
Linköping University | Department of Computer and Information Science 
Bachelor's thesis, 16hp | Computer Science 

Spring term 2022 | LIU-IDA/LITH-EX-G--22/055—SE 

 
 
 
 
 
 
 
 

Data mining historical insights for a 
software keyword from GitHub and 
Libraries.io; GraphQL 

 

Gustaf Bodemar 

Tutor: Peter Dalenius 
Examiner: Jody Foo 

 
 



 

Upphovsrätt 

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från 
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. 

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för 
enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. 
Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan 
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten 
och tillgängligheten finns lösningar av teknisk och administrativ art. 

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god 
sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras 
eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära 
eller konstnärliga anseende eller egenart. 

För ytterligare information om Linköping University Electronic Press se förlagets hemsida 
https://ep.liu.se/ . 
 
 

Copyright 

The publishers will keep this document online on the Internet – or its possible replacement – for a period 
of 25 years starting from the date of publication barring exceptional circumstances. 

The online availability of the document implies permanent permission for anyone to read, to 
download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial 
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All 
other uses of the document are conditional upon the consent of the copyright owner. The publisher has 
taken technical and administrative measures to assure authenticity, security and accessibility. 

According to intellectual property law the author has the right to be mentioned when his/her work is 
accessed as described above and to be protected against infringement. 

For additional information about the Linköping University Electronic Press and its procedures for 
publication and for assurance of document integrity, please refer to its www home page: 
https://ep.liu.se/. 

 
 
 
 
 
 
 
 
 
 
 
© 2022 Gustaf Bodemar 
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy 
of this license, visit http://creativecommons.org/licenses/by/4.0/ 

https://ep.liu.se/
https://ep.liu.se/


Data mining historical insights for a software keyword from
GitHub and Libraries.io; GraphQL

Gustaf Bodemar
Bachelor thesis

Linköping, Sweden
gusbo010@student.liu.se

ABSTRACT
This paper explores an approach to extracting historical in-
sights into a software keyword by data mining GitHub and
Libraries.io. We test our method using the keyword GraphQL
to see what insights we can gain. We managed to plot several
timelines of how repositories and software libraries related
to our keyword were created over time. We could also do
a rudimentary analysis of how active said items were. We
also extracted programing language data associated with each
repository and library from GitHub and Libraries.io. With
this data, we could, at worst, correlate which programming
languages were associated with each item or, in the best case,
predict what implementations of GraphQL they used. We
found through our attempt many problems and caveats that
needed to be dealt with but still concluded that extracting
historical insights by data mining GitHub and Libraries.io is
worthwhile.

INTRODUCTION
Extracting historical insights for software keywords can
be beneficial in multiple cases, from visualizing popularity
changes of a software library to showing the adoption of some
software paradigm. Methodologies attempting this can differ
both in scope and granularity. We are in this study interested
in exploring one of these approaches. Our approach aims
to create an inexpensive, rudimentary, yet representative his-
torical overview of a software subject using keyword search.
We will implement a program that data mines GitHub and
Libraries.io for data to later analyze and visualize. Our ambi-
tion is to gain insights that can be helpful to developers and
market analysts. We will test our program with the keyword
GraphQL to create an example of what insights we can gain.
We will also describe the challenges, possibilities, and oppor-
tunities we detected when data mining and analyzing GitHub
and Libraries.io data.

This paper is relevant to two different groups. One where the
reader is interested in understanding what historical insights
may be achievable using this study’s method to data mining
GitHub and Libraries.io data, where the results we present
showcase examples of what is possible to achieve using our
method. Or a second group interested in the insights into
GraphQL we gained using our approach.

GraphQL, our test subject, is an API query and manipula-
tion language1. The GraphQL language specification defines,
among other things, how a client can communicate with a
server’s API. One thing that makes GraphQL unique com-
pared to parallel API methodologies, for instance, REST, is
that it gives more freedom to the clients to define the struc-
ture of the server’s responses.The GraphQL specification only
defines the communication structure and thus allows various
network endpoints to use different implementations. Since this
is the case, we are in this study also interested in attempting
to extract which programming languages applications using
GraphQL use and which GraphQL implementations they use.

GraphQL was initially developed as an internal project at
Facebook in 2012. It was released as an open-source project in
July 2015, still under Facebook’s management. Then finally,
in November of 2018, the project moved from Facebook to
the just established GraphQL Foundation. We will, as such,
focus on data mining data from 2015 to the present year, 2022.
As of early 2022, no up-to-date historical studies of GraphQL
history exist. However, one notable study conducted in 2019
can give us some insight into GraphQL’s history, at least until
that time. The study analyzed public GitHub repositories to
create timelines for how GraphQL had been adopted since its
release up until mid-2018 [10]. We will compare and discuss
their results later in this paper.

The research question we will explore are the following:

• RQ1: What insights are achievable with our method for cre-
ating a historical timeline, using GraphQL as an example.

• RQ2: What insight are we able to gain of a software sub-
ject by performing a high-level analysis of its programing
language metadata.

BACKGROUND
We use GrapQL as our test keyword due to a suggestion by
Olaf Hartig2. Hartig, a researcher at Linköping’s University,
was a stakeholder in the study [10] above and wished to see
a more recent version of some aspects of that study. He also
assisted in acquiring access to said study’s research materials,
which we used as an inspiration for how to gather and analyze
GitHub and Libraries.io data.

1https://graphql.org/
2http://olafhartig.de/

https://graphql.org/
http://olafhartig.de/


THEORY

Data mining GitHub
With over 40+ million public repositories [4], GitHub provides
a large dataset to study. GitHub offers several API endpoints
that external programs can use to interact with their database.
These API endpoints include a REST API. GitHub’s APIs are
restricted and enforce several limitations on connecting clients
called rate limitations. Different resources have different rate
limits. For instance, the REST core resources have a rate limit
of 5000 uses per hour, compared to the search resources that
have 30 requests per minute as a limit [5]. The data a typical
user can retrieve and inspect are those marked as public. This
data includes public projects, users, and code repositories.

