
Comparing trigonometric interpolation against
the Barycentric form of Lagrange interpolation:

A battle of accuracy, stability and cost

Department of Mathematics, Linköping University

Beatrice Söderqvist

LiTH-MAT-EX–2022/13–SE

Credits: 16 hp

Level: G2

Supervisor: Andrew Ross Winters,
Department of Mathematics, Linköping University

Examiner: David Rule,
Department of Mathematics, Linköping University

Linköping: June 2022

Abstract

This report analyzes and compares Barycentric Lagrange interpolation to Car-
dinal Trigonometric interpolation, with regards to computational cost and ac-
curacy. It also covers some edge case scenarios which may interfere with the
accuracy and stability. Later on, these two interpolation methods are applied
on parameterized curves and surfaces, to compare and contrast differences with
the standard one dimensional scenarios. The report also contains analysis of
and comparison with regular Lagrange interpolation.

The report concludes that Barycentric Lagrange interpolation is generally speak-
ing more computationally efficient, and that the inherent need for periodicity
makes Cardinal Trigonometric interpolation less reliable in comparison. On
the other hand, Barycentric Lagrange interpolation is difficult to implement
for higher dimensional problems, and also relies heavily on Chebyshev spaced
nodes, something which can cause issues in a practical application of inter-
polation. Given ideal scenarios, Cardinal Trigonometric interpolation is more
accurate, and for periodic functions generally speaking better than Barycentric
Lagrange interpolation. Regular Lagrange interpolation is found to be unviable
due to the comparatively big computational cost.

Keywords:
Interpolation, Big O-notation, Cardinal function, Lagrange Interpolation,
Barycentric Lagrange Interpolation, Trigonometric Interpolation, Parametriza-
tion

URL for electronic version:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185999

Beatrice Söderqvist, 2022. iii

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185999

Sammanfattning

Rapporten analyserar och jämför Barycentrisk Lagrange-interpolation med Kar-
dinalisk Trigonometrisk interpolation, m.a.p. beräkningstid och noggrannhet.
Rapporten täcker även några scenarion där metoderna är mindre noggranna
och/eller stabila. I senare delen av rapporten används interpolationsmetoderna
på parametriserade kurvor och ytor, för att jämföra och undersöka skillnader
mot det vanliga endimensionella scenariot. Rapporten innehåller också en un-
dersökning av vanlig Lagrange-interpolation.

I slutsatsen finner rapporten att Barycentrisk Lagrange-interpolation generellt
sett är mer beräkningseffektiv, och att behovet av periodicitet gör trigonomet-
risk interpolation mindre pålitlig. Å andra sidan så är Barycentisk Lagrange-
interpolation svårare att implementera för problem av högre dimensioner, och
kräver ofta Chebyshev-noder för att fungera, något som kan orsaka problem i en
praktisk applicering av interpolation. I ideala scenarion är Kardinalisk Trigono-
metrisk interpolation mer noggrann, och för periodiska funktioner generellt sätt
bättre än Barycentrisk Lagrange-interpolation. Vanlig Lagrange-interpolation
ses som olämplig att använda p.g.a. den höga tidskostnaden.

Nyckelord:
Interpolation, Ordo, Kardinalfunktion, Lagrangeinterpolation, Barycent-
risk Lagrangeinterpolation, Trigonometrisk interpolation, Parametrisering

URL för elektronisk version:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185999

Beatrice Söderqvist, 2022. v

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185999

Acknowledgements

I want to thank everyone who has in some way helped me on the journey to and
through this project, including classmates, teachers, friends and family. Math-
ematics is built on previous mathematical knowledge, and mathematicians are
only built with the support of lots of other people. I want to give a special
thanks to:

Ida Åkerholm and Kristoffer Tondel, for being great friends and colleagues over
the years and providing help during the project with various technical aspects.
I also want to give an extra thanks to Kristoffer who helped push me to finish
the project before summer.

Emma Vališová, for being an amazing best friend, giving me a feeling of comfort
in times of hardship, and also introducing me to the wonders of BibTex.

My dad who listened carefully every time I showed my progress with this project,
and whose support in my creative endeavors has always meant so much to me.

My supervisor Andrew Ross Winters, for coming up with the project idea in
the first place, letting me set my own schedule and pace with the project, giving
feedback at quite frankly an alarming rate, and all around being a wonderful
teacher and mentor.

Finally I want to give thanks to you for taking the time and effort to read
this report. It is a labor of love and I really hope you enjoy it!

Beatrice Söderqvist, 2022. vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Method and content . 2

2 Theoretical Background 5
2.1 Polynomial interpolation . 5

2.1.1 The standard Lagrange technique 6
2.1.2 The Barycentric form of Lagrange 6

2.2 Trigonometric interpolation . 7
2.2.1 Using a cardinal basis . 8
2.2.2 Fast Fourier Transform (FFT) 9
2.2.3 Periodic extensions . 10

2.3 Computational cost . 11
2.3.1 Barycentric Lagrange . 11
2.3.2 Trigonometric Interpolation with cardinal basis 11

2.4 Error calculation . 12
2.4.1 The Lp Norm . 12
2.4.2 Spectral Convergence . 13

2.5 Problems with Stability and Convergence 14
2.5.1 The Runge Phenomenon 14
2.5.2 The Gibbs phenomenon 16
2.5.3 Outliars or broken data 17

3 Numerical Implementation 19
3.1 Comparing the computational cost 20
3.2 Evaluating the error . 24

Beatrice Söderqvist, 2022. ix

x Contents

4 Higher dimensions 31
4.1 An introduction to parametrization 31
4.2 An implementation of parametrization 32
4.3 The third dimension . 35

5 Comparison and Conclusion 41
5.1 Final comparison . 41
5.2 Further studies and potential improvements 43

A Code appendix 47
A.1 Functions . 47
A.2 Computational Cost . 52
A.3 Error and stability . 56
A.4 Higher dimensions (functions and programs) 59

Chapter 1

Introduction

To understand the problem at hand we first need to understand interpolation
itself, what it is and when we use it.

1.1 Background

Interpolation means inferring data from preexisting data. Just like extrapolat-
ing, interpolation is about finding a pattern of any sort, and trying to estimate
new data points that still follow that pattern. In theory interpolation allows us
to create any extra data points needed, or remove any unwanted/irregular data
from an otherwise functional data set.

There are several practical applications of interpolation. It may, for example,
be used to add extra frames in video, to make slow motion shots smooth and
visible. It can also be used to remove dead pixels in a digital image, or to assist
in animating at a higher frame rate. The animation industry, in fact, has an
entire job title for interpolating images, the Inbetweener, whose job is to take a
few frames of animation and draw in (or interpolate) fluid movement. However,
just as there are several different ways to draw and animate a character based
on circumstance, there are several different kinds of interpolation that solve dif-
ferent needs.

Because there are many patterns you can assume that a data set is following
(a line, a polynomial, a trigonometric function etc.), there are many different
ways to interpolate a given data set. A good first example is linear interpola-
tion. If the data set is 0, 10, 20, 30, 40, 50 most people are able to intuitively tell

Beatrice Söderqvist, 2022. 1

2 Chapter 1. Introduction

that the points in between would likely be 5, 15, 25, 35, 45, making the doubled
set 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50. Linear interpolation is a good example
of a method that is intuitive and cost efficient, but not all data is made of
straight lines. Thus, the accuracy of linear interpolation is usually insufficient.
For increased accuracy non-linear interpolation methods such as Lagrange and
trigonometric interpolation become useful.

Lagrange interpolation is a kind of polynomial interpolation, so an interpo-
lation where you assume the data follows, or can at least be modelled by, some
sort of polynomial. The Barycentric form of Lagrange interpolation is a vari-
ant of Lagrange interpolation. Other forms of polynomial interpolation such as
Newton interpolation will not be discussed in this report, for the sake of brevity.

Trigonometric interpolation is, as the name suggests, a kind of interpolation
method that assumes the data can be represented as some combination of sine
and cosine functions. This is very closely related to Fourier series, in particular
the real valued sine-cosine form of Fourier series is almost identical to the def-
inition of trigonometric interpolation (which will be discussed in chapter 2.2).
The specific kind of trigonometric interpolation we will use in this report is
trigonometric interpolation using a cardinal basis (discussed in 2.2.1).

There are other kinds of interpolation methods, but they mainly fall into two
camps. Either they attempt to design a function that matches all of the points
in a given data set with some sort of polynomial (like Lagrange does), or they
work by truncating an infinite series on a finite set of points. The former are
sometimes called "Nodal" methods, and the latter are sometimes called "Modal"
methods. Splines are also an alternative, which we mention breifly in chapter
2.5.3.

Both the Barycentric form of Lagrange interpolation, and the cardinal form
of trigonometric interpolation will be described in detail at the start of the
theoretical discussion.

1.2 Method and content

In this report we will analyze the theoretical differences between the Barycen-
tric form of Lagrange interpolation and cardinal trigonometric interpolation,
examining computational cost and asymptotic computational complexity. After
the theoretical discussion we will use MatLab to implement and compare these
algorithms, using different data sets to compare accuracy, stability and compu-

1.2. Method and content 3

tational cost, as well as their practical limitations. The reasoning behind using
MatLab and not some other computer software is that MatLab easily handles
matrix calculations, which is useful when working with large two-dimensional
data sets.

After having verified our theoretical results using numerical computations, we
move on to discussing interpolation on parameterized curves, which allows us
to interpolate two and three dimensional curves/surfaces.

At the end of the report we will summarize the strengths and weaknesses of
Barycentric Lagrange interpolation and cardinal trigonometric interpolation re-
spectively. We will compare their accuracy, stability and cost, and then give
some recommendations for which algorithm to use in which context.

Chapter 2

Theoretical Background

In this section we will cover the construction of various interpolation methods.
We then compare them in purely theoretical terms according to how fast they
are to construct/use, their stability and accuracy, and if there are any important
edge cases/base assumptions made about the interpolated functions.

When interpolating, we work with discrete values at various different nodes.
This is how information is collected in real life, we don’t measure a continuous
function of data, we may measure it at specific points in time, or at specific
points in space (for example temperature tracking over a day or the measuring
of a coastline respectively). This means that we have a vector of points we want
to interpolate, with nodes tj and data yj at the nodes (j goes from 0 to n in
Lagrange interpolation and from −n to n in trigonometric interpolation, both
will be motivated in their respective chapters).

2.1 Polynomial interpolation

When interpolating data, a polynomial is usually a good starting point. Tay-
lor series have long been used to approximate functions, and they are all just
polynomials with specifically chosen coefficients. Polynomials in general are
easily defined, have continuous derivatives, and are mostly intuitive (for people
invested in mathematics). In fact, linear interpolation is technically just inter-
polation with polynomials of the first degree.

