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Abstract

The Internet of Things is a constantly developing field. With advancements of
algorithms for object detection and classification for images and videos, the possi-
bilities of what can be made with small and cost efficient edge-devices are increas-
ing. This work presents how camera traps and deep learning can be utilized for
surveillance in remote environments, such as animal sanctuaries in the African
Savannah. The camera traps connect to a smart surveillance network where im-
ages and sensor-data are analysed. The analysis can then be used to produce valu-
able information, such as the location of endangered animals or unauthorized
humans, to park rangers working to protect the wildlife in these animal sanctu-
aries. Different motion detection algorithms are tested and evaluated based on
related research within the subject. The work made in this thesis builds upon
two previous theses made within Project Ngulia. The implemented surveillance
system in this project consists of camera sensors, a database, a REST API, a clas-
sification service, a FTP-server and a web-dashboard for displaying sensor data
and resulting images.

A contribution of this work is an end-to-end smart surveillance system that can
use different camera sources to produce valuable information to stakeholders.
The camera software developed in this work is targeting the ESP32 based M5Stack
Timer Camera and runs a motion detection algorithm based on Self-Organizing
Maps. This improves the selection of data that is fed to the image classifier on the
server. This thesis also contributes with an algorithm for doing iterative image
classifications that handles the issues of objects taking up small parts of an image,
making them harder to classify correctly.
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1
Introduction

Thanks to the advancement of algorithms for object detection and classification
for images and videos, a camera surveillance system automatically provides valu-
able information to the user of which images are of interest. This leads to that
there are now smart and sophisticated surveillance-systems all over the world
with different areas of use.

These systems can often be found in urban environments, especially in areas
where a lot of people are passing through. There is however, sparsely populated
and remote areas that could benefit from the use of information provided by a
smart surveillance system. One example being animal sanctuaries that provide
shelter for exposed and endangered species. These areas are often patrolled by
park rangers to ensure the safety of the animals and protect the area from unau-
thorized people. The rangers work could become more effective by the use of
a smart surveillance system that sends information to the rangers in real time
about activities in the sanctuary.

Edge-devices are microcomputers that generally are used to collect, process and
forward information. These devices are being used to a greater extent in for exam-
ple units like smart cars, speakers and home automation. Also, the inclusion of
cameras in these devices is becoming more popular. Edge-devices with cameras
as sensors can be used to create a smart surveillance system in an environment
where a traditional solution is not available. The edge-devices can provide its
own power supply and connection, making it possible to place them in an ani-
mal sanctuary for surveillance in these remote areas.

1



2 1 Introduction

1.1 Background

The black rhino is a rhino species with a population that has reached a critical
level and is today on the verge of extinction, although the last few years have
shown a slow regrowth. Ngulia is a sanctuary in Kenya with a population of
around 130 black rhinos. Project Ngulia is a project for developing technical sup-
port for park rangers in the area, to monitor the rhinos and to prevent poaching
[1]. The project is a collaboration between different companies and organizations
and some of the major ones are Linköping University, HiQ, Kolmården Zoo and
the Ngulia park. The role of Linköping University is mainly to do research on
how different technical solutions can be developed and what sensors and hard-
ware that are best suited for the task. In collaboration with Kolmården Zoo in
Norrköping, sensors have been placed around the zoo to be able to simulate a
test environment that is somewhat similar to the Ngulia park.

The capacity of today’s edge-devices is rapidly increasing, which makes it pos-
sible to run better models for object-detection and even classifications on these
devices. The Ngulia Project has been up and running for some years, hence the
amount of training data have also increased, which makes it easier to train mod-
els for detection and classification of objects of interest for the park rangers.

During two earlier periods of thesis work, 2020 and 2021, students have been
working with developing technical solutions for the project. During 2020, a the-
sis was made where focus were on integrating machine learning on edge devices
like raspberry pi, to detect animals and especially rhinos in real time [15]. Differ-
ent learning models were also evaluated during this thesis work to find out which
was best suited for the task. During 2021, further work was made in the project
where the focus was switched to detect humans inside the sanctuary [8].

1.2 Aim

The aim is to investigate methods to build a surveillance system for a remote
environment. The surveillance system will consist of a number of Edge-devices
that demand minimal maintenance, the devices will be scattered over a large
area hence physical availability to the devices will be limited. The main objective
will be to investigate the accuracy and efficiency of different motion detection
algorithms on micro controllers. By increasing the accuracy and efficiency of the
detection algorithm, the amount of data sent from the micro controller is mini-
mized, which also lowers the power consumption of the device. It will also be
investigated how the reliability of the Edge-devices can be increased when these
are deployed in the field. Previously produced models for object classification
will be combined and evaluated on its ability to classify both humans and ani-
mals. When the different parts of the system are implemented and evaluated,
they can be connected into a surveillance network. The surveillance network
should not be limited to only a specific type of camera-sensor, but any type of
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camera that can upload images to a server should be able to plug in to the surveil-
lance network. The design of the network should also be modular so that it can
be easily applied to other areas of interest with smaller configurations, for exam-
ple surveillance of wild animals in Sweden in the same way as for the animals in
Ngulia.

1.3 Research questions

Preliminary focus areas:

1. How can Self-Organizing Maps be used for motion detection on the ESP32
and how does it perform compared to Frame differencing?

2. How can the performance of an image classifier be increased for low scoring
objects which cover a small area of the image?

3. How can a robust and smart surveillance system be designed, implemented
and deployed with a remote target area? How can the challenges that come
with developing from afar be treated?

1.4 Limitations

The target environment of the project is located in Kenya and therefore not ac-
cessible during the major part of the project. Therefore, the deploy environment
needs to be simulated in Kolmården Zoo to be able to test and evaluate the system.
Also, the internet connection in the target area is of varying stability. However,
for the purpose of this project, it will be assumed that internet connection is avail-
able most of times. The amount of available annotated training data for an image
classifier is also a limitation for this project.





2
Theory

2.1 Self-Organizing Maps

Introduced by Kohonen in 1982, the Self-Organizing Map, som, is an unsuper-
vised artificial neural network [12]. It can be seen as a projection of the input
data onto a grid of prototype neurons, which is commonly two-dimensional. A
sample from the input gets associated with the neuron which it is the most simi-
lar to using a suitable metric, for example euclidean distance:

c(t) = argmin
i∈|P |

|| s(t) − ni(t) ||, (2.1)

at time step t, P is the set of prototype neurons, |P | is the number of neurons in P ,
c is the index of the most similar neuron n and s is the new sample from the input.

