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Abstract

Forecasting financial time series is one of the most challenging problems in economics
and business. Markets are highly complex due to non-linear factors in data and uncertainty.
It moves up and down without any pattern. Based on historical univariate close prices
from the S&P 500, SSE, and FTSE 100 indexes, this thesis forecasts future values using two
different approaches: one using a classical method, a Seasonal ARIMA model, and a hybrid
ARIMA-GARCH model, while the other uses an LSTM neural network. Each method is
used to perform at different forecast horizons. Experimental results have proven that the
LSTM and Hybrid ARIMA-GARCH model performs better than the SARIMA model. To
measure the model performance we used the Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE).

Keywords: machine learning, deep learning, Long Short-Term Memory (LSTM), Au-
toregressive Integrated Moving Average (ARIMA), time series, stock market, index, ADF,
ACF, and PACF.
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Chapter 1
Introduction

Financial time series is one of the active research areas for economics and investment. The
values of the stock market index refer to the price index or movement of fluctuation of the
market. As financial time series data moves as a result of non-linear factors such as the eco-
nomic rate, GDP growth of a country, and other investor sentiments, it becomes difficult to
make accurate forecasts due to noise and chaos. The global stock indices of the different
countries are may vary, based on significant world events such as Covid 19 pandemic rescis-
sion, and the war in Ukraine. Economic policies are developed and announced by the most
influential countries in the world. These pieces of information affect the sudden change in the
stock indices of all other countries. The fundamental and quantitative analysis of data such
as stock price, volume, portfolio, etc. Stock-related information of the associated organization
profile, strategies, [39] and derived correlation to predict the market behavior.

In practice, traders and investors anticipate different information for decision making
such as corporate disclosures, stock price, macroeconomic data, news, economic fluctuation
of dominant countries, and even social media. The social and economic conditions of every
country were analyzed to extract the sentiments from the financial text. Those texts have a
strong correlation with the stock market movement has shown in [24]. There is a good notable
expansion being made in the field of text mining and natural language processing in recent
years, there has also been combining textual analysis with machine learning techniques to
forecast the stock values of the future[24] [21].

Multiple approaches and methods are used in economics and as well as in the computer
science area to predict market behavior, including stock trend forecasting (up, down, bear
market, or bull market respectively). This study aims to analyze and investigate appropriate
forecasting methods that offer low forecasting error and high forecasting accuracy. Therefore,
we are working on the univariate time series data i.e., stocks Close price is a covariate for
each method. The results of some literature indicate that most of the data are non-stationary.
The most well-known econometric and traditional method is the Autoregressive Integrated
Moving Average method. This is the only statistical time series model which adds differenc-
ing ARMA process. We compare the traditional methods with the modern machine learning
method like Recurrent neural network (RNN) and Long Short Term Memory (LSTM). In time
series forecasting, deep learning techniques can identify structures and inherent patterns in
data, such as non-linearity and complexity[28].

Stock shares are fractional ownership of a corporation, generally granting the holder the
right to a portion of earnings, proceeds from liquidation events, and voting rights. Investors
can buy and sell stock shares privately or through the stock exchange. As time goes on, the
price of a stock may rise or fall. Generally, investors and traders buy stocks they believe will
rise in price and sell stocks they believe will decrease in price. Returns of a stock can be
expressed as the change in its price over time, and daily returns are the change in its price
over a single day. It [38] explains how stocks and self-reported planning horizons impact
individual investors’ asset allocation decisions. I find that stocks of individual companies

1



1.1. Aim & Objective

and investment horizons play different roles in determining investment decisions in risky
portfolios. This is explained by the relationship between investing time horizons and firm
performance. It might tend to affect only investments in financial risky assets like stocks,
options, and mutual funds. A longer horizon leads to an increasing share of risky financial
investments. To make, less risk-averse investors and individuals on day trade more in stocks.
We chose the different horizons as 5, 21, and 62. Finally, investors should utilize it when
evaluating the risk-return relationship of forecasted values with the actual values.

This paper provides the in-depth orchestration of data preprocessing, feature engineering,
and training of ML models with different financial time series data. The major work of this
paper are :

• Investigate the performance of deep learning-based algorithms and traditional forecast-
ing techniques through an empirical study.

• Compare the forecasting error between the LSTM, SARIMA, and Hybrid ARIMA-
GARCH models.

• Compare the result of different forecast horizons between the three methods.

1.1 Aim & Objective

This thesis aims to study historical values of time series and build a model to describe the
structure of the data and predict future values of the time series path. As time-series fore-
casting plays a vital role in many branches of applied sciences, it is imperative to develop an
effective model to improve forecasting accuracy. To achieve this, multiple steps are derived
as follows:

1. Select the best model with optimal parameters and specifications.

2. Choose the applicable metrics to evaluate the model performance.

3. Validate the approach using a suitable method.

4. Compare the performance of the classical approach with the machine learning ap-
proach.

1.2 Research question

1. Which of the methods selected for comparison, i.e. Seasonal-ARIMA, Hybrid ARIMA-
GRACH, and LSTM, delivers the most accurate performance?

2. How do classical and machine learning approaches perform at different forecast hori-
zons?

1.3 Literature Review

A variety of forecasting methods have been proposed in the literature, but in this study, only
stock prices will be forecasted. [23] showed that the Autoregressive Moving Average (ARMA)
was better at predicting the future values than the Kalman filter in the field of time series
estimation in gas sensors. The authors built the ARMA and Kalman models on the short-term
time-series data (collected for a shorter period, such as a month) and forecasted the long-
term time series (for a longer period, such as a year) based on the trained models. Another
appropriate method used for time series prediction problems is a recurrent neural network
[41]. This is mainly due to their ability to take into account the sequential nature of time series
explicitly and thus learn more efficiently. The most significant reason is classical methods are

2



1.3. Literature Review

not capturing non-linear patterns of the time series. LSTM is a good algorithm for time-series
predictions due to its ability to consider long-term dependabilities and It has a strong ability
to capture nonlinear patterns in time series data. Nelson et al.[8] built binary classification
models using LSTM RNNs that, instead of predicting the future price of a stock, predicted
whether a stock would be higher or lower than the current price 15 minutes in the future.
These were trained on the trading data of stocks on the Brazilian stock exchange, along with
a set of technical indicators derived from the trading data. On the five stocks for which the
authors published the results, the lowest and highest accuracy of the models was 53.0 and
55.9 percent respectively.

The research on time series forecasting of the financial market originated from the efficient
market hypothesis. In [34]the author Vantuch and Tomas states the theory, how the evolu-
tionary based ARIMA model useful to analyze past events to produce valuable results for the
next phase of the period. Machine Learning and Deep learning approaches are tailored to
the prediction problem, where the association of variables is modeled in a deep and layered
hierarchy. Prediction of the stock price using Recurrent Neural Network proposed by Zhu
2020 [41]. This paper shows that the experiment is made use of machine learning libraries like
Keras and TensorFlow to train the stock trading data of Apple and predict the stock prices
with good accuracy.In [26], COVID-19 time series data of America is used to forecast the fu-
ture spread of diseases in the country by applying the both eXtreme Gradient Boosting and
Long Short Term Memory Algorithm.

Since the 1990s, neural networks have been increasingly applied to finance in academic
settings. According to Chen et al.,(2015)[7], LSTM networks can understand data structure
dynamically over time with excellent prediction abilities. Using the same algorithm, Nelson
et al.,(2017) performed a similar study on the Brazilian market and found the model could
accurately predict price changes within the next few months with an accuracy of 55%. The re-
sults of this paper [35] show the experimental comparison of 10 stock datasets on the different
parameters of each model, and the proposed model is generalized to improve the prediction
result on a single ARIMA or a single XGBoost.A paper [31] compares the accuracy of ARIMA
and LSTM and explains techniques when forecasting time series data. These techniques were
executed on a set of financial data and the results showed that LSTM was far superior to
ARIMA.To tackle these challenges, an alternate approach is a network autoregressive (NAR)
model [40] with the de-GARCH technique, denoted by NAR-GARCH, which is proposed in
this study. Specifically, the NAR-GARCH model first filters out the GARCH effects contained
in each return process. Next, a NAR model is used to capture the joint effects in the de-
GARCH processes, where a systematic scheme for accommodating the most updated market
information is also proposed under the framework of the Granger causality test [13] and Pear-
son’s correlation test with sharp price movements. In particular, XGboost and LSTM are used
for handwritten digit recognition Graves et al. (2009) [14], speech recognition Robinson, 2002;
Eyben 2009; Graves et al. 2013; Sak et al. 2014 [30], and text classification. Others proceed
to forecast stock returns using a unique decision-making model for day trading investments
on the stock market the model developed by the authors uses the support vector machine
(SVM) method and the mean-variance (MV) method for portfolio selection [29]. Our primary
objective is to forecast the closing prices for a portfolio of assets using statistical (ARIMA)
and machine learning (ML) algorithms based on LSTM RNN and XGBoost. Predicting future
portfolio values based on the most accurate algorithm is paramount to our success

Engle [12] first proposed this ARCH model to predict the conditional variance of return
series. It has the key strength of producing volatility estimates with positive excess kurtosis
(that is, fat tails are present about the normal distribution which is by empirical observations
about returns). However, it also has some weaknesses. Firstly, due to the potentially large
value of the lag q, it might be necessary to estimate a large number of parameters. Therefore,
it may be difficult to estimate parameters [16]. Secondly, as we know in practice, stock prices

3



1.3. Literature Review

or financial assets, in general, react differently to positive and negative shocks. However,
ARCH models assume these Kinds of shocks have the same effects on the volatility as they
depend on the square of the previous shocks. It is important to take into account the leverage
effect, which explains the difference in volatility’s reaction between notable price rises and
notable price falls. As a result of this, asymmetric GARCH models have been developed by
adjusting the error term in the variance equation with a parameter to account for this effect.
This was first proposed by Engle et al[11].