In theory, if we have n + 1 distinct data points, there exists a polynomial of
at most degree n, such that the polynomial intersects all n + 1 data points.

Beatrice Söderqvist, 2022. 5

6 Chapter 2. Theoretical Background

Furthermore, polynomial interpolation is unique [1], so the polynomial of at
most degree n is also the only possible interpolation polynomial (as an example,
think of the uniqueness of a line given two points in the Euclidean plane). If the
function data itself is a polynomial of degree ≤ n, then the polynomial inter-
polation will be exact; since the function is a polynomial of degree ≤ n then it
may also be seen as interpolating the n+1 data points, but because polynomial
interpolation is unique, both the function and the interpolating function are the
same polynomial.

2.1.1 The standard Lagrange technique
Lagrange interpolation starts with finding the cardinal basis

lk(tj) =

{
1 if j = k

0 otherwise.
(2.1)

Any polynomial of degree n may be expressed as p(x) =
∏n

k=1 c(x− rk) where
rk are the roots to the polynomial and c is some constant. If we want to create
a cardinal basis we simply need to remove the root for tk (so lk(tk) ̸= 0) and
then normalize the function (so lk(tk) = 1). The end result [1] is:

lk(x) =

n∏
i=0,i̸=k

(x− ti)

(tk − ti)
. (2.2)

Now that we have all of the cardinal basis for all of the data points, we need only
multiply each with yk and then sum it all together, and we have our interpolating
polynomial:

p(x) =

n∑
k=0

yklk(x). (2.3)

2.1.2 The Barycentric form of Lagrange
While the Lagrange polynomial is useful in theory, it’s not as good for compu-
tation and it has stability problems [4]. For every data point, all of the cardinal
functions lk must be evaluated at said point. The basis lk is a product of n
terms, so the total work is O(n2) for every data point [1]. We will now intro-
duce the Barycentric form, which is both faster and more numerically stable
(a detailed explanation of why can be found in chapter 2.3 and this chapter
respectively).

2.2. Trigonometric interpolation 7

Let’s return to the construction of the cardinal basis. We define the polynomial
ϕ(x) =

∏n
j=0(x− tj) and the barycentric weights:

wk =
1∏n

j=0,j ̸=k(tk − tj)
. (2.4)

Now we may construct the cardinal basis as

lk(x) = ϕ(x)
wk

x− tk
, (2.5)

and thus the interpolating polynomial is

p(x) = ϕ(x)

n∑
k=0

yk
wk

x− tk
. (2.6)

However, if p(x) is the constant function 1, then all of the function data is yk = 1
(as previously established, polynomial interpolation of a polynomial of degree 0
must be exact). So,

1 = ϕ(x)

n∑
k=0

wk

x− tk
. (2.7)

Because p(x)
1 = p(x) we may finally determine an alternate form for p(x) which

does not contain ϕ(x):

p(x) =

∑n
k=0 yk

wk

x−tk∑n
k=0

wk

x−tk

. (2.8)

This is the Barycentric form of Lagrange interpolation [4]. It is important to
note that wk is calculated independently of yk, thus independent of function
data, so every wk need only be calculated once, even if we change the data.
Barycentric Lagrange interpolation is also more numerically stable than regular
Lagrange interpolation, but to save time we leave the explanation to Berrut and
Trefethen and their publication named "Barycentric Lagrange Interpolation" [4].

2.2 Trigonometric interpolation
Up until now we have only discussed interpolation using polynomials up to de-
gree n, but now we examine an alternative with a different basis function ansatz.
First, we assume that the function or data set we want to interpolate is periodic.
Without loss of generality, we further assume that one period can be represented
within the interval [−1, 1]. We know that f(x) = f(x + 2) for all x, and while

8 Chapter 2. Theoretical Background

it’s possible to interpolate this function using a polynomial, the more reasonable
approach would be to use Trigonometric Interpolation. Trigonometric functions
are periodic, and sums of periodic functions are also periodic, so using sums of
trigonometric functions to approximate periodic functions is a reasonable idea,
at least compared to polynomials (which are not periodic).

For trigonometric interpolation, we define our nodes as tk = 2k
N , k = −n, ..., n

where N = 2n+1. We use an odd number of nodes, mainly because we want to
include the node t = 0 (this will be helpful in chapter 2.2.1). Also notice that
unlike polynomial interpolation, the end points t = ±1 are not included.

We assume that every trigonometric interpolating polynomial may be written
as

p(x) =
a0
2

+

n∑
k=1

(ak cos(kπx) + bk sin(kπx)) (2.9)

where the goal is to find the constant a0, and the other unknown coefficients
a1, a2...ak, b1, b2...bk. Using Euler’s formula eix = cos(x) + i sin(x) we can con-
dense the real valued function into the more elegant complex form:

p(x) =

n∑
k=−n

cke
ikπx (2.10)

where we instead need to find c−n, c−n+1...c0...cn−1, cn. In both the real and
the complex notation, we must determine the values of 2n+ 1 unknowns.

2.2.1 Using a cardinal basis
When performing trigonometric interpolation, we can take a similar approach
to Lagrange. That is, we create a cardinal basis for each node and then multiply
each basis with the value of their respective nodal function values. In trigono-
metric interpolation (on equally spaced nodes), the cardinal basis we want to
use is:

τ(x) =
2

N
(
1

2
+ cos(πx) + cos(2πx) + cos(3πx) + ...+ cos(nπx)) =

sin(Nπx/2)

N sin(πx/2)
(2.11)

Notice that τ(tk) = 0 for k ̸= 0 and that τ(t0) = limx→0 τ(x) = 1.

On equally spaced nodes it is straightforward to define τk(x) = τ(x− tk) since
this will ensure that τk(tk) = τ(0) = 1, and that all of the other nodes within
the period equal zero. So now we have a set of functions with period 2, and each

2.2. Trigonometric interpolation 9

is 1 at one node and 0 at all the other nodes within each period. We now have
a cardinal basis. With the cardinal basis for each node established, we use the
same formula as in Lagrange interpolation (though with a different set of nodes)
to get our final trigonometric interpolating function: p(x) =

∑n
k=−n ykτk.

If we use an even number of nodes rather than an odd amount, all that changes
is the denominator in the cardinal basis [1].

τ(x) =
sin(Nπx/2)

N tan(πx/2)
. (2.12)

2.2.2 Fast Fourier Transform (FFT)

While the cardinal basis form of trigonometric interpolation is functional and
fast, there exist other alternatives to trigonometric interpolation, the most pop-
ular of which is the Fast Fourier Transform. The details of the FFT algorithm is
a topic beyond the scope of this paper, so this will mostly serve as an introduc-
tion to its computational cost and why it is useful to determine the interpolation
coefficients.

As mentioned in Chapter 2.2, we may write the task of interpolation as the
search for the complex valued unknowns c−n, c−n+1...c0...cn−1, cn in (2.10).
Since we have 2n + 1 unknowns and 2n + 1 nodes, we may do this via a lin-
ear system of equations of size (2n + 1) × (2n + 1). Solving this system of
equations by ordinary means without any special approach will give you a com-
putational time of O(n3) (it would require some kind of LU factorization, and
then forward/backward solves, but the point is that it is very computationally
expensive). However, because of the structure in this system of equations and
the underlying "nice" properties of sine/cosine basis functions, there are tech-
niques that can be used to cut down on time, and eventually solve it within
O(n log2(n)). This way of solving the linear system of equations is called the
Fast Fourier Transform. Rather than one single algorithm, it’s a collective name
for all the algorithms that may solve the system in O(n log2(n)) [6].

There are many different kinds of FFT algorithms, Kopriva uses Temperton’s
self sorting, in place complex FFT [6], and MatLab uses FFTW (Fastest Fourier
Transform in the West) which is a collection of various algorithms that all fall
under the FFT umbrella [3]. FFTs are a subcategory of interpolation methods
of their own, so we will not dig much deeper into them as it would take up the
entire report.

10 Chapter 2. Theoretical Background

2.2.3 Periodic extensions

Now, while we have made the assumption that the function we are interpolating
is periodic, what happens if it is not? Trigonometric interpolation will still yield
a periodic output, so what happens is that the interpolated function "pretends"
that the function being interpolated is also periodic.

As an example: f(x) = |x| is not a periodic function. However, if we use
trigonometric interpolation on the interval x = [−1, 1], then the interpolating
function will have a period of two, so if we evaluate it between x = [1, 3] we
will get the same function just translated by two units. This applies infinitely
in either direction, creating a periodic function (specifically a triangle wave),
where there previously was the non-periodic f(x) = |x|

Figure 2.1: A periodic extension of f(x) = |x|.

While the end points in this example have the same value, f(−1) = f(1),
the interpolation algorithm will still interpolate regardless of this. So if instead
of f(x) = |x| we use f(x) = x, we now get a discontinuity every x = 1+2n, n =
0,±2,±4... The same can applies for the periodicity of derivatives, the periodic
extension can produce discontinuities there too if the end points do not match
up. These kinds of discontinuities will be analyzed in 2.4.2.

It should be noted that while you can look outside the interpolated bounds
for polynomial interpolation too, what you find is at best nothing interesting
and at worst a nonsensical mess (unless we are interpolating a polynomial, in
which case it is perfect).

2.3. Computational cost 11

2.3 Computational cost

We have now established our two competing methods: The Barycentric form
of Lagrange interpolation and trigonometric interpolation using cardinal basis.
We may now analyse how fast they are in terms of construction and evaluation.

It should be noted that the implementation used in chapter 3 is based on treat-
ing individual values of x rather than creating functions/polynomials where we
can simply insert x. This has the upside of being more intuitive and efficient, at
the cost of always having to define how many nodes we want to evaluate rather
than constructing a polynomial, and then choosing how many points to evaluate
for it. Because of this implementation, we may consider x to be an arbitrary real
number when considering the computational cost, rather than a variable in a
polynomial. Had we taken the variable approach, we would have used Horner’s
rule and Horner’s method in this section [7], but the computational cost analysis
is essentially the same regardless of implementation, just explained in different
ways.

2.3.1 Barycentric Lagrange

As mentioned in the motivation for using the Barycentric form, the standard
Lagrange interpolation method has a computational time of O(n2) to evaluate
at a given point x. The Barycentric weights also take O(n2) operations to
calculate (n+1 weights consisting of products with n+1 nodes). However, the
weights only depend on the interpolation nodes and not the data, i.e. only on
tk and not yk. This means that after we have selected the set of interpolation
nodes, we only need to calculate the barycentric weights once. All in all we
get that for any set of nodes (not function data), the computation time for
the Barycentric form is O(n2) in their construction, but on subsequent runs
evaluating the interpolant in Barycentric form costs just O(n). This is because
we have two sums of n polynomials (so each is O(n)), and we then have a division
between two polynomials, which as mentioned is with our implementation just
division between two real numbers, so O(1).