The neurons in the grid are then adjusted towards the input sample, hence the
name “Self-Organizing”. Each neuron is adjusted according to a learning rate
and smoothing kernel. A neuron in the network is updated according to:

ni(t + 1) = ni(t) + α(t) · ηi,c(t) · [s(t) − ni(t)], (2.2)

where ni is the neuron to update, α is the learning rate and η is the smoothing
kernel. The smoothing kernel depends on the distance from the current neuron
i to the best matching neuron c from (2.1). Neurons which are closer to the best
matching neuron is adjusted to a higher degree than neurons which are further
away. See Fig. 2.1 for a visual representation of the training process.

5



6 2 Theory

Figure 2.1: som adjusting to a cluster of two dimensional inputs. The white
dot is a first input sample, the neuron marked in yellow is the best matching
neuron and the neurons are then adjusted towards the input sample. After
processing all the inputs the resulting som can be seen on the right, with all
the neurons fitted over the input data. Image from Dan Stowell under CC
BY-SA 3.0 [20].

After the som has adjusted the neurons from input samples, it can be used to
classify anomalies in new samples. If the similarity between a new sample and
any neuron in the grid is not under a certain threshold, the input sample can
be treated as an anomaly. The som can be implemented to use online learning,
meaning it can adapt to anomalies in the input if the same anomaly is consis-
tently over multiple samples.

The use of online learning together with the ability to detect anomalies makes
the network a suitable candidate for motion detection in video. The simplicity of
the network also makes it suitable to implement on hardware which has limited
computational power. som’s have been used in motion detection algorithms on
hardware with low computational power with promising results, see e.g. Ortega-
Zamorano et al [16].

2.2 Neural network classifiers & transfer learning

Deep neural networks utilizing convolutional operations for feature extraction
are the current state of the art when it comes to classification problems for im-
ages. Pre-trained networks, which have already been trained on large datasets,
are commonly utilized when trying to solve new classification tasks. The pre-
trained networks can be used with the help of transfer learning. Transfer learn-
ing means to use knowledge which the network learned previously to solve the
new task. This is a good alternative compared to training a network from scratch
because it significantly reduces the amount of time and power needed to achieve
similar performance.
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(a) Original image. (b) Output from con-
volution.

Figure 2.2: Edge detection on an image through a convolutional operation.
Images by Michael Plotke, CC BY-SA 3.0 (a) and Crisluengo, CC BY-SA 4.0
(b) [17] [5].

2.2.1 Convolutional neural networks

Convolutional operations are a common tool in image processing. Different fea-
tures or properties can be extracted from an image depending on the kernel used
in the convolution. See Fig. 2.2 where edges has been extracted from an image.

These convolutions can be used to produce features which describes the content
of an image and features which describes the objects in an image.

One of the earliest implementations of a convolutional neural network, cnn, for
object detection resulted in a great improvement in performance [9]. The imple-
mentation by Ross Girshick et al. improved the mean average precision, map, by
more than 30% relative to the previous best result on the voc 2012 challenge
at the time [7]. cnn’s have since been used as the backbone of well performing
network architectures, for example the Centernet architecture, see e.g Duan et al
[6].

Convolution layers

Given an input tensor, in this case an image or a batch of images, the convolu-
tional layer performs a convolution on each image. The convolutional computa-
tion uses a kernel, also called filter or filter kernel. In this case the kernel is a
two-dimensional matrix containing learnable weights. The kernel is placed over
the image and the dot product is calculated between the kernel and the pixels
which it currently covers, see Fig. 2.3. The kernel is then moved with a specific
stride-length, but often just a single step, and the process is repeated until the
kernel has moved over the whole image. The borders of the image can be padded
to produce an output which has the same size as the input image. For example,
the image in Fig. 2.3 is not padded and the 3×3 kernel can only be placed in nine
different places, resulting in a 3 × 3 output from a 5 × 5 input.
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Figure 2.3: Convolution in 2D. Image from IBM Cloud [4].

The result of the convolution is a feature map where some features of the image
is produced. The type and the values of the filter kernel used in the convolution
decides what features will be highlighted from the image. A single convolutional
layer consists of several different filter kernels with different weights which de-
tects different features.

Pooling layers

A pooling layer reduces the dimension of the input to the layer by combining
several data points to one. A simple two-by-two kernel combines four adjacent
values into a single value. Common methods to combine the values are to use the
average of the values inside the kernel (Average pooling) or to use the maximum
value inside the kernel (Max pooling).

2.2.2 CenterNet

CenterNet is a deep neural network architecture for object detection which rep-
resents each object in an image as a keypoint triplet [6]. The triplet consists of
a center point, a top-left and a bottom-right corner points which is then used to
generate bounding boxes. The overall architecture can be seen in Fig. 2.4.

A stacked hourglass network is used as the convolution backbone to generate
feature maps from the image [14]. Cascade corner pooling is then applied to the
feature map to produce two corner point heatmaps with corresponding offsets
and embeddings for each corner. The offsets are used to map the points from the
heatmap back to the original image and embeddings help match corners which
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Figure 2.4: CenterNet architecture overview. Image by Duan et al [6]. ©
2019 IEEE.

are from the same object. Center pooling is also applied to the feature map to pro-
duce a center point heatmap with corresponding offsets. Corner points together
with their embedding are used to initially predict bounding boxes and then if a
center point is present in the central region of a bounding box it is added to the
final result. Bounding boxes which have no associated center point in their cen-
tral region is not considered a valid prediction.

To train a model using the CenterNet architecture a dataset with images and
labelled bounding boxes is used.

2.2.3 Transfer learning

Transfer learning in a general sense can be defined as “Transfer of learning means
the use of previously acquired knowledge and skills in new learning or problem-
solving situation” [19]. In the context of deep neural networks, transfer learning
means the usage of a neural network which has been trained for a task and reuse
the network for a new task. The amount of knowledge which can be transferred
depends on the similarity between the tasks. In the context of image classifica-
tion, the task often differs regarding the types of classes which the network tries
to classify.

Classifying the type of an object is in general the last step in an image classi-
fication task. Region extraction and feature extraction are essential steps in a
classification task and these steps can be generalized for arbitrary classes and ob-
jects. This means that a majority of knowledge related to these two steps, region
extraction and feature extraction, can be transferred between image classification
tasks where the classes differ.

In practice, this means that neuron weights in some of the layers of the pre-
trained network are reused for the new task. The layers responsible for classify-
ing the type of the object is the very last convolutional and fully connected layers
in the network. These can be unfreezed and then retrained using appropriate
input data for the new task [21].