[3] Weiss proposed the class of ARIMA models with ARCH errors. They were applied
to U.S. macroeconomic data. Many researchers later adopted and extended this method to
model time series in various fields Jablecki et al. and Yaziz et al.[37] developed an ARIMA-
GARCH model for forecasting gold price. Based on the empirical results of the 40-day gold
price history, we can demonstrate that the hybrid ARIMA(1,1,1)-GARCH(0,2) model provides
superior results and is more effective in evaluating and predicting gold prices than linear
models.

4



Chapter 2
Data

2.1 Data Source

We collected 5 years of historical data for the stock index of 3 developing countries in the
world. To collect these data, we made use of the python package which connects the Yahoo
finance [36] and loads the data in the form of the Pandas data frame. The daily data includes
the S&P 500, FTSE 100, and SHANGHAI Stock Exchange (SSE). This dataset was collected
because the trading was continuous and there were no breaks in the market trading. More-
over, the data was collected from January 2018 to March 2022. The index stocks cannot be
bought but it usually represents the overall stock movement of the country.

Figure 2.1: Data Overview of time series in the financial market

5



2.2. Data Description

2.2 Data Description

Data covers price as a function of time from various financial markets. It consists of features
like Open, Close, High, Low, and volume of trading. The close price is adjusted for stock
splits and dividends. figure 2.1 displays the daily development in closing prices of the differ-
ent stock indexes. The data was obtained from the different currency pairs USD, EURO, and
CNY.

2.3 Data formatting

The close price is used in this thesis to determine the future value of the index. It is the
price adjusted for stock splits and dividend distributions. The purpose of this measure is to
ensure that such actions do not misleadingly affect the index value. The data formatting and
overcome of analysis are explained below,

Normalization: In time series forecasting, the min-max normalization method presents a
problem since the minimum and maximum values of the out-of-sample data are unknown.
We can overcome this problem by considering the minimum (minA) and maximum (maxA)
values presented in the in-sample data set, and then mapping all out-of-sample values be-
low minA and above max to low and high, respectively. Due to this approach, substantial
information is lost, and values are concentrated in a limited range, requiring more computa-
tion and decreasing the quality of methods to learn. This technique of normalization is used
only for modern approaches like LSTM but in the case of the classical method(SARIMA and
hybrid ARIMA), data is used with an original scale.

Data Cleansing: The cleansing of data is divided into two tasks. The first is dealing with
missing data, while the second is aligning data. The first consideration is how to deal with
missing data. The data used in this study are from different assets and different areas. In
different time zones, there may be some missing data due to different holiday arrangements
and different trading days. Since the paper used sufficient historical data, it is reasonable
to exclude the data from certain dates that were unavailable. If the data is needed to fill
on the missing place then mean imputation is used. The alignment of the data is another
consideration. There are differences in the trading periods of individual assets and regions.
Markets such as the S&P 500 trade in the same period, whereas markets in Asia such as the
SSE trade before the markets in the US, though the dates are the same. So this paper uses the
daily data of S&P 500 and SSE on the previous dates and data of FTSE 100 (Europe) and SSE
(Asia) on the same date to forecast the moving direction of the S&P 500 (North America).To
avoid the influence of different data scales, this paper scales feature values linearly in a range
of [0,1]. In other words, features with a large numerical range will dominate those with a
small numerical range.

Outcome of Analysis: From figure 2.2 one of the most obvious observations is that the
data, there is a giant dip in the middle corresponding to the market crash in 2020 and 2021, is
non-stationary. It makes sense for market data as it tends to spike up in the long run rather
than fluctuate down. Time series analysis faces this problem because non-stationary data
tends to be difficult to analyze. In the first instance, we can try a first difference between
the series. The difference(t) is derived by subtracting the previous value t-1 from the current
value t. The data no longer appears to be trending upward over time and is instead centered
around 0. However, there is another problem. When we look at the variance, it shows some
sudden shocks in the overall range.

Rate of Variation: This figure shows the normalized percentage change or detrended val-
ues of the closing price, which indicates how volatile the three markets have been. Volatility
corresponds to the amount of price change over an explicit time interval. In recent years
the S&P 500, SSE, and FTSE 100 indexes have all been relatively stable with low volatility in
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2.3. Data formatting

their price changes (Harris, 1989), and from figure 2.2 we can see that the index has also been
relatively stable, once the data is undergone the differencing process.

(a) Normalized Closing Price of S&P 500 (b) Normalized rate of Change of the Clos-
ing Price

(c) Normalized Closing Priceof SSE (d) Normalized rate of Change of the Clos-
ing Price

(e) Normalized Closing Price of FTSE 100 (f) Normalized rate of Change of the Clos-
ing Price

Figure 2.2: Illustration of Normalized and de-trended values of the closing price in each stock
data.
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Chapter 3
Theory

This chapter presents the theory corresponding to the background information required for
understanding the techniques used in later chapters. A particular focus on the RNN archi-
tecture of LSTM and some theories relevant to the times series analysis. In addition to this
neural network and some other methods, we will also discuss the Hybrid ARIMA-GRACH
model, and the how models described in the following section are specified.

3.1 Time Series

Data collected over a series of time points or over some time is called a time series. Examples
of time series include the start of new housing projects each month and the sale of products
every week. In a time series, data are typically collected at equal intervals of time, such as
hourly, daily, weekly, monthly, or yearly. The ultimate purpose of time series analysis is to
develop forecasts for future values of the series [5].

3.1.1 Characteristics of the time series

In stochastic processes, we can view Yt as a sequence of random variables. This process
represents how we observe time series. According to the joint distribution of Yt, this process
has a complete probability structure. In this joint distribution, the majority of the information
is represented by the mean, variance, and covariance. The main characteristic quantities are
shown below:

• Mean: µt = EYt —> Expected(Yt)

• Variance: DYt = E(Yt ´ µt)2

• Covariance: Cov(Yt, Ys) = E(Yt ´ µt)(Ys ´ µs)

• Autocorrelation: ρt,s =
Cov(Yt ,Ys)?

DYt .DYs
=

γt,s?
γt,t .γs,s

3.1.2 Properties of Time series

Stochastic process

Stochastic processes are defined as collections of randomly arranged variables over time.
Probabilistic laws determine how stochastic processes evolve. In this thesis, we observe that
the stochastic process is responsible for the data points that comprise the stock index. Hence,
the time series is a sample of the random variables within the stochastic process (Cryer and
Chan, 2008; Box et al., 2016).
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3.1. Time Series

Stationarity

A time series is stationary if the statistical properties of the process generating it do not
change over time. In other words, it does not mean the series does not change over time,
just that its method of change is not itself changing over time. It is therefore a linear function,
not a constant one, in algebra the value of a linear function changes as y increases, but the
amount it changes remains constant – it has a constant slope; one value that captures that rate
of change.

3.1.3 Autoregression

Autoregressive (AR) statistics is another widely used statistical process. Its worth at this
time depends on previous time steps as well as a random shock term. In contrast to the MA
process, the AR is not always stationary (Box et al., 2016). A general AR process is denoted
AR(p), where p is the order of the process. A general AR method can be written here:

Yt = c + φ1Yt´1 + φ2Yt´2 + ... + φpYt´p + εt (3.1)

At some arbitrary time t, Yt represents the process value, εt is the error term at time t, and
φ0 to φp are the parameters. So, the AR(p) value depends on how the process has evolved over
the p time steps since the previous time step, and how the error term has changed. A process
of order one is abbreviated AR(1), whose value is based on the value at the time step before,
and the shock or error term today. AR(2) values depend on the value at the two previous time
steps as well as today’s shock (Cryer and Chan, 2008; Box et al., 2016).

3.1.4 Moving Average

An important characteristic of the moving average (MA) process in time series analysis is
that it is always stationary. The MA process is one of the most common stochastic methods
used in time series analysis. Its value varies according to the current and previous value of
the shock term. The general MA process is denoted MA(q), where q stands for the order of
process. the process can be written as,

Yt = c + εt + θ1εt´1 + θ2εt´2 + ... + θqεt´q (3.2)

At any given point in time t, Yt is the values of the process,t, εt, and εt´q are the random
shock term and θ1 to θq are the parameters. This means that the value of an MA at time t is
determined by the shock term at time t, as well as all the shock terms q time steps back. For
an MA(1), the process value depends on the shock term in the current time and the shock
term in the previous time frame. For MA(2) the process value is based on the shock term in
the present and the previous time frames(Cryer and Chan, 2008; Box et al., 2016).

3.1.5 Differencing and integration order

It is possible to create non-stationary statistic processes to stationary. This can be accom-
plished by using differencing. Differences between consecutive values are calculated by
transforming the process so that the data points in the process instead of the actual values
become the differences. Therefore, with this method, the stochastic trend can be removed
from a non-stationary process, stabilizing the mean and thus making the process stationary
(Cryer and Chan, 2008). If a process is differentiated once into a new process, the original
process is regarded as integrated of order one. Differentiation is used to achieve stationarity,
which means that the order of integration states the number of differentiating steps required
(Hamilton, 1994).
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3.2 Statistical tests

3.2.1 Augmented-Dickey Fuller Test

Using ADF (Augmented Dickey-Fuller) as a statistical significance test gives results in a hy-
pothesis test, including both null and alternative hypotheses. This will give us a p-value from
which we can make inferences about whether the time series is stationary or not. Before get-
ting into the ADF, we must know about the Unit Root test because the ADF test belongs to
the unit root test.

