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Abstract

Social media consume an increasing portion of people’s daily lives and are impor-
tant platforms in the realms of politics and marketing for reaching out to voters
and consumers. Describing and predicting the behaviour of users on social media
is thus of interest for companies and politicians, as well as researchers studying
information diffusion and human behaviour.

Twitter is a fast-paced microblog that is host to debates, conversations, and
campaigns between users as well as organisations all over the world. As all in-
teractions on Twitter are publicly available, the platform has been used as a data
source for many studies. While previous works have mainly focused on inter-
action dynamics for specific user groups or topics, or on predicting virality, the
perspective we take in this thesis is to focus on the level of the individual conver-
sation and to use dynamical models to characterise user interactions.

The most prominent characteristic of Twitter conversations is the clear pres-
ence of peaks in engagement. We introduce a classification scheme based on
peak configurations to quantify the interaction patterns present on Twitter and
find that around 70% of conversations exhibit a single peak in user engagement,
usually followed by a slower decay. A second order linear model describes the
dynamics of the single peak scenario well, indicating that most conversations
have two phases - an initial phase of rapid rise and decline in interaction rate,
followed by a phase of slowly decreasing interaction rate. We quantify the char-
acteristic life span of Twitter conversations in terms of the second order system
time constants.

Furthermore, we investigate the impact that users with many followers, so
called influencers, have on conversation dynamics, and in particular on the emer-
gence of interaction peaks. The data suggests that influencers do have a notice-
able, albeit limited effect on the spreading of conversations to other users.
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1
Introduction

The increasing number of people with access to the Internet is making the world
a more connected place. Humans are social creatures and spend a significant
portion of their days using social media, not only as a means of socialising, but
also sharing ideas and consuming news. The rapid velocity at which information
is produced and made available can have a positive impact on society. It also
changes the way in which humans interact and pay attention to topics. Findings
in [11] indicate that the rise and decay rates of collective attention to cultural
products or topics are increasing, a phenomenon that is not restricted to social
media. The limited amount of collective attention along with an increase in con-
tent production shortens attention cycles. Twitter is a microblogging platform
where these phenomena can be observed. In [17], cohorts of users on Twitter
were clustered into different types depending on the frequency of their activities.
The authors found that users who joined Twitter later tend to be more active,
accelerating the pace of interactions and exhausting topics more quickly. Since
Twitter’s founding in 2006 it has seen tremendous growth, having 229M daily
active users1 that generate around 500M tweets per day2. Twitter is host to dis-
cussions of a plethora of topics, and has become a popular object of study due
to the availability of data through the Twitter API. Social network analysis is the
study of relationships and interactions between groups or individuals. The field
has gained a lot of attention following the development of tools for analysing
social networks, notably the theory on complex networks.

Complex networks arise naturally in many settings and are characterised by
“a large number of units interconnected through highly non-trivial patterns of in-
teractions” [8]. Examples include the neurons in the human brain, the webpages
on the World Wide Web, and humans interacting with each other. Real world

1investor.twitterinc.com
2internetlivestats.com
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2 1 Introduction

networks commonly display complex structures that are distinct from random
networks [2]. This is true for social networks as well, in fact, human behaviour is
characterised by heavy tailed distributions, both in terms of who knows whom in
a social network [2], and the distribution of interarrival times of human activities
[1]. Networks can change over time; in the case of social networks, this happens
when people make new acquaintances or lose contact with old friends. Twitter is
a good example of this: the users in the growing Twitter network are constantly
following and unfollowing other users at a substantial rate, a dynamic that is
at times accelerated by information cascades [12]. One can also consider con-
versations on Twitter as graphs, with users as nodes and the links representing
interactions.

1.1 Motivation

Previous work on social media, and Twitter in particular, focuses mainly on
analysing diffusion of and competition between widely discussed topics [14], pre-
dicting the virality of posts [19], and on the marketing potential in online social
networks. In [14], the diffusion of hashtags is described with a deterministic
model based on epidemiology. The idea is that information on Twitter spreads
on a large scale similar to an epidemic, and their model uses constant and time-
varying infection rates to capture different spreading behaviours. The authors in
[19] proposed a doubly stochastic process to predict the final number of shares
of a post. In their model, tweets are retweeted with a time-varying rate that de-
pends on the number of shares, the number of followers of the users who share
the post, and a stochastic process that captures engagement received. Studies
have also been conducted on the structure of conversations, using branching pro-
cesses to describe the evolution of conversations [7]. However, so far there have
been few investigations on the conversation-level dynamic characteristics of so-
cial media interactions, such as the life length of a post. It is also common to use
data from a specific domain, e.g., politics, which might be unrepresentative of
general behaviour on Twitter.

The purpose of the study is to quantify the temporal characteristics of tweets
in order to better understand conversation dynamics on Twitter. In contrast to
earlier work, the focus of this study is not directed towards any specific topic or
user, but rather on the properties of interactions on Twitter. We investigate the
decay of engagement with tweets drawing on linear system theory. The half-life
period of a quantity refers to the time within which the concentration is halved on
average. The canonical example is radioactive substances, which decay at a rate
proportional to the remaining concentration and can be described by a linear dif-
ferential equation [13]. In [4], the collective attention of humans is modelled in
terms of communicative and cultural memory, that decay as new cultural prod-
ucts are generated and outcompete older ones. Half-life has also been used to
describe content life-length on social media [18]. We aim to build a model of
engagement on Twitter that will give insights into how information spreads on
social media, as well as the nature of human interactions online.



1.2 Aim 3

1.2 Aim

The goal of this thesis is to characterise the dynamics of Twitter conversations. To
do this, we retrieve a dataset sampled from the whole of Twitter, not limited to
specific communities or topics. From an initial inspection of interaction patterns,
it is evident that tweets commonly arrive in bursts that manifest as peaks in the
interaction time series. We aim to develop a method for classifying conversation
types based on the pattern of peaks. The classification result should give a hint
as to which models are suitable for modelling Twitter dynamics.

Based on the patterns extracted, we investigate how well interactions on Twit-
ter can be described by linear models of the first and second order, and the impli-
cations this has for conversation dynamics. We evaluate the pace of conversations
by looking at the distribution of time constants of the linear systems. For instance,
if a first order model has a good fit, it can be justified to speak of a half-life for
conversations. Not all conversations can be modelled by the proposed systems,
and we explore other factors that could account for occurrences of peaks in the
data. In particular, we analyse the impact of users with a large follower count to
provide a heuristic explanation for interaction peaks.

1.3 Delimitations

This work uses linear, deterministic models to describe the interaction patterns
on Twitter. We do not consider the content of posts, nor any attributes of the
engaging users except follower count when analysing conversation patters.

We are limited in the amount of data we can collect from Twitter. This mainly
concerns the user network, which cannot be retrieved at a scale sufficient to com-
pute reliable statistics.

1.4 Thesis Outline

The thesis is structured in the following way. Chapter 2 describes Twitter, the
data collected from the platform, and the methods used in this work. Two lin-
ear models are proposed to model interactions between users. In Chapter 3, we
present our analysis of the data and the results of fitting the models from Chap-
ter 2. We also investigate the impact of users with a high follower count on the
arrival of interactions in threads on Twitter. Finally, we discuss and summarise
our findings, and outline future work on the topic in Chapter 4.





2
Method

This chapter gives an introduction to Twitter, and goes into detail on the dataset
of this study. We introduce some terminology related to tweets and conversations
that is used in the analysis, as well as the functions and limitations of the data
collection tools. We present a categorisation of conversations useful for describ-
ing different interaction patterns, and how to classify conversations accordingly.
We introduce models describing the engagement in the time domain, along with
the methods we use to fit the models to data and evaluate the results.

