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Abstract. To effectively solve challenging staff rerostering problems,
we propose to enhance a large neighborhood search (LNS) with a ma-
chine learning guided destroy operator. This operator uses a conditional
generative model to identify variables that are promising to select and
combines this with the use of a special sampling strategy to make the
actual selection. Our model is based on a graph neural network (GNN)
and takes a problem-specific graph representation as input. Imitation
learning is applied to mimic a time-expensive approach that solves a
mixed-integer program (MIP) for finding an optimal destroy set in each
iteration. An additional GNN is employed to predict a suitable tempera-
ture for the destroy set sampling process. The repair operator is realized
by solving a MIP. Our learning LNS outperforms directly solving a MIP
with Gurobi and yields improvements compared to a well-performing
LNS with a manually designed destroy operator, also when generalizing
to schedules with various numbers of employees.

Keywords: Staff rerostering · Large neighborhood search · Imitation
Learning · Machine Learning.

1 Introduction

Large neighborhood search (LNS) [33,38] is a powerful meta-heuristics for solving
combinatorial optimization problems (COP). It has been successfully applied to
many complex problems, including vehicle routing [38], facility location [18],
and project scheduling [28]. A common LNS design is to define a neighborhood
search by a destroy and repair operator pair that is applied in each iteration [33].
The destroy operator partially destructs the incumbent solution by freeing a
subset of the decision variables while fixing the others to their current values.
A subproblem is hereby induced, and its space of feasible solutions forms a (large)
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Fig. 1: Principle of the LNS applying trained ML models in the destroy operation.

neighborhood. By exactly or heuristically solving this subproblem, the repair
operator tries to improve the previous solution by finding better assignments for
these “destroyed” variables. If a new solution with an improved objective value
is found, it becomes the new incumbent solution.

The destroy operator has a significant impact on the performance of an LNS.
Frequently, a simple random selection of the variables is applied, which, however
rarely gives the best results. Manually designing more effective destroy opera-
tors often is time-consuming and challenging. Recently, machine learning (ML)
based techniques have been suggested to perform this task [2, 14, 39, 40]. These
techniques reduce or even eliminate the need for a manual design and have the
potential to unveil connections that human experts might not see.

The staff rerostering problem (SRRP) is COP that deals with optimizing and
reconstructing work schedules affected by disruptions, e.g., unplanned absences
of employees or changes in demand for staff. Inspired by Sonnerat et al. [40], we
propose an ML-based LNS consisting of a learning-based destroy operator and
the use of a mixed-integer program (MIP) solver as repair method for heuristi-
cally solving challenging SRRP instances. Imitation learning is applied to train
a conditional generative model predicting weights that indicate which elements
of a solution are promising to destroy. Based on these weights, we propose a
SRRP-specific sampling strategy for actually choosing the elements to destroy.
Moreover, an additional ML model is used to obtain a suitable temperature pa-
rameter steering the sampling process. We employ graph neural networks (GNN)
utilizing a SRRP-specific graph structure that enables efficient learning and in-
ference for this highly constrained COP. Figure 1 shows our LNS scheme.

Experimental results show that our ML-based LNS outperforms both solving
the respective MIP with Gurobi3 and applying a well-performing LNS with a
meaningful manually constructed destroy operator. While our approach is de-
signed specifically for the SRRP, it may be generalized to other problems as well.
The components requiring a problem-specific design are the graph structure for
the GNN and the destroy set sampling process. Since these may be tailored to
the needs of a particular problem, we believe that our approach might perform
well on various types of COPs.

3 https://www.gurobi.com
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In Section 2, related work is reviewed and our approach is compared to
existing ML-based LNSs. The SRRP is introduced in Section 3 and the LNS
framework is discussed in Section 4. Section 5 provides the details of our ML-
based destroy operator. Experimental results are presented in Section 6 and
concluding comments are given in Section 7. This work is based on the first
author’s master thesis [31].

2 Related Work

The SRRP is a generalization of the nurse rerostering problem (NRRP). Moz
and Pato [25] were the first to formally define the NRRP, which deals with
adapting an existing work schedule given employee absences on specific days.
While the NRRP only considers employee-based disruptions, e.g., caused by
illness, the SRRP also considers changes in demand. Already the NRRP with
the single objective of minimizing the differences from the original schedule is
NP-hard [27]. The SRRP and the NRRP are both extensions of the classical
nurse rostering problem (NRP). For reviews of the NRP, we refer to Ernst et
al. [8] and Van den Bergh et al. [5]. The NRRP is not as well studied as the
NRP, but has been considered in several works [22,23,25–27,32,43].