Time series that are not stationary is said to possess a unit root. In technical terms, a unit
root is defined as a time series that has a value of α = 1 expressed in a simple regression form
below,

Yt = αYt´1 + εt (3.3)

where the Yt is the value of the time series at a time t and εt is a residual of variables.
An Augmented Dicker Fuller test is the extension of the unit root test, which removes the
auto-correlation from the series and then tests similar to the procedure of the dickey-fuller
test. Based on the statistic, the augmented dickey fuller test produces a negative result, and
rejection of the hypothesis depends on that negative number; the more negative magnitude
of the number represents the confidence of the presence of unit root at some level in the time
series.

∆yt = α + βYt´1 + φ1∆Yt´1 + φ2∆Yt´2 ... + φp´1∆Yt´p+1 + εt (3.4)

In the autoregressive process, α is a constant, β is the coefficient on a time trend, p is the
lag order, and ∆ is the difference operator. The unit root test is then conducted under the
null hypothesis γ = 0 against the alternative hypothesis of γ ă 0. Once a value for the test
statistic

DFτ =
γ̂

SE(γ̂)
(3.5)

is computed it can be compared to the relevant critical value for the Dickey-Fuller test.
As this test is asymmetrical, we are only concerned with negative values of our test statistic
DFτ . If the calculated test statistic is less (more negative) than the critical value, then the null
hypothesis of γ = 0 is rejected and no unit root is present.

3.2.2 The Ljung-Box Test

The Ljung-Box test verifies the randomness of a time series and also assesses its autocorrela-
tion. For the pure randomness test, if the p value is less than 5% then we reject the hypothesis
that the sequence is white noise.

A white noise series does not exhibit autocorrelation. In general, Q can be calculated as
follows:

Q = N
k

ÿ

r=1

ρ̂2
r (3.6)

where ρ is the squared estimated autocorrelations, r is number of lags being tested and k is
the degrees of freedom. Testing whether the sequence is a white noise sequence is equivalent
to check whether the test statistic Q obeys the distribution χ2 with the degree of freedom
k.The original hypothesis H0 : ρ1 = ρ2 = ρm = 0, m ě 1 and alternative hypothesis H1 :
There is at least one ρk ‰ 0,m ě 1, k ď m at the significance of α.According to α, k, and χ2.
we can find out the corresponding value χ2

α(k). If Q ď χ2
α(k), then we accept the original

hypothesis that is, at the assumption that the sequence is a white noise sequence us accepted
at the significance level α. If Q ą χ2

α(k), then we reject the assumption at the significance
level of α.
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3.3 ACF and PACF Graph

ACF is an autocorrelation function that shows us the autocorrelation [5] of any series with its
lagged values. The values are plotted along with the confidence bands. Essentially, it mea-
sures how well the present value relates to the previous value. There are various time series
components, including trend, seasonality, cyclicity, and residuals. When finding correlations,
the ACF considers all these components, so it is referred as a complete auto-correlation plot.

PACF stands for partial autocorrelation function. Instead of finding correlations of the
present with lags, this method finds correlations of the residuals (leftover after removing
effects already explained by the earlier lag(s)) with the subsequent lag value. This is why
it is sometimes called partial, rather than complete because we remove already discovered
variations before finding the new correlation. Therefore, if there is any hidden information
in the residual that is modeled by the next lag, then we might get a good correlation, and we
will keep that feature in our model.

3.4 ARMA mixed model

It is a combination of the AR and MA model, which predict future values using both the
previous values and the errors, so it performs better than AR and MA model alone.

Yt = c +
p

ÿ

i=1

φiYt´i + εt (3.7)

Yt = c +
q

ÿ

i=0

θiεt´i (3.8)

Yt = c +
P

ÿ

i=1

φiYt´i + εt +

q
ÿ

i=0

θiεt´i (3.9)

where the εt is the white noise N (0, σ2).By using the Backward shift operator, we can
rewrite the above as θ and φ of B.The backward shift operator B is a useful notational device
when working with time series lags: BYt = Yt´1 (Some references use L for lag instead of B
for backshift.)

θp(B)Yt = φq(B)εt (3.10)

The ARMA model is known for being parsimonious and redundant in its parameters. which
often means it requires fewer parameters than AR(p) and MA(q) models. Moreover, when
the equation is rewritten in terms of the Backward Shift Operator, then the θ and φ can be
joined by a common factor, resulting in a simpler model. The parameter estimation of the
times series model is done by different methods, like a method of moments(MOM), least-
square estimates(LS), and maximum likelihood estimation(MLE). The idea for MOM is to
find expressions for the sample moments and for the population moments and equate them.
Since method-of-moments performs poorly for some models, we examine another method of
parameter estimation: Least Squares. Even it may be more advantageous in Maximum like-
lihood estimates, that it uses all of the information in the data (not just the first few moments
as in MOM).

3.4.1 Autoregressive Integrated Moving Average Model

As a generalization of an auto-regressive moving average - ARMA - model, an ARIMA model
is composed of auto-regressive integrated moving averages. These two models are used to
forecast or predict future points in time-series data. ARIMA is a regression method that mea-
sures the strength of a dependent variable about other variables. Rather than examining
actual values, the model is designed to use differences between the values in the series to
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predict future time series movement. ARIMA models are used when there is evidence of
non-stationarity in the data. When analyzing time series, non-stationary data are always
transformed into stationary data (Box et al.,2016)[5].

The trend and seasonal components are common causes of non-stationary data in time
series. The differences step can be used to transform non-stationary data into stationary data.
It can perform one or more differentiating steps to remove the trend component in the data.
Similarly, seasonal differences can be used to remove the seasonal component.

ARIMA(p,d,q) is a general ARIMA model, where p refers to the order of AR, q to MA,
and d stands for integration order. For example, for an ARIMA(1,1,1) the data has been dif-
ferenced once, and the model has an AR(1) and an MA(1) part. An ARIMA(0, 0, 1) is the
same as an MA(1), and an ARIMA(2, 0, 0) is an AR process of order two (Pankratz, 1983)
[1].The prediction is done by using the recursive forecasting strategy that is mentioned in the
methods.

Once the model order has been identified (i.e., the values of p,d, and q), we need to esti-
mate the parameters c,φ1...φp,θ1...θq When python estimates the ARIMA model, it uses max-
imum likelihood estimation (MLE). This technique finds the values of the parameters which
maximize the probability of obtaining the data that we have observed. For ARIMA models,
MLE is similar to the least-squares estimates that would be obtained by minimizing

T
ÿ

t
ε2

t (3.11)

MLE gives exactly the same parameter estimates as a least-squares estimation. Note that
ARIMA models are much more complicated to estimate than regression models, and different
software will give slightly different answers as they use different methods of estimation, and
different optimization algorithms. In practice, R will report the value of the log-likelihood of
the data; that is, the logarithm of the probability of the observed data coming from the esti-
mated model. For given values of p, d, and q, python will try to maximize the log-likelihood
when finding parameter estimates.

3.5 ARCH & GARCH

The autoregressive conditional heteroskedasticity (ARCH) [4] model is an econometric model
for time series data that describes the variance of the current error term as a function of the
variance of the previous period’s error terms; often, the variance is represented by the squares
of the previous innovations. In general, the ARCH model is appropriate when an autoregres-
sive model (AR) is assumed for the error variance, but if an autoregressive moving average
(ARMA) model is assumed, the model would be a generalized autoregressive conditional
heteroskedasticity (GARCH) model.

Autoregressive conditional heteroskedasticity:ARCH model can be expressed as:

yt = c + εt, εt = σtzt (3.12)

where: yt is an observed data series, C is a constant value,εt is the residual of times series
values, zt is the standardized residual, independently and identically distributed with a mean
equal to 0 and variance tends toward 1 as the sample size tends toward infinity, σt is the
square root of the conditional variance, and it is a non-negative process. ARCH(q) can be
expressed in the following equation:

σ2
t = α0 +

q
ÿ

i=1

αiε
2
t´i (3.13)

with α0, αi ě 0 (i = 1, ..., q). so σ2
t is non-negative.
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Generalized autoregressive conditional heteroskedasticity:The GARCH model [4] can
be thought of as an extension of an ARCH model. A generalized ARCH (GARCH) has
a higher weight on recent data and a lower weight for faraway lags. When compared to
ARCH, it uses only the most recent returns. Furthermore, GARCH is less constrained than
ARCH, therefore its current conditional variance can be impacted by an infinite number of
past squared errors, rather than overfitting. So now, the conditional variance σ2 is expressed
by GARCH(p,q) as:

σ2
t = α0 +

q
ÿ

i=1

αiε
2
t´i +

p
ÿ

j=1

β jσ
2
t´j (3.14)

Where the α0 > 0 and
řmax(p,q)

i,j=1 (αi, β j) < 1.Note that αi and β j are the coefficients of the
parameters ARCH and GARCH respectively. The ACF and PACF of the residuals help to
specify the GARCH order p and q respectively.In order to estimate the parameters of the
conditional volatility models in this paper maximum likelihood estimation is used, which
is a constrained non-linear optimization problem. There exist many different algorithms to
solve this problem. The focus of this paper lies on a linear search algorithm, which is the
non-linear conjugate gradient method.

