
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2022

Labyrinth navigation using
reinforcement learning with
a high fidelity simulation
environment

Olle Eriksson & Axel Malmberg

Master of Science Thesis in Electrical Engineering

Labyrinth navigation using reinforcement learning with a high fidelity
simulation environment

Olle Eriksson & Axel Malmberg

LiTH-ISY-EX--22/5492--SE

Supervisor: Daniel Arnström
isy, Linköpings universitet

Rikard Hagman
Combine

Examiner: Farnaz Adib Yaghmaie
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2022 Olle Eriksson & Axel Malmberg

Abstract

This is a master thesis on the subject of navigation and control using reinforce-
ment learning, more specifically discrete Q-learning. The Q-learning algorithm
is used to develop a steer policy from training inside of a simulation environment.
The problem is to navigate a steel ball through a maze made from walls and holes.
This thesis is the third thesis made revolving around this problem which allows
for performance comparison with more classical control algorithms. The most
successful of which is the gain scheduled LQR used to follow a splined path. The
reinforcement learning derived steer policy managed at best 68 % success rate
when navigating the ball from start to finish. Key features that had large impact
on the policy performance when implemented in the simulation environment
were response time of the physical servos and uncertainty added to the modelled
forces. Compared to the performance of the LQR, which managed 46 % success
rate, the reinforcement learning derived policy performs well. But with high fluc-
tuation in performance policy to policy the control method is not a consistent
solution to the problem. Future work is needed to perfect the algorithm and the
resulting policy. A few interesting issues to investigate could be other formula-
tions of disturbance implementation and training online on the physical system.
Training online could allow for fine tuning of the simulation derived policy and
learning how to compensate for disturbances that are difficult to model, such as
bumps and warping in the labyrinth surface.

iii

Acknowledgments

Firstly, we would like to thank Rikard Hagman. This thesis would not have been
possible without his help as he supplied us with both the hardware and the idea
that is the basis for this report.

Secondly, we must thank Daniel Arnström who, dispite joining in at the last leg
of the race, contributed invaluable knowledge and assistance to help us drive this
project home.

Lastly, but in no way least, Farnaz Adib Yaghmaie. You contributed your time
and your knowledge to get us started and took on the role of both examinator
and advisor which made us feel supported even in a state of uncertainty. So
thank you, and congratulations!

Linköping, May 2022
Olle Eriksson & Axel Malmberg

v

Contents

Notation ix

1 Introduction 1
1.1 Goal . 1
1.2 Problem formulation . 1
1.3 Related research . 2

2 System Description and Model 5
2.1 System Model . 6

2.1.1 Servo modelling . 9

3 Theoretical background 13
3.1 Q-learning . 13

3.1.1 Experience Replay Q-learning 17
3.2 Discrete Kalman filter . 18
3.3 Linear Quadratic Regulator . 19

3.3.1 Gain scheduled LQR . 20

4 Implementation 21
4.1 Simulation software . 21

4.1.1 Disturbance . 21
4.1.2 The map . 22
4.1.3 The agent . 23
4.1.4 Reinforcement learning . 26
4.1.5 The policy smoothing . 29

4.2 Software adjustments for policy deployment on the physical system 32
4.2.1 Ball tracking . 33
4.2.2 Policy Mapping Controller 33
4.2.3 Servo . 34

5 Results 35
5.1 Phase one . 35

5.1.1 Analysis of the speed discretization 37

vii

viii Contents

5.1.2 Analysis of the action discretization 38
5.1.3 Analysis of disturbance . 39
5.1.4 Analysis of servo rise speed 40
5.1.5 Analysis of time between actions 40
5.1.6 Analysis of the bounce coefficient 41

5.2 Phase two . 41
5.2.1 Episode step limit . 42
5.2.2 Rewards . 42
5.2.3 Primary learning rate . 45
5.2.4 Secondary learning rate . 48
5.2.5 Learning operations limit 48

5.3 Experience replay evaluation . 49
5.4 The best performing policy achieved 50
5.5 Gain Scheduling LQR evaluation 53

6 Challenges and future work 55

7 Conclusion 57

Bibliography 59

Notation

Symbols

Notation Clarification

cb Bounce coefficient
fr Friction coefficient
g Gravity acceleration
Jb Inertia of the ball
mb Mass of the ball
rb Radius of the ball

Abbreviations

Abbreviation Clarification

HW Hardware
LQR Linear-Quadratic Regulator
MDP Markov Decision Process
ML Machine Learning
PID Proportional Integral Derivative (Controller)

PWM Pulse Width Modulated
ROS Robot Operating System
RPi Raspberry Pi
RL Reinforcement learning

ix

1
Introduction

This is a thesis on the subject of reinforcement learning (RL). The technique will
be applied to the classic children’s game the BRIO labyrinth [2] in an effort to
automatically solve the challenge of navigating a steel ball through a maze made
out of walls and holes. This work is a continuation of the thesis [4] where an LQR
and a splined path from predetermined checkpoints were used to solve the same
problem. The game is multi variable and irregularities throughout the maze are
challenging for any control algorithm.