Recently, many researchers have explored the application of ML in combina-
torial optimization. ML techniques to learn heuristics for COPs in an end-to-end
fashion [1,3,16,19,42] have been steadily improving. Nonetheless, they are usually
still outperformed by state-of-the-art classical optimization methods, especially
on problems with complex side constraints. For closing this performance gap, a
new paradigm often referred to as “learning to search” [39] has evolved. This
paradigm generally deals with the usage of ML-based heuristics within other
methods. For example, learnable heuristics were used for guiding beam search
[17, 30], deciding on how to branch in branch-and-bound (B&B) algorithms
[10,13,20,29], and learning destroy or repair operators in LNS [2,7, 14,39,41].

Song et al. [39] proposed an ML-based destroy operator for a decomposition-
based LNS solving general MIPs. In this LNS variant, one iteration consists
of splitting all variables into disjoint sets and destroying and repairing each
variable set one after the other. The authors use reinforcement learning (RL)
and imitation learning to train a model performing the variable splits. To obtain
data for the imitation learning, they randomly sample multiple decompositions
for each solution and take the best. In contrast to the fixed variable subsets in
the decomposition-based LNS, Addanki et al. [2] use RL to train a GNN for
iteratively selecting one variable at a time until a destroy set of predetermined
size is found. A current state in the optimization of a MIP is in [2] modeled by
a graph structure called Constraint-Variable Incidence Graph (CVIG). A CVIG
consists of one node for each variable and one node for each constraint, and edges
represent the occurrence of variables in constraints. Sonnerat et al. [40] avoid the
high overhead of one neural network (NN) inference step for each selection of a
variable by training a conditional generative model with imitation learning. This
model predicts a distribution over all nodes, which they use to sample a destroy
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set. The authors also employ a CVIG as input to their GNN. To generate training
data, they use a local-branching [9] based mixed-integer programming approach
that computes optimal destroy sets. All of the above approaches [2, 39, 40] rely
on a MIP solver for repairing solutions.

We build on the approach of Sonnerat et al. [40] but modify it in the following
ways. Since CVIGs are huge for the highly constrained SRRPs, they dramati-
cally slow down training and inference already for instances of moderate sizes.
Instead, we propose to use a more compact problem-specific graph that effi-
ciently represents the choices to be made by the destroy operator, together with
a generalized sampling strategy to choose the destroy set. Moreover, we employ
an additional NN predicting suitable values of the temperature parameters for
the destroy set sampling process.

3 Staff Rerostering Problem

The SRRP is defined on a set of employees N , a set of days D, and a set of
shifts S, which we assume to be an early shift (7 am to 3 pm), the day shift
(3 pm to 11 pm), the night shift (11 pm to 7 am), and the free shift modeling
off-days. We treat the SRRP as an assignment problem, where each employee
n ∈ N shall be assigned to a shift s ∈ S on each day d ∈ D. To represent a
solution to an SRRP instance, we introduce decision variables xnds ∈ {0, 1},
where xnds = 1 if and only if employee n ∈ N is scheduled to work shift s ∈ S
on day d ∈ D. A solution is feasible if it satisfies to following hard constraints:

– Each employee must be assigned to exactly one working shift per day or the
free shift.

– An employee has to rest at least 11 hours after each working shift.
– An employee must not be assigned to less than a minimum or more than a

maximum number of working shifts in the scheduling period.
– An employee must not be assigned to less than a minimum or more than a

maximum number of consecutive working shifts.
– An employee must not have less than a minimum or more than a maximum

number of assignments to a shift type in the scheduling period.
– An employee must not have less than a minimum or more than a maximum

number of consecutive assignments to a shift type.
– Employees cannot be assigned to a working shift if they are absent for the

time of this shift on this day.

Since the SRRP deals with disruptions to an existing schedule, such as absences
of employees and changes in the demand for employees, the goal of the SRRP is
to comply with the following soft constraints:

– The staffing requirements per day and shift should be met as well as possible.
– The original schedule should be modified as little as possible.

For a detailed formal definition of the SRRP, we refer to [31].
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4 Large Neighborhood Search

We now define the repair operator used in each LNS applied in this work and
propose a reasonable manually crafted destroy operator that serves as a baseline
for comparison in our computational experiments. The construction heuristic
(inspired by [35]) used to create an initial solution for the LNS simply takes
the provided original schedule and, when an employee is absent on a working
shift, changes the assignments to a free shift. The obtained initial solution will
therefore typically be infeasible and this has to be considered in the LNS design.