10 2 Theory

2.3 ESP32 based microcontrollers

The use of microcontrollers in home automation and embedded systems are in-
creasing all the time. Some of the main advantages with the ESP32 are the porta-
bility and the cost effectiveness as summarized in the article “Using ESP32 Mi-
crocontroller for Data processing” by Babiuch, Foltýnek and Smutný [18]. The
ESP32 chip is developed by Espressif Systems and comes in different versions.
All of the versions are microcontrollers with integrated WiFi and 4MB of flash
memory. Some versions also come with external SPI PSRAM (Pseudo static RAM),
which increases the amount of data that can be processed at the same time. The
ESP32 also includes two CPU cores that can be used separately for parallel com-
puting.

There are some different developing platforms that can be used when implement-
ing code on a ESP32 microcontroller, for example the Arduino platform or the
Espressif IoT Development Framework. For developing a more optimized em-
bedded system, the most native way is to use the Espressif framework. Some of
the ESP32 microcontrollers have the option to connect a camera module, turning
them into powerful camera sensors that are power efficient, have the ability to
process data and then provide information to a system with more computational
power.

2.3.1 M5Stack Timer Camera

The M5Stack Timer Camera is an ESP32 based camera module with 8MB of
PSRAM and a 3MP camera [2]. With the ability of going into “sleep mode” when
not active, the current consumption is 2µA, making the module power efficient
and it can be powered by a connected battery in environments where no electric-
ity is available. The module also has the ability to transfer images with WiFi and
has a USB-port for debugging and to flash software to the unit. In Fig. 2.5, a size
comparison can be seen with the Timer Camera next to a regular pen.
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Figure 2.5: M5Stack Timer Camera size comparison next to a pen.
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Method

This chapter describes how the different parts of the surveillance system were
implemented and how the different features were used.

3.1 System overview

To make it easier to evaluate the system, the initial work consisted of putting
together a modular end-to-end system. This such that each part could be evalu-
ated as well as the whole system from camera to UI. In Fig. 3.1, an overview of
the surveillance system is illustrated where each part of the system is displayed
and the paths of communication is drawn out. The green parts are the core sys-
tem and can be used for different types of camera sensor, FTP and User Interface.
The yellow parts are interchangeable parts so that the system can be used as a
template and then modified for different purposes.

13
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Classifier service 
Uses trained model to classify images from

sensors

Sensor(camera) 
Detects motion

Web server 
(REST API) 

Dashboard

Database 
Store image and sensor data

FTP

Post metadata from  
classification

Crawls FTP for new images 
to classify

Structure images by moving to resulting 
 folders after classification

Fetch images from FTP

Send images to FTP

Send motion metadata and sensor status

View resulting images, make filtrations and 
monitor camera status

Figure 3.1: Block diagram of the system.

3.2 Camera sensor

The target hardware for the development of the camera software was the ESP32
based “M5Stack Timer Camera” which was described in Sec. 2.3.1. The work
produced by Arnesson and Forslund in 2021 [8], was used as a baseline for the
camera software. They implemented a motion detection algorithm with the use
of background subtraction and comparing pixel changes between images. Arnes-
son and Forslund also implemented functionality for sending images to a FTP-
server when motion was detected. This was used as a baseline to start with and
from which other useful functionalities could be added to. In Fig. 3.2 the differ-
ent components of the camera sensor system can be seen with the ESP32 Timer
camera in the top of the image, the solar power management board to the right,
the battery and battery gauge to the left.
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Battery

ESP32 Timer Camera

Battery Gauge 

Solar power managment board

Figure 3.2: The different components of the camera sensor system.

3.2.1 Timestamp

To keep track of the images in the database and also make it possible to filter
images based on different time periods, functionality was added to take a times-
tamp when motion was detected on a photo. This timestamp was then used as
the filename of the image and later stored in the database.

3.2.2 Motion detection using SOM

The som described in Sec. 2.1 can be used as a motion detection algorithm by us-
ing an image or a representation of the image as input to the network. Meaning
a pixel or an area of pixels can have a set of neurons which represent the most
common samples for that pixel or area of pixels. However, images are sensitive
to noise and having a set of neurons for each pixel is computationally heavy. The
image can be divided into blocks, where the value of each block B is the average
of all the pixels within that block. This helps reduce the computation needed and
reduce the amount of noise in the input to the som. For example, this approach
was used by Ortega-Zamorano et al [16].

A sample to the som looks like:

sB =
1
PB

∑
p∈B

p (3.1)

Where sB is the new sample for block B, PB is the total number of pixels in each
block and p are pixels belonging to block B. This simply produces an average of
the pixels in a block in the image to present to the network.

To decide if a sample is an anomaly and therefor not part of the usual background
in the frame, the quantization error can be used. The smallest quantization error
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among all the neurons is the interesting one in this case, since it is the neuron
which is the best match to the sample i.e.,

qB = min
i∈|Pblock |

|| sB(t) − nBi(t) ||, (3.2)

where, for block B, |Pblock | is the number of neurons in each block, qB is the small-
est quantization error found between the sample sB and the neurons nBi of the
block. If the smallest quantization error is larger than some threshold the sample
can be considered an anomaly:

anomalyB =

true, if qB > T

false, otherwise,
(3.3)

where T is the given threshold. A block which is considered an anomaly implies
that something has moved in the block and caused a change in the pixel values
of the block relative to their normal values.

3.2.3 Evaluation

The motion detection algorithm described above has been tested on all the “base-
line” and “intermittent object motion” sequences from the changedetection.net
dataset [10]. The algorithm was compared to the original motion detection im-
plementation on the following measurements: Recall, Precision, Specificity, False
positive rate (fpr), False negative rate (fnr) and F-Score. The measurements are
defined as:

Precision =
T P

T P + FP
(3.4a)

Recall =
T P

T P + FN
(3.4b)

Specificity =
T N

TN + FP
(3.4c)

fpr =
FP

T N + FN
(3.4d)

fnr =
FN

TN + FN
(3.4e)

F-Score = 2 ·
Precision ∗ Recall
Precision + Recall

(3.4f)

Here T P denotes a “True Positive”, a correctly detected foreground pixel. T N
denotes a “True Negative”, a correct rejection. FP denotes “False Positive”, a false
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alarm and FN denotes a “False Negative”, a false rejection. A summary of the
measurements and their meaning can be seen in Table 3.1.

Table 3.1: Summary of measurements and their meaning.