Alternative historical GitHub data sources
When discussing GitHub data, we must mention alternative
historical data sources. Two such sources are GHtorrent3 and
GH Archive 4. Both archives only store the metadata that
GitHub generates. Not repository source code or its changes.
If stakeholders desire to extract historical source code, they
need to return to GitHub, hoping they still have that version
saved. GHTorrent and GH Archive intends to preserve the
public GitHub timeline for future use, with a slight differ-
ence in philosophy. The difference in philosophy is that the
GH Archive wishes to store as much GitHub data as possi-
ble. While GHTorrent wishes to make their collected data
easier to analyze for users. This difference is apparent in how
they store their data. GH Archive stores GitHub events into
an activity log. While GHTorrent collects data into a Mon-
goDB database and later into MySQL dumps with monthly
releases[14]. GH Archive has stored log files from 2012 to
today, while GHtorrent only has archived data from October
2013 to June 2019.

GH Archive’s colossal data may seem desirable to this study
until we apply our current research goals and study scope. GH
Archive is accessible through Google’s BigQuery. BigQuery
offers a free 1 TB of data processing per month. We assumed
this to be insufficient since we wish to search through sev-
eral years worth of data. Also, GH Archive’s lack of data
structures makes it impossible to calculate how much data we
would need to process to accomplish our goals. Therefore, we
do not incorporate its data into our study. GHTorrent may also
seem appealing. However, research conducted in GHtorrent
infancy noticed several glaring issues. Two noted issues im-
portant to this study were: That GitHub’s API and its response
structure may change. Such a change could create a problem
where the new API’s response structure requires reformatting
to fit GHtorrent’s stricter schema, potentially losing valuable
data. Secondly, GHtorrent’s archiver could miss some GitHub
events. Such a miss could occur if some fault happened in
the GHtorrent data mining software or something malfunc-
tioned in its network connection to GitHub[7]. Also, as seen in
GHTorrents database schemas, it does not track changes to a
repository metadata. It mainly tracks changes to a repositories
content. Owing to the above and that GHTorrent only has
gathered data up to June 2019, we did not integrate it either.
3https://ghtorrent.org/
4https://www.gharchive.org/

Problems with using GitHub as a data source
Previous research has noted several potential pitfalls when
studying public GitHub data. A paper[9] from 2014 identified
nine perils. The ones relevant in our case are the follow-
ing. "A repository is not necessarily a project"[9], which in
other words is that an open-source project may employ sev-
eral repositories for one project, that it is not always a 1:1
relationship. "Most projects are inactive"[9], most projects,
and thus repositories, may not get continuous updates or even
bug fixes. However, the inactivity may be due to different
reasons. A repository may be declared complete, deprecated,
or dropped due to lack of interest. "Two thirds of projects ...
are personal"[9]. Personal repositories can exist for several
reasons. Some repositories were created purely for personal
development, while others are forks that never got merged
back into their origin. Differentiating between personal and
public repositories can be a challenge. We will discuss this
later in the discussion.

A more recent study from 2020[1] into GitHub data mining
highlights additional problems and reinforces some old ones.
Relevant to this study are the following. "Richness and variety
[of data] might lead to seemingly contradictory results if the
construct definitions and methodologies are not clearly de-
lineated"[1]. This study follows the available data structures
retrievable from GitHub’s REST API and analyses the data we
collected into them without reorganization. Since we only ana-
lyze repository metadata, not its content, which is less open to
interpretation, we are unlikely to have this problem happen. "A
project can no longer be viewed as a single repository, but a
constellation of repositories"[1]. Which we already discussed
in connection to the prior study. "Many FLOSS [Free and
Open-Source Software] projects use multiple programming
languages[,] and they should be carefully classified"[1]. This
fact is important to us, which we discuss later in the theory.
"Researchers should not assume that all sampled projects
are software-based and must screen projects for appropriate
type"[1]. GitHub repositories may contain documentation,
images, and other digital assets that may or may not be rel-
evant to what we want to study. If we desire to get a pulse
for how often a keyword appears, then it may be preferred to
include them, while if we are only interested in the context of
software code, we may wish to exclude it. This paper[1] also
notes that researchers should consider what now has become
named community health score[1]. One method of measuring
a community’s community health score is to evaluate whether
they fulfill the recommended community standards 5, which
is the method that GitHub uses. GitHub exposes this data to
users through its API, where users can retrieve a list of which
standards a project fulfills. The study[1] endorses combining
GitHub’s API data with other sources such as GHtorrent to
create a more complete data set to study. And that "GitHub
search API, as well as GitHub topics, can be a versatile tool
for classifying repos and studying trends on GitHub"[1]. How-
ever, accomplishing this is above the scope of this study, and
we will instead discuss it in the discussion.

5https://opensource.guide/



Data mining Libraries.io
"Libraries.io gathers data from 32 package managers and 3
source code repositories. We [Libraries.io] track over 2.7m
unique open source packages, 33m repositories and 235m
interdependencies between them"[13]. Libraries.io makes this
data available through their website6 or via a publicly available
REST API. In our preparation for this study, we could not
find any equivalent studies to those conducted for GitHub.
Regarding what problems researchers may encounter when
mining and analyzing Libraries.io data. Consequently, we
were more blind here than we had wished when beginning
our study. Libraries.io occasionally publishes their complete
dataset in the form of CSV files. This dataset is used in
several studies[18, 16]. The latest released dataset is the one
released in 2020[13], which was two years before this study,
and therefore deemed insufficient for this study. We instead
use Libraries.io REST API. Which, similarly to GitHub’s
API, is rate limited. With a universal 60 requests per minute
limit[12].

Duplicate repositories
There exist several studies which attempt to find similarities in
git repositories. These studies are categorized into two types,
high-level similarity and low-level similarity analysis[2], in
other words, repository metadata and repository content analy-
sis. Two high level studies are RepoPal[17] and CrossSim[15].
RepoPal uses three heuristics to perform its deduction. These
are, "repositories whose readme files contain similar contents
are likely to be similar with one another", "repositories starred
by users of similar interests are likely to be similar.", and
"repositories starred together within a short period of time by
the same user are likely to be similar"[17]. CrossSim has a sim-
ilar but more nuanced approach. The relevant data points they
analyse are: commits, hasSourceCode, develops, stars.
Both mentioned high-level similarity studies solely focused on
accuracy, not time complexity nor repository size universality.