2.3.2 Trigonometric Interpolation with cardinal basis

The cardinal form of trigonometric interpolation as described in chapter 2.2.1
has a very good asymptotic computational complexity, since for each node we
only need to calculate sin(Nπx/2)

N sin(πx/2) and then sum it all together. Each cardinal
basis has a constant computational time, so our total sum will only be O(n).
However, while the time for each cardinal basis is constant, it does involve using

12 Chapter 2. Theoretical Background

trigonometric functions, and while not slow, they are definitely much slower
than simple multiplication and division. Thus, we can expect our cardinal
trigonometric interpolation to do well with very large amounts of nodes, but
with smaller or more medium sized calculations, the fact that the asymptotic
computational complexity is O(n) does not help as much.

Chapter 2.2.2 talks about the motivation behind FFT, and as discussed there,
the computational time is O(n log2(n)).

2.4 Error calculation

Arguably one of the most important aspects of any interpolation method is its
actual accuracy. In this chapter we will examine how close our interpolation
functions fit the interpolated function, working under ideal scenarios. In the
next chapter (chapter 2.5) we will then break down some edge cases where the
error converges more slowly, or does not converge at all.

2.4.1 The Lp Norm

To begin with, we need to establish what type of error we are measuring. There
are many different ways to define this problem, but the one we will be using in
this report is the Lp norm (also called the p-norm). The Lp norm for any given
vector of numbers is defined as [7]:

∥x∥p := (

n∑
i=1

|xi|p)1/p, (2.13)

and when p approaches infinity we get:

∥x∥inf := max
i

|xi|. (2.14)

The norms that we will be using are the 2-norm (also called the Euclidean
norm), and the infinity-norm (also called the maximum norm). Because we are
interested in the size of the error specifically, we will in the following chapter
use the notation ∥u − INu∥, where u is the vector of values from the function
being interpolated, and IN is the interpolation operation (so INu are the values
from the interpolation function).

2.4. Error calculation 13

2.4.2 Spectral Convergence

If we want to meaningfully analyse the interpolation error, Canuto & Hussani
[2] provide us with some helpful equations.

For trigonometric interpolation:

∥u− INu∥2 ≤ CN−m∥u(m)∥2 (2.15)

For polynomial interpolation (though not with equally spaced nodes, see
chapter 2.5.1):

∥u− INu∥2 ≤ CN
1
2−m∥u∥Hm (2.16)

Where N is the number of nodes, C > 0 is a constant, m is the number of
continuous derivatives the interpolated function possesses, and u(m) the m-th
derivative of the function.

We will not attempt to prove these equations as true, and some parts like the
Sobolev norm ∥u(m)∥Hm are beyond the scope of this paper, but the focus here
is the relationship between the error, N and m. Both equations contain the
factor N−m or N

1
2−m. This means that if for example m = 1, using twice the

nodes for trigonometric interpolation results in half the error, but with m = 2
twice the nodes means the error is one fourth and so on. Polynomial interpo-
lation works in much the same way, but the error converges slightly slower due
to the 1

2 in the exponent. When m approaches infinity we get an exponential
decay, this decay is also called Spectral Convergence. This is directly related to
how quick the Fourier coefficients converge, hence the use of the word "spectral".

We now see how periodic extensions (chapter 2.2.3) can become problematic.
Even if the function itself has infinitely many derivatives that are smooth and
bounded, and even if all of those derivatives are periodic, unless we choose the
proper bounds, we will get a much slower convergence. Compare sin(x) over
x = [0, π] to sin(x) over x = [0, 2π]. In both cases, the edge values are equal to
zero, but the derivative of sin(x) is cos(x), and cos(0) ̸= cos(π), meaning that
the first alternative does not even have a continuous first derivative. The end
result is that sin(x) over x = [0, 2π] will converge spectrally (m = inf), but
sin(x) over x = [0, π] will not.

14 Chapter 2. Theoretical Background

2.5 Problems with Stability and Convergence

Even the best of interpolation methods may have issues, and these may not
even be the best methods. This section will cover some of the problem scenarios
relevant to both interpolation methods, and how well they handle them.

2.5.1 The Runge Phenomenon

When interpolating with any polynomial using equally spaced nodes (not just
Lagrange polynomials), increasing the number of nodes does not necessarily im-
prove the results. What occurs instead is that the polynomial starts to oscillate
rapidly around the edges, this is known as the Runge phenomenon.

Figure 2.2: Polynomial interpolation of f(x) = 1
1+25x2 , using equally spaced

nodes (10 to the left, 20 to the right). The Runge phenomenon is clearly visible,
with wild swinging up and down at the edges.

As can be seen in the example, the polynomial approximates the function
well towards the middle, but the closer we get to the edges the worse the approx-
imation becomes. Crucially, this issue gets worse and worse the more nodes we
add, so the pointwise error does not converge. The solution to this problem is
to forgo equally spaced nodes altogether, and instead use a different distribution.

Since the problem appears at the edges of the function, we use a distribution
of nodes that’s more dense at the edges and less dense in the middle. Thus we
arrive at the Chebyshev points of the second kind. The Chebyshev points of
the second kind are defined as tk = − cos(kπn), k = 0, 1...n

2.5. Problems with Stability and Convergence 15

Figure 2.3: The distribution of Chebyshev nodes n = 10. [5]

Using Chebyshev nodes we may finally achieve spectral convergence when
using Barycentric Lagrange interpolation, as long as the function is sufficiently
smooth (as discussed in chapter 2.4.2). Unless mentioned otherwise, we will
use Chebyshev nodes for the Barycentric form of Lagrange interpolation, in the
remainder of this report.

Figure 2.4: Polynomial interpolation of f(x) = 1
1+25x2 , using Chebyshev nodes

(10 to the left, 20 to the right). The Runge phenomenon is no longer present.

The Runge phenomenon does not affect trigonometric interpolation functions
[1]. However, they have a similar effect in a different problem called the Gibbs
Phenomenon.

16 Chapter 2. Theoretical Background

2.5.2 The Gibbs phenomenon
When using trigonometric interpolation, we can run into some problems if the
function being interpolated is not continuous. Wherever there is a discontinuity,
the interpolant can over- and undershoot the function or the periodic extensions
(see 2.2.3). Importantly, this overshoot does not go away as we add more
nodes. This is known as the Gibbs phenomenon.

The square wave is a great example of a periodic function that is not con-
tinuous, it has two jump discontinuities per period (one goes up, the other goes
down). The square wave has many definitions as it is more about the look rather
than the underlying math, but the definition we have used here is:

f(x) =

{
1 if π(n− 1) ≤ x < πn;n = ±1,±3,±5 . . .

−1 otherwise.
(2.17)

Figure 2.5: Trigonometric interpolation of the sign function, which when re-
peated periodically becomes a square wave with amplitude 1 (see 2.2.3). We
use 10 nodes in the figure on the left, and 100 nodes in the figure on the right.

As we add more and more nodes, we notice that the height of the overshoot
stays the same, however the width of the overshoot does decrease, meaning that
the infinity norm will not decrease, but the 2 norm could decrease (see chapter
2.4), although we have no guarantee of the latter.

Generally speaking, whenever we interpolate a function that has a jump of size
α, the overshoot is α·(0.08949...) in each direction, when the number of nodes ap-
proaches infinity (so the jump in our square wave made from a sign function is 2,
meaning the jump in our interpolating function is about 2·(1+0.8949...) ≈ 2.36).
We will not explain where 0.08949 comes from, but [2] goes into more detail.

2.5. Problems with Stability and Convergence 17

2.5.3 Outliars or broken data
Using one interpolating polynomial to interpolate all the data simultaneously
can be dangerous, since that assumes that there must exist some smooth polyno-
mial/trigonometric sum that fits the data. In most cases, something that looks
similar to say a 2nd degree polynomial, still doesn’t have to follow a perfect
trajectory. This can be due to the person collecting the data, the equipment
being used, or simply due to some minor chaos that’s common across various
physics experiments.

Because both of our interpolation methods are "one function fits all", neither is
equipped to deal with the issue of outliar data. An alternative to this could be
for example the use of splines [7], where instead of 7 points creating one poly-
nomial of degree 6, you instead could use two polynomials of degree 3, and then
connect them together continuously. Another alternative (although it is not
strictly speaking interpolation, but rather a form of curve fitting) is the use of
orthogonal polynomials [1], such as the least squares method. Orthogonal poly-
nomials allow for curve fitting which does not require perfect matches, which in
turn can lead to a more well rounded function if the data slightly oscillates, or
single data points don’t follow the rest of the curve.

Neither of these alternatives will be discussed in detail in this report, but if
the data being collected is unreliable, these methods are a good approach.

Chapter 3

Numerical Implementation

Now that we have laid out the theoretical groundwork, we move on to a nu-
merical implementation of the two competing methods. We first analyze the
computational cost, and then calculate the accuracy on various ideal and less
than ideal scenarios.

As mentioned in chapter 2.3, the way we have chosen to implement the in-
terpolation methods is via calculating arrays of distinct values, so for each in-
terpolation function the input is a set of nodes, the data at those nodes, and
then which values for x we wish to evaluate. Barycentric Lagrange interpola-
tion also requires weights as an input. The output is thus the evaluated function
values corresponding to each x in the "evaluation node" list. For the sake of
visual clarity, we will only ever use a set of equally spaced nodes as evaluation
nodes, as it makes plotting easier, but you may use whatever evaluation nodes
you wish, as they are simply distinct values for x.

Most of the code was written independently, but some help has been taken
from Driscoll [1] and Kopriva [6]. All of the code that was used can be seen in
the code appendix

Beatrice Söderqvist, 2022. 19

20 Chapter 3. Numerical Implementation

3.1 Comparing the computational cost

For the computational cost, we are using the tic/toc functions in MatLab. This
is to isolate only the cost of the functions we want to test, and to not count
such things as creating the array of interpolated nodes, or plotting etc. All of
the code is being run on a laptop with the CPU "AMD Ryzen 7 5800 HS", none
of the code makes any use of a GPU or any other CPUs.

Figure 3.1: The computational cost of Lagrange interpolation. Each cross is the
mean time of 10 runs of Lagrange_Array.m, and each evaluates 50 points on a
randomly selected function.