Measurement Question the measurement tries to answer

Precision
“What proportion of detected

foreground pixels were actually correct?”

Recall
“What proportion of true foreground

pixels were detected correctly?”

Specificity
“What proportion of true background

pixels were rejected correctly?”

fpr
“What proportion of true background

pixels were detected incorrectly?”

fnr
“What proportion of true foreground

pixels were rejected incorrectly?”

F-Score Harmonic mean between precision and recall

All measurements ranges between 0–1 and higher score is better in every case
except for fpr and fnr, where lower is better.

At the time of this report the highest ranked unsupervised method is “Real-Time
Semantic Background Subtraction v2” (rt-sbs-v2) [3]. The average result of rt-
sbs-v2 over the entire dataset can be seen in Table 3.2.

Table 3.2: Average evaluation scores for rt-sbs-v2 on all sequences of the
changedetection.net dataset.

Algorithm Precision Recall Specificity fpr fnr F-Score
rt-sbs-v2 0.793 0.836 0.994 0.006 0.1639 0.805

The ground truth for the dataset is on a pixel level, while the output from both
som and frame differencing algorithms are on a block level, meaning all the pix-
els within a block are marked as foreground pixels if the block is detected as
foreground. The algorithms will therefor also be evaluated on adjusted ground
truth images. The adjusted ground truth is on a block level, and if any pixel
inside a block is marked as foreground in the original ground truth, the whole
block is marked as foreground in the adjusted version.

Practical usage

If anomalies are detected in any block the image is sent from the camera for eval-
uation and classification, together with metadata about the the movement. The
som can detect where the movement occurred in the frame on a block level. This
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information can be used to crop around the detected movement in the image be-
fore running object classification which has shown possible increase in accuracy
for the classification model by Forslund & Arnesson [8].

3.2.4 Device status

Since the deployment site of the camera modules is in a remote environment
where manual support is limited, it is valuable to get information about the sta-
tus of each device. Therefore, a system for sending status updates to the server
was implemented on the camera. From the camera unit, information can be sent
about which WiFi access point that is connected as well as the strength of the
connection. The camera unit is powered by a battery that is connected to a solar
cell. It is important that the camera system does not run out of power and that
the solar panel can deliver enough power to charge the battery during the day. To
make it possible to monitor the battery status of the devices, a battery gauge was
integrated in the power cycle of each camera unit. With this battery gauge, it is
possible to read the battery percentage and send that information to the server.
With this feature, users are able to get an overview of each camera’s status. This
gives an understanding of how the power is consumed and recharged during the
day when the camera is active, but also during the night when it is asleep. The
battery gauge also creates an opportunity for the camera to manage its own sleep-
ing cycle based on the battery status. For example, if the battery level goes below
a certain threshold (20%), the camera unit goes to sleep for four hours to make
time for the battery to recharge.

3.2.5 Energy consumption and online time

When deployed in the field, the camera system needs to be able to run continu-
ously for a longer period of time so that it is self sufficient with the power from
the battery and charging from the solar panel. To monitor the battery consump-
tion for a camera, the status logs described in Sec. 3.2.4 could be used to plot the
battery status for different time periods and cameras. Since the camera sensors
are dependent on internet connectivity to be able to send images and status up-
dates, the data could also be used to give insights on the up time of the sensors,
since they were set to send updates at set intervals.

3.2.6 Weatherproof housing

Since a camera sensor with its belonging battery is deployed outside with varying
weather conditions, the different parts need to be protected from rain and other
factors that could risk breaking the unit. For this purpose, a 3D-printed case was
created to protect the camera sensor together with the battery and solar power
management board. In Fig. 3.3 the weatherproof housing containing the sensor
system with connected solar power can be seen mounted in a tree.
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Figure 3.3: A tree-mounted esp-32 camera with weatherproof housing and
connected solar panel.

3.3 Web server & database

Since images from different cameras are stored on a FTP server, an efficient way of
storing related metadata and classification results were needed. For these tasks,
a MySQL database and a Node.js web server were implemented.

3.3.1 Database

A MySQL database was implemented to store all the necessary information about
a classified image. In Fig. 3.4, a class diagram of the most significant parts of the
database can be seen. With significant data stored about each image, queries can
be made for images with a specific class property, or from a specific period of
time.

3.3.2 Web server

To make the data stored in the database accessible from different parts of the
system, a REST API in form of a web server was implemented using Node.js with
the framework Express. The API was designed so that the functionality of the
database is accessible both by a user interface and the classification service. From
a UI, image metadata can be fetched through the API and with the filename from
the database that holds the path to where the image is stored on the FTP-server,
an image can be displayed to the user.
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Figure 3.4: Class diagram of the database holding information about the
cameras and related images with scores.

3.4 Classification service

The classification service consists of two major parts: the training phase and the
classification phase which are described further in this section. The implemen-
tation of this service was made to be modular in a way so that the script could
be applied to other areas of interest with small configurations. For example a
different model could be trained with other types of animals and then used with
the same logic implemented for classification of the Ngulia animals.

3.4.1 Training of model

A pre-trained CenterNet model supplied by Tensorflow was used as the classi-
fier [6]. The model was pre-trained on the Common Object in Context, coco,
2017 dataset [13]. The model was fine tuned for the task of classifying eight
classes which are present in the Ngulia Sanctuary: buffalo, elephant, giraffe, hu-
man, leopard, lion, rhinoceros and zebra.

Fine tuning the pre-trained model for the new task was straight forward with
the use of the Tensorflow Object Detection API [11]. The object detection API
requires some input: a pre-trained model, a configuration file describing the ar-
chitecture of the model together with training parameters and finally the dataset
it should train on. The training is then started and when the desired number of
training steps is reached it exits. The model was trained on Google Colaboratory
which supplies GPU-supported enviroments to run the training steps on for free.
The dataset which the model was fine tuned on consisted of a total of 3843 im-
ages distributed over the eight classes according to Table 3.3. The images were
collected from multiple sources and labelled by Olsson & Tydén and Arnesson &
Forslund [15] [8]. No further images were added to the dataset during this work.
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Table 3.3: Distribution of images for each class in the dataset.