METHOD
The source code for this project is available at GitLab.LiU.se7.

Method strategy
Our program aims to download and analyze metadata from
both GitHub repositories and Libraries.io libraries. We do
this by interacting with their respective metadata APIs and
saving the collected data to a relational database. We must
also carefully decide what metadata to request since all APIs
have rate limitations.

Shrinking history
Before describing our method, we must introduce one addi-
tional aspect that reduces the validity of our current study and
any subsequent studies. GitHub’s and Libraries.io’s histor-
ical data is ever-changing and lossy. GitHub takes a great
effort in saving repositories’ content history and Libraries.io
in storing a library’s versioning. However, they are not as
careful in archiving their repository or library metadata.For
6https://libraries.io/
7https://gitlab.liu.se/gusbo010/
github-open-source-scraper

GitHub, this would be, renaming a repository, changing its de-
scription, or removing it. Correspondingly with a Libraries.io
library. If some metadata has changed since its initial cre-
ation, we cannot find out what it originally was, at least from
the services themselves. In other words, someone could add
our keyword anytime between the data’s creation to its latest
version. The main reason for this problem is that neither ser-
vice employs metadata version control. The only indicator
GitHub has that reveals if a repository’s metadata has changed
is the updated_at field. According to a software engineer
at GitHub, updated_at is an indicator for changes such as
changing the name, rewriting the description, or changing the
repository’s primary language. This engineer also notes that
a repository’s primary language will automatically change if
someone added a significant amount of new code in a new
language to it[19]. This last fact is especially troublesome to
us since it can occur without any conscious intent on the repos-
itory owner’s part, considerably limiting our possibility to rely
on the updated_at field as an indicator for metadata validity.
We could adjust for this by incorporating one of the previously
mentioned external archives, GHtorrent or GH Archive. But
only if we can deal with the problems they accompany. Li-
braries.io has, to our knowledge, no external archives, which
limits our options. The only workaround we could envision
would be to use the Libraries.io data releases, which would
serve as Libraries.io database snapshots. We could use these
to extract the difference between them and create a database
timeline with up to years as the lowest granularity. All the
problems discussed in this section present a fundamental issue.
Our results are, in principle, unreplicable. Since the historical
data we analyze can, and most likely will, change.

Study environment
This study had a combined research time of 10 weeks which
included performing research, writing this paper, writing the
data mining program, and running said program. This study
had a low-end Dell PowerEdge R330 running Ubuntu 20.04
LTS server edition, which we used to run all the Python3 data
mining scripts. This hardware is not crucial to this study’s
replicability, and any computer with sufficient disk storage can
suffice. The data-mining program(s), henceforth also called
scraper(s), requires a MySQL database to save its results.
The database is initialized with the provided database table
schemas found in GH.sql and LI.sql, summarised in figure
1. The scraper use Python3.8 with some additional libraries,
listed in requirements.txt found in our repository.

Using GitHub
The GitHub scraper consists of four data mining algorithms,
where we data-mine metadata such as repositories, owners,
and commits. We primarily mine for all repositories con-
taining our keyword then we gather associated data. The
left part of figure 1 shows the tables to which the GitHub
scraper saves data. The scraper interacts with GitHub through
the URL https://api.github.com. Henceforth, when we refer-
ence a GitHub API endpoint, we will write only the resource
path where we imply that this protocol and domain name pre-
cedes it. For example, /search/repositories translates
to https://api.github.com/search/repositories. Most GitHub

https://libraries.io/
https://gitlab.liu.se/gusbo010/github-open-source-scraper
https://gitlab.liu.se/gusbo010/github-open-source-scraper
https://api.github.com
https://api.github.com/search/repositories


Li_Keywords

Name

Li_Platforms

Name

Languages

Name

Users

GitHub_Id
GitHub_Name
Account_type

Repositories

Owner_Id
Repo_name
Description
Language
Created_at
Fork
Forked_from
Forks_count
Updated_at
Pushed_at
Stars
Size

Repository_Languages

Repo_Id
Language_Id
KBytes

Repository_Commits

Repo_Id
Committed_at
Message

Li_Project

Platform_Id
Name
Description
Language_Id
Forks_count
Rank
Stars
Status
Repo_url
Dependent_on_Id
Dependants_count
Dependent_repos_count
Latest_release_at

Li_Project_Versions

Project_Id
Version_name
Published_at
Platform_Id

Owns

Belong to

Language type

1

N

1

N

Language type

1 1

1
Language Size

N

NN

Language type

1

1

Tagged with

M

N
Associated with

1

N

Version
N1

Hosted on 

1

N

M
Tagged with

N

Topics

Name

Figure 1. Database schema

API endpoints can take arguments to specify and modify the
resources fetched. In the cases where it is possible to retrieve
several results per API request, we always include the argu-
ment per_page which we set to the max of 100. And in cases
where we cannot receive all results in one go, we include the
argument page, which makes it possible to iterate over the
available response parts called pages. The page range allowed
is one through ten, resulting in a maximum of 1000 results
retrievable per endpoint request specification.

GitHub Scraper
The GitHub Scraper is divisible into six mining actions.
These are: scrape repos, scrape in topics, scrape
in readme, scrape fork cascade repos, scrape
languages, and scrape search term in commits.
The first three scraping actions are similar and deal with
finding repositories containing a keyword through GitHub’s
search API, in our test case with the keyword GraphQL.
The API endpoint used here is /search/repositories.
This endpoint allows for several arguments. We use q for
specifying a query and sort to sort the results. The q query
can take several arguments, such as a keyword, fields to
search, and timespan to search. The search endpoint also
includes an option for whether the result should contain forks.
We set this to true, which we will discuss why later in the
method.