The asymptotic computational complexity for Lagrange interpolation is O(n2)
as expected, and as we will see later in this section, it is on another order of
magnitude compared to Cardinal Trigonometric and Barycentric Lagrange in-
terpolation. This is mainly due to the fact that the algorithm makes for some
complicated lists, since (2.2) is not only a product, but a product excluding par-
ticular values (forcing us to make lists containing every value but one). Even
at low numbers of nodes, this takes a lot of time.

3.1. Comparing the computational cost 21

Figure 3.2: The computational cost of constructing the barycentric weights.
Each point on the plot is the mean time of 20 runs of Barycentric_Weights.m.

Figure 3.3: The computational cost of evaluating the Barycentric form of the
Lagrange polynomial (2.8), given a set of already defined weights. Each point on
the plot is the mean time of 10 runs of Barycentric_Lagrange_Array.m, where
crosses belong to the function evaluating 2000 points, and circles belong to the
function evaluating 1000 points.

22 Chapter 3. Numerical Implementation

Barycentric Lagrange interpolation is both significantly faster than regular
Lagrange interpolation, and has a better asymptotic computational complexity
(since with weights, the cost is linear). The linearity of Barycentric_Lagrange_Array.m
also makes it easier to illustrate how this particular implementation handles eval-
uating the function. As can be seen in fig. 3.3, evaluating twice the number of
nodes takes about twice as long, which is expected since all that does is run the
outer loop of the function twice as long, nothing else changes. Thus we have a
linear relationship between the number of points we want to evaluate, and the
amount of time it takes to evaluate the polynomial.

Figure 3.4: The computational cost of constructing the entire barycentric poly-
nomial. Barycentric_Lagrange_Array.m is used to evaluate 1000 nodes, and is
shown as crosses on the plot. Barycentric_Weights.m is shown as circles. Both
plots are averages of 10 runs of their respective algorithm.

As can be seen in this image, somewhere around 1500 nodes, the barycentric
weights start to overtake the rest of the construction in terms of computational
cost. However since we are evaluating 1000 nodes, it is slightly unrealistic to
construct the polynomial with 1500 nodes. Because of the asymptotic compu-
tational complexity, there will exist some scenario where the number of nodes
being evaluated are higher than the amount used for construction, and where
the barycentric weights take more time, but for most practical purposes we can
think of the barycentric weights as the more cost efficient algorithm. It may
be O(n2), but because it is a very simple algorithm it is still faster for most
realistic sets of nodes.

3.1. Comparing the computational cost 23

Figure 3.5: A comparison between Cardinal Trigonometric and Barycentric La-
grange (with preestablished weights). Each circle/cross on the plot is the mean
time of 20 runs, and each function evaluates 200 points. Barycentric Lagrange
is shown as circles, Cardinal Trigonometric as crosses.

Figure 3.6: A comparison between Cardinal Trigonometric and Barycentric La-
grange (with the time of weight calculation included). Every circle/cross on
the plot is the mean time of 20 runs, and each function evaluates 500 points.
Barycentric Lagrange is shown as circles and Cardinal Trigonometric as crosses.

24 Chapter 3. Numerical Implementation

As can be seen here, while O(n) is great and all, the Barycentric polynomial
is significantly faster to calculate compared to the trigonometric one. On top
of that, the Barycentric weights are very fast and have a low impact on even
relatively large sets of nodes. If we were to frame it in more theoretical terms,
we can expand the costs and frame them as such: Cardinal Trigonometric has
a cost of |O(n)| ≤ C1n + C0, the Barycentric form of Lagrange has a cost of
|O(n)| ≤ D2n

2 + D1n + D0. Since D2 ̸= 0, D2n
2 will eventually dominate,

but since C1 >> D1, the Cardinal Trigonometric will take longer for even a
relatively large number of nodes.

3.2 Evaluating the error

As established in the theory section, we will mostly make use of the 2-norm to
determine accuracy, as it is a fairly rounded way to measure it, and since we
also have a nice theoretical framework around spectral accuracy that uses the
2-norm.

Each time we measure the error we use 100 evaluation nodes (evaluation nodes,
not construction nodes), since the number of evaluation nodes itself should have
no real implication towards the error (just the computation time). However, if
there are some strange results when attempting to reproduce these scenarios
using the code below, it can be useful to increase the number of evaluation
nodes. This is because a low number of evaluation nodes may pick the places
we evaluate the error in an uneven or biased way (the higher the number of
evaluation nodes, the less the error function ought to oscillate).

An important thing to note in this chapter is that we are using loglog and
semilog scales on the plots, depending on the results. If we attain spectral con-
vergence it shows up as a straight line on a plot where only the y-axis is a log
scale (the error), but if we do not have spectral convergence (m = inf in 2.4.2)
we use a loglog scale because the error is decreasing as by some sort of power
function, and will thus show up as a straight line on the loglog scale. This
also means that in our implementation, when we increase the number of nodes
to be interpolated upon, for the semilog scale we simply add a number to it
"Nconst = Nconst+ 1", but when we use the loglog scale we instead multiply
it by a number "Nconst = Nconst ∗ 2". If we would not do the latter, plotting
the loglog scale would take a significantly longer amount of time.

3.2. Evaluating the error 25

Figure 3.7: The two norm error of Barycentric Lagrange interpolation on the
function f(x) = esin(πx)−2 cos(πx).

Figure 3.8: The two norm error of Cardinal Trigonometric interpolation on the
function f(x) = esin(πx)−2 cos(πx).

26 Chapter 3. Numerical Implementation

In an ideal scenario with a periodic and smooth function, both Cardinal
Trigonometric interpolation and Barycentric Lagrange interpolation attain spec-
tral accuracy. As expected, while both have spectral accuracy, Cardinal Trigono-
metric interpolation is faster for periodic functions. Since spectral accuracy
makes the error decrease exponentially, it shows up as a (mostly) straight line
on a semi log scale.

Figure 3.9: Cardinal Trigonometric of a square wave (2.17) (seen on the left),
and a triangle wave given by |x| (seen on the right). The function |x| is interpo-
lated on the interval x = [−1, 1], meaning the triangle wave has an amplitude
of 1 and period of 2.

This example shows the difference between a discontinuous function (the
square wave), and a continuous function with a discontinuous first derivative
(the triangle wave).

The error for the square wave appears to bottom out around 104 nodes, al-
though it is hard to tell if this is due to poor implementation or not, as it is
a fairly high number of nodes (and thus may have introduced some numerical
error in highly oscillating square wave interpolation).

3.2. Evaluating the error 27

Figure 3.10: The two norm error of Barycentric Lagrange interpolation on the
Runge function, f(x) = 1

1+25x2 .

Figure 3.11: The two norm error of Cardinal Trigonometric interpolation on the
Runge function, f(x) = 1

1+25x2 .

28 Chapter 3. Numerical Implementation

Barycentric Lagrange interpolation has spectral convergence with Cheby-
shev nodes. With Cardinal Trigonometric interpolation however, we run into
problems. Even though the function in figure 3.11 is smooth, the periodic exten-
sion is not. The bounds chosen for this interpolation were x = [−1, 1], but the
Runge function has a derivative with no repeated values. Thus it is impossible
to get anything better than a periodic extension that is continuous but without
a continuous derivative, and so Cardinal Trigonometric interpolation is limited
in the same ways it would be when interpolating for example f(x) = |x|. It is
interpolating a continuous function but with a discontinuous derivative.

Figure 3.12: The two norm error of Barycentric Lagrange interpolation on the
Runge function, f(x) = 1

1+25x2 . This time we use equally spaced nodes instead
of Chebyshev nodes of the second kind.

The Runge phenomenon makes the error go up instead of down, until it
reaches a point where the interpolation function oscillates so violently the pro-
gram can not keep up with the measurements.

3.2. Evaluating the error 29

Figure 3.13: Barycentric Lagrange interpolation of a square wave, using 1280
Chebyshev nodes of the second kind.

When calculating the error of functions without spectral convergence (m ̸=
inf), we were unable to do many comparisons with Barycentric Lagrange. This
is due to the numerical implementation being somewhat unstable, since the
barycentric weights (2.4) are calculated beforehand, and if we are not careful
they have a tendency to get either really big or really small. If they get too
big/too small, MatLab is unable to recognize the difference between the weights
and infinity/zero, and thus the implementation just breaks.

Chapter 4

Higher dimensions

Up until now, we have limited the scope of interpolation to discrete data points
collected over some axis. However, the main ideas and algorithms of interpola-
tion are applicable much more generally to any set of data points, such as two
dimensional objects (circles, squares, images of cats etc.) and three dimensional
objects (spheres, cubes, images of cats etc.). A lot of the same problems with
stability also persist into higher dimensions, as parametrization rephrases the
problem as several one dimensional problems. This chapter is dedicated to these
higher dimensional scenarios (though we will not go into the fourth dimension
and beyond, as it is very hard to draw).

4.1 An introduction to parametrization
While functions are typically represented in the 2D-plane with a relationship
between x and y (for example, y = x3 − 6x2 +2x), this is a bit lacking for most
2D-shapes. A circle for example can be represented as (x−xc)

2+(y−yc)
2 = r2

where (xc, yc) is the center point and r is the radius of the circle. However,
things get increasingly complex and hard to define with spirals, loops etc. A
more intuitive approach is to use parametrization, where instead of defining a
relationship between x and y, we define a separate variable θ and let it "wander"
across the plane. In our circle example, this means we define x = cos(θ) and
y = sin(θ), and let θ "wander" between [0, 2π].

Beatrice Söderqvist, 2022. 31

32 Chapter 4. Higher dimensions

One major upside of parametrization is that we do not need to consider the
whole when interpolating, we simply need to interpolate the x and y values
separately. For two dimensional curves, this means interpolating x with nodes
given by θ, and y with nodes given by θ. The numerical implementation can be
found in the code appendix.

4.2 An implementation of parametrization

This section will mostly feature some visual examples of interpolation on pa-
rameterized curves. We are not concerned with computing cost, and accuracy
is more so shown via visual examples of the curves, and not via exact measure-
ment (as in chapter 3.2).

The different kinds of curves showcased are used to highlight certain phenomena,
so we will make use of mostly curves with infinite periodic derivatives.

Figure 4.1: Barycentric Lagrange Interpolation of a Limaçon on 6, 8, 12 and 24
Chebyshev nodes of the second kind. Already after 12 nodes we get a surpris-
ingly accurate interpolation.

4.2. An implementation of parametrization 33

Figure 4.2: Cardinal Trigonometric interpolation of the same Limaçon with 6
and 24 nodes respectively. Because it is made of cos() and sin() functions,
trigonometric interpolation gets a perfect approximation almost immediately.