4.1 Random Destroy Operator

Due to the constraints regulating the consecutive number of working shifts and
the consecutive assignments per shift type, the repair operator has a greater
chance to produce improvements if variables associated with consecutive days
are unassigned in the destroy operator. Therefore, our baseline destroy operator
randomly selects an employee n ∈ N and a day d ∈ D forming an employee-day
pair (n, d). In addition, a period P = {max(1, d−z2), . . . , d, . . . ,min(|D|, d+z2)}
is defined containing the days ranging from z2 days before d to z2 days after d,
respecting that one is the index of the first and |D| the index of the last day.
Then, for the selected employee n and day d all variables xnd′s for d′ ∈ P are
destroyed. This process is repeated z1 times for each application of the destroy
operator; the selection is done without replacement. Both, z1 ∈ N0 and z2 ∈ N0

are fixed strategy parameters. The selection is done without replacement.

4.2 Repair Operator

The repair operator is to apply the Gurobi solver to a MIP representing an SRRP
sub-instance induced by the destroy operator. Thus, a given partial solution is
repaired by searching for best values for the unassigned variables while the other
variables are considered fixed to their current values. As mentioned previously,
the construction heuristic may return infeasible solutions. Moreover, the destroy
operator might not select all the relevant variables required to turn the solution
feasible with one repair operator application. As a consequence, we have to deal
with infeasible solutions during the repair operation and the LNS in general.
Therefore, an additional MIP is used, where a majority of the hard constraints
are transformed into soft constraints. The constraints that are not relaxed are
those that ensure that each employee is assigned to exactly one shift per day
and that a working shift cannot be assigned to an absent employee. As a result,
a solution to this relaxed model can violate the other hard constraints at the
cost of additional penalization. The penalization is designed in such a way that
infeasible solutions always have a worse objective values than feasible solutions.
We refer to [31] for details on the MIP-formulations.

The repair operator uses the MIP with relaxed hard constraints as long as
the incumbent solution before the destroy operation was infeasible. When the
incumbent solution is feasible, the MIP with the regular hard constraints is
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employed. Thus, the two separate MIPs in the repair operator put the focus
effectively first on making an infeasible solution feasible and only then to further
improve the objective value with respect to the remaining soft constraints.

5 Learning-Based Destroy Operator

The concept of our learning-based destroy operator is to utilize a NN that,
given an SRRP instance and a current solution represented by features, returns
weights to select promising employee-day pairs (n, d) ∈ N × D for which the
respective decision variables xnds, s ∈ S, are unassigned, i.e., “destroyed”. Let
πθ represents the destroy set model, where θ is the learnable parameters. The
model takes a featurized version of a state st at step t of an LNS run, consisting
of an SRRP instance I and its current solution x = (xnds)n∈N, d∈D, s∈S , as an
input. The model πθ outputs a value µnd for each (n, d) ∈ N × D indicating
the probability that this employee-day pair is in an optimal destroy set, i.e., a
destroy set that when realized yields, after an optimal repair, a solution with a
minimum objective value. Note that we consider the size of the destroy set to be
fixed to z1 · (2z2 + 1) employee-day pairs, just as in the random destroy operator
from Section 4.1. More specifically, πθ consists of two independently trained NNs:
one handling states containing infeasible solutions and one dealing with states
containing feasible solutions. This distinction is made as we observed that the
behavior to learn can be quite different for feasible and infeasible solutions. Also,
more training data is created for feasible solutions since the LNS spends more
time in the feasible space. By considering two NNs, problems arising from the
imbalance in training data are thus avoided. The only difference between the
models in πθ is the data used to train them. Hence, to improve readability, we
will only refer to πθ indicating the respective NN throughout this whole section.

Another important aspect of our learning-based destroy operator is the tem-
perature τ which is a parameter regulating the influence of πθ’s output in the
destroy set sampling process. To choose a meaningful τ dynamically in depen-
dence of the progress of the LNS, we use a second model πT

φ, which receives a
state st and the output of πθ as inputs and predicts a temperature τ for the
current situation. Again, πT

φ consists of two independently trained NNs, one for
infeasible and one for feasible solutions, and for the sake of readability, we will
only refer to πT

φ.
The next step in our learning-based destroy operator is the destroy set sam-

pling process. Here, we use πθ’s output and the predicted temperature τ to
actually select the employee-day pairs to be unassigned in the current solution.