Class Quantity
Buffalo 247
Elephant 327
Giraffe 426
Human 432
Leopard 586
Lion 499
Rhinoceros 881
Zebra 445

Total 3843

3.4.2 Classification

The classification service was built as a Python script, where the ability to load
different trained models was implemented. The service is set to crawl the FTP-
server to check if there are any new images to classify. As before, the previous
work of Arnesson and Forslund [8], was used as a baseline to start from. When
a new image is found, the service downloads the image and the model runs in-
ference on the image. The result is a prediction of bounding boxes, classes and
scores of objects in the image. Bounding boxes, with corresponding classes and
scores, can then be drawn on the image. After the classification, the results are
saved in the database through the API described in Sec. 3.3. Only classifications
above a certain threshold will be drawn out on the image and saved to the clas-
sified image in the database. However, for better insights in the performance of
the classifier, also the scores below the threshold were saved in a special debug
folder on the FTP-server and in the database.

Image cropping

Since the model performs better on images where the object is closer to the cam-
era and takes up a larger area of the image, an algorithm was implemented to
crop out those certain areas where the model “sees” an object. This was done
through an iterative classification where the classifier first makes a classification
on the original image. If the result contains one or more bounding boxes, these
coordinates are used to crop the image into one or more sub-images. A new iter-
ation of inference then runs on these images and if the score is higher than the
initial one, the new bounding box is drawn out on the cropped image and then
saved in the FTP-server and database with a relation to its original image. In
Fig. 3.5, a block schema illustrates how the image classification pipeline works.

This algorithm was evaluated on a set of 500 images to measure how many ob-
jects saw an increase in score after cropping around the original prediction and
running inference again.
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Figure 3.5: Image classification pipeline.

3.5 Developer dashboard (UI)

To be able to interpret the results of the classification pipeline from a camera to
a processed output image, a developer dashboard was created where these result-
ing images could be displayed. Filtering functionality was also implemented to
make it easier to query specific time periods and animal classes from the different
cameras used in the project. In Fig. 3.6, an overview of the dashboard can be seen
with its different functionalities, which are described further in this section.

3.5.1 Verification

A tool for verifying the classification results in an image was implemented in
the UI where a user can determine if the classification made by the model is
as expected. This tool can be seen within the dashboard in Fig. 3.6. With this
function, it is possible to also filter displayed images to only show those that are
verified as a correct or partly correct classification. By adding this functionality,
it also created the possibility to use the images that are classified correctly and
re-train the model to improve the accuracy of the classifications.

3.5.2 Debug

To get insights of how the classifier interpreted different types of images, a debug
mode was added where the user can see all the different classifications made on
an image, even those with a low score that is below the set threshold. In Fig. 3.7,
an example of the debug mode of an image is shown. The image to the left shows
the resulting image with classification scores above a set threshold (40%). In the
right image, all bounding boxes and results are drawn out in the image.
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Figure 3.6: An overview of the user interface with its different functionali-
ties.

Figure 3.7: Debug mode with resulting image to the left and all classifica-
tions scores including those below the set threshold to the right.

3.5.3 Camera status monitor

To monitor the different camera sensors in the surveillance system, status up-
dates from each camera were fetched through the API and displayed in the UI.
By keeping and displaying logs from each camera, valuable information can be
retrieved and displayed from a camera sensor. In this way, it is possible to see
which cameras are online and if not, when the last status report was made and
what the current status of the sensor was at that moment. With the implemen-
tation of a battery gauge, as described in Sec. 3.2.4, the battery percentage could
be monitored from the UI. In the right column of Fig. 3.6, the overview of the
cameras in the project are displayed with a green dot for online cameras and red
for offline as well as the battery percentage for each camera.
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3.6 Deployment of camera sensors

Since the targeted deployment site for the camera sensors are located in a remote
area (Ngulia, Kenya), the deployment had to be made in two different phases, the
testing phase in Sweden and the final deployment in Kenya.

To be able to test everything in a more stable and accessible environment, a twin
station of the one planned in the Ngulia park was set up at Kolmården Zoo in
Norrköping. There everything could be tested and evaluated before the final de-
ployment in Kenya. Cameras were put up at the Kolmården “Savannah” and left
there for some weeks, collecting data and images that could be evaluated. After
that, updates could be made to the sensors to ensure their reliability and contin-
uous power cycle.

After several weeks of testing and fine tuning of parameters, the sensors were
deployed in the Ngulia Park in Kenya. Also there, some changes had to be made
to the software to adapt to the different deploy environment which had some
issues with internet connectivity. Because of these unforeseen issues, a third de-
ployment was made at the Kilaguni Resort, located in another area next to the
Ngulia Park. There the internet connectivity was more stable and a more contin-
uous flow of data and images were received.
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Results

The results of the work on this thesis are presented in the following chapter. The
work described in Method resulted in an end-to-end smart surveillance system
with a modality that makes it suitable to use in other fields of animal surveillance
and not only in the context of Project Ngulia. The results from the different
parts of the system are both quantitative and qualitative and will be presented
accordingly. In Fig. 4.1, the pipeline of the resulting system is visualized, from
camera to dashboard.

25
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Camera Sensor

Takes pictures

First image

Second image

Classification service 
Runs inference on image

API and Database

FTP Server
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Motion detection
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Figure 4.1: The end-to-end pipeline of the surveillance system developed in
the project.
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Table 4.1: Overall evaluation scores for motion detection algorithms on the
baseline and intermittent object motion sequences of the changedetec-
tion.net dataset.

Algorithm Precision Recall Specificity fpr fnr F-Score
som 0.592 0.477 0.904 0.096 0.523 0.476

Frame differencing 0.352 0.237 0.930 0.070 0.762 0.232

Difference +0.240 +0.240 -0.026 +0.026 -0.239 +0.244
(In favor of som) +68% +101% -3% +37% -67% +105%

4.1 Motion detection

The som implementation was benchmarked against the baseline median filter-
ing algorithm and the results can be seen in Table 4.1. As the table shows, the
som implementation performs better than Frame differencing on four out of six
measurements. The algorithms have used the same threshold and block size. No
parameter tuning has been done between sequences, meaning the same thresh-
old and block size has been used over all sequences. Neither algorithm performs
exceptionally well on the benchmark which is as expected considering the sim-
plicity of both algorithms. The improvement in Precision, just over 68%, means
that when som detects movement it is more likely to be correctly predicted than
Frame differencing. The improvement in Recall, just over 100%, means that som
detects more of the true movement than Frame differencing. Lastly the overall
F-Score was improved by more than 105%.

Sample results from the “office” sequence of the benchmark can be seen in Fig. 4.2.
The most noticeable qualitative difference that can be seen when reviewing the
output images from both algorithms is that the Frame differencing adapts to
changes in the image too fast. Therefore incorrectly rejects true foreground pixels
which has been stationary in the image for only a single frame.
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(a) Input frame 1, back-
ground.