The explanation why three mining actions are dealing
with the same endpoint, instead of two or simply one, is
due to the first problem we encountered in developing our
mining scripts. The query string q takes a in qualifier that
specifies what fields GitHub search should look in. The

possible options are name, description, readme, and
owner/name. The API documentation states that "When
you omit this [in] qualifier, only the repository name[,] and
description are searched"[6]. We quickly realized this to
be incorrect, or at least inconsistent, as of April 2022. A
request of /search/repositories?q=graphql compared
to /repositories?q=graphql+in:name,description
resulted in a difference of over a thousand results. These
two requests should give the same result, according to the
documentation, but evidently did not. We did not have time
to investigate this in any depth. Our best guess is that when
omitting the in qualifier, GitHub searches additional fields,
likely topics. We have filed an issue and pull request for this,
which as of writing this paper, has not been resolved[8]. Due
to this, we decided to split the search action into three parts.
One where we use in:name,description, another with
in:readme, and a third with topic:graphql. Searching
with topic:graphql is essentially the same as in:topics,
except GitHub does not allow topics as an in qualifier.

Search API problems
Our second problem with GitHub was also related to the
search API, specifically when sorting results. The sort op-
tions available are stars, forks, help-wanted-issues,
updated. None of which sorts result in a consistent order,
as they are all subject to change. While this may not be rele-
vant in small or specific searches, it creates an issue for us in
our attempt at mining repositories in the millions. If our search
results in more data than can fit on one page, we must fetch it
over several pages, creating a risk of items getting reordered
in-between page retrievals, causing us to miss some items. In-
stead of estimating some expected data loss, we used another



approach. Thanks to the GitHub option to specify a time range
in our request, we can split a large request into several smaller
time range limited requests. To attempt to receive below 100
results per search. The granularity in the time range option is
down to one day, predominantly allowing us to hit our target
of 100 or below. We still anticipated some cases where this
would not be possible, where we receive more than 100 results
from a day and therefore included a fallback strategy of page
iteration. We also decided to sort by forks, assuming it to be
the characteristic that changes least often.

GitHub algorithms
The final result of what we ask in the search API thus looks
like: /search/repositories?q=graphql +fork:true
+created:from_date..to_date &per_page=100
&sort=forks &page=1. The algorithms we use to
run all three mining actions can be summed up as follows in
listing 1.

Listing 1. Search scraper algorithm
curr_from = start_date
curr_to = end_date

while True:
repos, total_count = github_api_action(curr_from,

curr_to)
if total_count > 100:
if curr_to == curr_from:
save_action(repos)
pages = ceil(total_count/100) if

ceil(total_count/100) <= 10 else 10
for page in range(2, pages+1):
repos, total_count =

github_api_action(curr_from, curr_to,
page)

save_action(repos)
if math.ceil(total_count/100) > 10:
lost_data_count = total_count - 1000
log(f"Lost {lost_data_count}")

curr_from, curr_to =
_date_interval_window_algorithm(curr_from,
curr_to)

else:
curr_from, curr_to =

_date_interval_window_algorithm(curr_from,
curr_to, exceeded_window = True)

else:
save_action(repos)
curr_from, curr_to =

_date_interval_window_algorithm(curr_from,
curr_to)

if end_date < curr_from:
break

The second mining algorithm we developed was a cascading
fork miner, which searches through and downloads each repos-
itory’s registered forks. Due to time constraints and that we
included repository forks in our search algorithm, our final
dataset did not utilize data gathered using it, and we conse-
quently omitted it from this paper.

The third and fourth mining algorithms, data min-
ing actions five and six, deal with gathering data
points from each repository. These data points are
repository_languages, and commits_with_keyword.

The repository language data is accessible through the
/repos/user_name/repo_name/languages endpoint.
And we search commits using /search/commits?
q=repo=user_name/repo_name +graphql
&sort=committer-date &order=asc &per_page=100
&page=1, which is very similar to how we do our initial
search, except per repository instead. We gather language data
to use later to answer RQ2, which is the fifth mining action.
This language data contains the name of the language and its
size, in kilobytes, in the repository. The sixth overall mining
action is to use the search API again to search for commits in
each repository for commits containing our keyword. We do
this to create a second approach to answer RQ1, which we
discussed in the method. The last two mining algorithms can
be abstracted to listing 2.

Listing 2. code.python3
repo = get_repo_with_data_not_scraped()
while repo != None:
data = api_action(repo.todo)
for item in data:
save_repository_data(repo, item)

mdbc.set_data_scraped(repo)
repo = get_repo_with_data_not_scraped()

Libraries.io Scraper
From Libraries.io, we similarly intended to data-mine meta-
data. In this case, libraries. A library’s metadata includes,
among other things, a name, a description, and a list of its
released versions. We list all collected data points in the
right part of figure 1. Data mining Libraries.io is a whole
other experience than GitHub. Firstly, Libraries.io has around
20 API endpoints available, while GitHub offers over 100
endpoints. Secondly, we received several HTTP: internal
server errors from their APIs. The reasons for these errors
were by our experience ranging from requesting too much
data to straight-up unknown reasons. We initially envisioned
doing something akin to what we have done for GitHub. But
after receiving thousands of server errors in our attempts, we
limited our scope to a top-level search for our keyword.

The search we perform interacts with the API endpoint
https://libraries.io/api/search, in which we also encoun-
tered problems. The Libraries.io search API, similar to
GitHub’s, can be provided with several arguments. These
include q for a search term, sort, order, per_page, and
page. Here we can provide a query, sort it, and iterate
over available results divided into pages of 100 items.
Thankfully, Libraries.io has a consistent sort option, which
is created_at. The problem we encountered here was
that after iterating up to page 101, we always received
an HTTP: internal server error. An issue has been
filed to Libraries.io for this since November 2021 and has
yet not been resolved[11]. As such, we must add a layer
to our data mining algorithm, which we do by narrowing
our search by specifying a specific language. Libraries.io
search API allows us to accomplish this by specifying a
language with the argument language. With all of this
explained, an API request to the search endpoint will look like
https://libraries.io/api/search?q=graphql&sort=created_

https://libraries.io/api/search
https://libraries.io/api/search?q=graphql&sort=created_at&order=asc&per_page=100&page={page}&languages={language}


at&order=asc&per_page=100&page={page}&languages={language}

And our data mining algorithm for Libraries.io becomes as is
shown in listing 3.