5.1 Markov Decision Process Formulation

A Markov decision process (MDP) [15] is represented by a 4-tuple consisting of
the set of states ST , the set of actions A, a transition function T , and a reward
function. In our setting, we define a state st ∈ ST at step t of an episode to consist
of an SRRP instance I and its current solution xt. An action at ∈ {0, 1}|N×D| at
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step t represents the selection of employee-day pairs to be destroyed. A positive
assignment atnd = 1 for an employee-day pair (n, d) indicates that it is chosen
for the destroy set and, for all s ∈ S, the variables xtnds are unassigned in
the current solution. Given a state st and an action at, the transition function
T : ST × A → ST determines the next state st+1 = T (st, at). Here, T (st, at)
is reached by destroying all variables associated with at in solution xt and then
repairing the partial solution with the repair operator. We do not define a reward
function since it does not play a role in our method.

5.2 Destroy Set Prediction as Conditional Generative Modeling

Inspired by Nair et al. [29], we propose a conditional generative model represent-
ing the distribution of actions (i.e., destroy sets) in a current state. For step t in
an LNS run, consider a state st ∈ ST , an action at ∈ A, and the transition func-
tion T . Moreover, let c : ST → R represent a function returning the objective
value of a current solution xt of state st ∈ ST . Define the energy function

E(at; st) =

{
c(T (st, at)) if c(T (st, at)) < c(st),

∞ otherwise,
(1)

over the actions at of state st, which as in Nair et al. [29] defines the conditional
distribution

π(at|st) =
e−E(at;st)∑

(a′)t e
−E((a′)t;st)

. (2)

Our learning efforts aim to approximate the conditional distribution in (2) utiliz-
ing a model πθ(a

t|st) parameterized by θ. By using the unscaled energy function
as presented in (1), destroy sets that leads to solutions with better (lower) ob-
jective values after being repaired get a higher probability. Furthermore, destroy
sets not leading to improvements in objective value get zero probability. How-
ever, since our goal is to generate the best action in each state, we re-scale the
energy function such that we assign probability π((a∗)t|st) = 1 to an optimal
action (a∗)t and a probability of zero to each other action in state st. Son-
nerat et al. [40] adapted the conditional generative modeling design from Nair
et al. [29] in the same way. As a consequence, we only have to consider training
data containing optimal actions.

5.3 Sampling Destroy Sets

In Section 4.1, we introduced the baseline random destroy operator, which selects
z1 employee-day pairs (n, d) ∈ N ×D and destroys all the variables associated
with employee-day pairs within the range of z2 days before to z2 days after d.
Remember that z1 ∈ N0 and z2 ∈ N0 are strategy parameters. Moreover, we de-
scribed that selecting employee-day pairs without this range does not give good
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results since the SRRP contains constraints regarding consecutive working as-
signments. Although in our learning-based destroy operator, the NN πθ outputs
a value for each employee-day pair describing its probability to be in the destroy
set, the same issues remain. Therefore, we propose a new destroy set sampling
strategy, where blocks of consecutive employee-day pairs are selected. Each pair
(n, d) ∈ N ×D is assigned an aggregated weight

wnd =

min(|D|, d+z2)∑
d′=max(1, d−z2)

(πθ(a
t
nd′ = 1 | st) + ε)

1
τ · I[(n, d′) ∈ U ], (3)

where τ a temperature parameter to strengthen or weaken the influence of the
NN, ε > 0 is an offset to give every pair a non-zero weight, and U is the destroy
set selected so far. These weights can be interpreted as the sum of all NN outputs
for employee n in a window of 2z2 + 1 consecutive days around day d, specifying
the importance to add this range of employee-day pairs to the destroy set. We
randomly select an employee-day pair (n, d) proportional to these weights wnd,
add pairs (n, d′) for all d′ ∈ {max(1, d − z2), . . . , d, . . . ,min(|D|, d + z2)} to U ,
and repeat this process z1 times. Eventually, for each (n, d) ∈ U , we unassign
variables xtnd′s for each shift s ∈ S in the current solution.

5.4 Neural Networks

A GNN [12, 36] is a NN architecture taking a graph as an input. It is typically
independent of a specific graph size and able to represent underlying structural
properties of a given graph by mapping it to a graph embedding expressed as
vectors of values on the graph’s nodes. We propose the following custom graph
representation for the SRRP, which is not a reformulation of the SRRP as a
graph problem but reflects a knowledge graph containing information for choos-
ing suitable employee-day pairs. We define this graph as G = (V,E,X), where
V is the set of nodes, E the set of edges, and X ∈ R|V |×p a node feature matrix
assigning each node v ∈ V a p-dimensional feature vector Xv = (Xv,1 . . . Xv,p).