(b) som output. (c) Frame differencing
output.

(d) Input frame 693. (e) som output. (f) Frame differencing
output.

(g) Input frame 2002. (h) som output. (i) Frame differencing
output.

Figure 4.2: Sample motion detection results on the "office" sequence from
changedetection.net

4.2 Camera sensor status

As a consequence of the remote location of the deployment site in the Ngulia
Park, Kenya, one important aspect of the project was to ensure the reliability of
the camera sensors. Also, the sensors needed to be self sufficient enough to keep
running on its battery and connected solar panel. To achieve this, the camera
sensor status system was implemented as described in Sec. 3.2.4. This created
the opportunity to get an overview of all cameras and their status on a regular
basis. All the cameras are set to send status updates when they wake up, goes
to sleep and every 10 minutes. By doing so, it is possible to keep track of how
a camera is operating and get insights on its battery status, wifi connection and
sleeping cycle. If a camera goes offline, the log can be used to find out what’s
wrong with that specific sensor. In Fig. 4.3, an example of a camera’s status log
can be seen. This log shows that the camera went to sleep at 19, woke up to early
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Figure 4.3: An example of a camera’s status log.

and went back to sleep again for 1 hour. After that, it starts the daily routine
of taking images, running motion detection and sending status updates every 10
minutes.

4.3 Classification

The classification step of the system is where the images get analysed and the ob-
jects found in the image get a class belonging with a score. The results from this
step varies and are in many cases correct but there are also results where the clas-
sification is not correct. When the objects is further away from the camera and the
image is less sharp, the classifier struggles more. It has problem to distinguish be-
tween animals that looks similar when their special features is not clearly visible
(like the horns of the buffalo or the tusks and trunk of the elephants). However,
the iterative classification process tends to correct many of the errors made in the
first classification.

4.3.1 Qualitative results

In Fig. 4.4 some results can be seen from the image classification. The images are
captured by the ESP32 Timer Camera with the software developed in this project.
As can be seen in Fig. 4.4a and Fig. 4.4b, the classifier successfully detects the
correct animals in the images. However, in Fig. 4.4c and Fig. 4.4d, the classifier
does not manage to distinguish between animals that looks similar from afar and
when the image is not clear enough. In this case it is the buffalo, elephant and
rhinoceros that has a similar shape and color, making it harder to make a correct
classification. Also in these cases, the error is often corrected by the iterative
classification made in the next step.
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(a) Successful classification with Zebra 78%,
71% and 82% score.

(b) Successful classification with Giraffe 93%
score.

(c) Classification error with rhinoceros 72%, but
supposed to be buffalo.

(d) Classification error with rhinoceros 54%,
but supposed to be elephant.

Figure 4.4: Different classification results.
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Table 4.2: Score improvement from iterative classification on 500 images
from cameras in Kilaguni. Objects with an initial score between 10–90%
were considered.

Number of objects 2155
Number of improved scores 773

Proportion of improved scores 35.9%
Average score increase among the improved scores 20.7%

4.3.2 Iterative classification

The iterative classification process resulted in increased accuracy of both the
score and the correct class of the object in the image.

Quantitative results

The iterative algorithm was evaluated on 500 images from a camera which were
deployed in at the Kilaguni Safari Lodge. The results can be seen in Table 4.2. The
iterative classification resulted in an improvement in 35.9% of the objects which
were found in the initial inference. The average increase was 20.7% among the
increased scores. The algorithm is used as a complement to the initial inference
and if the additional inference does not result in an increase in score it is simply
discarded, which is why the results are focused around those scores that were
improved.

Qualitative results

Some examples of where the classification service has made a crop of the original
image based on the first classification results and then run a new classification
on that image can be seen in Fig. 4.5. These results show great improvement in
many cases where the original classifications of the whole image do not reach a
trustworthy score. However, it gives one or more ROI (Region of interest) that
can be cropped and classified in one more iteration by the classification service.
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(a) Buffalo, initial score: 65% (b) Buffalo, improved score: 88%

(c) Zebras, initial scores: 62%, 64% and 47
%. (From left to right)

(d) Zebras, improved scores: 93%, 94%, no
improvement for the right most zebra.

(e) Elephant, initial score: 54% (with class
rhinoceros)

(f) Elephant, improved score: 87% (with
correct class)

Figure 4.5: Improvements from the iterative classification algorithm.

4.4 Developer Dashboard

The dashboard was implemented as a proof of concept of the capabilities of the
system and how the data collected from the cameras could be used through the
API to get a working end-to-end surveillance system. The functionalities imple-
mented can later be integrated in the already existing dashboard that the park
rangers in Ngulia uses on a daily basis. A user can select a specific camera and
get all the latest images with the classification scores as well as the status of the
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Figure 4.6: Filter function applied to show images of rhinos from the last 24
hours.

camera at a given point in time. The filtering functions also makes it possible to
do more specific searches for a certain class in a certain time span. An example
of a filtration made for rhinoceros from the last 24 hours can be seen in Fig. 4.6.

Another important feature was the ability to monitor the status of the cameras
active in the system. Since they are put up at remote locations, it is valuable to
know when a camera stops working and possibly why. The status overview is
displayed in Fig. 4.7. For example, it can be seen that camera “KIL01” is online
and has 99% of battery according to its last status update. If the user clicks on a
specific camera in the list, the more detailed log is displayed like in Fig. 4.3.

Figure 4.7: Camera status overview.
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Figure 4.8: Battery status plot for KDP1 during one week of the testing
phase.

4.5 Deployment

The cameras were deployed at three different locations in two phases, a testing
phase in Kolmården Zoo, Sweden, and a deployment phase in Ngulia Sanctuary
and Kilaguni Safari Lodge in Kenya. In Kolmården three cameras were put up for
testing and evaluation. After two weeks, the cameras were updated with new soft-
ware that had more stable sleep cycle and the battery fuel gauge was integrated.
This resulted in valuable data about the units power cycle, internet connectivity
and how they recharged during the day depending on the position of the sun.
In Fig. 4.8, the battery status data for a camera in Kolmården is plotted during
a week’s time. The plot indicates that the camera charges well in the morning
when the sun is shining directly at the solar panel, and after lunch it starts to
drop when the solar panel lays in shadow from the wall it is mounted on. This
gave valuable insights on the importance of the placement of the solar panel. But
it also showed that even with limited solar power during the day, the battery was
able to charge up to 100% during a few hours of direct sun. These were important
insights for the work with the final deployment in Ngulia, where some cameras
had to be placed in trees with limited sun-access and shadowing branches.

