonates - malaysian -
aircraft/.

[21] A. Navada, A. N. Ansari, S. Patil, and B. A. Sonkamble. “Overview of use of decision
tree algorithms in machine learning”. In: 2011 IEEE Control and System Graduate Research
Colloquium. IEEE, June 2011. DOI: 10.1109/icsgrc.2011.5991826. URL: https:
//doi.org/10.1109/icsgrc.2011.5991826.

[22] International Civil Aviation Organization. Future of Aviation. 2019. URL: https://
www.icao.int/Mwueetings/FutureOfAviation/Pages/default.aspx (vis-
ited on 02/21/2022).

[23] Aircraft Owners and Pilots Association. ADS-B Glossary. URL: https://www.aopa.
org/go-fly/aircraft-and-ownership/ads-b/ads-b-glossary (visited on
02/23/2022).

[24] Aircraft Owners and Pilots Association. Where is ADS-B Out Required? URL: https:
//www.aopa.org/go-fly/aircraft-and-ownership/ads-b/where-is-
ads-b-out-required (visited on 02/23/2022).

31

https://doi.org/10.1109/iccasit50869.2020.9368812
https://doi.org/10.1109/iccasit50869.2020.9368812
https://doi.org/10.1109/iccasit50869.2020.9368812
https://ads-b-europe.eu/
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.1007/s11222-009-9153-8
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://doi.org/10.3390/s18051636
https://doi.org/10.3390/s18051636
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://doi.org/10.1109/acct.2014.46
https://doi.org/10.1109/acct.2014.46
https://doi.org/10.1109/acct.2014.46
https://doi.org/10.1109/dasc52595.2021.9594431
https://doi.org/10.1109/dasc52595.2021.9594431
https://doi.org/10.1109/dasc52595.2021.9594431
https://doi.org/10.1109/dasc52595.2021.9594431
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://www.popularmechanics.com/military/aviation/a33970936/us-spy-plane-impersonates-malaysian-aircraft/
https://www.popularmechanics.com/military/aviation/a33970936/us-spy-plane-impersonates-malaysian-aircraft/
https://www.popularmechanics.com/military/aviation/a33970936/us-spy-plane-impersonates-malaysian-aircraft/
https://doi.org/10.1109/icsgrc.2011.5991826
https://doi.org/10.1109/icsgrc.2011.5991826
https://doi.org/10.1109/icsgrc.2011.5991826
https://www.icao.int/Mwueetings/FutureOfAviation/Pages/default.aspx
https://www.icao.int/Mwueetings/FutureOfAviation/Pages/default.aspx
https://www.aopa.org/go-fly/aircraft-and-ownership/ads-b/ads-b-glossary
https://www.aopa.org/go-fly/aircraft-and-ownership/ads-b/ads-b-glossary
https://www.aopa.org/go-fly/aircraft-and-ownership/ads-b/where-is-ads-b-out-required
https://www.aopa.org/go-fly/aircraft-and-ownership/ads-b/where-is-ads-b-out-required
https://www.aopa.org/go-fly/aircraft-and-ownership/ads-b/where-is-ads-b-out-required


Bibliography

[25] L. E. Peterson. “K-nearest neighbor”. In: Scholarpedia 4.2 (2009). revision #137311,
p. 1883. DOI: 10.4249/scholarpedia.1883.

[26] W. R. Richards, K. O’Brien, and D. C. Miller. new Air Traffic Surveillance Technology. 2010.
URL: https://www.boeing.com/commercial/aeromagazine/articles/
qtr_02_10/pdfs/AERO_Q2-10_article02.pdf (visited on 02/22/2022).

[27] M. Strohmeier, V. Lenders, and I. Martinovic. “On the Security of the Automatic De-
pendent Surveillance-Broadcast Protocol”. In: IEEE Communications Surveys & Tutorials
17.2 (2015), pp. 1066–1087. DOI: 10.1109/comst.2014.2365951. URL: https:
//doi.org/10.1109/comst.2014.2365951.