3.6 Seasonal-Autoregressive Integrated Moving Average Model

In a seasonal ARIMA model, seasonal AR and MA terms predict Yt. It is similar to ARIMA
models, we just have to increase a few parameters to account for the seasons. The seasonal
component of the model consists of terms similar to non-seasonal components but involves
backshifts in the seasonal period. The shorthand notation is shown in the figure3.1. For
example, without differencing operations, the model could be written more formally as

(1)Φ(Bm)φ(B)(Yt ´ µ) = Θ(Bm)θ(B)εt (3.15)

The non-seasonal components are:

• AR: φ(B) = 1´ φ1(B)´ ...´ φp(Bp)

• MA: θ(B) = 1 + θ1(B) + ... + θq(Bq)

The seasonal components are:

• AR: Φ(B) = 1´Φ1(B)´ ...´ΦP(BPm)

• MA: Θ(B) = 1 + Θ1(B) + ... + ΘQ(BQm)

Figure 3.1: SARIMA model

where m is the period of a repeating seasonal pattern. We use the uppercase notation
for the seasonal parts of the model, and lowercase notation for the non-seasonal parts of the
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3.7. Hybrid ARIMA-GARCH

model. The SARIMA model can be just applied to the stationary processes. On the other
hand, Augmented Dickey-Fuller is applied to test whether a time series is stationary, it is
explained in section 3.2.1. Once all the initial parameters are fixed, we used a grid search to
explode the meaningful parts of the space of the solution. Where the best model is assessed
through the Akaike Information Criterion.

3.7 Hybrid ARIMA-GARCH

A hybrid model of ARIMA and GARCH is proposed with a two-phase procedure. Dur-
ing the first phase, the ARIMA model is used to model the linear data of time series, and
the residual of the linear model contains only the nonlinear data. In the second phase, the
nonlinear patterns of the residuals are modeled using the GARCH model. To analyze the
univariate series and predict the values of the approximation series, this hybrid model com-
bines an ARIMA model with GARCH error components Liu et al., 2013 [25]; Chen et al.,
2011 [6]. It is observed that in this procedure, the error term εt of the ARIMA model fol-
lows a GARCH process of orders p and q.This hybrid model, which combines ARIMA and
GARCH model containing nonlinear residuals patterns, is applied to analyze and forecast
the returns of Close price The methodology of this hybrid procedure is shown in figure 3.2.
In both phases, the parameter estimation is done with the help of Maximum Likelihood Esti-
mates (MLE). Consider the returns r1, ..., rn to be observations of independent and identically
distributed random variables R1, ..., Rn with the density function.Thus the random distribu-
tion is completely characterized with the set of unknown parameters αi&βi. Maximum like-
lihood estimation provides an estimate of the unknown parameters and as a parameter that
maximizes the probability of the observed data.

3.8 Neural Network

Neural networks (NNs) are constructed from multiple artificial neurons that are connected
and arranged in layers. The neural network (NN) is often described as loosely modeled after
the human brain Dreyfus, 2005 [10]. It consists of neurons, each of which is dependent on
input values. The system is a way to take inputs and calculate output based on those inputs.
A linear combination of all these inputs is made by multiplying them by some weights, before
adding a constant, or a bias. The linear combination of these inputs can be written as follows:

z = w1x1 + w2x2 + ... + wnxn + b (3.16)

The weights are w1 to wn, the inputs are x1 to xn, and the bias is b. This is done by the
neuron using an activation function, which converts the number z to a meaningful format.
This causes neurons to produce their outputs [27], which is

ŷ = f (z) = f (w1x1 + w2x2 + ... + wnxn + b) (3.17)

where f is some activation function in a NN, there are three types of layers. Normally, inputs
are fed into the first layer of the model and then passed to the neurons in the second layer.
The input layer is not composed of neurons because it does not compute anything based
on the inputs. Last is the output layer, in which the final output of the network is generated.
There are hidden layers between the input and output layers, which are composed of neurons
that perform calculations on the data [10]. The layers of neurons in a neural network can be
used to create neuronal networks capable of learning associations between input and output
values, which can be used to solve classification and forecasting problems [33]. An example
of a simple neural network can be seen in figure 3.3.
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Figure 3.2: Procedure for hybridization of ARIMA and GARCH models

3.8.1 Feedforward Neural Network

A NN that moves the information from its input layer, through the hidden layer and its
output layer is referred to as a feedforward network (Michelucci, 2018). This was the first
kind of NN. Convolution neural networks are widely used for classification problems such
as image recognition. A network can be thought of as a combination of different functions.
An example of a simple FFNN is shown in figure 3.3. There are no limits to the number of
layers and nodes, so it can be scaled up as well as down. After each epoch, the weights are
updated using an optimization algorithm until the cost function has reached a minimum,
which might be the global minimum or only a local minimum.

3.9 RNN

Recurrent neural networks (RNN) are more advanced than feedforward neural networks
(NN). This type of network not only uses input values from the present time step but also
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3.9. RNN

Figure 3.3: Schematic representation of a simple fully connected feedforward neural network
with four layers.

the output values from the previous time step as input. Throughout a network’s life, RNNs
keep information that is relevant to various timesteps. It means that an RNN takes sequences
and timesteps into consideration. Hence, this type of network is suitable to be used in se-
quential data processing applications such as speech recognition, machine translation, and
time series forecasting. RNN is the second class of ANN, that has mostly succeeded in Time
Series Forecasting (TSF) problems. They are thought to embed the concept of ‘memory’ in
the system. In the feedforward neural networks, we assume that all inputs (and outputs) are
independent of each other. However, in some cases, it might be a strong assumption, leading
to wrong results. Therefore, to consider the correlation between the inputs and the outputs,
RNNs implement a way to capture the information computed so far. Each unit takes as input
the state computed in the previous iteration.

3.9.1 Long-term dependencies

Long-term dependency occurs when an RNN is required to make a prediction. Regular RNNs
can handle the pattern understanding requirement. To do this, however, you need to know
how far back in memory the values must be stored. An RNN is capable of predicting future
sequences based on past data even in the case where it needs to look back in time. In a sit-
uation where the algorithm is required to remember a pattern, it becomes more challenging.
Theoretically, an RNN could also achieve this if the parameters were adjusted by hand cor-
rectly. Researchers no longer need to spend time adjusting RNN parameters because they can
instead use LSTM architecture [32].

3.9.2 Vanishing and Exploding Gradient’s problem

Understanding the simplest form of RNN is useful for learning about networks that are well-
suited for modeling and are widely used today. However, the simple RNN has a specific
flaw which makes it not very useful. It suffers from the vanishing and exploding gradients
two common problems encountered during the back-propagation of time-series data.With the
first approach, the term goes to zero exponentially fast, which makes it hard to learn long-
term dependencies. However, in the second case, the term goes to infinity exponentially, and
thereby their value becomes a Nan due to the instability of the process. This is known as
the exploding gradient. In the following sections, we use the LSTM model to deal with this
problem. In theory, RNN can exploit information in arbitrarily long sequences. The main
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issue of RNNs is that the cost functions are computed as a product of real numbers that can
shrink to zero or explode to infinity. In literature, it refers to this problem as the exploding-
vanishing gradient [17]. The problem of the disappearing gradient can occur with the tanh
function because it has a steep derivative, causing a decrease in prediction and efficiency.
The problem appears when the model goes through back-propagation, which is when the
gradient of the cost function is calculated by the chain rule with respect to the weights and
biases of each layer. The issue is generally resolved when the hyperparameters are correctly
set by fine adjustment.

3.9.3 Optimizer

To improve performance without sacrificing much in training accuracy, we can use optimiz-
ers like SGD and Adam. Optimizer converges to the global minima. The basic difference
between batch gradient descent (BGD) and stochastic gradient descent (SGD), is that to cal-
culate the cost of one example for each step in SGD, but in BGD, we have to calculate the
cost for all training examples in the dataset. Trivially, this speeds up neural networks greatly.
Exactly this is the motivation behind SGD. Adaptive Moment Estimation (Adam) is the next
optimizer, and probably also the optimizer that performs the best on average. Adam opti-
mizer involves a combination of two gradient descent methodologies.it is a combination of
the ‘gradient descent with momentum’ algorithm and the ‘RMSP’ algorithm. This algorithm
is used to accelerate the gradient descent algorithm by taking into consideration the ‘expo-
nentially weighted average’ of the gradients. Using averages makes the algorithm converge
towards the minima at a faster pace.

3.9.4 Non-linear activation function

It is necessary to understand activation functions to understand how LSTM cells calculate.
The objective of these functions is to transform values into more useful ones. The LSTM
employs two activation functions: a hyperbolic tangent (tanh) function and a sigmoid (σ)
function. The sigmoid function converts input values into values between zero and one,
where a value of one indicates that the network keeps the input completely, while a value
of zero means the network completely forgets the input (El-Amir and Hamdy, 2019)[2]. The
LSTM cell uses the sigmoid function in its input, output, and forget gates. The tanh activation
function is similar to the sigmoid except that its outputs range from minus one to one instead
of zero to one. Activating the tanh function will negatively map negative inputs as well.
When the input value is zero, the tanh function maps it as zero (El-Amir and Hamdy, 2019)[2].
Both activation functions are shown in figure 3.4.