The set of nodes V = Vemp ∪ Vassign ∪ Vday is composed of three different
types which are employee Vemp = {n | n ∈ N}, assignment Vassign = {(n, d) | n ∈
N, d ∈ D}, and day Vday = {d | d ∈ D} nodes. The assignment nodes represent
the employee-day pairs. There are edges between an assignment node and its as-
sociated employee and day nodes. Moreover, since the days represent a sequence,
we add edges between consecutive days.

There are thus O(|N | · |D|) nodes and edges, which is substantially less than
in a CVIG for the underlying MIP (e.g., as used in [2]). A reasonably fast training
and inference can therefore be expected. The interpretation of this representation
is that an employee is involved in an assignment and this assignment takes place
on a specific day in the planning horizon. A state st ∈ ST , consisting of an
SRRP instance and its current solution xt, holds all the required information to
create such a graph structure. If we later use a state directly as an input to our
NN, we implicitly assume that it is first transformed into such a graph.
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Fig. 2: Simplified representation of the NN architecture for the destroy set model πθ;
figure inspired by [6].

Naturally, we have different kinds of features with respect to employees, days,
and assignments. For example, employee node features include the number of as-
signments to each shift s ∈ S of an employee, day node features include the total
number of assignments to each shift s ∈ S on a given day, and assignment node
features include the currently and originally assigned shift for an employee-day
pair. For the complete list of the features used, we refer to [31]. To provide all
these features to the GNN, one possibility would be to associate the individual
features with the respective types of nodes in the graph representation and to ap-
ply the relational graph convolutional network (R-GCN) [37] for handling such
an inhomogeneous graph with different feature types on different node types.
However, similar to Chalumeau et al. [6], we use a simpler approach enabling
us to employ more general GNNs for homogeneous graphs. Let femp

1 , . . . , femp
qemp be

the employee features, fassign1 , . . . , fassign
qassign

the assignment features, and fday1 , . . . , fday
qday

the day node features, where qemp, qassign, qday are the number of employee, as-
signment, and day node features, respectively. Then each feature vector xv of a
node v, independent of the node type, is of the form

(femp
1 , . . . , femp

qemp , f
assign
1 , . . . , fassign

qassign
, fday1 , . . . , fday

qday
, fenc1 , fenc2 , fenc3 ) (4)

where fenc1 , fenc2 , fenc3 ∈ {0, 1} is the mentioned one-hot encoding indicating whether
the node is an employee, assignment, or day node, respectively. For example, if
a node is an employee node, its feature vector contains the employee’s values
for femp

1 , . . . , femp
qemp , zeros for the assignment and day features, and the associated

one-hot encoding.

Architectures. So far, we have established the underlying graph structure.
Figure 2 shows a simplified representation of the NN architecture of πθ. First,
we employ a GNN similar to the neural network for graphs from [24]. Our GNN
updates the feature representation H(l) in a layer l by applying the update
function

H(l) = σ
(
H(l−1)W

(l)
1 +AH(l−1)W

(l)
2 + b(l)

)
, (5)
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where H(0) = X, A is the adjacency matrix, σ is a non-linear activation function,
b(l) ∈ Rq is the learnable bias, and W

(l)
1 ,W

(l)
2 ∈ Rm×q denote the weight matrices

for layer l, where m, q ∈ N0 are the input and output feature dimensions, respec-
tively. Applying the GNN to an input yields the node embedding H(L) of the
graph, where H(L)

v is a vector for each node v ∈ V . These vectors from the GNN
are further processed by a traditional multi-layer perceptron (MLP) utilizing a
sigmoid activation in the last layer to yield a value in [0,1] for each node. We
only require the final output for the assignment nodes.