2.1 Twitter Basics

Twitter is an online social media network, where individuals, organisations, and
institutions can create accounts and post content, also called tweets. A tweet is a
single post that may contain some text, limited to 280 (originally 140) characters,
and optionally some attached media, e.g., a photo, a movie clip, or a poll. The
basic content generating mechanisms on Twitter are: posting a new message, re-
plying to a tweet, and sharing a tweet in a new message (quote). In general, any of
these three actions can be referred to as tweeting. A very popular sharing feature
of Twitter is called retweet, which is used simply to repost a tweet without adding
any more content to the post. In general, any tweet, including replies and quotes,
may be retweeted, quoted, or replied to. Users may also like tweets.

A user can follow other users they find interesting, thus taking part of the
content they generate. A user has two personal feeds where tweets from the users
they follow appear, governed by Twitter’s algorithm. The Home feed shows con-
tent that Twitter believes the user will care about based on which tweets and
users they have interacted with before. This may include content from accounts
that the user does not follow. The Latest Tweets feed shows posts from all follow-
ings in reverse chronological order. This feed is also filtered by Twitter to avoid

5



6 2 Method

users getting swamped with content. Users can also create custom feeds by cate-
gorising accounts in lists. In addition to these feeds, users can navigate current
(personally tailored) trends and topics, or visit a specific user page, all of this
through the search functions that Twitter provides.

When using Twitter, one will observe that the Home and Latest Tweets feeds
consist mostly of original posts, quotes and retweets. Replies can appear as well,
but the impression that the author of this report has at the time of writing is that
they are generally more rare. Thus, it seems not all interactions on Twitter are
as effective when it comes to propagating a tweet. After posting, retweeting, or
quoting a tweet, it will make the tweet likely to appear in the feed of the followers
of the user, and it will be visible on the (default) Tweets tab of a user’s timeline.
Replies from a user are visible on the timeline only if one views the Tweets &
replies tab of the timeline.

A retweet cannot be interacted with in the same way as a tweet, as it is a
repost of an original tweet. That is, if a user retweets a post, it will be visible as a
tweet from the original author and not by the retweeter, although an indication
that the post was retweeted will be visible. A like or a reply to a retweet will
count as an interaction with the original tweet. A quote tweet is essentially a
retweet but with the addition of new content, which makes it a stand-alone tweet
in practice. The quote starts a new thread while providing easy access to the
original tweet in the same way a retweet does. A quote can also be a reply, that
is, it is possible to quote another tweet when replying in a thread. Liking a tweet
will not create a new post, however, it might influence which tweets the Twitter
algorithm suggests to the user’s followers in their Home feed. Replies and quotes
are active ways of engaging with the topic, while retweets and likes can be seen
as more passive, since they require minimal effort from the user.

Tweets can contain hashtags and mentions. Hashtags are indicated by the
‘#’-symbol and they are a way of marking a tweet with a topic (e.g., “#twitter”),
which may be picked up and propagated by others. A mention is an ‘@’-symbol
followed by a username (e.g., “@jack”), which sends a notification to that person
as an indication that they have received a reply or are encouraged to participate
in the conversation. Hashtags and mentions are not considered in this study.

Twitter is arguably more of a public platform in comparison to Facebook in
terms of accessibility of the platform content. Most Twitter users have public ac-
counts that can be followed without active consent (or reciprocation), and tweets
are by default visible on their timelines. Some users require aspiring followers
to send a request in order to gain access to the tweets, in which case the tweets
are not accessible from the API either. Users may limit who can reply to a tweet
(e.g., only users who are mentioned in the conversation), but this does not affect
visibility. If a tweet or account is deleted, the information cannot be accessed.

2.2 Terminology

In this analysis we will look at conversations on Twitter branching out from posts
that we call root tweets (or simply roots). A root tweet must not be a reply to
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another tweet, nor can it be a retweet, however, root tweets can be quotes of other
tweets. We define a conversation related to a root tweet to consist of the main
interactions towards the tweet. Specifically, we include all retweets and quotes
of a root tweet, the root tweet itself, and any tweet in a reply chain connected to
the root to be part of its conversation. The retweets and quotes of replies in the
conversation are not included in the set of conversation tweets. Unless otherwise
stated, by a reply we mean any reply in the conversation, and not necessarily
a reply directly towards the root tweet. We will use the words engagement and
interaction interchangeably to mean a retweet, quote, or reply to a conversation.

2.3 The Twitter API

Every day, a massive amount of tweets are produced by Twitter’s users, and col-
lecting all of them over a longer period of time is infeasible for reasons discussed
later in this section. Twitter provides access to the tweets and users on the plat-
form through an application programming interface (API) which only requires a
Twitter account with developer status to use. The API can be queried for tweets
in real-time or from the Twitter archive, and may also be used for posting content
in an automated manner. There exist many tools for retrieving data through the
API. In this study, the command line tool and Python library Twarc1 is used to
fetch data via the Twitter API v2, the newest version of the Twitter API at the
time of writing. Twarc automatically queries the API for all relevant data, and
structures the retrieved information (payload) in JSON format.

A tweet payload consists of many different fields of data and metadata such
as the tweet text, its author, how many likes or retweets it has, the conversation
thread it is part of, as well as categorisation of the contents of the tweet (see
Table A.5), and much more. A complete list of attributes of Twitter users and
tweets can be found in Tables A.3 and A.4 respectively. Information is accessed
using a set of so-called endpoints in the API. We present a few of the available
endpoints in Table A.6. For instance, tweets can be retrieved based on attributes
such as words, or by users that have liked or retweeted a post. User objects can be
retrieved through queries on username and user ID, and it is possible to extract
follower and following lists of users. Other retrievable objects include Spaces
(live audio conversations on Twitter), lists (a shareable list of accounts that can
be used as a filter for a user feed), and media objects (polls, places, and other
multimedia content).

The functions in the Twarc library retrieve the maximum number of attributes
for all objects by default. The referenced_tweets attribute may contain a
full body of information on a referenced tweet, including author and entity ob-
jects, which potentially makes a single tweet payload quite large. It is possi-
ble to filter out the most relevant fields when querying from both command
line and the Twarc library. Some attributes, such as id, are always included
in the payload, but not all returned tweet objects contain the same attributes.

1twarc-project.readthedocs.io
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Table 2.1: Example of query options of the search tweets endpoint.

Query operation Description

keyword Match a keyword of a tweet
"exact phrase match" Match an exact phrase of a tweet

retweets_of:X Match a retweet of a tweet from user “X”
conversation_id:Y Match tweets with conversation ID “Y”

For instance, a tweet that does not refer to any other tweet will not contain the
referenced_tweets attribute.

The full archive search endpoint allows us to search for any tweets posted since
the dawn of Twitter, filtering by multiple criteria. A few examples are shown in
Table 2.1: whether the tweet contains a specific keyword or an exact phrase, if it
has a specific conversation ID, or if the tweet in question is a retweet of a tweet
from a certain author. Querying on the conversation ID yields the replies of a
conversation, and querying on the tweet phrase and providing the author ID will
return the retweets of that tweet. The quote tweets lookup endpoint is used to
retrieve quotes of a given tweet.

The sample stream endpoint offers a way to sample tweets in real time. Accord-
ing to Twitter, the sample stream endpoint provides access to a statistically rele-
vant sample of about 1% of all tweets (including retweets, quotes, and original
posts). It is not clearly stated what Twitter means by a “statistically relevant sam-
ple”. If sampling is performed uniformly at random from all types of tweets dur-
ing some unit of time, there is a higher probability of fetching a reply or retweet
related to a popular conversation ID. If this is true, we will sample tweets related
to more popular conversations on average. As is explained in the next section,
we exclude conversations with fewer than 50 interactions from our dataset, so it
matters less if we do not sample the conversations less popular conversations.

Twitter limits the number of requests and the amount of data that can be re-
turned with each request. A basic development project on Twitter may retrieve
500,000 tweets per month, while the Academic access track offers 10M tweets per
month. There is a rolling limit on requests that can be sent to the API, called rate
limits. Some endpoints have higher limits, such as tweet retrieval with 900 re-
quests in a 15-minute period, while others have low limits, such as user follower
lookup which offers 15 requests in a 15-minute period. The restriction on user
following lookups puts severe constraints on our ability to construct the social
network around users with many followers.