3.9.5 Long Short term Memory Network

LSTM has analogous control flows to intermittent neural networks. This type of network pro-
cesses data by propagating information forward. It differs from LSTM in the way it operates
within its cells. The crucial conception of LSTM is the state of the cell as well as its gates.
This cell state acts as a transport trace that transmits relative information down the sequence
chain. This can be viewed as the network’s" memory". The cell state, in the proposition, can
carry applicable information throughout the processing of the sequence. So indeed informa-
tion from earlier times way can make its way after time way, reducing the goods of short-term
memory. As the cell state goes on its trip, information get’s added or removed to the cell state
via gates. The gates are different neural networks that decide which information is allowed
in the cell state. During the training process, the gates are suitable to learn what information
to keep or forget. In this study, we used a recursive forecasting strategy in LSTM to forecast
different horizons.
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Figure 3.4: Activation function used in LSTM

3.9.6 LSTM cell structure

LSTM networks are built up from cells, each of which consists of several separate compo-
nents. In figure 3.5, the lines represent the transmission of the vector in the direction of the
arrow. There is no split in the values when the lines diverge; they are copied instead. LSTMs
have three inputs: the memory from the previous timestep (ct´1), the activation or input
from the previous timestep (ht´1), and the new data value at a time (Xt) (Purkait, 2019). The
blue boxes show the activation functions that are used by the so-called gates.

Figure 3.5: Structure of LSTM cell

According to El-Amir and Hamdy, 2019, gates are the place where the different opera-
tions occur. They are from left to right in figure 3.5: the forget gate, input gate, update gate,
and output gate. A forget gate is a crucial part of the LSTM as it determines whether to
keep a value from previous timesteps or to forget and incorporate it in the subsequent time

18



3.9. RNN

step. Such mechanisms work particularly well when dealing with long-term dependencies.
Circular shapes represent pointwise operations, in this case, addition and multiplication.

ft = σ(W f ¨ [ht´1, xt] + b f ) (3.18)

it = σ(Wi ¨ [ht´1, xt] + bi) (3.19)

C̃t = tanh(Wc ¨ [ht´1, xt] + bc) (3.20)

Ct = ft ˆ Ct´1 + it ˆ C̃t (3.21)

ot = σ(Wo ¨ [ht´1, xt] + bo) (3.22)

ht = ot ˆ tanh(Ct) (3.23)

It consists of W, ht´1, xt, and b, where W is the weight matrix, ht´1, the previous time
step input, xt, the current time step input and b is the bias. Equation 3.18demonstrates how
forget gates operate. The equation 3.19shows the calculation performed at the input gate
to determine what values are updated. Following this is3.20, the update gate, where a vec-
tor of possible new memory is created. 3.21 the two previous equations are combined with
the previous memory to create the new memory. 3.22 determines the output, which is then
multiplied by the current memory 3.23 [18].
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Chapter 4
Methods

This chapter summarizes the methods to answer the research question. This is accomplished
by explaining how the different models are specified and how the parameters are chosen for
each. The overall experimental procedure is shown in the figure 4.1

Figure 4.1: Proposed workflow for thesis
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4.1. Akaike Information Criterion

4.1 Akaike Information Criterion

This is one of the most commonly used information criteria, often abbreviated as AIC, and
is designed to compare models to choose the one with the lowest AIC value (Cryer & Chan
2008). According to its definition, the AIC is a method for determining the relative loss of
information for different models and is defined as

AIC = ´2 log(maximum likelihood) + 2k (4.1)

The term k is used to analyze the number of parameters in the model, for example in
ARIMA, the term is k = p + q + 1 if an intercept is included and k = p + q if it is not. Incor-
porating the term 2k into the model provides a penalty for overfitting the model by adding
too many parameters. However, the AIC is widely regarded as biased in small samples, lead-
ing to the development of a successor, the corrected AIC (AICc), which reduces this bias by
adding one more penalty term (Cryer & Chan 2008)[20]. The AICc is described as follows

AICc = AIC +
2(k + 1)(k + 2)
(n´ k´ 2)

(4.2)

As shown above, the AIC has been accompanied by another term considering the number
of parameters. In this term, k stands for the parameters in the model as discussed above and
n is the sample size. In forecasting, the AICc is preferable to other approaches to choosing
models, especially when working with many parameters and small sample sizes (Cryer &
Chan 2008).

4.2 Cross-validation

Time-series cross-validation can be used to include many point forecasts for evaluation when
forecasting with a horizon of one or just a few steps from now (Hyndman and Athana-
sopoulos, 2018)[19]. Specifically, an expanding window will be used with the so-called walk-
forward validation in this study. During a walk-forward validation, several forecasts with
a short horizon are included by iteratively making point forecasts one step at a time, with
multiple overlapping training sets. According to the expanding window, the training set gets
larger with each new forecast, while the original observations are kept. The procedure of the
walk-forward [8] validation is iterative and can be divided into the four following steps.

1. The different models are first estimated on the training set

2. The models are used to do a point forecast with forecast horizon h at the point t where
t is the last point in the training set.

3. where the value of Yt+h is predicted as the estimated value and therefore the known
real value from the test set are compared.

4. For the next forecast, the training set is expanded by including the observation at t + 1
and the entire procedure in steps 1 to 4 is repeated for the entire test set.

4.3 Recursive Strategy

This method consists of using a one-step model multiple times and using the prediction from
the prior time step as input for predicting the next time step. Our model will be trained using
the normal training data. To forecast the stock closing price for the next two days, we would
create a one-step forecasting model. In the next step, the model would be fit to predict day
1, and the results of that prediction would be used as a predictor for day 2. Once you reach
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4.4. Seasonal-ARIMA specification

the necessary number of forecasting steps, depending on whether or not the parameters have
already converged, you can fit the model a little further.

prediction(t + 1) = model(obs(t´ 1), obs(t´ 2), ..., obs(t´ n)) (4.3)

prediction(t + 2) = model(prediction(t + 1), obs(t´ 1), ..., obs(t´ n)) (4.4)

4.4 Seasonal-ARIMA specification

At the start of the model specification, training and test sets of data are separated. There
are three types of SARIMA models that are fitted for the three different time horizons. The
financial time series are modeled based on a variety of methods, with closing prices being
our target. Seasonal ARIMA is chosen since its differencing functionality can model non-
stationary data components. Models are fitted using a Python package called sm-statistics.
The ACF and PACF plots are used to specify the optimal parameters for the model. The grid
search function yields the most appropriate model, chosen according to Akaike Information
Criterion(AIC).

4.4.1 Model development for Seasonal-ARIMA

Seasonal-ARIMA forecasting requires stationary series. The ACF and PACF plot in the first
row of figure 4.2, 4.3, 4.4 shows that lags with smaller values have greater and positive values.
It also had a trend of slowly decreasing to low values with the improvement of lags. We also
observed a strong seasonal pattern at the weekly level. Additionally, the data was identified
as non-stationary (H1 rejected as p-value > 0.05) with the ADF hypothesis test. Therefore, to
remove the linear trend and make the series stationary, the first difference (differences = 1)
was taken. Differencing the trend was achieved by taking the differences between consecu-
tive observations of a time series.

Figure 4.2: Correlation plot of S&P 500
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4.4. Seasonal-ARIMA specification

Figure 4.3: Correlation plot of Shangai stock exchange

Figure 4.4: Correlation plot of FTSE 100

After transformation, the ACF and PACF plot in the second row of figure 4.2, 4.3, 4.4
showed the remaining correlation(s) between the observations. Over the lags, the ACF
showed seasonality and trend, while the PACF has the cutoff at lag 12. From the ACF plot, we
determined the MA(q) process order and from the PACF plot, we determined the AR(p) pro-
cess order. The term ‘d’ was calculated by differencing the trend resulting in the SARIMA(p,
d, q)(P, D, Q,m) model. And, the order D was based on seasonal differencing. On other
hand to choose the optimal hyperparameters for the model, we used the grid search frame-

23
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work which will optimize these parameters to minimize error with the help of the lowest AIC
score in a model. The optimal model parameters of Seasonal ARIMA with an AIC score are
shown in the table 4.1.

Parameter analysis for SARIMA model

An analysis is conducted only on the training set before implementing a systematic experi-
ment to set the upper bounds of certain parameters. Based on the ACF/PACF graphs, all the
parameters have been chosen. To validate the seasonality parameter across all datasets, we
use the Grid search method. Moreover, they aren’t easy to determine when it comes to P, p,
and Q, q. In some cases, the autocorrelation decreases with an increasing lag. All the values
up to 5 have been analyzed, but the time required to fit the model grew exponentially and
little improvements were observed for values greater than 3. Therefore, the upper bound for
all the parameters is set at 3. Considering the I parameters, they are set at 1 since the datasets
become stationary after the first integration. With the Dickey-Fuller test, we have verified the
consistency of the results. If the p-value of the time series is less than 0.05, then it is stationary.
To evaluate the models, the AIC criterion was used.

stock index Forecast days p d q P D Q m AIC score
S&P 500 1- 5 0 1 1 0 1 1 12 2276.099

1-21 1 1 1 1 1 1 12 6375.938
1-62 1 1 1 0 1 1 12 9992.074

SSE 1-5 0 1 1 0 1 1 12 2161.221
1-21 0 1 1 0 1 1 12 5994.323
1-62 1 1 1 0 1 1 12 9420.010

FTSE 100 1-5 1 1 1 0 1 1 12 2482.047
1-21 1 1 1 0 1 1 12 7101.487
1-62 0 1 1 0 1 1 12 11313.390

Table 4.1: Hyperparameters for SARIMA model

4.5 LSTM specification

We describe the different aspects of the LSTM NN specification in the sections below. We
generate our models using the Keras API in TensorFlow, which is an open-source library for
machine learning written in Python (Purkait, 2019).