We saw with the examples in chapter 3 that trigonometric interpolation
can quickly get a near perfect fit for any function that is periodic, infinitely
differentiable, and with periodic derivatives. With parameterized curves, the
result is no different. Barycentric Lagrange interpolation also performs well
with Chebyshev nodes, but takes slightly longer to converge, as expected.

Figure 4.3: Interpolation of a spiral. Top left is Barycentric Lagrange interpola-
tion with 20 nodes, and the three following images are Cardinal Trigonometric
interpolation on 20, 100 and 2000 nodes.

34 Chapter 4. Higher dimensions

Figure 4.3 shows the Gibbs phenomenon on a parameterized curve. Barycen-
tric Lagrange performs well with Chebyshev spaced nodes, but Cardinal Trigono-
metric interpolation struggles due to the implied discontinuity in the x axis (see
chapter 2.2.3 for why this is discontinuity is only implied and thus not relevant
to Lagrange). Even at high amounts of nodes, the Gibbs phenomenon causes a
lot of oscillation.

Figure 4.4: Barycentric Lagrange interpolation with equally spaced nodes, on
the function x = 1.2 cos(θ), y = cos(θ) sin(θ)3, with 30, 60 and 90 nodes respec-
tively. The image on the bottom right is a zoomed out version of the 90 node
interpolation.

As can be seen in figure 4.4, the Runge phenomenon is just as present and
just as destructive as before. The implementation used makes it look like there
are very jagged corners when the function fails, but in reality the function is
actually smooth, we are just not evaluating enough points. In theory we could
evaluate more, but since all that would accomplish is making an already failed
attempt look a bit smoother, we do not increase the number of evaluation nodes.

4.3. The third dimension 35

Figure 4.5: A cat interpolated with Cardinal Trigonometric interpolation.

As long as we have a set of nodes that are equally spaced and in some sense
loop around, we may use Cardinal Trigonometric interpolation. Barycentric
Lagrange interpolation could be applied to any curve that has Chebyshev spaced
nodes, but these nodes are of course much harder to construct by hand.

4.3 The third dimension

Reaching into the third dimension requires a bit more work than the second
dimension. In order to parameterize a single three dimensional curve, we only
need one variable, but to parameterize a three dimensional surface, we need two.
For this purpose we have constructed new interpolating functions, but in broad
strokes they still function the same. We are still interpolating one dimension at
a time, now just with two parameters instead of one.

With that said, the focus of this section is more on the results rather than the
underlying theory, for the sake of brevity. We did not have time to construct
Barycentric Lagrange interpolation with two parameters, so instead the compar-
ison here is between regular Lagrange interpolation and Cardinal Trigonometric
interpolation.

36 Chapter 4. Higher dimensions

Figure 4.6: Regular Lagrange interpolation of a Möbius strip.

Since regular Lagrange is a fairly slow algorithm we use a comparatively low
number of nodes. While the Runge phenomenon is still possible, because we
limit ourselves to so few nodes we are less likely to encounter the phenomenon
(or at least visually see the effects of it).

4.3. The third dimension 37

Figure 4.7: Cardinal Trigonometric interpolation of a single sphere

38 Chapter 4. Higher dimensions

Figure 4.8: Cardinal Trigonometric interpolation of two spheres at once (the
formula for a sphere, but with v = [−π, π]). Note that although we use two
spheres as interpolation nodes, we still only evaluate values between −π/2 and
π/2 ("veval" in the code).

4.3. The third dimension 39

While initially a sphere might seem as very periodic and smooth, in real-
ity the way we construct it in three dimensions is not. The standard way of
computing a sphere is with:

f(u, v) =

x = cos(u) cos(v)

y = sin(u) cos(v) where u = [0, 2π], v = [−π/2, π/2].

z = sin(v)

(4.1)

However, if we pay attention to z, we notice that the end points sin(−π/2) =
−1 ̸= sin(π/2) = 1 meaning that although the sphere looks round, there is a
discontinuity in the z-axis (and while x and y are periodic, they are limited to
a non-periodic derivative with regards to v). Since we know that sin(x) has a
period of 2π, we may increase the bounds of v to v = [−π, π] to create a fully
periodic function with infinite periodic derivatives. With these bounds, v "wan-
ders" up and back down again, meaning we are interpolating two spheres rather
than one. The end result is that one sphere is affected by Gibbs phenomenon,
but two spheres are not.

Gibbs phenomenon is particularly problematic in three dimensions, since it can
apply to any number of surfaces which look periodic but are not, like for example
the Möbius strip.

Figure 4.9: Cardinal Trigonometric Interpolation of the function in figure 4.6

Chapter 5

Comparison and Conclusion

This chapter is a quick summary of the comparisons between the two interpola-
tion methods, and some concluding thoughts on when to use which method. At
the end is also a section giving some insight into topics which could be analyzed
in more detail.

5.1 Final comparison

The Barycentric form of Lagrange interpolation (2.8) is better than the regular
form (2.3) in almost every way. It is faster to construct, more stable [4], and
not overly complicated to implement. While it is harder to implement, in the
one dimensional case it does not require much extra thought. For the three
dimensional surfaces however, it is a bit more complicated, as evidenced by the
fact we did not have time to implement it in this project. In the choice between
regular and Barycentric Lagrange interpolation, the Barycentric variant ought
to be used as often as possible. Regular Lagrange interpolation should only be
used for educational purposes or if the Barycentric variant is too complicated
to implement.

With regards to computational cost, Barycentric Lagrange interpolation is the
fastest for most practical scenarios. Cardinal Trigonometric interpolation may
have the better asymptotic computational complexity of O(n), but because it
makes use of sin() and cos() functions, it takes a lot longer for a machine to
process, compared to multiplication and division. There exists a theoretical
point where Cardinal Trigonometric interpolation is faster than Barycentric in-
terpolation, but it is well beyond 2000 nodes and thus not likely to be found.

Beatrice Söderqvist, 2022. 41

42 Chapter 5. Comparison and Conclusion

If the Barycentric weights are already given, Barycentric Lagrange interpola-
tion is guaranteed to be faster than Cardinal Trigonometric interpolation. Both
Barycentric Lagrange and Cardinal Trigonometric are orders of magnitude faster
than Lagrange interpolation.

In terms of accuracy, Cardinal Trigonometric interpolation is better than Barycen-
tric Lagrange by a small margin, if they are both working under ideal conditions.
However, both of these come with some pretty big asterisks, as they require very
specific sets of nodes. Barycentric Lagrange interpolation requires Chebyshev
nodes of the second kind to not encounter the Runge phenomenon, and Cardinal
Trigonometric interpolation needs equally spaced nodes in such a way that the
function being interpolated maintains periodicity. While the former is problem-
atic with practical data collection (most data is collected at equal intervals), the
latter is problematic with how the functions themselves are structured, as the
need for periodicity means Cardinal Trigonometric interpolation essentially in-
terpolates discontinuous functions if the function is not periodic. If the data for
some reason is unreliable or contains outliar points (a practical example being
something like dead pixles), neither method is all that functional as they both
assume the data being collected is mostly accurate.

When it comes to higher dimensional interpolation, and especially 3D surfaces,
the issue of how we get our nodes becomes increasingly relevant. As seen with
the two spheres, even node sets that seem like they would work do not. Because
the Gibbs phenomenon is much more noticeable compared to the Runge phe-
nomenon, at least with the low amounts of nodes we used, Lagrange is generally
speaking more accurate and more reliable.

With higher dimensions the issue of computational cost also becomes increas-
ingly relevant. Lagrange interpolation is already a fairly slow algorithm, so
combine that with the fact that we are interpolating a mesh of points, and we
run into some very slow calculations. Even with 10 in u and 10 in v we have
a matrix of 100 separate points, which for Cardinal Trigonometric is no prob-
lem but for regular Lagrange takes quite some time. In terms of computational
cost, regular Lagrange is significantly worse than the other options in three di-
mensional problems. Ironically, we did not have time to implement Barycentric
Lagrange interpolation into three dimensions, as it does not build on the same
cardinal function idea and thus requires a different approach.

Generally speaking, if you know the data is periodic, use Cardinal Trigonomet-
ric interpolation, if you know it is not periodic or are unsure, try Barycentric
Lagrange interpolation, even if the data is equally spaced.

5.2. Further studies and potential improvements 43

5.2 Further studies and potential improvements
While we tried our best to create as many comparisons as possible between the
two interpolation methods, there were some things we did not have the time to
implement. As discussed in chapter 3.2, the Barycentric weights while theoreti-
cally stable, have a tendency to get too big or small for any numerical implemen-
tation. Finding a solution to that issue would help with comparing Barycentric
Lagrange to Cardinal Trigonometric interpolation in scenarios where m ̸= inf
according to 2.4.2.

Another thing not implemented was Barycentric Lagrange on three dimensional
surfaces, since it is not based on cardinal bases and thus needs some other ap-
proach compared to regular Lagrange. This is mostly due to a lack of time and
effort on our part, the project was nearing completion and we had to focus on
other things. As Barycentric Lagrange and regular Lagrange both produce the
same polynomial, it would be mostly for the sake of decreasing the computa-
tional cost, but an implementation would be welcome regardless.

Of course, there are also many other interpolation methods that ought to be
analyzed. A comparison with the Fast Fourier Transform in particular would
be helpful due to its popularity, but things like newton polynomials and even
splines would also be interesting to compare.

Most of the sources used in this report talk about other aspects of interpo-
lation to some extent, especially [1], [2], [4] and [6]. These are excellent books
and articles if you wish to learn more about interpolation, and explore various
methods and scenarios.

Bibliography

[1] Richard J. Braun and Tobin A. Driscoll. Fundamentals of Numerical Com-
putation. Society of Applied and Industrial Mathematics, 2017.

[2] Alfio Quarteroni Claudio Canuto M. Yousuff Hussaini and Thomas A.
Zang. Spectral Methods: Fundamentals in Single Domains. Springer Science
& Business Media, 2007.

[3] Matteo Frigo and Steven G. Johnson. Fastest Fourier Transform in the West.

[4] Lloyd N. Trefethen Jean-Paul Berrut˙ Barycentric Lagrange Interpolation*.
Society of Applied and Industrial Mathematics, 2004.

[5] Steven G. Johnson. Chebyshev-nodes-by-projection.

[6] David A. Kopriva. Implementing Spectral Methods for Partial Differential
Equations. Springer, 2009.

[7] Linde Wittmeyer-Koch Lars Eldén˙ Numeriska Beräkningar analys och il-
lustrationer med MATLAB. Studentlitteratur AB, Lund, 2001.