An important goal within Project Ngulia has for many years been to be able to
setup a camera surveillance network in the Ngulia park. With the contribution
of the work made in this thesis combined with previous theses, the system could
be deployed in the Ngulia park. Seven cameras were put up around a waterhole
within the park where animals often come to drink. However, it was noticed that
the internet connection was not stable at that area which lead to the decision to
also put up three cameras at the Kilaguni Resort. There the connection was more
stable and because of the similarity to the waterhole at Ngulia in terms of ani-
mals and environment, valuable data and insights could be collected from these
cameras as well. In Ngulia, the cameras were placed in different locations, some
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Figure 4.9: Plots from two different cameras in Ngulia with different posi-
tions of the solar panel.

in trees and some in a tree house overlooking the waterhole. In Fig. 4.9, plots
from two different cameras show how the placement of the solar panel affects the
battery percentage during the day of a week’s time. The orange line shows the
battery plot of the camera “NGU4” located in a tree that only has access to sun-
light during some hours of a day, whilst camera “NGU7” plotted with the blue
line, is located in a tree house with unobstructed access to sunlight. This shows
that with uneven and obstructed access to sunlight, the battery level drops fast
and becomes unstable. At the end of the week it already reached critical level of
20% or less, making it hard to keep a stable power cycle.

With the sensor data available from each camera, it was also possible to study
the uptime for each device. Since the devices are set to send status updates ev-
ery ten minutes when awake, i.e., six times per hour, it could be measured how
many percentages of a day a camera is connected to the internet. In Fig. 4.10a
the uptime percentage from two different cameras deployed at the Kilaguni Re-
sort in Kenya can be seen during six days. The camera “KIL02” is placed close
to the router whilst the camera “KIL01” is placed further away. This results in a
slight improvement of uptime for the “KIL02”, which can be seen in the plot. As
mentioned, the internet connectivity around the waterhole in Ngulia was unsta-
ble at the time of deployment and in Fig. 4.10b, the uptime plot of the camera
“NGU2”, compared to “KIL01” can be seen. The plot shows that the camera is
online around 25% of the day.
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(a) Uptime plot of two cameras in the Kilaguni Resort deployed with
different distances to the router.

(b) Uptime plot of one camera in the Kilaguni Resort (KIL01) and
one in the Ngulia Park (NGU2).

Figure 4.10: Uptime plots from different cameras.
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Discussion

In this chapter, the methods and results of the project are discussed and analyzed.

5.1 Smart surveillance system

The surveillance system implemented in this project provides valuable data to a
user that a regular image feed can not do. The large amount of images provided
from cameras mounted to surveillance such a large area as the Ngulia park would
make it a time consuming task to manually go through them every day. The
automated process of classifying images and saving data of interest developed in
this thesis helps with this and provides the park rangers with extra “eyes” out
in the field during their everyday work. By using micro-computers such as the
ESP32, there are possibilities for custom modification of the software that is not
possible on closed system of traditional trail cameras. With the ESP32, it would
also be possible to implement two-way communication so that the cameras can
be controlled and updated remotely. However, for the scope of this project, focus
were to get as much valuable information as possible sent from the cameras to
the server to study how they operate in a remote environment and how an image
classifier will perform on the images sent. The use of a database and an API,
makes it possible to query for specific data to make the selection presented to the
end-user even more customized. This is a effective way of utilizing the data that
can be provided by deployed sensors in the field.

37
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5.2 Motion detection

The motion detection on the camera is the first step which filters images from
the deployment site to the rest of the system. The goal with the motion detection
is to remove as much non interesting images as possible while still keeping all
the interesting images. This was the motivation behind the implemention of a
motion detection algorithm which performed better than the previous baseline.

Sophisticated, state-of-the-art motion detection algorithms were not viable candi-
dates for the ESP32 microcontroller because of its limited computing power. The
constrained simplicity of the motion detection algorithm affects its performance
and a trade off has to be made whether to filter more images, which increases the
risk of discarding interesting images, or to send more images containing more
noise and non interesting data. In this case the latter option is preferred since
the images sent from the cameras will be further processed by a deep neural net-
work on a machine with more computing power which will filter and remove
even more of the non interesting images.

The som implementation provided an improvement on every measurement com-
pared to the median filtering method while still being computational effective
and fully usable on the ESP32 unit. The improved motion detection algorithm
causes less overall load on the rest of the system since it will send fewer images
for classification which is of greater importance as the number of cameras grow
and the total number of images sent for classification increases.

When compared to rt-sbs-v2 the som implementation underperforms. That is
unfortunately the current reality for algorithms which are meant to run on de-
vices with limited computational power. Motion detection in video is a funda-
mental pre-processing step in computer vision and will continue to improve with
time, even for devices with limited computational power.

5.3 Classification

Most of the neural network and classification parts of the system could be reused
from Arnesson & Forslunds previous implementations. Since the same dataset
used to train the model has not changed the overall performance of the model
has not changed since their implementation.

The idea of letting the classifier run inference multiple times on the same image
was inspired by the models ability to give more accurate predictions when an
object covered a large part of the input image. The model can often find small
objects in an image with a low probability for the class, but when the model is
supplied a smaller, cropped image of the same object it gives much higher prob-
ability for a class. The evaluation of the iterative classification algorithm shows
that it is a good complement to the classification process. The average increase of
20.7% among the 35.9% of improved scores is a welcome improvement. Because
the iterative process is a complement to the overall classification process, scores
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which is not improved is not interesting to look at since they would be discarded
anyway. One theory of the high average improvement is because of the overall
performance of the model and relatively low amount of data it is trained on. It is
possible that the iterative classification would be redundant for well performing
models trained on large datasets.

While not the prime objective, the images received from the recently deployed
cameras, both in the Ngulia Sanctuary and Kilaguni resort, can be used in the
future to further increase the number of images in the dataset used for training
and improve the performance of the model. This would result in a closed-loop
system which supplies itself with new images for the model to train on. This is an
important addition to the current system because one of the long standing issues
for classification performance, as noted by both Olsson & Tydén and Arnesson
& Forslund, is the lack of images to train the model on. The current available
dataset of 3843 images are not enough to create a robust and accurate model. The
steady stream of new images from the deployed cameras gives an opportunity to
improve the model and in turn make the surveillance system more reliable as a
whole. The new images will also be perfect candidates for the model to train on
since they are captured from the target environment and have the same quality
as the model will have as input when running inference.