To make the connection to our conditional generative modeling approach
and the conditional distribution π from Eq. (2) in Section 5.2, let πθ be our
previously presented NN, where θ are all the learnable parameters, including
the GNN and MLP weights. Remember that an action atnd at step t indicates
whether an employee-day pair (n, d) ∈ N × D is contained in the destroy set
(atnd = 1) or not (atnd = 0). Also, remember that the sets Vassign and N × D
are isomorphic, meaning that there is a one-to-one correspondence between each
assignment node and employee day pair (n, d) = v ∈ Vassign. As Nair et al. [29]
and Sonnerat et al. [40], we define πθ to be a conditional-independent model of
the form

πθ(a
t | st) =

∏
(n,d)∈Vassign

πθ(a
t
nd | st), (6)

which, given a state st, predicts the probability of an employee-day pair (n, d) be-
ing contained in an optimal destroy set independently of the other employee-day
pairs. The probability πθ(a

t
nd | st) is a Bernoulli distribution, and we compute

its success probability µnd as

tnd = MLP(H
(L)
(n,d); θ), (7)

µnd = πθ(a
t
nd = 1 | st) =

1

1 + e−tnd
. (8)

As pointed out by Nair et al. [29], it is not possible to accurately model a multi-
modal distribution using the assumption of conditional independence. Despite
that, they reported strong empirical results. Mathematically more accurate al-
ternatives are autoregressive models [4] or inferring one employee-day pair at a
time by repeatedly evaluating the NN. However, this increased accuracy comes at
the cost of substantially slower inference times [29,40], which are not reasonable
in our setting.

The architecture of the temperature NN πTφ is similar to the architecture of
the destroy set model πθ but there are some key differences. The temperature
model πT

φ shall predict how strongly πθ shall influence the destroy set sampling
process in a specific state st. Therefore, we add the output of πθ as an additional
feature to the node features of the graph representation. More specifically, we ap-
pend the common node feature vector with µnd = πθ(a

t
nd = 1 | st) for assignment

nodes (n, d) = v ∈ Vassign and zero for every other node v ∈ Vemp∪Vday. Another
difference is that a read-out layer is applied on the final node representations
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H
T,(L)
v . This read-out layer aggregates the information over all nodes into a sin-

gle vector by applying
∑
v∈V H

T,(L)
v . Finally, we employ an MLP with a softmax

function in the last layer on this vector to return a probability for each temper-
ature in a predefined set T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 5} to
be the best selection. This classification-based approach turned out to be more
effective in practice than a regression model.

5.5 Training

The training set Dtrain = {(s1:Tj(j) , a
1:Tj
(j) )}Mj=1 for the destroy set model πθ contains

the data from M sampled trajectories of an expert strategy. For each such tra-
jectory j ∈ {1, . . . ,M} consisting of Tj steps, let {st(j)}

Tj
t=1 be the states and

{at(j)}
Tj
t=1 be the corresponding expert actions in the form of optimal destroy

sets. We learn the weights θ of our model πθ by minimizing the loss function

L(θ) = −
M∑
j=1

Tj∑
t=1

log πθ(a
t
(j) | s

t
(j)), (9)

which is the negative log likelihood of the expert actions.
The training set DT

train = {(s1:Tj(j) , o
1:Tj
(j) , y

1:Tj
(j) )}M

T

j=1 for the temperature model
πTφ contains the outputs {ot(j)}

Tj
t=1 of πθ in the respective states {st(j)}

Tj
t=1 for each

sampled trajectory j = 1, . . . ,M T. The associated labels {yt(j)}
Tj
t=1 consist of a one-

hot encoding of the temperature found to be best by the expert for each time
step t of a trajectory j. Eventually, we optimize the weights φ by minimizing the
cross-entropy loss

LT(φ) = −
MT∑
j=1

Tj∑
t=1

yt(j) log πTφ(st(j), o
t
(j)). (10)

We perform each training in mini-batches of size 32. In addition to Dtrain and
DT

train, we also create validation sets of the same form as the respective training
sets containing about a fourth of the total generated trajectories. This data is
hold out from Dtrain and DT

train to evaluate the progress on unseen data during
training. Furthermore, we apply early stopping [11, p. 246] to avoid overfitting.
As optimizer, we use ADAM [21] with a learning rate of 0.001 and an exponential
decay rate of 0.9 for the first and 0.999 for the second momentum.

5.6 Training Data Generation

Our data generation process is inspired by the expert policy from Sonnerat
et al. [40], which uses local branching [9] to create optimal destroy sets in a
given state. In local branching, a constraint is added to the MIP that allows
at most a certain number of decision variables to change compared to a given
incumbent solution. In the following, we refer to the MIP extended with such
a local branching constraints as extended or local branching-based MIP. If this
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extended MIP is solved to optimality in a current state st, an optimal destroy
set can be derived by comparing the old solution xt with the new solution xt+1

and collecting the variables with changed values. Since our destroy sets do not
directly consist of decision variables but employee-day pairs, the local branching
constraint is in our case∑

(n,d,s)∈N×D×S: xtnds=0

xt+1
nds +

∑
(n,d,s)∈N×D×S: xtnds=1

(1− xt+1
nds) ≤ 2η, (11)

which ensures that at most η employee-day pairs change. Note that one employee-
day pair change always implies the change of two xnds variables, since each
employee must be assigned to exactly one shift, including the free shift, on each
day. In the following, we refer to iteratively solving the local branching-based
MIP and extracting the associated destroy set as our expert policy π∗.