Listing 3. code.python3
for language in libraries_io_languages:
data = api_action(page = 100, language)
if len(data) >= 100:
log(f"Unable to mine data for {language}")
break

for page in range(1,101):
data = api_action(page, language)
if len(data) == 0:
break

for project in data:
save_project(project)

Matching project to implementation language
To attempt to answer RQ2, we can use two different ap-
proaches. The first and likely most correct approach would
be to use Libraries.io’s. With the help of Libraries.io, we can
find open-source projects related to GraphQL and their depen-
dencies on other projects. By using Libraries.io dependency
data, we can attempt to map up and calculate what libraries
are popular. We can also try to estimate which implementation
languages are prevalent currently. Libraries.io also keeps track
of where the different projects host their code, which in some
cases will be GitHub, allowing us to compare this approach
to our second approach. Our second approach is to utilize
GitHub’s linguist library repository report. Through GitHub’s
API, it is possible to gain a report over the programming lan-
guage used in a repository. But as a study[1] aptly points out,
GitHub’s language report is only based on bytes of code of a
specific programing language, rather than any more advanced
metric such as importance to the project[1]. Hence, we will
use the naive assumption that the dominant programming lan-
guage is a predictor of what GraphQL library implementation
it uses.

Extracting patterns in the data
After filling our database, we need to decide how to analyze
it. We are sure there is an abundance of possible patterns you
could extrapolate from the dataset. However, we are interested
in historical changes, that is, patterns over time. GitHub and
Library.io both have timestamps in several data types. We
have collected GitHub repository created_at, updated_at,
pushed_at, and commits committed_at. Libraries.io has
latest_release_at and library published_at. We use
these below in the results to plot several figures shown in our
result. We have noted additional possible plots we did not
include in this paper. For instance, detecting when the most
stared or forked repositories were created, what programing
languages usually accompany GraphQL applications, which
topics accompany GraphQL, to something complex such as
what language implementation was popular at specific times.

Related study difference
The study[10] we take inspiration from constructed historical
timelines as total projects created at specific dates. They also
drew a plot where they tracked when commits containing

"GraphQL" were committed to the repository. They have
not published their source code, but by our rough estimation,
70% of our program and their program behave the same. They
used Jupyter Notebooks8 to write Python3 and Javascript code,
while we opted for pure Python3 scripts. Another difference is
that they store their data in CSV files while we use a MySQL
database. The justification for our shift to pure Python3 was
our familiarity with it, that we wanted to rewrite their program
to detect potential mistakes, and that we had an external server
we wanted to use. Our shift to a MySQL database was due
to our desire to have more accessible data that could include
more complex relationships. The 30% difference in behavior
comes from correcting some of their data collection methods,
collecting more data from GitHub and Libraries.io, and adding
functionality to deal with the more sizeable results we receive
from later dates.

Duplicate repositories
Using one of the High-level similarity studies we mentioned in
the theory section, we could eliminate some duplicate reposito-
ries. We left off that theory section by saying that neither study
focuses on time complexity, only accuracy, which is a problem
for us. We plan to collect a several magnitudes larger dataset
than what they used in their analysis, their hundreds compared
to our million. Our program would also be required to scrape
additional data fields they used in their method, which would
extend the scraper’s runtime, which we discuss next section.
Both study methods, by our analysis, have a time complexity
of O(N!), which would require a runtime we don’t have avail-
able. Our program also collects repositories of all sizes, which
may undermine any value their methods give since they only
used a selection of repositories in their tests. Due to the above,
we could not integrate either study’s method.

Time complexity
Lastly, we need to discuss the time complexities of executing
our scraper. As mentioned before, GitHub has several rate
limits. However, these rate limitations are not the same as item
retrieval rates. The core rate limit of 5000 per hour links to
when you access specific resources, in our case, a repository’s
language data and forks. That is a flat 120k request per day.
However, if we regard how many results we can retrieve per
request, we get an item retrieval limit of up to 12M items
per day, 100 times as much. We fall into the lower retrieval
rate if we mine for language data. And in the case of mining
repository forks, while unlikely, we approach the 12M item
retrieval limit.

The search API rate limit has a similar situation. The search
rate limit links to us performing a search action. The base rate
of 30 requests per minute is equivalent to about 43k requests
per day, which in the cases where we can retrieve 100 results
per request, sums up to 4.3M items per day. Here we come to
one of the cruxes of why we included forks in our first three
data-mining actions, where we search the whole of GitHub for
our keyword. In our development, when we used the cascading
fork algorithm, we noticed that most repositories had well
below 100 forks, resulting in our effective item retrieval rate
8https://jupyter.org/

https://libraries.io/api/search?q=graphql&sort=created_at&order=asc&per_page=100&page={page}&languages={language}
https://jupyter.org/


to close in on the lower bound of 120k items per day of the
core rate. However, when we used the first mining algorithm,
we usually neared the higher bound rate of the search rate of
4.3M items per day. We consequently opted to find the forks
when we did our initial search instead of later retrieving them
through the cascading fork scraper algorithm. The balancing
act here is that if we include repository forks in our search
algorithm, we can find forks that have become related to our
keyword after their split from their parents, which we would
miss in our cascading fork algorithm. And in the case where
we only run the cascading algorithm, we could find forks that
had removed their identifiers of being related to our keyword,
with the risk of finding repository forks created before the
parent began using the keyword.

If the GitHub scraper finds around 1M results over its three first
scraping actions, we can expect an initial runtime of 6+ to 17+
hours. The explanation for this speed is that they can approach
the 4.3M item per day retrieval limit. The range in runtime
is mainly due to the duplication of effort we discussed in the
theory. These 1M results need to have their languages mined,
which takes 8+ days due to the lower bound of the core item
retrieval limit. Then the scraper also needs to search through
each repository’s commits for our keyword, which takes 24
days, resulting in a total runtime of around one month, not
including the cascade fork algorithm, if run.