4.5.1 Normalization

A Min-Max scaler should be used to normalize the input values (apart from the standard-
ization that scales the features to have µ = 0 and σ = 1). As a result, all observations will
be transformed to the range [0,1], meaning that their minimum and maximum value will be
respectively 0 and 1. After the forecasting using LSTM, the data were rescaled using inverse
min-max normalization. y is ynorm which is normalized as follows,

ynorm =
yi ´min(y)

max(y)´min(y)
(4.5)

where the ŷ is reverted i.e., inverse transformed using the following formula,

yscaled = ŷi.(max(y)´min(y)) + min(y) (4.6)
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4.5. LSTM specification

4.5.2 Data Reshaping

The sequential supervised learning problem of time series forecasting with traditional
ARIMA is different from LSTM forecasting, which requires another preprocessing step to
be transformed into the classical supervised machine learning problem. We used the sliding
window method instead of labeled data to target look-back steps of normalized data.

Sliding window approach:

Time series datasets can be restructured into supervised learning problems by using the value
at the previous time step to predict the value at the next time step. The original dataset and
the transformed dataset can be compared easily. The following observations can be seen
below:

• In our supervised learning problem, the previous time step (X) is the input, and the
next time step (Y) is the output.

• The order of observations within the dataset is preserved and must remain so when
training a supervised model using the dataset.

• It is clear from the previous value that we cannot predict the first value in the sequence
using the previous value. It will be deleted as it is useless.

• It is also clear that we do not have a known final value that predicts what will happen
at the end of the sequence. Likewise, we may want to remove this value while training
our supervised model.

The sliding window method is used to predict the next time step by using information
from previous time steps. This method is commonly referred to as the window method. Time
series analysis and statistics refer to this as the lag method. Therefore, previous time steps
are shown as the lag size or order, or as the window width. After converting times series
data into labeled times series values, we train the supervised linear or non-linear machine
learning algorithm by using this data.

4.5.3 Model development for LSTM

The Long Short Term Memory(LSTM) model consist of two memory block and those blocks
were connected via one input layer, two drop out layer, one hidden layer, and one output
layer. The univariate close price of every stock is converted into sliding window data and
input as a covariate to the LSTM model. The following sections give explanations for the
different hyperparameters and clarify how they have been selected,

Layers: A neural network(NN) consists of several layers. As per the theory, only one
hidden layer is called a shallow neural network, that was sufficient to solve any problem
(Cybenko, 1989) [9]. The model consists of three layers. Two of the layers are LSTM layers
and one is a Dense layer, where the LSTM layers perform the calculations previously shown
in equations 3.18 to 3.23, and the Dense layer performs the more simple linear combination
equations 3.16 and 3.17.

Neurons: Based on the empirical study that the number of neurons does not affect the
performance of the model. In this work, the input layer, hidden layer, and output layer
consist of 200, 50, and 1 neuron. The output layer consists of one single neuron because only
one output value at each time is used to forecast time series problems such as this one.

Loss function: When training an LSTM model, it is necessary to specify a loss measure.
It is intuitive to minimize the loss when determining parameters in the model, such as the
number of epochs. To accelerate learning, the Loss function calculates the distance between a
model’s output and the desired output. For validation data, the user sets the desired output.
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4.5. LSTM specification

We have chosen to set the validation data at 10% of the training data. Overfitting can be
prevented by stopping the model during training because the training data output will be
compared with the validation data after each epoch. If the loss on the training decreases
while the validation increases, then we may be overfitting. As a loss function, we are using
the MSE, which is widely used in time series forecasting (Makridakis and Hibon, 1991).

Optimizer: When the network approaches optimal values, there is an additional param-
eter that can be given to an optimizer that will reduce the learning rate gradually. It is an
algorithm used to minimize the loss function. This is computed by a CPU that knows the
actual values in the training data and iteratively tries to end up where the loss function is
minimized. Here we used Adam optimizer which handles large datasets well in addition to
being appropriate to use with non-stationary data. Adam is used with the default configura-
tion parameters which are recommended by its creators (Kingma and Ba, 2015)[22].

Table 4.2: Hyperparameters used for training the LSTM model

Hyperparameters Values

Learning rate 0.01, 0.2
Epochs 25,30,40

Batch size 32
Optimizer Adam

Dropout layer 0.2
Loss function MSE
LSTM layer 2

Regularization: There are numerous ways to try to mitigate overfitting, and thus improve
generalization in an LSTM. This is done using regularization techniques. In the network
created for this thesis, dropout is used as the regularization technique since it is a method
that has been proven to produce very good results. It randomly selected the nodes with
the probability of 0.2. The dropout is an important technique that reduces overfitting by
randomly choosing cells in a layer according to the probability chosen and set their output to
0.

Number Epochs: A LSTM NN is trained multiple times with a batch size of 32. To min-
imize the error of the model and to minimize the training loss of the model 25, 30, and 40
epoch is used. Where the size of the epochs varies based on the different stock index data.

Optimal Hyperparameter: In order to get an accurate prediction when backtesting our
model, we must set up the hyperparameters correctly and adjust them as needed. We built
our LSTM model using default hyperparameters that fit our case the best based on several
papers that we believe to be valuable. After that, each hyperparameter will be examined one
by one in order to determine the optimal value. The most suitable value for a hyperparameter
is found by evaluating the LSTM model by backtesting it with the test data. We will then
calculate the MSE between the model’s prediction and the actual closing price for that day.
After all potential values for that specific hyperparameter have been evaluated and fixed.

Validation data: In neural networks, several parameters must be validated, including the
optimizer, loss function, activation function, hidden layer size, input window size, as well as
the number of epochs. LSTM parameters were tuned at daily scales for all the aforementioned
parameters. A time series is a type of data that consists of temporal correlations. Therefore,
conventional K-fold cross-validation cannot be used to exploit temporal relationships among
data points without causing data leakage. Hold-out cross-validation has been our preferred
approach. The dataset is divided into a training and testing set. After this, the training set
can be divided into a training subset and a validation subset. Tuning the hyperparameters is
performed based on the validation subset. Our training set was used to train models, and our
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4.6. Hybrid ARIMA-GARCH specification

validation set was used to validate the models. We train the models available to determine
the upper bounds. We used 10% of the training phase given to the validation subset.

4.5.4 Window size

The optimal window length was determined by an empirical test. We shouldn’t restrict the
window size too short, because then the model won’t acquire the longer dependencies, thus
ignoring critical information. Another downside to a large window size is that it will add a
greater amount of redundant noise and thus will overfit the training data [15]. To determine
the most appropriate window size, we conducted the empirical tests on the different window
sizes (Gers et al., 2002) and find the value with the smallest RMSE on the forecast, when
training the LSTM model figure 4.5 the optimal window length for our case would be 20, 25,
and 30 training days. To do this empirical test, the dropout parameter was set to 0.2, and the
epoch value to 20.

Figure 4.5: Illustrating empirical testing for finding the optimal length for the window hyper-
parameter

4.6 Hybrid ARIMA-GARCH specification

Generally, ARIMA models are proposed for stationary time series under homoskedasticity
assumptions, whereas financial time series data often violate these assumptions. It is com-
mon for stock prices to be extremely volatile during economic expansions and recessions. In
such cases, the error distribution is heteroscedastic (also known as heteroskedasticity). Due
to heteroskedasticity, ARIMA and linear regression give equal weights to all observations.
This is because observations with a smaller disturbance variance contain more information
than those with a bigger disturbance variance. Given that heteroskedasticity can affect the
validity or power of statistical tests when using ARIMA models, the ARCH effect should be
considered.

GARCH and ARCH models can therefore be used to not only capture the variance of each
error term and correct the deficiencies of heteroskedasticity for least-squares analysis but also
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4.7. Training, Validation, Test set

tackle the problem of volatility clustering. We suggest that a Hybrid ARIMA-GARCH model
can simultaneously predict both the conditional mean and heteroscedasticity of a process. In
this combination, an ARIMA specification is applied for modeling the mean behavior, and a
family of GARCH functions is used for predicting the variance behavior of the residuals from
the ARIMA model. A Hybrid ARIMA(p,d,q)-GARCH(r,s) can be specified as:

yt = φ1yt´1 + φ2yt´2 + ... + φpyt´p + εt ´ θ1εt´1 ´ ...´ θqεt´q

σ2
t = α0 +

q
ÿ

i=1

αiε
2
t´i +

p
ÿ

j=1

β jσ
2
t´j

εt = ztσt (εt : N(0, σ2
t ))

(4.7)

4.6.1 Overview of Methodology and input parameters

To achieve the goals that were mentioned in the above sections, the methodology of this
research is structured in the following way: Firstly, we conducted a rolling forecast based on
an ARIMA model. To predict the return for the next point, we use the combination of p, d,
and q that has the lowest AIC.

Table 4.3: Hyperparameters of the Hybrid model

Data Horizon Models AIC

S&P 500 1-5 ARIMA(0,1,1)-GARCH(1,1) 2513.676
1-21 ARIMA(2,1,5)-GARCH(1,2) 6567.577
1-62 ARIMA(0,1,2)-GARCH(1,2) 10211.196

SSE 1-5 ARIMA(0,1,0)-GARCH(1,1) 2384.620
1-21 ARIMA(2,1,2)-GARCH(1,2) 6208.894
62 ARIMA(3,1,3)-GARCH(1,2) 9629.645

FTSE 100 1-5 ARIMA(1,1,2)-GARCH(1,1) 2735.934
1-21 ARIMA(0,1,0)-GARCH(1,2) 7350.684
1-62 ARIMA(0,1,0)-GARCH(1,2) 11555.985

Based on the correlograms of ACF and PACF for the first differenced series and the resid-
uals series, there are 40 possible model combinations between ARIMA and GARCH for p =
2,1,0 , d =1, q = 2,1,0 , r = 1,0 and s = 2,1,0 . From the analysis conducted in the estimation
stage, three of the ARIMA-GARCH models show significant results for each data. The results
of AIC for those ARIMA models with a combination of GARCH parameters are shown in the
table 4.3

As part of the diagnostic checking, a test of LjungBox Q-statistic, a heteroscedasticity test,
and a normality analysis are conducted on the residuals of the model to check its appropri-
ateness. In all the hybrid models considered, the ACF and PACF of the squared residuals are
near zero, which demonstrates that the models are adequate, as indicated by an insignificant
Ljung-Box Q-statistic, p-value. Ideally, we failed to reject the null hypothesis. The reason we
want the p-value of the test to be greater than 0.05 is that this means the residuals of the time
series model will be independent, which is often the assumption made when developing a
model.