Beatrice Söderqvist, 2022. 45

Appendix A

Code appendix

The appendix is split into several parts, with the first being all of the custom
made functions, and the others being the various uses of those functions in
different examples.

A.1 Functions
Affine_Transform_Eq.m

1 function [out_nodes ,transformations] = Affine_Transform_Eq(x)
2 % Transforms a set of EQUALLY SPACED nodes into an array
3 % suitable for trigonometric interpolation
4

5 % Store the affine transformations for future reference
6 transformations = zeros (1,2);
7

8 out_nodes = x;
9 amount = length(x);

10 size = x(length(x))-x(1);
11 first_node = x(1);
12

13 % Translation
14 out_nodes = out_nodes - size/2 - first_node;
15 transformations (1) = - size/2 - first_node;
16

17 % Scaling
18 out_nodes = out_nodes .* (2/ size) .* ((amount -1)/ amount);
19 transformations (2) = (2/ size) * ((amount -1)/ amount);
20

21 end

Beatrice Söderqvist, 2022. 47

48 Appendix A. Code appendix

Barycentric_Lagrange_Array.m

1 function out_array = Barycentric_Lagrange_Array(x_j , y, w, x)
2 % This is the Barycentric form of Lagrange interpolation
3 % The output has been changed to an array of discrete numbers
4 % rather than an anonymous function
5

6 n = length(x_j)-1;
7 out_array = zeros(1,length(x));
8

9 % The outer loop simply cycles through every value of x,
10 % instead of creating an anonymous function we simply
11 % calculate distinct points one after another
12 for i = 1: length(x)
13 sum_top = 0;
14 sum_bot = 0;
15 for k = 0:n
16 % We need to manually avoid a division by zero
17 % While this isn ’t exactly elegant , it
18 % does solve the issue , though it should be
19 % remembered that we are now inable to get a lower
20 % error than 10^ -15
21 if x(i) == x_j(k+1)
22 x(i) = x(i) + 0.000000000000001; % 10^ -15
23 % Note that 10^ -16 is so small , MatLab recognizes
24 % it as zero too
25 end
26 % Calculate the sum for each side of the fraction ...
27 sum_top = sum_top + y(k+1) * w(k+1)/(x(i)-x_j(k+1));
28 sum_bot = sum_bot + w(k+1)/(x(i)-x_j(k+1));
29

30 end
31 % ...and at the end divide the two.
32 out_array(i) = sum_top / sum_bot;
33 end
34 end

Barycentric_Weights.m

1 function w = Barycentric_Weights(X)
2 % This function produces the barycentric weights from the
3 % input nodes. Remember , only nodes determine the weights ,
4 % not the data at the nodes
5

6 w = ones(length(X),1);
7 for J = 2: length(w)
8 for K = 1:J-1
9 w(K) = w(K) * (X(K)-X(J));

10 w(J) = w(J) * (X(J)-X(K));
11 end
12 end
13 w = 1./w;

A.1. Functions 49

Cardinal_Trigonometric_Array.m

1 function out_arr = Cardinal_Trigonometric_Array(nodes ,y,x)
2 % This is the cardinal basis approach to trig. interpolation
3 % The output has been changed to an array of discrete numbers
4 % rather than an anonymous function
5

6 % Ensure that the nodes are 2k/N spaced , and remember to do
7 % the same affine transformations on both sets of nodes
8 [nodes ,transforms] = Affine_Transform_Eq(nodes);
9 x = (x+transforms (1))* transforms (2);

10 N = length(nodes);
11 out_arr = zeros(1,length(x));
12

13 % The outer loop simply cycles through every value of x,
14 % instead of creating an anonymous function we simply
15 % calculate distinct points one after another
16 for i = 1: length(x)
17 % The sum for a single evaluated point
18 sum = 0;
19 for k = 1:N
20 t_k = nodes(k);
21 y_k = y(k);
22

23 if not(x(i)==t_k)
24 if rem(N ,2)==1
25 tau_top = y_k * sin(N * pi *(x(i)-t_k)*0.5);
26 tau_bot = N * sin(pi*(x(i)-t_k)*0.5);
27 tau = tau_top / tau_bot;
28 else
29 tau_top = y_k * sin(N * pi *(x(i)-t_k)*0.5);
30 tau_bot = N * tan(pi*(x(i)-t_k)*0.5);
31 tau = tau_top / tau_bot;
32 end
33 else
34 tau = y_k;
35 end
36 sum = sum + tau;
37

38 end
39 out_arr(i) = sum;
40 end
41

42 end

50 Appendix A. Code appendix

Cheb_Spaced_Nodes.m

1 function out_nodes = Cheb_Spaced_Nodes(amount ,st,en)
2 % Creates an array of nodes that are Chebyshev spaced
3

4 % If the start is bigger than the end , we flip them around
5 % This function always returns an array that goes from the
6 % smallest to the biggest number
7 if st > en
8 oldst = st;
9 st = en;

10 en = oldst;
11 end
12

13 n = amount -1;
14 out_nodes = ones(1,amount);
15 size = abs(st - en) / 2;
16 for k = 0:n
17 out_nodes(k+1) = -cos(k * pi / n);
18 end
19 out_nodes = (out_nodes * size) + size + st;
20 end

Eq_Spaced_Nodes.m

1 function out_nodes = Eq_Spaced_Nodes(amount ,st,en)
2 % Creates an array of equally spaced nodes
3 % IMPORTANT: Use Trig_Spaced_Nodes instead for trigonometric
4 % interpolation
5

6 % If the start is bigger than the end , we flip them around
7 % This function always returns an array that goes from the
8 % smallest to the biggest number
9 if st > en

10 oldst = st;
11 st = en;
12 en = oldst;
13 end
14

15 size = abs(st - en);
16

17 out_nodes = ones(1,amount);
18 for i = 1: amount
19 out_nodes(i) = i;
20 end
21 out_nodes = ((out_nodes -1) * size / (amount -1)) + st;
22 end

A.1. Functions 51

Trig_Spaced_Nodes.m

1 function out_nodes = Trig_Spaced_Nodes(amount ,st,en)
2 % While trigonometric interpolation does require equally
3 % spaced nodes , they also have to be such that the end points
4 % are *not* included. For example if we want to interpolate
5 % the interval -2 to 2 with five points , we need the points
6 % -1.6, -0.8, 0, 0.8, 1.6
7 % So we specifically want to ensure that the distance between
8 % the first and last is also equal , if we were to do a
9 % periodic extension

10

11 if st > en
12 oldst = st;
13 st = en;
14 en = oldst;
15 end
16

17 % This section is the only change from Eq_Spaced_Nodes.m
18 r_size = abs(st - en);
19 st = st + 0.5* r_size/amount;
20 en = en - 0.5* r_size/amount;
21

22

23 size = abs(st - en);
24

25 out_nodes = ones(1,amount);
26 for i = 1: amount
27 out_nodes(i) = i;
28 end
29 out_nodes = ((out_nodes -1) * size / (amount -1)) + st;
30

31

32

33 end

52 Appendix A. Code appendix

Lagrange_Array.m

1 function out_arr = Lagrange_Array(nodes , data , intNodes)
2 % This is the basic form of lagrange interpolation
3 % The output has been changed to an array of discrete numbers
4 % rather than an anonymous function
5 t = nodes;
6 x = intNodes;
7 y = data;
8 n = length(t)-1;
9 out_arr = zeros(1,length(intNodes));

10

11 % The outer loop simply cycles through every value of x,
12 % instead of creating an anonymous function we simply
13 % calculate distinct points one after another
14 for i = 1: length(intNodes)
15 sum = 0;
16

17 for k = 0:n
18 % First we calculate the cardinal basis
19 nt_k = [0:k-1 k+1:n];
20 ell_k = prod(x(i)-t(nt_k +1))/ prod(t(k+1)-t(nt_k +1));
21 % Then we make one big sum for the final polynomial
22 y_val = y(k+1);
23 sum = sum + y_val * ell_k;
24

25 end
26 out_arr(i) = sum;
27 end
28 end

A.2 Computational Cost

CC_Lagrange.m

1 % This file is used to test the speed of standard Lagrange.
2

3 Nconst = 10;
4 Neval = 50; % This value is set very low since Lagrange is SLOW
5 iterations = 50;
6 Nadd = 10; % By how much we increase the nodes each iteration
7

8 Nlist = zeros(1, iterations);
9 meanlist = zeros(1, iterations);

10 xeval = Eq_Spaced_Nodes(Neval ,-2,2);
11

12 for k = 1: iterations
13 x = Cheb_Spaced_Nodes(Nconst ,-2,2);
14 y = rand(1,Nconst);

A.2. Computational Cost 53

15

16 % We run the time test a few times and then take the average ,
17 % to help remove any noise from the calculation
18 timearr = zeros (1 ,10);
19 for i = 1:10
20 tic
21 LP = Lagrange_Array(x,y,xeval);
22 timearr(i) = toc;
23 end
24 meanlist(k) = mean(timearr);
25 Nlist(k) = Nconst;
26 Nconst = Nconst + Nadd;
27 end
28

29 plot(Nlist ,meanlist ,’+’);
30 xlabel (" Amount of nodes ");
31 ylabel ("Mean time (seconds)");
32 set(gca ,’fontsize ’ ,12);

CC_BL.m

1 % This file runs three time trials one after another , first it
2 % does only the barycentric weights , then only the barycentric
3 % "polynomial", and then finally both at the same time (the way
4 % it would be used if we had to always update the weights). The
5 % final run is therefore *not* just an addition between the
6 % results of the first two runs , but in theory it should be
7 % exactly that
8

9 Nstart = 100; % The starting amount of nodes for each algorithm
10 iterations = 200; % How many times we increase the node size
11 Nadd = 20; % By how much we increase the nodes each iteration
12 MeanAmount = 20; % How many times to re-run tests for stability
13 Neval = 2000; % How many points to evaluate
14

15 %___BARYCENTRIC WEIGHTS___
16

17 N = Nstart;
18 meanlist = zeros(1, iterations);
19 Nlist = zeros(1, iterations);
20

21 for k = 1: iterations
22 x = Cheb_Spaced_Nodes(N,-2,2);
23 y = rand(1,N);
24

25 timearr = zeros(1, MeanAmount);
26 for i = 1: MeanAmount
27 tic
28 w = Barycentric_Weights(x);
29 timearr(i) = toc;
30 end
31 meanlist(k) = mean(timearr);