To generate training samples for the destroy set model πθ, we apply the
Dataset Aggregation (DAGGER) algorithm which is an extension of classical
behavior cloning [34]. In the first iteration, the expert policy is used to sample
trajectories for training instances. Sampling a trajectory using a policy π̂ means
that in each state st at step t of an episode (LNS run), we store state st and
the expert action π∗(st) as a tuple in a dataset D, use π̂ to create a destroy set
at, and move to the next state st+1 = T (st, at). Then, a model π̂1 is trained
on the expert actions for all the encountered states in D, to mimic the expert
policy. In the second iteration, we use π̂1 to sample more trajectories and add
more data to D. For this learned policy π̂1, we apply the destroy set sampling
strategy from Section 5.3 with temperature τ = 1 to generate a destroy set at in
a current state st. This process is in general iterated a certain number of times.
Eventually, D is the final dataset which is used to train the destroy set model πθ.

The idea behind this algorithm is that trained models may encounter very
different states than the expert strategy and it is also important to train on
those. Preliminary results showed in our case that DAGGER iterations slightly
improve the result, although we ultimately decided to only perform two iterations
as our expert policy is very time-consuming due to the iterative solving of the
extended MIP. To further speed up the data generation, we took the following
additional measures. First, we terminate the solving of the local branching-based
MIP after a defined time limit, yielding a destroy set that is not guaranteed to
be optimal. Second, we execute the trajectory sampling for each SRRP training
instance in parallel. Lastly, we only create a training sample for every third
visited state when sampling trajectories with a trained model if the solution is
feasible. See [31] for more details on these refinements.

Concerning the temperature model πTφ, that steer the diversity of the ran-
domized employee-day pair selection process by choosing a value of τ . A lower
value increases the impact of πθ, while a higher one decreases it. We may also
interpret πTφ as an evaluator of πθ. If the output of πθ for a specific state st

is highly promising/reliable, a lower temperature should be predicted for τ to
increase the influence of πθ. Vice versa, higher temperatures should be predicted
if the current output of πθ is not so likely to yield an improvement of the incum-
bent solution. To collect training data for πTφ, we produce multiple trajectories
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using πθ, where each temperature τ ∈ T is applied to sample three destroy sets
in a state st at step t of an episode. Let τ∗t be the temperature giving the best
destroy sets on average in a state st. The best average performance is determined
as follows: If the solution has been improved, we consider the objective value of
the newly created solution, otherwise the objective value of the initially con-
structed solution is used. At each step t, we add st, πθ(s

t), and τ∗t to a dataset
DT. Then, we move to the next state T (st, atτ∗t ) using an action sampled with τ∗t
and repeat this process until the termination of the LNS.

6 Experimental Evaluation

All algorithms were implemented in Julia4 1.6.1 and all MIPs were solved by
Gurobi 9.1.0. The experiments were executed in single-threaded mode on a ma-
chine with an Intel Xeon E5–2640 processor with 2.40 GHz and a memory limit
of 16 GB. Since it is essential to find high-quality solutions fast in practice, we
worked with a time limit of 900 seconds to evaluate our optimization algorithms.
We use %-gap, an optimality gap in percent, to evaluate computational perfor-
mance. For an objective value o, the value of %-gap is 100 · (o− lb)/o, where lb is
a lower bound for the optimal value obtained by solving the original MIP with
Gurobi for three hours.

A time limit of five seconds is applied for solving the sub-MIP in a call of
the repair operator of each LNS. For both the random and the learning-based
destroy operator, the values z1 = 150 and z2 = 2 are used since they gave a good
performance in preliminary experiments with the random destroy operator.

As baselines for our computational comparisons, we solved the MIP with
Gurobi and used the LNS with the random destroy operator. In the following
figures and tables, we will refer to these approaches as ILP and LNS RND,
respectively, while LNS NN denotes the ML-based LNS. As the training data
generation is time-consuming, we trained the NNs of LNS NN on data generated
from a random single schedule with |N | = 110 employees and various sets of
disruptions only. In total, we used 200 and 150 random sets of disruptions for this
schedule to generate training trajectories for the destroy set and the temperature
model, respectively. To accelerate the training data generation, a time limit of
30 minutes and η = 375 was used for solving the extended MIP.