4.7 Training, Validation, Test set

We first divide the data into a training set and a testing set. The training set is used for
both training and testing the models. The validation size is set at 10% of the training set size.
During the training procedure, samples are never shuffled since it would reduce the temporal

28



4.8. Error Measures for Evaluation

correlation, which is the fundamental characteristic of a time series. The size of the testing
set is arbitrarily fixed at 100-time points. It applies to all the modeling techniques. This value
has been chosen since they comprise both short, medium, and long-term forecasting. On a
daily level, 100 points are equal to 5 months of the forecast.

4.8 Error Measures for Evaluation

It is necessary to evaluate forecasts to determine which model makes better predictions. Here,
two different error measures have been used to achieve this goal. A root means square error
(RMSE) is a measure used to determine whether a model is accurate and how much error it
produces. The Mean Absolute Error (MAE) is a superior measure when evaluating a model,
according to critics (Willmott and Matsuura, 2005). Both RMSE and MAE are used to evaluate
ARIMA and LSTM models, even though the MAE might be superior.

4.8.1 Mean Absolute Error (MAE)

The scale-dependent accuracy measure used is the mean absolute error (MAE). The MAE
is an easily interpreted measurement that can be used to compare different forecasting ap-
proaches when using them on the same time series, or for time series measured on the same
unit (Hyndman and Athanasopoulos, 2018). The MAE is calculated as

MAE = mean(|ei|) =
řn

i=1|ŷi ´ yi|
n

(4.8)

Even though MAE is restricted to the same time series for comparison, it is meaningful to
use because of the easy and direct interpretation of the measurement.

4.8.2 Root Mean Squared Error (RMSE)

The Root-Mean-Square Error (RMSE) is a measure frequently used for assessing the accuracy
of prediction obtained by a model. It measures the differences or residuals between actual
and predicted values. The metric compares prediction errors of different models for a partic-
ular data and not between datasets. The formula for computing RMSE is as follows

RMSE =

c

řn
i=1(ŷi ´ yi)2

n
(4.9)
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Chapter 5
Result

The experiment was done on both traditional and machine learning methods. This chapter
shows the results of the model. However, as the stock market is a very dynamic system,
hence the pattern and dynamics presented by the model may not be the same always, stock
market data is way more dynamic in a real-world scenario. This causes the machine learning
model to not be able to capture the dynamic changes in data points. The stock index of three
different countries has been used for forecasting the closing price.

5.1 Comparison Results.

We present a performance overview of each of the three methodologies. According to 4.7,
metrics are used to evaluate the performance of forecasting models. However, to compare
the models across the different datasets, RMSE and MAE appear to be the most reliable. It
has been empirically observed that RMSE leads to choosing the most meaningful model. The
rationale behind this choice is explained in Chapter 4. To better observe the tendency of the
performance along the horizon, the metrics are computed at every point on horizon 5, every
odd point on horizon 21, and every 5 points on horizon 62 is checked on the test data 100-time
points.

Based on the figure 4.2, the PACF showed significant spikes, indicating an AR(1) model.
In figure 4.2, the ACF showed correlations after trend differencing, thus MA(1) was selected.
We also selected the trend differencing term d(1) and the seasonal differencing term D(1).
The estimation of the ARIMA(p, d, q)(P, D, Q)m model became ARIMA(0, 1, 1) with seasonal
order (0, 1, 1)[12] due to 12 business days. The grid search tested all possible combinations
of variables and printed out the set that resulted in the lowest AIC, and chosen parameters
are shown in the methods section. The combination of ARIMA-GARCH, with the power and
flexibility it offers, and the ability to handle volatility and risk in the data series, allowed the
ARIMA-GARCH model to provide a very promising approach to analyzing and forecasting.
To avoid the overfitting of the model, we used the walk-forward validation method as men-
tioned in the method. Where the upper bound of parameters is fixed with the ACF and PACF
plot. In addition to this, we used the Grid Search method to find the optimal parameters. So,
all the model hyperparameters are chosen accordingly to get accurate results.

Table 5.1: The mean values of RMSE and MAE for Training and Test set in S&P 500 using
horizon 5

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 37.180 146.678 251.356 290.752
Hybrid ARIMA-GARCH 32.492 124.031 171.560 179.560

LSTM 51.675 56.736 126.295 217.155
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Table 5.2: The mean values of RMSE and MAE for Training and Test set in S&P 500 using
horizon 21

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 58.584 147.584 300.633 329.922
Hybrid ARIMA-GARCH 62.674 124.493 235.190 195.908

LSTM 87.284 100.805 244.736 263.049

Table 5.3: The mean values of RMSE and MAE for Training and Test set in S&P 500 using
horizon 62

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 96.821 152.630 301.082 362.201
Hybrid ARIMA-GARCH 86.192 126.201 178.549 215.1231

LSTM 132.771 154.019 362.967 416.893

Dataset 1 (S&P 500)

In Tables 5.1, 5.2, and 5.3., we report the performance measure of each model on different
forecast horizons in dataset 1. This table cleary indicates the average RMSE and MAE of
training and test set of every model. We have designed SARIMA, Hybrid ARIMA-GARCH,
and LSTM tested for 100-time points. For dataset 1, the Hybrid ARIMA-GARCH outperforms
the SARIMA and LSTM. In general, it provides a more stable and reliable forecast along the
whole forecast horizon. This S&P 500 data, shows the linear trend over the whole period and
obviously, there are some sudden shocks. So all models are not performing well. Even though
the classical approach, i.e., the hybrid model, performs well, the deep learning technique
reach outs its stable performance over the entire horizons. From the figure, it shows that
LSTM and hybrid models performed more similarly in the case of horizons 5 and 21. when it
comes to the long horizon like 62 the Hybrid ARIMA-GARCH manages to have a lower error
in the forecast.

To sum up, these figures 5.1 highlight how the Hybrid model outperforms SARIMA and
LSTM techniques.

Dataset 2 (SSE)

In Tables 5.4, 5.5, and 5.6., we report the performance measure of each model on different
forecast horizons in dataset 2. We have designed SARIMA, Hybrid ARIMA-GARCH, and
LSTM tested for 100-time points. For dataset 2, the LSTM has a better performance. In gen-
eral, it provides a more stable and reliable forecast along the whole forecast horizon. This
SSE data shows the steady-state of variance and mean over the whole period and obviously,
there are some sudden shocks. So all models are not performing well. It may be inferred that
all the three models are very close to each other. One may expect similar performances also
from an error point of view. On the other hand, the deep learning technique(LSTM) and Clas-
sical technique (Hybrid ARIMA-GARCH) reach outs their stable performance over the entire
horizons. From the figure, it shows that LSTM and hybrid models performed more similarly
in the case of horizons 5. To conclude, the figure 5.2 shows LSTM has stable performance and
SARIMA and Hybrid ARIMA-GARCH had a tendency to increase in error throughout the
entire horizons.
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5.1. Comparison Results.

Figure 5.1: The performance of each method according to test RMSE and test MAE for the
Dataset1(S&P 500)

Table 5.4: The mean values of RMSE and MAE for Training and Test set in SSE using horizon
5

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 32.512 149.044 118.017 121.557
Hybrid ARIMA-GARCH 28.139 125.636 102.335 106.781

LSTM 46.815 55.945 104.395 109.083

Dataset 3 (FTSE 100)

In Tables 5.7, 5.8, and 5.9., we report the performance measure of each model on different fore-
cast horizons in dataset 3. We have designed SARIMA, Hybrid ARIMA-GARCH, and LSTM
tested for 100-time points. For dataset 3, the LSTM has a better performance. In general,
it provides a more stable and reliable forecast along the whole forecast horizon. This FTSE
100 data, shows the steady state of variance and mean over the whole period, and obviously,
there are some sudden shocks. On the other hand, the deep learning technique(LSTM) reach
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Table 5.5: The mean values of RMSE and MAE for Training and Test set in SSE using horizon
21

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 54.925 150.0594 104.194 116.863
Hybrid ARIMA-GARCH 47.621 127.419 88.921 102.351

LSTM 82.654 96.897 106.53 110.225

Table 5.6: The mean values of RMSE and MAE for Training and Test set in SSE using horizon
62

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 82.136 172.771 96.553 117.424
Hybrid ARIMA-GARCH 73.506 128.764 91.744 110.571

LSTM 90.493 152.316 113.791 150.892

outs its stable performance over the entire horizons. From the figure, it shows that SARIMA
and hybrid models performed more similarly in the case of horizons 21 and 62.

To conclude, the figure 5.3 shows LSTM has better performance, and SARIMA and Hybrid
ARIMA-GARCH had a tendency to increase in error throughout the entire horizons.