54 Appendix A. Code appendix

32 Nlist(k) = N;
33 N = N + Nadd;
34 end
35

36 hold off
37 plot(Nlist ,meanlist ,’o’);
38 xlabel (" Amount of nodes ");
39 ylabel ("Mean time (seconds)");
40 set(gca ,’fontsize ’ ,12);
41 hold on
42

43 %___BARYCENTRIC_POLYNOMIAL___
44

45 Nconst = Nstart;
46 Nlist = zeros(1, iterations);
47 meanlist = zeros(1, iterations);
48 xeval = Eq_Spaced_Nodes(Neval ,-2,2);
49

50 for k = 1: iterations
51 x = Cheb_Spaced_Nodes(Nconst ,-2,2);
52

53 y = rand(1,Nconst);
54 w = Barycentric_Weights(x);
55

56 timearr = zeros(1, MeanAmount);
57 for i = 1: MeanAmount
58 tic
59 BLP_arr = Barycentric_Lagrange_Array(x,y,w,xeval);
60 timearr(i) = toc;
61 end
62 meanlist(k) = mean(timearr);
63 Nlist(k) = Nconst;
64 Nconst = Nconst + Nadd;
65 end
66

67 plot(Nlist ,meanlist ,’+’);
68

69 %___BARYCENTRIC COMPLETE___
70

71 N = Nstart;
72 meanlist = zeros(1, iterations);
73 Nlist = zeros(1, iterations);
74

75 for k = 1: iterations
76 x = Cheb_Spaced_Nodes(N,-2,2);
77 y = rand(1,N);
78

79

80 timearr = zeros(1, MeanAmount);
81 for i = 1: MeanAmount
82 tic

A.2. Computational Cost 55

83 w = Barycentric_Weights(x);
84 BLP_arr = Barycentric_Lagrange_Array(x,y,w,xeval);
85 timearr(i) = toc;
86 end
87 meanlist(k) = mean(timearr);
88 Nlist(k) = N;
89 N = N + Nadd;
90 end
91

92 plot(Nlist ,meanlist ,’.’);

CC_CT.m

1 % This file tests the speed of Cardinal trigonometric
2 % interpolation , and then the speed of barycentric lagrange
3 % (without predetermined weights)
4

5 Nstart = 10; % The starting amount of nodes for each algorithm
6 iterations = 100; % How many times we increase the node size
7 Nadd = 10; % By how much we increase the nodes each iteration
8 MeanAmount = 20; % How many times to re-run tests for stability
9 Neval = 200; % How many points to evaluate

10

11 %___CARDINAL_POLYNOMIAL___
12

13 N = Nstart;
14 meanlist = zeros(1, iterations);
15 Nlist = zeros(1, iterations);
16 xeval = Eq_Spaced_Nodes(Neval ,-2,2);
17

18 for k = 1: iterations
19 x = Eq_Spaced_Nodes(N,-2,2);
20 y = rand(1,N);
21

22 timearr = zeros(1, MeanAmount);
23 for i = 1: MeanAmount
24 tic
25 CTP_arr = Cardinal_Trigonometric_Array(x,y,xeval);
26 timearr(i) = toc;
27 end
28 meanlist(k) = mean(timearr);
29 Nlist(k) = N;
30 N = N + Nadd;
31 end
32

33 hold off
34 plot(Nlist ,meanlist ,’+’);
35 xlabel (" Amount of nodes ");
36 ylabel ("Mean time (seconds)");
37 set(gca ,’fontsize ’ ,12);
38 hold on
39

56 Appendix A. Code appendix

40 %___BARYCENTRIC_POLYNOMIAL___
41

42 Nconst = Nstart;
43 Nlist = zeros(1, iterations);
44 meanlist = zeros(1, iterations);
45 xeval = Eq_Spaced_Nodes(Neval ,-2,2);
46

47 for k = 1: iterations
48 x = Cheb_Spaced_Nodes(Nconst ,-2,2);
49 y = rand(1,Nconst);
50 w = Barycentric_Weights(x);
51

52 timearr = zeros(1, MeanAmount);
53 for i = 1: MeanAmount
54 tic
55 %w = Barycentric_Weights(x);
56 BLP_arr = Barycentric_Lagrange_Array(x,y,w,xeval);
57 timearr(i) = toc;
58 end
59 meanlist(k) = mean(timearr);
60 Nlist(k) = Nconst;
61 Nconst = Nconst + Nadd;
62 end
63

64 plot(Nlist ,meanlist ,’o’);

A.3 Error and stability

Stability_Gibbs.m

1 % ___An example of the Gibbs phenomenon___
2

3 Nconst = 100;
4 Neval = 8000;
5

6 % Define the nodes (x) and the data (y)
7 x = Eq_Spaced_Nodes(Nconst ,-pi ,pi);
8 y = ones(1,Nconst);
9 xeval = Eq_Spaced_Nodes(Neval ,-3*pi ,3*pi);

10 % Do a loop instead of the sign(x) to ensure that there is no y=0
11 for i=1: Nconst
12 if i<= Nconst /2
13 y(i)=-1;
14 end
15 end
16 f = @(x) sign(x);
17

18 % ___CALCULATION___
19 TP = Cardinal_Trigonometric_Array(x,y,xeval);

A.3. Error and stability 57

20

21 % ___GRAPHICS___
22 border = [x(1)*4 ,x(length(x))*4];
23 hold off
24 plot(x,y,’o’);
25 hold on
26 fplot(f,border);
27 plot(xeval ,TP,’b’);
28

29 xlabel ("x");
30 ylabel ("f(x)");
31 axis ([-3*pi, 3*pi, -1.5, 1.5]);
32 set(gca ,’fontsize ’ ,14);

Stability_Runge.m

1 % ___An example of the Runge phenomenon___
2

3 Nconst = 400;
4 Neval = 1000;
5

6 % Define the nodes (x) and the data (y)
7 x_eq = Eq_Spaced_Nodes(Nconst ,-2,2);
8 x_ch = Cheb_Spaced_Nodes(Nconst ,-2,2);
9 y_eq = 1./(1 + 25 * x_eq .^2);

10 y_ch = 1./(1 + 25 * x_ch .^2);
11 xeval = Eq_Spaced_Nodes(Neval ,-2,2);
12

13

14 % ___CALCULATION___
15 w_eq = Barycentric_Weights(x_eq);
16 BLP_eq = Barycentric_Lagrange_Array(x_eq ,y_eq ,w_eq ,xeval);
17 w_ch = Barycentric_Weights(x_ch);
18 BLP_ch = Barycentric_Lagrange_Array(x_ch ,y_ch ,w_ch ,xeval);
19

20

21 % ___GRAPHICS___
22 border = [x_eq(1),x_eq(length(x_eq))];
23 hold off
24 plot(x_ch ,y_ch ,’o’);
25 hold on
26 plot(x_eq ,y_eq ,’o’);
27

28 plot(xeval , BLP_eq ,’r’,Linestyle=’--’);
29 plot(xeval , BLP_ch ,’b’,Linestyle=’--’);
30

31 xlabel ("x");
32 ylabel ("f(x)");
33 set(gca ,’fontsize ’ ,14);

58 Appendix A. Code appendix

Error_Calculation_BL.m

1 % Error Calculation for Barycentric Lagrange interpolation
2

3 hold off
4 Nconst = 10;
5 Neval = 8000;
6 iterations = 140;
7 err_list = zeros(1, iterations);
8 node_list = zeros(1, iterations);
9 x_eval = Eq_Spaced_Nodes(Neval ,-pi ,pi);

10

11 for i = 1: iterations
12 x = Cheb_Spaced_Nodes(Nconst ,-pi,pi);
13 x_eval = Eq_Spaced_Nodes(Neval ,-pi ,pi);
14

15 y = exp(sin(pi.*x)-2.*cos(pi*x));
16 y_eval = exp(sin(pi.* x_eval)-2*cos(pi.* x_eval));
17

18 w = Barycentric_Weights(x);
19 BLP_arr = Barycentric_Lagrange_Array(x,y,w,x_eval);
20 err_list(i) = norm(BLP_arr -y_eval ,2);
21 node_list(i) = Nconst;
22 % Depending on the problem , either add an integer to Nconst
23 % or multiply Nconst with an integer
24 % Nconst = Nconst * 2;
25 Nconst = Nconst + 2;
26 end
27 hold off
28 %loglog(node_list , err_list ,’-’)
29 semilogy(node_list , err_list ,’-’)
30

31 xlabel ("x");
32 ylabel ("f(x)");
33 set(gca ,’fontsize ’ ,14);

Error_Calculation_CT.m

1 % Error calculation for Cardinal Trigonometric interpolation
2

3 hold off
4 Nconst = 10;
5 Neval = 1000;
6 iterations = 40;
7 err_list = zeros(1, iterations);
8 node_list = zeros(1, iterations);
9

10 for i = 1: iterations
11 x = Trig_Spaced_Nodes(Nconst ,-1,1);
12 x_eval = Eq_Spaced_Nodes(Neval ,-1,1);
13

14 y = exp(sin(pi.*x)-2.*cos(pi*x));

A.4. Higher dimensions (functions and programs) 59

15 y_eval = exp(sin(pi.* x_eval)-2*cos(pi.* x_eval));
16

17 TP_arr = Cardinal_Trigonometric_Array(x,y,x_eval);
18 err_list(i) = norm(TP_arr -y_eval ,2);
19 node_list(i) = Nconst;
20

21 % Depending on the problem , either add an integer to Nconst
22 % or multiply Nconst with an integer
23 % Nconst = Nconst * 2;
24 Nconst = Nconst +1;
25 end
26

27 hold off
28 %loglog(node_list ,err_list ,’-’)
29 semilogy(node_list , err_list ,’-’)
30

31 xlabel ("nodes ");
32 ylabel ("L2 error ");
33 set(gca ,’fontsize ’ ,14);

A.4 Higher dimensions (functions and programs)

Lagrange_Array_2D.m

1 function out_arr = Lagrange_Array_2D(u, v, data , u_ev , v_ev)
2 % This is the basic form of a 2D Lagrange interpolation
3 n = length(u)-1;
4 m = length(v)-1;
5 out_arr = zeros(length(u_ev),length(v_ev));
6

7 % Outer sums are for evaluation
8 for k = 1: length(u_ev)
9 for r = 1: length(v_ev)

10 sum = 0;
11 % Inner sums are the actual interpolations
12 for i = 0:n
13 for j = 0:m
14 % First we calculate the cardinal bases
15 nt_i = [0:i-1 i+1:n];
16 ell_i_top = prod(u_ev(k)-u(nt_i +1));
17 ell_i_bot = prod(u(i+1)-u(nt_i +1));
18 ell_i = ell_i_top/ell_i_bot;
19