Libraries.io has a rate limit of 60 requests per minute which
is 86k per day. Similarly to GitHub, it is possible to retrieve
up to 100 results per request depending on the API endpoint,
which gives us an upper bound of 8,6M item retrievals per
day. Luckily, the search endpoint is one of those. Performing
a search for our keyword on the Libraries.io website shows
us that there are around 14k results to fetch, translating to a
theoretical 4 hours runtime. The actual runtime is double that,
due to various reasons, such as slow request responses and
internal server errors.

RESULT
After data-mining all of our desired data, we plot our results
into the folowing figures. As can be seen in figure 1, we track
in what GitHub field we found our keyword in. The available
fields, or tiers, are in:name, in:description, in:topics,
and in:readme. This is relevant as we can plot this data
into different lines, shown in figure 2, 3, and 4. Note that
one repository can have the keyword in several fields, thus be
counted in several lines.

Figure 2 shows repositories created each month that includes
our keyword in some fields, with and without forks.

Figure 3 shows how many repositories were active in a month.
We defined activity here as the repository’s creation day to the
latest of either pushed_at or updated_at. In other words,
the GitHub repository was created that month (or before) and
has had at least one change made that month (or sometimes)
in the future, which is not the same as the repository having
had some actual activity that month.

Figure 4 shows what month we first found a commit men-
tioning our keyword, the first commit containing our keyword
once per repository, sorted into months.

2010 2012 2014 2016 2018 2020 2022

0

5000

10000

15000

20000

25000

30000
Timeline including forks

Any field
In name
In description
In topics
In README

2010 2012 2014 2016 2018 2020 2022

0

2000

4000

6000

8000

10000

12000

14000
Timeline exluding forks

Any field
In name
In description
In topics
In README

Figure 2. Repositories created by month

2010 2012 2014 2016 2018 2020 2022

0

20000

40000

60000

80000

100000

120000

Activity timeline including forks
In name
In description
In topics
In README

2010 2012 2014 2016 2018 2020 2022

0

10000

20000

30000

40000

50000

60000

70000

Activity timeline exluding forks
In name
In description
In topics
In README

Figure 3. Repositories ’active’ by month



2015 2016 2017 2018 2019 2020 2021 2022
0

500

1000

1500

2000

2500

3000 Total
In name
In description
In topics

Figure 4. First occurrence of keyword in repository commits

Language Tot Name Desc Topc Readm
NONE 50.27 28.50 36.82 50.27 52.67
JavaScript 26.43 39.31 31.53 26.43 24.79
TypeScript 8.33 12.56 13.94 8.33 7.78
CSS 2.57 0.66 0.78 2.57 2.68
Python 2.21 2.12 2.50 2.21 2.22
Go 1.64 1.96 1.95 1.64 1.66
Java 1.45 3.66 2.36 1.45 1.35
PHP 0.86 2.43 2.02 0.86 0.78
Ruby 0.85 2.18 1.54 0.85 0.76
HTML 0.82 0.68 0.57 0.82 0.80
C# 0.68 1.75 1.25 0.68 0.62
Swift 0.49 0.24 0.41 0.49 0.51
Vue 0.47 0.48 0.51 0.47 0.43
Dart 0.41 0.40 0.30 0.41 0.42
Other 2.53 3.07 3.54 2.53 2.53
Table 1. Language distribution in % by field keyword was found in

Table 1 shows a breakdown of which languages the reposito-
ries declared as their primary language, sorted into what fields
we detected the keyword. For instance, 2.5% that had our
keyword in the description had Python as their primary lan-
guage. NONE represent the case where the repository lacked
language association.

Figure 5 shows the number of library releases released by
month. The data presented in this figure is a superset of Li-
braries.io library’s creation date. Since, in Libraries.io, the
creation date of a repository is the same as the date of its first
release.

Table 2 shows what languages a library declared as its primary.
Since we only found 14k libraries, we deemed it extraneous to
split it into what field we found our keyword. And as therefore
only presented the total.

Database
Lastly, we wanted to mention how much data we lost in the
different steps. The GitHub scraper, even with the help of
page iteration as a backup strategy, lost close to 3k reposito-
ries. Between the GitHub scraper’s first three mining actions
and the last two, we lost around 50K repositories. The Li-
braries.io scraper missed 100 results, 75 of which were later
possible to retrieve manually. And on a side note, in our at-
tempt at mining the dependants on found libraries, we could

2010 2012 2014 2016 2018 2020 2022
0

5000

10000

15000

20000

25000

Figure 5. Library releases grouped by month

Language Percent
TypeScript 39.04
JavaScript 27.98
Go 6.48
PHP 5.07
Java 4.86
Kotlin 3.33
Python 2.60
C# 1.99
Rust 1.49
Scala 1.47
Ruby 1.45
Clojure 0.99
Dart 0.61
Elixir 0.50
Other 2.14

Table 2. Language distribution in Libraries.io keyword search

not download dependants from 2k libraries. Most of which
we found to be libraries with numerous dependants. Our final
database size landed around 20 GB, though we believe half of
that size comes from the MySQL logs generated during our
development.

DISCUSSION

Result discussion
Using our data and naive heuristics, we can see that GraphQL
has had new adopters each year since its release in 2015. From
GitHub, we can see that GraphQL has new repositories linearly
added to GitHub and an exponential increase in their overall
activity. We can see that repositories mentioning GraphQL
in their README have increased more than in any other
field, likely due to the faster adoption from secondary and
tertiary users of GraphQL through other software projects.
We also see some months that noticeably deviate from the
typical course, which we did not have time to investigate.
These deviations are likely related to significant events in
GraphQL or GraphQL repositories. We can see a similar
story in the libraries’ data gathered from Libraries.io but with
even more discrepant months. We did not have time to data-
mine how many software projects use said libraries, but if
we had, we suspect we would see a more explosive growth
than our GitHub activity data show. We can from GitHub and
Libraries.io see that web-focused programming languages are



the most used, whereas the other languages are lower due to
them being for backend use.