Table 5.7: The mean values of RMSE and MAE for Training and Test set in FTSE 100 using
horizon 5

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 76.779 374.013 162.57 172.464
Hybrid ARIMA-GARCH 64.66 315.054 154.806 165.233

LSTM 98.755 110.582 152.977 160.470

Table 5.8: The mean values of RMSE and MAE for Training and Test set in FTSE 100 using
horizon 21

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 123.731 386.365 172.533 191.565
Hybrid ARIMA-GARCH 113.86 326.594 166.305 185.845

LSTM 211.919 234.925 126.399 159.257

Overall, time-series data exhibited significant stochastic trends as well as deterministic
time series trends. A deterministic time series trend is predictable whereas a stochastic trend
is unpredictable, therefore forecasting with this data did not produce accurate results. In this
report, machine learning models have shown to be able, to some extent, to model and predict
stock closing prices by using different forecast horizons. Classical approach - Hybrid model
and machine learning approach - LSTM performed better than SARIMA. The LSTM seems
to be more efficient in guessing the actual values. The evaluation metrics indicate a negative
gap between the short and long-term and the inadequacy of both methods in producing a
recursive forecast and learning patterns over time. Another indication that the models are
quite robust. In any case, it becomes more and more difficult to predict the future using only
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Figure 5.2: The performance of each method according to test RMSE and test MAE for the
Dataset2(SSE)

Table 5.9: The mean values of RMSE and MAE for Training and Test set in FTSE 100 using
horizon 62

Model Train MAE Train RMSE Test MAE Test RMSE

SARIMA 152.343 392.660 183.022 210.316
Hybrid ARIMA-GARCH 135.688 322.302 172.657 198.164

LSTM 250.668 293.646 202.523 234.434

current samples alone. As the size of the network grows, we may observe degradation in the
quality of the forecast.
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5.1. Comparison Results.

Figure 5.3: The performance of each method according to test RMSE and test MAE for the
Dataset3(FTSE 100)
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Chapter 6
Discussion

This chapter contains an evaluation of the achieved research result, relevant achievements,
and recommendations for future work based on errors and obstacles.

6.1 Discussion

According to the results, the initial hypothesis makes sense. Stock market fluctuations could
be explained by the very random nature of the market, even if it is unlikely. Even though it
is not dependent on the equivalent of a coin flip for its value, past data may only have a very
small impact on the present and future value of an index. Based on the AIC score, the time
series process seems to be a random walk. This report shows that machine learning models
can, to some extent, be used to model and forecast stock close patterns daily. We observed
that both Hybrid ARIMA-GARCH and LSTM have better performance across all datasets, as
shown in the results. Linearity of the patterns explains this outcome; indeed, daily data ex-
hibit linear behavior. Besides, the limited amount of samples does not help. Neural networks
are deemed to need a large amount of data to learn the patterns behind them. In dataset
1 Hybrid ARIMA-GARCH outperforms ML techniques, but the gap is minimal. However,
this measure is not extremely accurate. If we look at the actual forecast we may notice that
the forecast is not as good as expected. It might be due to different reasons, but in this case,
RMSE is not reliable. The second and third datasets have the best performance. It is indeed,
the most challenging scenario, where the data is more stable. Anyway, LSTM and Hybrid
ARIMA-GARCH have an overall lower error return. If we look at the real forecast, it can be
considered reasonable. To answer the first research question the LSTM and Hybrid ARIMA-
GRACH are best in this case.

The SARIMA model can hardly be affected by outliers, explaining this behavior. This
research does not address the handling of outliers. As a result, a grid search technique is
necessary to find the most effective parameters. Grid search is time-consuming, and it has
to be performed every time a model needs to be modified. Moreover, SARIMA has seven
parameters, meaning the number of possible combinations could explode, making it impos-
sible to explore fully. The grid search would require an excessive amount of time when the
input size increases because it would not be able to exploit all the points. The use of machine
learning techniques along with the largest input size, on the other hand, has been shown to
improve their performance. As you can see in the plots, the performance follows a low error
rate. Therefore, they may outperform statistical methods. In all the datasets, if we look at
the graphs we notice how each model performs on different horizons. Both the hybrid model
and LSTM results are quite impressive. Overall, we can affirm that the model produces a
closer error along the forecast horizon. It is another piece of evidence that the models are
quite robust. Perhaps, if we increased the size of the network, we would observe a drop in
the quality of the forecast. Curios are the fact that the Hybrid model and SARIMA forecast
seem to follow the same trend with different amplitudes.
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6.1. Discussion

SARIMA and Hybrid ARIMA-GARCH, as well as LSTM, were all employed to forecast
stock closing prices with different forecast horizons. Using traditional methods, data used
for forecasting has the same scaling (no normalization is done). However, in the case of
LSTM, we used the min-max scaler function to normalize the data. The LSTM still outper-
forms the other two methods with all horizons with reliable errors on all datasets. Based on
the evaluation between our two approaches prediction and the actual closing price, we can
see that the error was larger when the S&P 500, SSE, and FTSE 100 closing prices tended to be
more volatile. Using a univariate time series model alone will not reduce error during volatile
periods of the index, since the volatility occurs during such times, for example during the fi-
nancial crisis or when some negative news about the index is broadcast. When this happens,
LSTMs will have a hard time predicting accurately. When building a deep learning model,
it is foolish to rely solely on historical closing prices as input parameters. Stock/index price
movements are complicated, as there are many factors involved, including macroeconomic
events, market noise, investor sentiment, etc. These factors also contribute to stock/index
price movements.

Even though the stock market is inherently complex, simply relying on the closing price of
the previous days is a very narrow approach. Since this model does not include fundamental
aspects such as the profitability of companies, economic policies, and some other political
aspects. Market shocks induced by unforeseen events are also impossible to forecast. Adding
indicators to this would likely make the model more accurate. This thesis is only limited by
the fact that it models the SSE, FTSE 100, and S&P 500 indexes. As a result, if one applied
the same model using different hyperparameters, one would find that the conclusions differ
from the forecast to a certain degree. Initially, it would seem that a network that trains itself on
past data and then makes predictions is a good idea for predicting stock market movements,
but this view is quite naive. Any model that incorporates only past data in its forecasts is
unlikely to be able to accurately predict market values in the future. If one tried to use a
trading strategy or an investment strategy, it might not end catastrophically, but it wouldn’t
be as successful as if the forecasts had been accurate. That’s not to say neural networks and
machine learning do not have any practical use, on the contrary, in areas where forecasts
can be made based on past data, the power to identify indicators ahead of time is extremely
valuable. When it comes to their use in finance, given the fact that finance professionals use
machine learning more and more with every passing year, they are incredibly relevant, even
if they’re not exactly a magical entity that predicts future values based only on past data.

We might be able to improve the market forecasting by creating some model that takes
into account both historical prices and other factors such as macroeconomic indicators, the
intrinsic value of the companies that compose an index, and perhaps some kind of sentiment
indicator.

6.1.1 Relevant achievements

The process of building a neural network capable of forecasting time series takes a lot of time.
It is a complex architecture with a lot of parameters that need to be tuned. Trial and error is
typically employed to find the most appropriate solution. The most significant outcome of
this research is a simplified architecture created by combining the approach described in [7]
with the existing architecture, known as LSTM. In addition, we provided a way for embed-
ding the information obtained from temporal exploration into the network. This approach,
where the input and output layers of the LSTM are fixed, has been applied to three datasets,
with better results compared to the SARIMA and hybrid ARIMA-GARCH. Furthermore, the
constraints on the layer size make it easier to speed up the process of designing the network.
A second notable outcome is the different forecast horizon used in the tests. This work has a
forecast horizon of 5,21 and 62 with a test data size of 100 time points. A reasonable forecast
was provided by our architecture, demonstrating its high robustness. Finally, we performed
all the experiments on real-world scenario time-series, which supports our findings.
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Chapter 7
Conclusion

Based on the analysis in this article, it is evident that deep learning-based algorithms and
techniques have a lot of potential in the economics and financial fields. In finance and eco-
nomics, several other prediction problems can be addressed using machine learning. To do
this, we fitted three SARIMA models, three hybrid ARIMA-GARCH models, and three LSTM
neural networks to the same data from the S&P 500, SSE, and FTSE 100 index and evaluated
their performance at different horizons.

Recent advancements in developing sophisticated machine learning-based techniques,
particularly deep learning algorithms, have caused these methods to gain popularity among
researchers across a wide variety of disciplines. These newly introduced methods should
prove to be as effective and accurate as traditional methods. A comparison of classical
(SARIMA, Hybrid ARIMA-GARCH) and machine learning (LSTM) methods are presented
here, as representative models for the forecasting of time-series statistics. Two of these tech-
niques were implemented and applied to a set of financial data. The results showed that
LSTM was superior to the other two methods. Furthermore, it is demonstrated that the re-
sults would be different if different datasets were used in the forecasts.

However, one conclusion to be drawn regarding the effectiveness of the two presented
methods is where the LSTM neural network consistently outperforms the classical approach.
Because none of the models are highly accurate, trying to make a profit trading using any of
them would probably be futile.

7.1 Future work

There are several components to research in this field that should be incorporated into other
research frameworks. When backtesting data, the first step would be to optimize a hyperpa-
rameter to eliminate overfitting. Second, one should always make a prediction and compare
it with what is happening in real-time. Instead of just presenting backtested graphs. Another
aspect would be to use sentiment analysis to forecast the volatility of the index price since
we saw that the error of the prediction increased when the index price tended to be volatile.
If we had considered more factors than just past index price trends, we would have made a
more informed decision. A KST (Kolmogorov–Smirnov test and T statistic) method is will
use for the construction of a correlation network based on the fluctuation of each time series
within the multivariate time signals. So KST technique is used to analyze which day of the
week is following the same distribution. Then find the distribution of every business day in
a week, where a model is fitted on each cluster to forecast values based on different horizons.
Combine those forecasts at the end. This type of implementation may increase the complexity
of the system, but it might improve both the accuracy of prediction and forecast horizon.
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