2.4 Data

The dataset used in this work consists of 38,042,280 tweets from 9,758 conversa-
tions collected over a period from January to May, in 2022. The sample stream
endpoint is used to collect a set of tweets: root tweets, replies, retweets and
quotes. From these tweets we collect the conversation IDs of the sampled tweets,
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Table 2.2: Platform used by users in sample of our dataset.

Platform #replies

Twitter for Android 1,409,849
Twitter Web App 717,739
Twitter for iPhone 525,831
TweetDeck 36,292
Twitter for iPad 34,335
Twitter Web Client 3,605

or, if the tweet is a retweet, we use the conversation ID of the retweeted post. We
then proceed to collect the conversation replies and retweets and quotes for the
conversation root. Replies and retweets are collected via the full archive search
endpoint, and quotes through the quote tweets lookup endpoint. In order to
avoid left-censoring, i.e., missing out on data due to retrieving the conversation
when users are still interacting, we wait at least one week from sampling before
collecting the conversation IDs and the rest of the interactions. For each tweet we
collect a subset of the available attributes, the most important being the time of
posting, the tweets to which it makes a reference, and the number of followers of
the user posting.

All tweet payloads retrieved via the API optionally include statistics on how
many retweets, quotes, replies, and likes the tweet in question has acquired in
the public_metrics attribute. We often find that there is a difference in the
number of tweets we retrieve and the number given by Twitter. We describe the
reason behind the difference in more detail in Section A.1. Comparing replies,
retweets and quotes, the error is largest for retweets. Prior to the analysis, we fil-
ter out the conversations that contain fewer than 50% of the retweets given in the
public_metrics attribute of the root tweet. We can also collect information on
which application was used to post a tweet. Table 2.2 shows the applications from
which a subset of the tweets in the dataset were posted. The tweets in the table
include 99.59% of all tweets in the subsample, and indicates that third party plat-
forms, that might show tweets differently from the description given in Section
2.1, are uncommon.

2.4.1 Characterising Twitter Conversations

To quantify the engagement of the sampled conversation over time, we divide
the time axis into 1-hour wide bins and compute a histogram wherein replies,
retweets, and quotes are equally weighted. A resolution of one hour was found
to make the histogram sufficiently dense without losing information of when in-
teractions are posted. An example of such a histogram is shown in Figure 2.1.
Conversations with few interactions exhibit spurious patterns and peaks which
adds uncertainty to the statistics in the analysis. Therefore, we only consider
conversations with at least 50 interactions.

Interaction patterns in Twitter conversations take many different shapes and
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Figure 2.1: Engagement histogram example.

forms. While some exhibit bursty behaviour over longer time intervals, and oth-
ers show patterns possibly arising from circadian rhythm, most conversations
accumulate a large fraction of their total engagement only a few hours after post-
ing. By visual inspection of the conversation histograms, it is clear that engage-
ment rarely stays at a constant non-zero level at the resolution of 1 hour. Instead,
peaks and fluctuations are common. To better understand the characteristics of
the Twitter conversation we divide the temporal interaction patterns into four
categories:

(1) conversations that have a single peak in interactions,

(2) two distinct peaks,

(3) one larger peak and one smaller peak,

(4) more than two peaks.

We will refer to these categories as (1), (2), (3), and (4), respectively. The sin-
gle peak category is intended to group together conversations where there is a
sharp rise and decay in engagement. This pattern is readily observed in the data -
a post sparks some initial interest which quickly fades away. The remaining cate-
gories account for different ways in which engagement rises again after decaying.
Conversations that have two prominent interaction peaks are grouped into the
second category. When the second peak is small relative to the first peak, it could
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be reasonable to put it into the first category. For instance, the dip may be due
to the circadian rhythm of humans using social media, creating an artificial peak
in engagement that would not have occurred should the time of day have been
different. The third category therefore groups conversations that have a smaller
second peak, a grey zone between category (1) and (2). Finally, the fourth and
most heterogeneous category collects the conversations that have more than two
peaks, no matter the size. We admit that distinguishing what is a peak is in some
sense subjective, nevertheless, we will describe how to define a peak, classify con-
versations into this taxonomy, and give more precise definitions of the categories
in what follows.

To estimate the frequency of each category and the distribution of delay in en-
gagement peaks, we use a method based on the algorithm by [16]. The algorithm
is based on the idea of a significance test, and classifies values in a sequence as
either a peak or non-peak based on whether the value exceeds a threshold com-
puted from the mean and standard deviation of previous values in the sequence.
The algorithm is described in greater detail in Section A.2. We use the result of
the peak detection algorithm along with a few heuristics to discard peaks that
are too small or too close to each other. We call this process Algorithm 2, and
describe it in Table A.2.

After running Algorithm 2, a conversation is assigned to category (1) if there
is only one peak, (2) if there are two peaks, and the smaller peak has a magnitude
larger than 40% of the other, (3) if there are two peaks, and the smaller peak has
a magnitude smaller than 40% of the other, and (4) otherwise. If the histogram
has a peak at hour k to k + 1, we refer to this interval as a peak bin.

2.5 Modelling Conversations

This section presents the models that will be used to describe interactions in Twit-
ter conversations in time. We explain how the data from Twitter is transformed
into a sequence of values to fit the model, as well as the model fitting and evalua-
tion procedures.

2.5.1 Linear Models

A linear time-invariant system of the first order can be described by the relation

ẋ = λx + βu (2.1)

where x = x(t) ∈ R is the state vector, and u = u(t) is the input signal. We define
the Dirac delta δ(t) to satisfy

∞∫
−∞

δ(t)dt = 1, and δ(t) =

+∞ t = 0
0 t , 0

,
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and the Heaviside function

H(t) =

t∫
−∞

δ(τ)dτ =

1 t > 0
0 t ≤ 0

.

Given an input signal u = δ(t), and assuming x(t) = 0 for t ≤ 0, the system in
2.1 has the solution

x(t) = βeλtH(t). (2.2)

We take the output to be y(t) = x(t). Equation (2.1) describes the decay (assuming
λ < 0) of x at a rate that is proportional to its magnitude. The time it takes for
the quantity y(t) to halve at time t is found by setting

y(t) = 2 · y(t + T1/2),

by which we obtain T1/2 = − ln 2
λ . This holds for any t > 0, and T1/2 is called half-

life period, or half-life. Equation (2.1) is a deterministic model that can be used to
approximate the decay of large discrete quantities, but not individual units. For
instance, the decay of atoms is stochastic in nature [6], and thus, a more proper
definition of half-life is the expected time it takes for a quantity to decay to halve.

The second order system(
ẋ1
ẋ2

)
=

(
α β
0 γ

) (
x1
x2

)
+

(
0
ρ

)
u(t), (2.3)

with output y = x1 + x2 has been used in [4] to describe the decay of collective
attention for a range of cultural items such as movies, music, scientific articles
and more. The decay process is modelled by two mechanisms – communicative
memory and cultural memory – with different decay rates, as the former feeds the
latter. The idea is that an item initially receives attention by occupying a share
of people’s everyday conversations, eventually leading to the creation of cultural
records (e.g., books or articles) about the item. The word-of-mouth diffusion
eventually fades, as does the rate at which cultural records are produced. While
the collective attention towards an item may remain constant, the relative share
of attention can still shrink as total memory increases [4].