[28] J. Sun. The 1090 Megahertz Riddle: A Guide to Decoding Mode S and ADS-B Signals. 2nd ed.
TU Delft OPEN Publishing, 2021. ISBN: 978-94-6366-402-8. DOI: 10.34641/mg.11.

[29] J. Thorn and A. Wahlgren. “Detecting ADS-B spoofing attacks: using collected and sim-
ulated data”. In: (Sept. 2021). URL: https://www.diva-portal.org/smash/get/
diva2:1592064/FULLTEXT01.pdf.

[30] R. Timofeev. “Classification and regression trees (CART) theory and applications”. In:
Humboldt University, Berlin 54 (2004).

[31] N. Tiwari. Data Cleaning Using Pandas. 2021. URL: https : / / www .
analyticsvidhya.com/blog/2021/06/data-cleaning-using-pandas/
(visited on 05/05/2022).

[32] A. Wallin. Uniform random points in a circle using polar coordinates. 2009. URL: http:
//www.anderswallin.net/2009/05/uniform- random- points- in- a-
circle-using-polar-coordinates/ (visited on 04/25/2022).

[33] G. I. Webb, E. Keogh, and R. Miikkulainen. “Naive Bayes”. In: Encyclopedia of machine
learning 15 (2010), pp. 713–714.

[34] K. D. Wesson, T. E. Humphreys, and B. L. Evans. “Can cryptography secure next gen-
eration air traffic surveillance?” In: IEEE Security and Privacy Magazine (2014).

[35] Z. Wu, T. Shang, and A. Guo. “Security Issues in Automatic Dependent Surveillance -
Broadcast (ADS-B): A Survey”. In: IEEE Access 8 (2020), pp. 122147–122167. DOI: 10.
1109/ACCESS.2020.3007182.

[36] M. H. Yilmaz and H. Arslan. “Impersonation attack identification for secure commu-
nication”. In: 2013 IEEE Globecom Workshops (GC Wkshps). IEEE, Dec. 2013. DOI: 10.
1109/glocomw.2013.6825169. URL: https://doi.org/10.1109/glocomw.
2013.6825169.

[37] T. K. Zhukabayeva, E. M. Mardenov, and A. A. Abdildaeva. “Sybil Attack Detection
In Wireless Sensor Networks”. In: 2020 IEEE 14th International Conference on Application
of Information and Communication Technologies (AICT). IEEE, Oct. 2020. DOI: 10.1109/
aict50176.2020.9368790. URL: https://doi.org/10.1109/aict50176.
2020.9368790.

32

https://doi.org/10.4249/scholarpedia.1883
https://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/pdfs/AERO_Q2-10_article02.pdf
https://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/pdfs/AERO_Q2-10_article02.pdf
https://doi.org/10.1109/comst.2014.2365951
https://doi.org/10.1109/comst.2014.2365951
https://doi.org/10.1109/comst.2014.2365951
https://doi.org/10.34641/mg.11
https://www.diva-portal.org/smash/get/diva2:1592064/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1592064/FULLTEXT01.pdf
https://www.analyticsvidhya.com/blog/2021/06/data-cleaning-using-pandas/
https://www.analyticsvidhya.com/blog/2021/06/data-cleaning-using-pandas/
http://www.anderswallin.net/2009/05/uniform-random-points-in-a-circle-using-polar-coordinates/
http://www.anderswallin.net/2009/05/uniform-random-points-in-a-circle-using-polar-coordinates/
http://www.anderswallin.net/2009/05/uniform-random-points-in-a-circle-using-polar-coordinates/
https://doi.org/10.1109/ACCESS.2020.3007182
https://doi.org/10.1109/ACCESS.2020.3007182
https://doi.org/10.1109/glocomw.2013.6825169
https://doi.org/10.1109/glocomw.2013.6825169
https://doi.org/10.1109/glocomw.2013.6825169
https://doi.org/10.1109/glocomw.2013.6825169
https://doi.org/10.1109/aict50176.2020.9368790
https://doi.org/10.1109/aict50176.2020.9368790
https://doi.org/10.1109/aict50176.2020.9368790
https://doi.org/10.1109/aict50176.2020.9368790