In the following experiment, we aim to show the strong performance of
LNS NN and its ability to generalize to different schedules with different num-
bers of employees despite the rather restricted training data generation. For
testing, we randomly created four schedules with 120, 130, 140, and 150 employ-
ees. For each of these schedules, 30 random sets of disruptions are sampled such
that there is a total of 120 SRRP instances. The time horizon is four weeks, i.e.,
|D| = 28. The instance generation and training process are detailed in [31].

Table 1 presents the results including average %-gaps and respective standard
deviations, average objective values, average numbers of performed iterations,
grouped according to the instance size |N |. It is clear that LNS NN performs

4 https://julialang.org
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Table 1: Average results of the trained LNS NN, the LNS RND, and the ILP. For each
number of employees |N |, there are 30 SRRP instances. Objective values are divided
by 103 for improved readability.

LNS NN LNS RND ILP

|N | %-gap obj. val. iter. %-gap obj. val. iter. %-gap obj. val.

120 3.42± 0.53 926 118.93 4.36± 0.57 935 127.27 34.18± 13.74 1, 418
130 4.45± 0.40 1,079 113.30 5.22± 0.51 1, 088 128.10 28.51± 13.48 1, 495
140 8.04± 0.60 1,314 99.77 9.20± 0.58 1, 331 105.43 31.31± 11.79 1, 817
150 5.74± 0.41 1,427 95.57 6.87± 0.46 1, 446 100.97 26.71± 11.30 1, 880
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Fig. 4: (a) Boxplots for the %-gaps finally obtained by LNS RND and LNS NN in
dependence of the numbers of employees |N |. (b) Solution quality development over
time, aggregated over all runs/instances; note that %-gaps are here presented in log-
scale.

better than LNS RND for each of these instance classes even if it is trained only
on the main schedule with |N | = 110. On average, LNS NN improves the gap
of LNS RND by about one percent for each instance class. In total, LNS RND
only reached better solutions than LNS NN for two of the 120 instances from
this experiment. LNS NN performs less iterations than LNS RND. This decrease
in iterations primarily comes from the fact that LNS NN finds more meaningful
destroy sets requiring more time to be repaired. These outcomes are even more
substantial considering that already LNS RND is a well-performing approach,
which clearly surpassing the pure MIP solving. Considering optimality gap on
average, LNS NN outperforms ILP by factors between 3.89 and 9.99 across all
instance groups.

Figure 3a visualizes the dominance of LNS NN over LNS RND and the signif-
icance of the differences with boxplots. Finally, Figure 3b shows how the solution
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quality develops over time for LNS NN and LNS RND, aggregated over all runs
for all benchmark instances. Most important to note is that in the beginning
of the search, LNCS NN finds improving solutions much faster than LNS RND
does. While LNS NN reaches an optimality gap of less than 10% after 271 sec-
onds on average, it takes LNS RND 420 seconds. Also, LNS NN finds feasible
solutions after approximately 190 seconds and LNS RND only after 310 seconds
on average. Last but not least, remarkable are also the small standard deviations
shown by the shaded areas, indicating the robustness of both LNS variants.

7 Conclusion and Future Work

We proposed a learning LNS for solving the SRRP, where the destroy operator is
guided by a ML model trained upfront on representative problem instances with
an imitation learning approach. More specifically, a conditional generative model
predicts weights for all employee-day pairs, which are used in a randomized sam-
pling strategy based on consecutive day selection to derive high-quality destroy
sets. We use a custom graph structure modeling a current solution to the SRRP
as an input to a GNN. Other so far proposed learning LNS approaches employ
CVIGs, resulting in prohibitively huge graphs for problems like the SRRP. In
addition to the main NN predicting the employee-day pair weights, a second NN
predicts a temperature value that controls the diversity of the destroy set sam-
pling process. Experimental results clearly indicate the benefits of the learning
LNS over a reasonably designed and already well working classical LNS in terms
of solution quality and speed of solution improvement. Noteworthy also is the
excellent generalization capability to unseen and even larger SRRP instances.
The proposed learning LNS provides a scheme that may also be promising for
other classes of highly constrained COPs.

In future work, training and testing of the approach on more diverse and even
larger SRRP instances would be interesting. Investigating different variants of
GNNs may lead to further improvements. Finally, finding ways to apply RL to
optimize a performance metric directly instead of relying on the time-expensive
imitation learning is a promising research direction.
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