For u(t) = δ(t), the system (2.3) has the solution

x1(t) =
ρβ

α − γ
(eαt − eγt)H(t) (2.4)

x2(t) = ρeγtH(t) (2.5)

and thus the output,

y(t) = x1(t) + x2(t) =
ρβ

α − γ
eαtH(t) + ρ

(
1 −

β

α − γ

)
eγtH(t), (2.6)

is a sum of two exponential functions. The detailed solution is found in Section
A.3.
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2.5.2 Model Fitting

We fit models of type (2.1) and (2.3) to conversation data that has been prepared
in the following way. Using the histogram binning described in the previous
section, for each conversation ζi we let the total number of interactions in the
half-open interval [k∆t, (k + 1)∆t) be yDi [k], k = 0, ..., kif , where kif ∈ N such that
(kif + 1)∆t is the smallest multiple of ∆t that exceeds the final interaction time
observed for ζi . As stated above, we use ∆t = 1. We let the engagement described
by a model during [k∆t, (k+1)∆t) be yi[k] = yi(k∆t). From (2.2) and (2.6), we have
y(0) = 0, but in practice we let yi[0] = yi(0+) > 0.

When fitting a model we append K bins with value zero to the engagement
histogram, i.e., yDi [k] = 0 for k = kif + 1, . . . , kif + K , to avoid estimating an unreal-
istically slow decay. This can typically happen when kif is small. For instance, if
yDi [k] is non-zero for k close to kif , we give a penalty for letting yi[k] be non-zero
also at times k = kif + 1, . . . , kif +K when there are no interactions. We set K so that
kif + K ≥ 72.

As model fitting criterion we use the mean square error (MSE) loss between
the model and the data

MSE(yi , y
D
i ) =

1

kif + K + 1

K+kif∑
k=0

ε2
i (k; θ), (2.7)

where εi(k; θ) = yi[k]−yDi [k] is the error for the interval [k, k+1), and θ represents
the model parameters.

2.5.3 Model Evaluation

In order to assess which of the two models introduced in Section 2.5.1 is more
suitable for describing Twitter interactions we use the Akaike information crite-
rion (AIC) [10]:

AIC = min
θ

(
1 +

2κ
N

) N∑
k=0

ε2
i (k; θ), (2.8)

with N = K + kif . For the first order system we have κ = 2 parameters, and for the
second order system, κ = 4.

The fit of the model is evaluated using the normalised residual sum of squares
(RSS):

Ri =

N∑
k=0

ε2
i (k; θ)

N∑
k=0

(yDi [k])2

. (2.9)





3
Results

This chapter contains the results of our analysis. First, we give an overview of
the dataset along with some basic statistics on the collected conversations. We
then present the results of fitting the models to engagement data, and compare
them to see which is more suitable for describing Twitter dynamics. Finally, we
investigate what impact the interactions of users with a high follower count might
have on peaks in the conversations.

3.1 Conversation Statistics

Processing the conversations with Algorithm 2 and following the taxonomy in
Section 2.4.1, the conversations are divided into categories according to Table 3.1,
additionally separating the cases with a peak during the first hour (no delay), or
if it arrives later (delay). Using this categorisation, we find that each conversation
belongs to exactly one group. Since there is no ground truth, the validity of the
results is verified to be reasonable by visual inspection. Several observations can
be made from the categorisation result. We note that close to three quarters of all
conversations have a dominant single peak, counting both category (1) and (3),
described in Section 2.4.1, as obeying this pattern.

In about a third of conversations there is a delay between the root tweet post
and the arrival of interactions, or at least a slower accumulation of interactions. If
the delay is too large, it cannot adequately be modelled by the first order system
(2.1).

Moreover, we find that the tweet volume proportions between the categories
do not differ notably from the class proportions as seen in Figure 3.1. The largest
difference is that conversations with more than two peaks make up a larger share
of the total tweet volume, while the tweet volume of single peak conversations
shrinks in proportion. Figure 3.3 shows that the tweet volume distributions are

15
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Table 3.1: Number of conversations in each category as described in Section
2.4.1.

No delay Delay Total

Single peak 4599 1521 6120 (62.7%)
Double peak 532 448 980 (10.0%)
Double peak (small 2nd) 813 400 1213 (12.4%)
Multiple peaks 943 502 1445 (14.8%)
Total 6887 (70.6%) 2871 (29.4%) 9758 (100.0%)

Conversation
categories

Tweet
volume

0.627

0.544

0.1

0.12

0.124

0.127

0.148

0.209

single peak double peak double peak (small 2nd) multiple peaks

Figure 3.1: Proportion of tweet volume and conversations for the different
categories described in Section 2.4.1.

also relatively stable after the categorisation. The tweet volume distribution for
multiple peak conversations has a somewhat heavier tail. The proportion of tweet
types in the whole dataset is shown in Figure 3.2. It can be noted that retweets,
the interaction type that requires the least effort, make up the majority (80%) of
tweet volume.

3.1.1 Circadian Rhythm

It is not surprising that the living patterns of humans affects how content is
posted on social media platforms. In addition to fluctuations due to daily rhythm,
seasonal and geographical patterns can be found as well [9]. As previously noted,
there are periodic patterns in our dataset, posing the question whether the sec-
ondary peaks or the delays in engagement can be linked to periodicity in human
activity at the conversation level.

We sample tweets from all of Twitter, meaning that we obtain data from users
in many different time zones. Tweet payloads contain only the time stamp in UTC

retweets

replies

quotes
3.8M6.9M27.2M

Figure 3.2: Number of tweets of each type in the dataset.
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Figure 3.3: Tweet volume distributions for each conversation category.
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time, geolocation data is sparse, and languages such as English and Spanish are
used in several different time zones. With this limitation, modelling the effect
of circadian rhythm on interactions is beyond the scope of this thesis, but for
illustration purposes we try to visualize the effect by looking at a subset of our
data.

We filter root tweets by language, extracting posts in English, Spanish and
Japanese from the dataset. For each language set we sample tweets so that their
posting time is evenly spread out over the 24 hours of a day. We then take the
replies, retweets and quotes of these roots, forming one set of tweets for each
language. This amounts to 13,014,847 English tweets from 4,745 conversations,
1,650,516 Spanish tweets from 1,301 conversations, and 620,567 Japanese tweets
from 469 conversations. The aggregation of the posting time is shown in Figure
3.4.

For tweets in English, we see a more even distribution compared to Spanish
and Japanese. There is a small increase in posts at UTC 03:00, corresponding
to evening of U.S. time zones, and a larger increase at UTC 14:00, evening time
in India. Spanish tweet volumes show a dip corresponding to the night-time
of UTC-5, the time zone of U.S. east coast and Latin America. Japanese tweets
clearly exhibit patterns of a daily rhythm: one peak during noon, and one during
the evening, and a visible dip during night-time.

3.2 Temporal Model

The AIC of both first and second order models introduced in Section 2.5.1 is eval-
uated for each conversation, and the result is shown in Table 3.2. We find that
in over 95% of cases the second order model is superior in terms of AIC. Table
3.3 shows the normalised RSS for all conversation types, with an additional split
on whether there is a peak during the first hour (no delay), or if it arrives later
(delay). Figures A.1-A.8 in Section A.5 show the fit of the models for different con-
versation types. Being sums of exponential functions, the models (2.1) and (2.3)
are better suited to describe the exponential decay of engagement often found in
categories (1) and (3), which is confirmed by looking at the normalised RSS for
these conversations, but only for the case of no delay. Both models show a poor
fit to the conversations where the initial peak is delayed compared to when there
is no delay.

We investigate the time constants τα = −1/α and τγ = −1/γ for the conversa-
tions of type (1)-(3) with no delay in the initial peak, to which the fitted model
has a normalised RSS lower than 0.2. Denote this set of conversations by Γ . This
corresponds to 57% of fitted conversations. The distribution of the time constants
of conversations in Γ is shown in Figure 3.5 and the percentiles of the distribu-
tions are presented in Table 3.5. Bins spanning 1 hour are used for fitting the
model, however, because the rapid decay in engagement frequently plays out in
mere minutes, we also estimate τγ using 5 and 15 minute bins, while keeping the
1 hour estimate as a reference.
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(a) English tweets. Time axis in
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(b) Spanish tweets. Time axis in UTC-
5 (U.S., Latin and Central America
time zones).
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UTC+9 (Japan Standard Time).