5.4 Camera Sensors

The results presented in Sec. 4.5 shows that the cameras are self sufficient in their
power cycle with the power of the sun, as long as the solar panel is placed in a
good location. Also if the power gets low after a few days of bad weather, the unit
can recharge and continue to send data, without any manual support needed.
This was one of the main goal of this thesis, to enhance and ensure the reliability
of the camera sensors, so that they could be deployed in a remote environment
such as the Ngulia Park in Kenya. However, the units are still very reliable on suf-
ficient internet connection to provide valuable data. In the cases where the units
are only able to send updates a few times a day, the reliability when it comes to
activity reports is not sufficient. The image quality from the camera sensors is
also something that affects the possibilities for correct classifications. The cam-
eras tend to struggle with objects that are far from the camera which becomes
out of focus, making it harder for the classifier to detect and analyze the edges of
the object. The concept of using edge-devices in a smart surveillance network is
however proved to work well if the internet connection can be stabilized. And for
the project in general, the implementations and studies made in this thesis have
been an important contribution from where more improvements can be made for
future work.
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5.5 Deployment

The testing phase gave important insights of the reliability of the cameras. The
three cameras which were installed were power self sufficient with the help of
the solar panel. The number of sun hours for these cameras were limited because
of the installation site. The cameras were installed such that two would charge
through the solar panel from sunrise to about 13.00 mid day, the last one would
charge through the solar panel from 12.00 mid day until sunset. The test deploy-
ment gave confidence that the cameras would be able to power themselves with
the battery and solar panel in Kenya considering the Sweden has less sun hours
than Kenya overall as well as the limitation from the installation site.

The deployment phase was mostly a success. Everything which could be tested
in the testing phase also worked when deploying the cameras in Kenya. The
only major issue was the unreliable network connection in the Ngulia Sanctuary.
The router which was installed could not establish a stable connection which in
turn hinders the cameras to upload images and send status updates. This was
not something that was tested before since the network connection in Kolmården
was stable and caused no issues. Kilaguni was more similar to Kolmården with
stable network connection and the deployment had no issues.
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Conclusion

The aim for this thesis was to investigate methods of building a smart surveil-
lance system for a remote environment using Edge-devices as camera sensors
for collection of data. The aim was fulfilled and resulted in a complete end-to-
end surveillance system that can be tested and evaluated for a longer period of
time since the deployment in Kenya. Further solutions for improvement have
been tested and suggested as a result of the development and studies during this
project. In this section, the research questions of the thesis are further discussed
and answered.

6.1 Research questions

1. How can Self-Organizing Maps be used for motion detection on the ESP32
and how does it perform compared to Frame differencing?

The image can be divided into equally sized blocks and each block is the
representation of that area of pixels by calculating the average pixel value
within each block, effectively low pass filtering the image. Each block can
then have a som which represents the possible background values for that
block. By downsampling a block of pixels to a single value the computa-
tional load of the algorithm on the ESP32 is decreased. Anomalies, which
implies motion, can be detected by the quantization error when new sam-
ples are presented to the som. If the quantization error between the closest
matching prototype neuron in the map and the new sample is larger than
some predefined threshold, it can be considered an anomaly and motion is
detected in that block of the new image. The self adjusting nature of the
algorithm means it is adaptable to changing conditions in the frame over
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time.

The som provided an improvement on most measurements when tested on
sequences from the changedetection.net dataset. Most notably a 105%
increase in F-Score over the Frame differencing implementation. From the
results it was established that som was better performing algorithm than
Frame differencing. However, it is still far from the current state of the art
unsupervised-methods, such as rt-sbs-v2.

2. How can the performance of an image classifier be increased for low scor-
ing objects which cover a small area of the image?

The bounding boxes from the low scoring objects can be used as regions
of interest. Cropping around the bounding box results in a new image in
which the object will cover a larger percentage of the image. Then infer-
ence can run on the smaller image and improve the score as well as correct
the object class. This iterative classification process provided an improved
score on 35.9% of object which were detected on an evaluation set of 500
images. Among all the improved scores, the average increase of score was
20.7%.

3. How can a robust and smart surveillance system be designed, implemented
and deployed with a remote target area? How can the challenges that
comes with developing from afar be treated?

One of the contributions of this work is a smart surveillance system with
ESP-32 Timer Cameras as sensors, which can be deployed and run in re-
mote environments like the Ngulia Park in Kenya. The system also handles
all the data provided by the sensors and shows different ways of presenting
and using them in a user interface. The system is developed with a certain
modality, making it suitable to integrate in the already existing system that
is used by the park rangers in Ngulia. With the data logging system imple-
mented, the reliability of the sensors power cycle and connectivity can be
evaluated and improved. Also, the system can work as a template for other
types of surveillance tasks and it is not limited to Ngulia Project. The clas-
sification model can be retrained on other types of animal so that the core
structure can be reused for other areas where surveillance and protection is
of importance. It can be concluded after this project that simulating the de-
ploy environment as similar as possible is important to be able to face the
challenges of unstable network, power loss and other circumstances that
can occur when deploying technical solutions out on the African Savannah.
The twin station built in Kolmården contributed to valuable insights that
were later applied to the final deployment in Kenya.
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6.2 Future work

The work in this thesis has given insights in the different parts that make up
this smart surveillance system and what the major challenges are. Although the
system is working in its current state, there are improvements that can be made.
There is a need of more training data for the classification model to be more
reliable, which would improve the end result as well. It would be interesting
to investigate how the process of annotating images could be more automated,
since it is a time consuming task. Also, a workflow for continuously re-training
the model when more data gets collected, would improve the system over time.

There are also limitations with the M5Stack Timer Cameras being used at the
moment. Although they are power efficient, the camera sensor itself performs
quite poor when it comes to image quality and there are limitations with the
sensor memory, making it hard to hold several images of higher quality during
run time. It would be worth investigating which other options there are when it
comes to hardware and if possible find the best mix of cost, memory, quality and
power consumption to fit the needs in this kind of system. Since the sensors are
dependent on internet connection they basically becomes “blind” when there is
no connection. If the images could be stored on a memory card and then sent
when internet comes back, it would still provide valuable data to the rangers,
although with a varying delay. Also, like described in the work made by Arnesson
and Forslund, running a lightweight classification model on the edge-device as a
backup would be worth looking further into [8]. If a reliable classification could
be made directly on the device, the resulting metadata could be sent with LoRa
(Long Range Network) instead, which has longer reach than traditional internet
protocols.
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