20 mt_j = [0:j-1 j+1:m];
21 ell_j_top = prod(v_ev(r)-v(mt_j +1));
22 ell_j_bot = prod(v(j+1)-v(mt_j +1));
23 ell_j = ell_j_top/ell_j_bot;
24

25 % Then we make a big sum for the final polynomial

60 Appendix A. Code appendix

26 y_val = data(i+1,j+1);
27 sum = sum + y_val * ell_i * ell_j;
28 end
29 end
30 out_arr(k,r) = sum;
31 end
32 end
33 end

Cardinal_Trigonometric_Array_2D.m

1 function out_arr = Cardinal_Trigonometric_Array_2D(u,v,d,uev ,vev)
2 % This function does Cardinal Trigonometric interpolation
3 % with two parameters. The same principles used in
4 % Lagrange_Array_2D apply here.
5

6 [u,utransforms] = Affine_Transform_Eq(u);
7 uev = (uev+utransforms (1))* utransforms (2);
8 [v,vtransforms] = Affine_Transform_Eq(v);
9 vev = (vev+vtransforms (1))* vtransforms (2);

10

11 n = length(u);
12 m = length(v);
13 out_arr = zeros(length(uev),length(vev));
14

15 % Outer sums are for evaluation
16 for k = 1: length(uev)
17 for r = 1: length(vev)
18 sum = 0;
19 % Inner sums are the actual interpolations
20 for i = 1:n
21 for j = 1:m
22 if not(u(i)==uev(k))
23 if rem(n ,2)==1
24 tau_top = sin(n * pi *(uev(k)-u(i))*0.5);
25 tau_bot = n * sin(pi*(uev(k)-u(i))*0.5);
26 tau_u = tau_top / tau_bot;
27 else
28 tau_top = sin(n * pi *(uev(k)-u(i))*0.5);
29 tau_bot = n * tan(pi*(uev(k)-u(i))*0.5);
30 tau_u = tau_top / tau_bot;
31 end
32 else
33 tau_u = 1;
34 end
35

36 if not(v(j)==vev(r))
37 if rem(m ,2)==1
38 tau_top = sin(m * pi *(vev(r)-v(j))*0.5);
39 tau_bot = m * sin(pi*(vev(r)-v(j))*0.5);
40 tau_v = tau_top / tau_bot;
41 else

A.4. Higher dimensions (functions and programs) 61

42 tau_top = sin(m * pi *(vev(r)-v(j))*0.5);
43 tau_bot = m * tan(pi*(vev(r)-v(j))*0.5);
44 tau_v = tau_top / tau_bot;
45 end
46 else
47 tau_v = 1;
48 end
49

50 % Then we make a big sum for the final polynomial
51 y_val = d(i,j);
52 sum = sum + y_val * tau_u * tau_v;
53 end
54 end
55

56 out_arr(k,r) = sum;
57 end
58 end
59 end

Interpolating_Cats.m

1 cat_pts =[20.89 -26.67
2 19.99 -29.56
3 16.93 -28.66
4 14.4 -26.31
5 12.42 -23.07
6 12.06 -20
7 10.08 -16.94
8 7.19 -17.3
9 4.67 -20.55

10 2.32 -25.23
11 6.65 -26.13
12 7.37 -28.84
13 2.68 -28.66
14 -2.54 -28.66
15 -8.13 -28.66
16 -13.54 -28.84
17 -15.88 -27.04
18 -21.11 -28.3
19 -26.7 -30.46
20 -30.13 -33.17
21 -29.77 -36.05
22 -28.32 -39.11
23 -32.11 -37.67
24 -34.09 -35.33
25 -33.73 -30.64
26 -30.85 -28.3
27 -27.06 -26.67
28 -23.28 -25.05
29 -19.85 -22.53
30 -17.51 -19.64
31 -16.61 -16.22

62 Appendix A. Code appendix

32 -16.07 -12.97
33 -15.16 -9.91
34 -14.26 -7.02
35 -12.46 -3.96
36 -9.57 0.01
37 -6.33 3.25
38 -2.18 5.42
39 2.32 6.68
40 7.37 7.40
41 10.44 8.84
42 10.08 12.99
43 8.81 17.67
44 8.09 21.82
45 9.54 23.98
46 12.78 21.82
47 16.39 20.56
48 20.35 23.08
49 22.52 25.61
50 24.32 22.72
51 24.5 18.94
52 25.94 15.51
53 25.4 11.18
54 22.7 10.64
55 23.42 6.86
56 23.96 3.07
57 23.24 -0.71
58 20.89 -3.6
59 17.83 -7.02
60 16.39 -11.17
61 15.85 -14.6
62 16.21 -19.28
63 17.83 -23.61
64 20.89 -26.67];
65

66 n = length(cat_pts);
67

68 Nconst = n;
69 Neval = 1000;
70 disp(Nconst)
71

72 theta = Eq_Spaced_Nodes(Nconst ,0, 2*pi);
73 teval = Eq_Spaced_Nodes(Neval ,0,2*pi);
74 x = cat_pts (: ,1);
75 y = cat_pts (: ,2);
76

77 TP_x = Cardinal_Trigonometric_Array(theta ,x,teval);
78 TP_y = Cardinal_Trigonometric_Array(theta ,y,teval);
79

80 hold off
81 plot(x,y,’o’)
82 hold on

A.4. Higher dimensions (functions and programs) 63

83 plot(TP_x ,TP_y ,’r’)
84

85 xlabel ("x");
86 ylabel ("y");
87 set(gca ,’fontsize ’ ,14);

Multi_Dim_Limacon.m

1 % This is an example of the limacon , a sort of circular thing
2 % that can intersect itself.
3 % The code is easily modified to create a spiral instead ,
4 % or to make an example of the runge phenomenon.
5

6 Nconst = 5;
7 Neval = 1000;
8 theta = zeros(2,Nconst);
9

10 % First we create all of the theta arrays
11 theta (1,:) = Trig_Spaced_Nodes(Nconst ,0, 2*pi);
12 theta (2,:) = Cheb_Spaced_Nodes(Nconst ,0,2*pi);
13 teval = Eq_Spaced_Nodes(Neval ,0,2*pi);
14 % Then we use theta to create x and y
15 x = (2.2+5.5* cos(theta)).* cos(theta);
16 y = (2.2+5.5* cos(theta)).* sin(theta);
17 w_t = Barycentric_Weights(theta (2 ,:));
18

19 % And last we construct two sets of interpolation arrays , one for
20 % each coordinate
21 TP_x = Cardinal_Trigonometric_Array(theta(1,:),x(1,:),teval);
22 TP_y = Cardinal_Trigonometric_Array(theta(1,:),y(1,:),teval);
23 ch_BLP_x = Barycentric_Lagrange_Array(theta(2,:),x(2,:),w_t ,teval);
24 ch_BLP_y = Barycentric_Lagrange_Array(theta(2,:),y(2,:),w_t ,teval);
25

26 hold off
27 plot(x(2,:),y(2,:),’o’)
28 hold on
29 plot(x(1,:),y(1,:),’+’)
30 plot(x(1,:),y(1,:),’+’)
31 plot(TP_x ,TP_y ,’r’)
32 plot(ch_BLP_x ,ch_BLP_y ,’b’)

Multi_Dim_3D.m

1 % Parametric equations for a Mobius strip at the origin:
2 % X = (1 + V/2.* cos(U/2)).*cos(u)
3 % Y = (1 + V/2.* cos(U/2)).*sin(u)
4 % Z = V/2.* sin(u/2)
5 %
6 % on the intervals 0 <= u <= 2*pi and -1 <= v = 1.
7 % The parametric equations are periodic in u and not in v.
8 %
9 % Currently the file is using the function for two spheres:

64 Appendix A. Code appendix

10 % X = cos(U).* cos(V);
11 % Y = sin(U).* cos(V);
12 % Z = sin(V);
13 %
14 % on the intervals 0 <= u <= 2*pi and -pi <= v = pi.
15

16 N = 8;
17 M = 8;
18

19 u = Trig_Spaced_Nodes(N + 1, 0, 2*pi);
20 % Change this interval to -pi/2, pi/2 for a single sphere instead
21 v = Trig_Spaced_Nodes(M + 1, -pi , pi);
22

23 ueval = Eq_Spaced_Nodes (100, 0, 2*pi);
24 veval = Eq_Spaced_Nodes (100, -pi/2, pi/2);
25

26 [U,V] = meshgrid(u,v);
27

28 U = U’;
29 V = V’;
30

31 % Create gridded data for the different interpolations
32 X = cos(U).* cos(V);
33 Y = sin(U).* cos(V);
34 Z = sin(V);
35

36 % Plot the original curve
37 surf(X,Y,Z)
38 title (" Double Sphere: original data")
39

40 figure
41

42 % Interpolate
43 P_x = Lagrange_Array_2D(u, v, X, ueval , veval);
44 P_y = Cardinal_Trigonometric_Array_2D(u, v, Y, ueval , veval);
45 P_z = Cardinal_Trigonometric_Array_2D(u, v, Z, ueval , veval);
46

47 % Plot the interpolation
48 surf(P_x , P_y , P_z)
49 axis([-1,1,-1,1,-1,1])
50 title (" Double Sphere: interpolated data")

Linköping University Electronic Press

Copyright
The publishers will keep this document online on the Internet – or its possible
replacement – from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for
anyone to read, to download, or to print out single copies for his/her own use
and to use it unchanged for non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional upon the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authentic-
ity, security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its www home page: http://www.ep.liu.se/.

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
från publiceringsdatum under förutsättning att inga extraordinära omständig-
heter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda
ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/.

© 2022, Beatrice Söderqvist

http://www.ep.liu.se/
http://www.ep.liu.se/

	Introduction
	Background
	Method and content

	Theoretical Background
	Polynomial interpolation
	The standard Lagrange technique
	The Barycentric form of Lagrange

	Trigonometric interpolation
	Using a cardinal basis
	Fast Fourier Transform (FFT)
	Periodic extensions

	Computational cost
	Barycentric Lagrange
	Trigonometric Interpolation with cardinal basis

	Error calculation
	The Lp Norm
	Spectral Convergence

	Problems with Stability and Convergence
	The Runge Phenomenon
	The Gibbs phenomenon
	Outliars or broken data

	Numerical Implementation
	Comparing the computational cost
	Evaluating the error

	Higher dimensions
	An introduction to parametrization
	An implementation of parametrization
	The third dimension

	Comparison and Conclusion
	Final comparison
	Further studies and potential improvements

	Code appendix
	Functions
	Computational Cost
	Error and stability
	Higher dimensions (functions and programs)