Figure 3.4: Tweet volumes of different languages during the day.

Table 3.2: Fraction of conversations where the AIC (2.8) of the second order
system (2.3) is lower than that of the first order system (2.1).

Category Fraction

Single peak 0.967
Double peak 0.904
Double peak (small 2nd) 0.957
Multiple peaks 0.923
All 0.951
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Table 3.3: Mean and median normalised residual sum of squares of both
models for each conversation type as defined in Section 2.4.1.

Category First order model Second order model
mean median mean median

Single peak, no delay 0.075 0.050 0.035 0.020
Double peak, no delay 0.405 0.353 0.293 0.271
Double peak (small 2nd),
no delay

0.268 0.181 0.170 0.106

Multiple peaks, no delay 0.480 0.433 0.356 0.318
Single peak, delay 0.374 0.291 0.254 0.174
Double peak, delay 0.413 0.373 0.296 0.268
Double peak (small 2nd),
delay

0.419 0.387 0.310 0.265

Multiple peaks, delay 0.505 0.463 0.413 0.371

Table 3.4: Normalised residual sum of squares of both models for different
bin widths.

Bin width First order model Second order model
mean median mean median

5 min 0.439 0.392 0.348 0.302
15 min 0.341 0.265 0.251 0.177
1h 0.252 0.155 0.175 0.089
2h 0.214 0.112 0.144 0.059

Table 3.5: Percentiles of the distributions of the estimated time constants,
τγ , and τα , for second order systems fitted to conversations of category (1)-
(3) (no delay). The second and third rows show percentiles for the distribu-
tions of τγ computed using 15, and 5 minute bins respectively.

Percentile
5:th 25:th 50:th 75:th 95:th

τγ 0.041 0.263 0.551 1.067 3.085
τγ (15 min) 0.012 0.117 0.225 0.565 2.359
τγ (5 min) 0.024 0.062 0.121 0.423 2.269
τα 1.658 4.689 8.451 13.753 21.791
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Figure 3.5: Estimated distributions of the time constants, (a) τγ and, (b)
τα , for second order systems fitted to conversations of category (1)-(3) (no
delay) using 1 hour bins. Below, we show the distributions for τγ for the
same category of conversations estimated with (c) 15-minute bins and (d) 5-
minute bins. The inset figures in (a), (c) and (d) are zoomed-in versions of
the respective histograms.
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3.3 Influencer Analysis

A natural assumption to make is that a user with a large number of followers,
hereafter referred to as an influencer, has potential to spread a tweet to many
more users. In general, however, it seems that the number of followers is a poor
measure of a user’s potential of spreading tweets and ideas to other users. The
findings in [5] suggest that having many followers alone is no guarantee for gen-
erating many interactions towards one’s content. In [15], the follower count of
the root author was not found to be a reliable predictor of total engagement
(retweets) towards a tweet.

In this study, we are asking whether influencers affect the conversation dy-
namics. In other words, is it likely that an interaction from an influencer will
trigger an increase in engagement?

There are multiple ways to define an influencer. In particular, it is useful to
consider two definitions. First, for each conversation, we define local influencers
as the users with a large following relative to other users in the same conversation.
Second, we define global influencers as users that have a follower count which can
be considered large in the overall compendium of users in our dataset.

We let the threshold for including a user in the local influencer group vary by
taking the top 1, 5, and 20 users, and users with a follower count in the 99:th,
95:th, 90:th, and 80:th percentiles for that conversation, giving in total 7 sets
of influencers. The mean and median number of detected influencers over all
conversations per threshold choice are shown in Table 3.6. When selecting the
top 1, 5, and 20 influencers, we avoid choosing users with low follower count
by applying the 95:th percentile as a lower bound on our threshold. Hence, the
number of influencers in the sets of top 1, 5, and 20 influencers may be less than
1, 5 and 20 respectively.

We begin our analysis by noting that local influencers do appear in conjunc-
tion with peaks. Taking the top 5 influencers, 58% of all detected peaks have an
influencer on the peak bin or on bin prior to the peak bin, compared to 32% in
the same period after the peak bin. For the conversation categories, the propor-
tions are (1): 92%, (2): 64%, (3): 62%, and (4): 31%. The frequency increases
when excluding peaks that are small in comparison to the largest peak in the con-
versation. If we include only peaks of magnitude 0.7 times the maximum peak
height, influencers are then present in 81% of cases. One should note that peak
height depends on the choice of bin positions and is not a perfect measure of the
engagement.

To see whether an influencer interaction generates above-average engagement,
we compare the engagement accumulated by the conversation in a window before
and after the interaction. Engagement in the window after an influencer interac-
tion is denoted Ea, and engagement in the window before is denoted Eb. We
consider the interactions of replying, retweeting, and quoting separately, since
the impact on the followers’ feeds is different. In the following analysis, the root
is not counted as a reply in the case that the author is considered an influencer.

We look at the fraction of influencer interactions for which Eb < Ea holds,
measuring in a window around the influencer interaction. For a window size of
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Table 3.6: Mean and median number of influencers detected in each conver-
sation by thresholding choice.

Threshold choice mean median

80:th percentile 652.4 111
90:th percentile 326.7 56
95:th percentile 163.7 28
99:th percentile 33.4 6
top 20 15.1 20
top 5 4.8 5
top 1 1.0 1
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Figure 3.6: Scatter plot of log10(Ea) and log10(Eb) using a kernel density
estimate for quotes from influencers in the top 1 set of local influencers,
computed using a window size of 15 minutes. The red line shows Ea = Eb.
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15 minutes, taking influencers from the top 1-set as defined above, the fraction
of influencer quotes for which Eb < Ea is 0.67, while for Eb > Ea it is 0.27. This
means that in 67% of influencer quote appearances, the conversation engagement
in the 15-minute window following the quote was higher than in the same period
prior to the quote. The opposite (Eb > Ea) is true in 27% of cases, and Eb = Ea
otherwise. Figure 3.6 shows a scatter plot of Ea and Eb using a kernel density
estimate on log-transformed engagement computed using a window size of 15
minutes. We see that in the range Ea, Eb < 100, the density is higher above the line
Ea = Eb. Figures 3.7a-3.7c show how the proportions of cases for which Eb < Ea
change when varying the size of the window and the set of influencers for replies,
retweets and quotes respectively. The fraction of cases where Eb < Ea for an
influencer quote or retweet shrinks when increasing the window size, indicating
that the effect diminishes quite rapidly. Including more users in the influencer set
also decreases the fraction. There is no clear indication that influencers replies
affect engagement in the same way as retweets and quotes.

To quantify this further, we compute the Spearman rank-order correlation
coefficient between the difference in number of interactions before and after an
influencer reply, retweet and quote, and the number of followers of the same
influencer. That is, we compute the rank correlation between Ea − Eb and the
followers of the corresponding influencers. In Figures 3.8a-3.8c we see a similar
pattern as in Figures 3.7a-3.7c. For retweets and quotes, the positive correlation
between Ea − Eb and the follower count is present only when we are restrictive
with which users are included in the influencer set and using a smaller window,
and for replies we cannot find a relation.

Choosing instead to define which users are influencers on a global scale, we
use thresholds corresponding to the q:th percentile for q ∈ {90, 95, 99, 99.5, 99.9, 99.99}
of the follower counts of all 33.9M users over all sampled conversations (includ-
ing the users appearing in conversations with fewer than 50 interactions). This
is not a random sample of the follower distribution on Twitter as the users that
seldom interact have a lower probability of being sampled. Nonetheless, the ob-
tained distribution is heavy-tailed, appears to obey a power law with exponent
2.1, and exhibits the signs of low-degree saturation and high degree cut-off that
is common to real world networks [3, Ch. 4]. In Figure 3.9, we plot the Spearman
correlation between influencer followers and Ea − Eb, and the fractions of influ-
encer interactions for which Eb < Ea, for the set of influencers defined using the
global thresholds and for varying window sizes. We find only a weak positive cor-
relation for quote interactions in this case (Figure 3.9f), although for most quotes
and retweets of influencers we have Eb < Ea (Figures 3.9a and 3.9c).