Related study comparison
Comparing our results to the study[10] we mentioned in the
introduction shows that our results align with theirs. That
includes figure 2 about the repository created per month and
figure 3 for the first occurrence of a keyword in a commit.
Though as we suspected, we found more results than they did.
In the case of creation date, we likely found additional data
due to what we discussed in the method about repositories
beginning to use our keyword after its initial creation. Then
also, in the first occurrence of our keyword in commits, the
additional results we found could be caused by us gathering
data in a slightly different way.

Threats to validity
The rationale behind saving which fields we encountered our
keyword was to gain insight into at what level GraphQL is
relevant to that GitHub repository. In our reasoning, using
GraphQL as a repository’s topic is the clearest indicator that
it is related to our keyword. However, GitHub introduced
repository topics in early 2017. All repositories created before
2017 must have had the keyword added after its creation.
Likewise, some repositories created after 2017 will likely have
had the topic adder later than its creation date. After topics,
we reason that a repository using the keyword in its name
is the second-best indicator that it is related. Our rationale
here is that the GitHub name field has a character limit of
100, thus forcing owners to write a name that only includes
the most relevant phrases and keywords. The description
has no such limitation. The consensus is to keep a repository
description shorter than 256 characters. The readme is likewise
unrestricted in size. A readme is typically more extensive
than the description and thus has more chance to mention our
keyword, which is why we encountered it the most in our
search.

Figure 2 contains results that predate GraphQL’s public launch,
which does not only include repositories that used GraphQLs
before its public release but also repositories that later added
GraphQLs in some fields. The cause is that GitHub’s meta-
data is not retroactively consistent, which we discussed in the
method. A project created in 2016 could begin to use the
keyword 2020, and we would be none the wiser, at least with
our approach.

A solution to figure 3’s activity resolution problem would be to
data-mine each repository commits. But as we have mentioned
numerous times would increase the scraper’s runtime. Another
weakness with 3 and 4, and the reason that they seemingly
drop off at the beginning of 2022, is that many projects only
have sparse commits. And as such have not had any activity
this year, even though they may still be in development.

A problem with all our figures is that they do not compensate
for the importance of each data point. We assume every item
to be of equal importance. We found no strategy in our investi-
gation that can handle this, at least not for the variety of reposi-
tories and libraries we collect. This problem also exists in both
of our language tables. After collecting all language data, we

can say that even our most reasonable assumption in section
the theory is still naive. The approach we will recommend for
future attempts at extracting language data from Libraries.io
is manually picking relevant libraries and data-mine their de-
pendent libraries. Doing this would lead to a better result in
the case where we want to find what implementations they
use, not what language the libraries themself use. Also, due to
the additional Libraries.io scraper layer, we circumvented any
libraries that did not have any language associated with them,
missing them from our language breakdown.

To add to what we discussed in the method about the shrinking
GitHub and Libraries.io history. The consequence of this
shrinkage is that any study completed before this one will
have had access to more correct data than we currently have.
Because the closer the data was collected to its creation, the
less time has passed for it to change in any way we cannot trace.
However, when collecting more recent data, other problems
appear. One of these problems is with what we call temporary
data. Temporary data, is data that users create and remove
within a limited time. Examples of such data would be, testing
repositories and pull request repositories.

Deciding what repos to count in historical graph
A third problem our study has is with deciding what
repositories to include. We include everything from
minor code repositories, forks, and personal code
repositories, to actual duplicates. One solution we
mention is to use community health score [1]. Some
factors used when calculating community health score
are: total_commits, max_days_without_commits,
max_contributions_by_developer, and
closed_issues [3]. With the help of the health score, we
could more efficiently pick out which results we should
analyze. Yet, here again, we are constrained in study and
runtime. Downloading all committed data for each report and
developer contribution data would add a substantial time to
our scraper runtime.

Lastly, we want to discuss two issues we noticed after we
finalized our database schema. The first issue we detected was
that one commit could belong to several repositories. That two
repositories had the same commit saved twice to the database
should not affect our results, only reduce our database storage
efficiency. The second problem was that a library could depend
on several libraries, which is apparent in hindsight. That we
could not set several repository dependants is likely one of the
many things that hindered our attempts at data mining library
dependants.

Future work
One facet possible to study further to speed up GitHub data
mining would be to examine how to best use the various rate
limits that GitHub has. For instance, we have not mentioned
GitHub’s GraphQL API, which has its rate limits. With the
help of the GraphQL API, it could be possible to retrieve some
data points more efficiently than through the standard REST
API endpoints. Our linear data miner algorithm is also woe-
fully inefficient. Creating dependency data for a multithreaded
scraper could speed up the execution time. Especially if the



scraper had a more intelligent way to mine forks, where if the
parent had been data mined, the children would not be data
mined. Also, as we mentioned in the theory, there are alter-
native sources for GitHub metadata. Similar to the GraphQL
API, we could use them to speed up data retrieval.

We would also like to mention some additional problems fu-
ture studies could expand on. There are several data types that
GitHub offers that we did not include. For instance, discus-
sions, issues, and commits. All of which are useful, among
other things, to estimate how active a repository was. Also, if
researchers could conclude which sorting option in GitHub’s
search API was most consistent, it would alleviate some we en-
countered gathering repositories. Or simply if GitHub decides
to implement such an option in the future. Then with Li-
braries.io, if researchers found a better way to collect libraries
and their dependents, it would be easier to create dependencies
graphs. Or if the Libraries.io development team resolved the
100-page search limit. We believe Libraries.io has much more
potential than was realized in this study. Mainly since it tracks
libraries, which GitHub does not at all.

The facet we would be most interested in if a future study
could tackle would be finding out at what rate GitHub, or git
repositories in general, degrade in its history. Both in how
fast metadata gets overwritten and how quickly a repositories
content history stabilizes. We would call this GitHub history
volatility. Such a study could involve a longitudinal study
of a specific subset of GitHub data. To deduce at what rate
different data points become historically stable, including the
risk for different data types to be changed or removed. Such
a study would help future studies attempt to extract historical
data and evaluate the validity of their results.