With the present dataset we cannot raise the threshold in the global definition
of an influencer if we want to retain statistical significance. For reference, setting
q > 99.995 corresponds roughly to picking the top 1-5 users with most follow-
ers in each conversation, with the additional condition that they have at least
1,000,000, followers, which leaves a few hundred data points to divide between
replies, retweets, and quotes.

With the results from using the global influencer definition in mind, we re-
turn to investigate the findings using the local definition of an influencer. Since
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Figure 3.7: Fraction of influencer interactions with more engagement after-
wards than before for varying window sizes and influencer sets, where influ-
encer interaction is (a) replies, (b) retweets, (a) quotes.
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Figure 3.8: Spearman rank correlation, rs, between Ea − Eb and influencer
follower count for varying window sizes and sets of local influencers, where
the influencer interaction is a (a) reply, (b) retweet, (c) quote.
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Figure 3.9: (a), (c), (e): Fraction of global influencer interactions for which Ea > Eb,
where influencer interaction are replies, retweets, and quotes, respectively. (b), (d),
(f): Spearman rank correlation, rs, between Ea − Eb and influencer follower count for
varying window sizes and sets of global influencers, where the influencer interactions
are replies, retweets, and quotes, respectively. Statistically insignificant data points
have been excluded.
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Table 3.7: Percentiles of the global follower count distribution of our
dataset, rounded to the nearest thousand.

Percentile threshold

90 1,300
95 2,500
99 10,000
99.5 18,000
99.9 89,000
99.99 630,000
99.995 1,000,000
99.999 5,389,000

we have a weak positive correlation between number of followers and Ea − Eb for
influencers with a follower count below the 99:th percentile globally, we inves-
tigate whether the correlation is present for local influencers with few followers
in the global sense. We find that the effect disappears when considering local
influencers with fewer than 20,000 followers (corresponding to users below the
99:th percentile of the global follower count distribution). Instead, we combine
the local and global definitions, imposing the condition that an influencer should
have a follower count that is larger than 20,000 and is in the right tail of the distri-
bution for the conversation. For quotes and retweets, this results in a Spearman
correlation higher than what we had when employing only the global definition.
Plots of the correlation between Ea − Eb and influencer followers for varying win-
dow sizes are shown in Figure 3.10.
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Figure 3.10: Spearman rank correlation, rs, between Ea − Eb and influencer
follower count for varying window sizes and sets of influencers (local and
global), where the influencer interaction is a (a) reply, (b) retweet, (c) quote.





4
Discussion

4.1 Temporal Models and Conversation Time
Constants

We see in Section 3.2 that the second order model is preferable in terms of AIC
when modelling conversation engagement. The superiority of the second order
model suggests that conversation dynamics is better modelled by two time con-
stants, which describe the two phases of the conversation: a sharp peak with a
rapid initial decay in engagement followed by a period of low intensity in inter-
actions. This can be seen in Figures A.1 and A.3. The descriptive power of the
second order system, not to mention the first order system, decreases as multi-
ple peaks and large delays are introduced. This is no surprise, as the implicit
assumption that engagement arrives directly after a post, at least in small quan-
tities, does not hold, which can be seen in the top right time series in Figure A.7.
Delaying the input impulse to the system improves the performance of both mod-
els, but requires another variable or process, such as a peak detection algorithm,
and does not resolve the problem of multiple peaks.

Recall that we used Γ to denote the set of conversations of type (1)-(3) with
no delay in the initial peak. In order to understand what the results in Table 3.5
imply for our model, let us assume that the output of the second order system
(2.6) is monotonically decreasing (for all t > 0 when u(t) = δ(t)), as should be
the case for conversations in Γ . Whenever τγ is small relative to τα , the initial
decay of engagement is comparatively fast, and the half-life1 of the conversation
in the late phase (i.e., eγt ≈ 0) will be T α

1/2 = τα ln 2. The half-life should in this
context be understood as the period within which the intensity in engagement is
halved. The dynamics of the initial phase (when eαt ≈ const.) is to a larger extent

1strictly speaking, the term half-life is not applied to second order systems, but we consider eγt to
be very small in the late phase
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governed by τγ . However, the decay rate also depends on the weight that governs

the proportion of the exponential terms: η = β
α−γ . As can be seen in (2.6), when

η is close to zero, the term containing eγt dominates, and when it is close to unity,
eαt dominates. In the latter case, we get a solution that behaves similar to a single
exponential, with an actual half-life τα ln 2 for the entire span of the conversation.
In the limit as τγ approaches τα , the second order model has a response identical
to a single exponential term.

For conversations with a delayed initial peak, it is feasible that a fitted second
order model will have η > 1, and the response is not monotonically decreasing.
Instead it increases from t = 0 and reaches a peak at time t = 1

α−γ ln βα
γ(β+γ−α) ,

after which it decreases. A small time constant τγ in this setting implies a rapid
rise.

Looking closer at Table 3.5, we see that the median of τγ for conversations in
Γ is 0.225 and 0.121 for estimates using 15 and 5 minute bins, respectively. This
implies that the term with eγt in (2.6) halves every 0.156 and 0.084 hours (9.3
and 5 minutes) in the respective case. These periods are very close to the bin size,
which begs the question how reliable the estimates are. By narrowing the bin
size further we risk ending up with more bins containing no interactions, which
may favour a solution that decays more quickly. In Table 3.4, we also see a larger
normalised RSS for the model fits using 5-, and 15-minute bins compared to 1
hour bins. The estimates of τα are likely more accurate since the time scale is
larger than the bin sizes.

The typical late phase half-life, T α
1/2, for conversations in Γ is around 3-10

hours, which indicates that conversations still accumulate engagement even after
some hours, although the rate is in general lower. For the initial phase we see fast
dynamics - the time constant τγ typically being in the order of minutes rather
than hours - showing that the pace on Twitter is very fast indeed.

4.2 Impact of Influencers

In Section 3.3, we investigate the impact of influencers on conversation dynamics.
The results suggest that an influencer sharing a tweet, either by a quote or retweet,
is linked to a rise in conversation engagement. The first observation we make is
that influencers more commonly appear before peaks rather than after, and that
the number of interactions more often than not are higher after an influencer
retweet or quote, than before. We also find a positive correlation between Ea −
Eb and the number of followers of the influencer that retweeted or quoted the
conversation root. The results hold when defining an influencer to be a user that
has many followers compared to the set of users in the same conversation, as well
as compared to all other users in our dataset. Moreover, these results are robust
to change in the size of the window in which we count user interactions.

Naturally, influencers are not the only driving force behind the rise and de-
cline of engagement rates. As the authors of [5] and [15] point out, having many
followers is not a solid guarantee for spawning interactions. Defining an influ-
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encer as having many followers in a global context, a high threshold (>600,000)
was needed to obtain results similar to combined local and global definitions.
It makes sense that applying the local and global definition of an influencer in
combination enhances the effect on interactions, since a retweet of an influencer
with 10,000 followers may have a relatively small impact on interactions if an in-
fluencer with 100,000 followers also retweets the conversation root. Apart from
influencers, there are many other possible factors that affect interaction patterns.
An external event can suddenly make a conversation topic interesting, or it could
be due to the daily rhythm of users on Twitter, as explored in Section 3.1.1. We
are also agnostic of how the Twitter algorithm decides what content to present to
users.

In summary, we find it likely that influencers’ retweets and quotes contribute
to the emergence of peaks in conversation interaction patterns. Knowledge of the
user network could be used to further verify this effect. If the users that interact
with the conversation after the influencer retweet or quote are followers, it is
more likely that their presence is due to the influencer. Influencer replies seem to
have no noticeable or consistent effect on engagement, which is consistent with
our belief of how tweets become visible on the platform.

4.3 Future Work

There were many tracks during the course of this work that could not be pursued
due to time constraints but are viable options for future investigations. Relating
the topology of the Twitter network to conversation dynamics could give further
insights into the pace and reach of information on the platform. As an example,
one could examine whether tweets that propagate further away from the root
author or into new clusters of users have an effect on the engagement the con-
versation receives. It is possible that the delay in interactions observed from the
time of a post to the first peak in some conversations is related to the user net-
work topology. As mentioned above, knowledge of the user network could also
prove useful when evaluating the effect of influencer interactions on engagement.
At present, the rate limit on collecting user follower lists is a considerable obsta-
cle to any enquiry for which the user network is required – an alternative would
be to use an older dataset.

In this study we aimed to collect a dataset that would be as general as possible
with respect to types of user behaviours and interaction patterns. A direction to
take from here would be to apply the analysis in this work to specific topics or
user sets to investigate how communities differ in their use of Twitter, similar to
the work of [17].
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A
Supplementary Information and

Theory

A.1 Missing Data

As stated in Section 2.4, there is commonly a discrepancy in the number of tweets
retrieved compared to the number in the public_metrics attribute of the tweet
payload. For quotes and replies, this figure is small, and we often retrieve more
tweets than the public metric attribute states are available. However, we some-
times retrieve fewer retweets than what is available. The problem mainly lies in
the method of collecting retweets.

Of all tweet types, retweets is the least straightforward to retrieve. We rely
on the full archive search endpoint for this task. Using the query commands
retweets_of:user_ID and "retweet text" we match (re)tweets of tweets
from the specified user ID that contain the phrase within the quotation marks.
The phrase to match is picked from the root tweet text attribute, and is cleaned
of special characters and truncated at the first hyperlink. The tweet text attribute
of a root contains a shortened hyperlink to the tweet in question that is not visible
when visiting Twitter. In general, the link is also part of the retweet text, but in
some cases, it is missing. When this happens, sending a query on the entire tweet
text returns no results from the full archive search endpoint.

Another issue of retrieving retweets is that the tweet text may match multiple
tweets, yielding an avalanche of results that take a long time to retrieve, which
fills up the tweet cap quickly. When mining data at scale, it is not uncommon to
see users that post the same text every day or every hour. Examples of these types
of accounts include those that advertise artists, fan pages, or users with regular
giveaways. Comparing the number of queries and the total number of retweets
gives an indication of when it is suitable to stop sending queries for the retweets
of a certain tweet. Another not too rare outcome is to get no results at all, which
may be due to a mismatch between the tweet text and the retweet text, or deletion
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Table A.1: Peak detection algorithm proposed in [16].

Algorithm 1: Peak detection algorithm

Input: sequence {xn}N−1
n=0 , and parameters ℓ, d, w

1: Compute

µℓ−1 = 1
ℓ

ℓ−1∑
j=0

xj , and σℓ−1 =

√
1
ℓ

ℓ−1∑
j=0

(xj − µℓ−1)2,

and let xf
i = xi , i = 0, ..., ℓ − 1.

2: for i = ℓ, . . . , N − 1 do
if xi < [µi−1 ± dσi−1]

set ri = ±1, and xf
i = wxi + (1 − w)xfi−1

else
set ri = 0 and xf

i = xi
end if

µi = 1
ℓ

i∑
j=i+1−ℓ

xf
j

σi =

√
1
ℓ

i∑
j=i+1−ℓ

(xf
j − µi)2

end for
3: return r = (rℓ , ..., rN )

of the tweet or user.

A.2 Peak Detection Algorithm

We use a peak detection algorithm proposed by [16] to categorise Twitter conver-
sations. Given a sequence of values the algorithm measures the deviation from
the previous points using a Z-score test to determine if a value in the sequence is
a peak. At each step, the algorithm considers the ℓ most recent data points and
computes their mean µ and standard deviation σ . A peak is detected whenever
the value of the next data point lies outside of the interval µ ± dσ , where d is a
threshold parameter. In other words, a peak is a data point more than d stan-
dard deviations away from the mean or median of the ℓ most recent data points.
The algorithm uses an influence parameter w to reduce the contribution of peaks
to the mean. Setting w to zero will assume that the data with no signal present
will have values between µinit ± dσinit , and any points outside that interval is
considered a peak. The algorithm is formalised in Table A.1.

We make a few modifications of this algorithm which are summarised in Ta-
ble A.2. First, we ignore any peaks detected when there is a dip in interactions
(ri = −1). The original algorithm would detect a sharp decay and subsequent rise
of engagement as a peak in the opposite direction, which we are not interested in.
Secondly, we ignore any detected peaks that have a magnitude lower than a frac-
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Table A.2: Extended peak detection algorithm for finding peaks in engage-
ment histograms.

Algorithm 2: Extended peak detection algorithm

Input: sequence {xn}N−1
n=0 , and parameters ℓ, d, w, v, dadj

1: Run Algorithm 1 to compute r = (rℓ , ..., rN ).
2: Let rmod = (rℓ , ..., rN ).
3: Set rmod

i = 0 for any i for which xi < v · maxℓ≤j≤N (xj ) or ri = −1.
4: Find all maximal sets of peaks such that no peak occurs further

away than dadj steps. Remove all peaks in each set except for the
one with the largest magnitude (set the corresponding element
in rmod to 0 for the peaks in question).

5: return rmod = (rmod
ℓ , ..., rmod

N ).

tion, v ∈ [0, 1], of the global maximum peak. In most cases, these minor peaks
are not interesting, and many are detected due to the engagement in the adjacent
time intervals being zero. This can be done since we know the entire time series
a priori. Thirdly, we filter out adjacent peaks – peaks that are located two hours
apart can be considered as one the same peak. We define a distance dadj ∈ N and
use it to group adjacent peaks. We discard all but the largest peak in any interval
where the distance between peaks is no more than dadj.

The hyperparameters ℓ, d, and influence can be varied to adjust the sensitivity
of the algorithm. Increasing the lag parameter will lead to a smoother mean and
standard deviation, which can be useful if the data is stationary. A lag of about
ℓ = 10 hours is suitable; we do not want to take engagement from too large a
period into account when judging whether a given point is a peak. Increasing the
threshold d decreases sensitivity of the algorithm - we find that setting d = 1.5
gives reasonable results. The influence parameter was set to a value of w = 0.8 to
let new data points have a relatively large impact on the mean or median.

To start detection at the time when the root tweet was posted, t = 0, there
needs to be data points prior to the collected time series of engagement. In prac-
tice, we concatenate the engagement bin values to a vector of ℓ zeroes. We use
ℓ = 10, d = 1.5, w = 0.8, v = 0.15, and dadj = 2 as input to Algorithm 2.
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A.3 Second Order System Solution

Starting from (2.3) and letting u(t) = δ(t) we have(
ẋ1
ẋ2

)
=

(
α β
0 γ

)
︸  ︷︷  ︸

A

(
x1
x2

)
+

(
0
ρ

)
︸︷︷︸

b

δ(t), (A.1)

The general solution to the system is given by [10](
x1(t)
x2(t)

)
= eAt

(
x1(0)
x2(0)

)
+

t∫
0

eA(t−τ)bg(τ)dτ, (A.2)

where

eAt =
∞∑
k=0

tk

k!
Ak . (A.3)

We have

Am =

αm β
m−1∑
j=0

αjγm−1−j

0 γm

 (A.4)

for m > 0, and with γ < α < 0, we let

Σm = β
m−1∑
j=0

αjγm−1−j = βγm−1
m−1∑
j=0

(α
γ

)j
= βγm−1

1 −
(
α
γ

)m
1 − α

γ
= β

αm − γm

α − γ
. (A.5)

With initial conditions x1(t) = x2(t) = 0 for t ≤ 0, we get for t > 0:(
x1(t)
x2(t)

)
=

t∫
0

∞∑
k=0

(t − τ)k

k!
Ak

(
0
ρ

)
δ(τ)dτ

=

t∫
0

∞∑
k=0

(t − τ)k

k!