Publishing our dataset
Neither GitHub nor Libraries.io users have, to our knowledge,
any user agreement clause that says that unspecified third
parties are allowed to archive their data. We find it ethically
permitted to collect their public data for local analysis since
the users of those sites are aware that they are publicly visible.
However, we will not take any stance on storing such data
for extended periods. Consequently, we will not publish our
dataset. The main reason is to avoid conflicts with handling
potentially private data. Any interested reader is free to use
our methods or actual scripts to create a comparable dataset.

CONCLUSION
Despite the numerous problems and caveats we encountered
in developing our data miner and the struggles from both
data sources, we still believe that data mining GitHub and
Libraries.io for historical data is worthwhile. We were able to
use our method to gain some insights, such as:

• How the adoption of a software subject has been at different
times.

• How active a subject was in public software.

• What programming languages were most associated with
our subject.

The language association we found is at the least able to tell
which programming languages usually accompany our key-
word. Or, in the best case, show what GraphQL implemen-
tations are popular. Our approach is also cost-effective since
it requires no payment, courtesy of GitHub and Libraries.io
having their data freely available. The only tangible cost our
method has is in requiring time to execute. But as we noted,
have room to be considerably reduced.

REFERENCES
[1] Mohammad AlMarzouq, Abdullatif AlZaidan, and

Jehad AlDallal. 2020. Mining GitHub for research and
education: challenges and opportunities. International
Journal of Web Information Systems (2020).

[2] Ning Chen, Steven CH Hoi, Shaohua Li, and Xiaokui
Xiao. 2015. SimApp: A framework for detecting similar
mobile applications by online kernel learning. In
Proceedings of the eighth ACM international conference
on web search and data mining. 305–314.

[3] Jailton Coelho, Marco Tulio Valente, Luciano Milen,
and Luciana L Silva. 2020. Is this GitHub project
maintained? Measuring the level of maintenance activity
of open-source projects. Information and Software
Technology 122 (2020), 106274.

[4] GitHub. 2022a. GitHub total repositories search. (2022).
https://github.com/search?q=is:public, last accessed on
2022-02-27.

[5] GitHub. 2022b. Resources in the REST API. (2022).
https://docs.github.com/en/rest/overview/

resources-in-the-rest-api, last accessed on
2022-05-27.

[6] GitHub. 2022c. Searching for repositories. (2022).
https://docs.github.com/en/search-github/

searching-on-github/searching-for-repositories, last
accessed on 2022-04-26.

[7] Georgios Gousios. 2013. The GHTorent dataset and tool
suite. In 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 233–236.

[8] gusbo010. 2022. Update searching-for-repositories.md.
(2022). https://github.com/github/docs/pull/17389, last
accessed on 2022-05-27.

[9] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe,
Leif Singer, Daniel M German, and Daniela Damian.
2014. The promises and perils of mining github. In
Proceedings of the 11th working conference on mining
software repositories. 92–101.

[10] Yun Wan Kim, Mariano P Consens, and Olaf Hartig.
2019. An Empirical Analysis of GraphQL API Schemas
in Open Code Repositories and Package Registries.. In
AMW.

[11] kirq4e. 2021. API request to Project Search with page >
100 returns Internal Server Error. (2021). https:
//github.com/librariesio/libraries.io/issues/2880,
last accessed on 2022-04-26.

https://github.com/search?q=is:public
https://docs.github.com/en/rest/overview/resources-in-the-rest-api
https://docs.github.com/en/rest/overview/resources-in-the-rest-api
https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://github.com/github/docs/pull/17389
https://github.com/librariesio/libraries.io/issues/2880
https://github.com/librariesio/libraries.io/issues/2880


[12] Libraries.io. 2022. API Docs. (2022).
https://libraries.io/api, last accessed on 2022-05-27.

[13] libraries.io. 2022. Libraries.io/data. (2022).
https://libraries.io/data/, last accessed on
2022-04-27.

[14] Thaıs Mombach and Marco Tulio Valente. 2018. GitHub
REST API vs GHTorrent vs GitHub Archive: A
comparative study. (2018).

[15] Phuong T Nguyen, Juri Di Rocco, Riccardo Rubei, and
Davide Di Ruscio. 2020. An automated approach to
assess the similarity of GitHub repositories. Software
Quality Journal 28, 2 (2020), 595–631.

[16] Ahmed Zerouali, Camilo Velázquez-Rodríguez, and
Coen De Roover. 2021. Identifying Versions of Libraries
used in Stack Overflow Code Snippets. In 2021
IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 341–345.

[17] Yun Zhang, David Lo, Pavneet Singh Kochhar, Xin Xia,
Quanlai Li, and Jianling Sun. 2017. Detecting similar
repositories on GitHub. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 13–23.

[18] Chengming Zou and Zhenfeng Fan. 2022. GELibRec:
Third-Party Libraries Recommendation Using Graph
Neural Network. In International Conference on
Database Systems for Advanced Applications. Springer,
332–340.

[19] Ivan Zuzak. 2015. GitHub API V3 : what is the
difference between pushed_at and updated_at? (2015).
https://stackoverflow.com/questions/15918588/

github-api-v3-what-is-the-difference-between-pushed-at-and-updated-at,
last accessed on 2022-04-27.

https://libraries.io/api
https://libraries.io/data/
https://stackoverflow.com/questions/15918588/github-api-v3-what-is-the-difference-between-pushed-at-and-updated-at
https://stackoverflow.com/questions/15918588/github-api-v3-what-is-the-difference-between-pushed-at-and-updated-at

	Introduction
	Background
	Theory
	Data mining GitHub
	Alternative historical GitHub data sources
	Problems with using GitHub as a data source
	Data mining Libraries.io
	Duplicate repositories

	Method
	Method strategy
	Shrinking history
	Study environment
	Using GitHub
	GitHub Scraper
	Search API problems
	GitHub algorithms
	Libraries.io Scraper
	Matching project to implementation language
	Extracting patterns in the data
	Related study difference
	Duplicate repositories
	Time complexity

	Result
	Database

	Discussion
	Result discussion
	Related study comparison
	Threats to validity
	Deciding what repos to count in historical graph
	Future work
	Publishing our dataset

	Conclusion
	References 