(
αk Σk

0 γk

) (
0
ρ

)
δ(τ)dτ

=

t∫
0

∞∑
k=0

(t − τ)k

k!

(
ρΣk

ργk

)
δ(τ)dτ

= ρ
∞∑
k=0

tk

k!

(
Σk

γk

)
u(t).

(A.6)

Now,

x1(t) = ρ
∞∑
k=0

tk

k!
ΣkH(t) = ρβ

∞∑
k=0

tk

k!
αk − γk

α − γ
H(t) =

ρβ

α − γ
(eαt − eγt)H(t), (A.7)
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and

x2(t) = ρ
∞∑
k=0

tk

k!
γkH(t) = ρeγtH(t). (A.8)

The sum of the two becomes

y(t) = x1(t) + x2(t) =
ρβ

α − γ
eαtH(t) + ρ

(
1 −

β

α − γ

)
eγtH(t). (A.9)

A.4 Twitter API Details

This section contains tables listing the details of the Twitter API. Tables A.3 and
A.4 present the attributes of user and tweet objects respectively. Table A.5 lists
the domain classifications used by Twitter to annotate tweets. Table A.6 shows a
subset of available endpoints of the API, and their rate limits.

Table A.3: Attributes available for user objects from the Twitter API.

User field Explanation

id Unique account ID (appears as author_id in
Table A.4).

name Name of user.
username Twitter alias used in @-mentions. Modifiable by

the user.
created_at Creation date of user account (UTC).
description User provided biography, if available.
entities Information on hashtags, URLs, user mentions

in the user description.
location Location specified in user profile.
pinned_tweet_id Tweet ID of the users pinned tweet.
profile_image_url The URL to the user profile picture.
protected Indicates whether the tweets of the user are non-

public.
public_metrics Counts on the number of followers, following,

tweets, and list presence of the user.
url The URL specified in the user profile, if present.
verified Indicates whether Twitter has verified the iden-

tity of the user.
withheld Details on withheld content.
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Table A.4: Attributes available for tweets objects from the Twitter API.

Tweet field Explanation

id Unique 64-bit Tweet ID.
text UTF-8 text content of a tweet.
attachments Keys to media attachments, such as polls, or

images.
author_id Unique user ID of the tweet author.
context_annotations List of objects (domain-entity pairs) that

the tweet refers to. Generated by Twitters
named entity recognition algorithms. See Ta-
ble A.5.

conversation_id Tweet ID of the conversation root message.
created_at Time of posting in UTC.
entities Information on hashtags, URLs, mentions,

and other annotations in the tweet.
geo Optional geographical tag of tweet.
in_reply_to_user_id User ID of the author of the tweet to which

this tweet replies, if applicable.
lang Language of the tweet, if detected by Twitter.
non_public_metrics Hidden engagement metric, such as impres-

sion count, the times users clicked on the em-
bedded link or the author profile. Not acces-
sible to anyone except the author.

organic_metrics Engagement metrics of the tweet in an or-
ganic context (non-promotional). Not acces-
sible to anyone except the author.

possibly_sensitive Indicates whether the URL contained in the
tweet points to sensitive content. Does not
relate to the content of the tweet itself.

promoted_metrics Engagement metrics of the tweet when pre-
sented in the context of promotion. Not ac-
cessible to anyone except the author.

public_metrics Engagement metrics of the tweets: number
of retweets, replies, quotes, and likes.

referenced_tweets A (nested) list of referenced tweets. The en-
gagement type (reply or quote) is indicated
as well as the tweet ID.

reply_settings Indicated who may reply to the tweet, every-
one, mentioned users or followers only.

source Platform from which the tweet was posted,
e.g., Twitter Web App.

withheld Indicates, e.g., copyright infringement if
present.
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Table A.5: Table of domains used by Twitter to classify tweets. In addition
to these, there are at least two meta domains: “Entities [Entity Service]” (30),
and “Unified Twitter Taxonomy” (131).

3 - TV Shows 79 - Video Game Hardware
4 - TV Episodes 84 - Book Music Genre
6 - Sports Events 85 - Book Genre
10 - Person 86 - Movie
11 - Sport 87 - Movie Genre
12 - Sports Team 88 - Political Body
26 - Sports League 89 - Music Album
27- American Football Game 90 - Radio Station
28 - NFL Football Game 91 - Podcast
35 - Politicians 92 - Sports Personality
38 - Political Race 93 - Coach
39 - Basketball Game 94 - Journalist
40 - Sports Series 110 - Viral Accounts
45 - Brand Vertical 114 - Concert
46 - Brand Category 115 - Video Game Conference
47 - Brand 116 - Video Game Tournament
48 - Product 117 - Movie Festival
49 - Product Version 118 - Award Show
54 - Musician 119 - Holiday
55 - Music Genre 120 - Digital Creator
56 - Actor 122 - Fictional Character
58 - Entertainment Personality 123 - Ongoing News Story
60 - Athlete 130 - Multimedia Franchise
65 - Interests and Hobbies Vertical 132 - Song
66 - Interests and Hobbies Category 136 - Video Game Personality
67 - Interests and Hobbies 137 - eSports Team
68 - Hockey Game 138 - eSports Player
71 - Video Game 139 - Fan Community
78 - Video Game Publisher
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Table A.6: A selection of endpoints of the Twitter API v2.

Endpoint Use Rate limit, re-
quests/15 min

Recent search Retrieve conversation thread,
retweets, etc.

450

Full archive search Retrieve conversation thread,
retweets, etc.

300

Sampled stream Sample random tweets 50
Retweets lookup (by
user)

Get user ID of retweeters 75

Quote tweets lookup Retrieve quotes of a tweet 75
Follows lookup Extract follower/following

network topology
15

User lookup Obtain user profile from ID or
name

900

Tweet counts Get tweet volume of query
without it counting towards
tweet cap

300

Filtered stream Stream tweets in real time 50
Timeline Get tweets from a user’s time-

line
1500

A.5 Supplementary Graphs

In this section we show a few examples of models of type (2.1) and (2.3) fitted to
engagement data of different categories. Figures A.1-A.4 show conversations of
type (1), (2), (3) and (4) as defined in Section 2.4.1, respectively, where there is no
delay in the inital peak, and A.5-A.8 show the corresponding cases with a delay
in the inital peak.
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Figure A.1: Models fitted to conversations of type (1) with a peak during
the first hour. Dotted black line: first order system. Dashed red line: second
order system.
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Figure A.2: Models fitted to conversations of type (2) with a peak during
the first hour. Dotted black line: first order system. Dashed red line: second
order system.



A.5 Supplementary Graphs 47

0 20 40 60
0

20

40

60

80

100

0 20 40 60
0

5

10

15

20

25

30

0 50 100 150
0

20

40

60

80

100

0 25 50 75 100 125 150
0

5

10

15

20

25

30

35

40

0 20 40 60
0

100

200

300

400

500

600

700

0 20 40 60
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

time (h)

in
te

ra
ct

io
ns

Figure A.3: Models fitted to conversations of type (3) with a peak during
the first hour. Dotted black line: first order system. Dashed red line: second
order system.
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Figure A.4: Models fitted to conversations of type (4) with a peak during
the first hour. Dotted black line: first order system. Dashed red line: second
order system.
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Figure A.5: Models fitted to conversations of type (1) with a delayed initial
peak. Dotted black line: first order system. Dashed red line: second order
system.
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Figure A.6: Models fitted to conversations of type (2) with a delayed initial
peak. Dotted black line: first order system. Dashed red line: second order
system.
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Figure A.7: Models fitted to conversations of type (3) with a delayed initial
peak. Dotted black line: first order system. Dashed red line: second order
system.
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Figure A.8: Models fitted to conversations of type (4) with a delayed initial
peak. Dotted black line: first order system. Dashed red line: second order
system.
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