1.1 Goal

The main goal of this thesis work is to develop a steer policy using RL, specifi-
cally Q-learning [9], to reliably navigate the ball from the start to the goal with-
out falling into holes. For the type of Q-learning that is used in this report a
simulation environment for the algorithm to train in will be required. Further-
more this thesis investigates what challenges arise when bringing the steer policy
from simulation to reality and explore some tactics to bridge the gap between the
simulation model and the true behaviour of the system. After implementation,
the performance of the RL derived steer policy will be compared with the results
presented in [4].

1.2 Problem formulation

The goal of this thesis can be broken down into the following set of problem
formulations that will be answered in this report:

1. What challenges arise when using a steer policy derived from simulation?

1

2 1 Introduction

Whenever a simulation is designed it will be highly dependent on the model of
the system. Modelling errors may be exploited by the learner, which leads to poor
decisions when controlling the physical system.

2. Is it enough to add uncertainty to the motion model in order to bridge
the gap between the simulation environment and the physical system? If un-
certainty is added in simulation to mimic model errors and the general unpre-
dictability of the physical system, the machine learning derived policy might per-
form better on the physical system.

3. What performance benefits, if any, can be observed using the Q-learning
method compared to a gain scheduled LQR? The approach of using RL to gen-
erate a steer policy will be compared with the path planner and the LQR method
used in [4]. It is relevant to make this comparison to find out if machine learning
is a viable solution for the BRIO labyrinth game.

1.3 Related research

RL and ML are in general fields that have gotten a lot of attention during the last
decades and they have been applied to a multitude of problems, classic games for
example. An inspiration to this thesis was a study of how RL can be applied to
solve the classic atari games [3]. In the study a deep convolutional neural network
was used to find a good policy for 50 classic atari 2600 games. The neural network
had access to a 60 Hz video stream of the game screen, the score and the controls
to operate the game. A problem that is brought up in this study is the size of the
network as a large network takes more time to train than a smaller network. In
[3] the amount of training necessary to achieve a well trained policy is decreased
by the use of experience replay, further explained in Section 3.1.1, in combination
with a deep convolutional network. The study presents good results in several of
the atari games after just 200 in game sessions. Even so, training a network for
200 sessions can be daunting if it is cumbersome to reset the game or if a failure
results in danger or loss, economic or other.

This thesis will explore an alternative way of getting robust and efficient training,
by development of a simulation environment in which the agent can do all or
at least most of the training. A simulation environment that contains a model
of the game or system has some clear advantages. It allows for faster time step-
ping than what is possible to achieve live which leads to more training sessions
in same amount of time. Additionally, failure inside of a simulation environment
will not result in any danger or loss either which in a larger context can be de-
sirable. In [10] the method of performing extensive training inside a simulation
environment has been used to tune decision making of automated vehicles.

This thesis is a continuation of the work presented in [4], which solved the same
problem of navigating the BRIO labyrinth by using a few types of LQRs to handle
the control instead of ML. Gain scheduling and gain scheduling with obstacle
avoidance were used to try and improve on a more classic formulation of LQR.

1.3 Related research 3

According to [4] the implementation of the gain scheduled LQR improved the
performance when compared to the classic LQR. The implementation of obstacle
avoidance, which introduced knowledge about the hole positions, presented a
worse performance than the other two LQRs. The obstacle avoidance LQR lost
performance due to instability and indecisiveness when following portions of the
path close to holes. In these situations the regulatory goal of obstacle avoidance
did not align with the regulatory goal of following the path. The best success rate
presented in [4] was 78.7 % on the medium map achieved by the gain scheduled
LQR. This achievement sets a performance goal for the ML approach used in this
thesis and serves as a benchmark as to what can be expected performance wise of
a good regulator.

2
System Description and Model

The system of interest in this thesis work is a modified BRIO labyrinth [2], which
can be seen in Figure 2.1. The components that make up the test platform are:

• A BRIO labyrinth game

• A custom medium difficulty labyrinth plate

• A Raspberry Pi 3B+

• A Raspberry Pi Camera Module v2.1

• 2 x Futaba S9154 Digital High Speed Servo

• An Adafruit 16-Channel 12-bit PWM/Servo Driver - PCA9685

• A 4.8V 2500mAh NiMh Instant cub (4 cell AA)

The labyrinth plane is operated by the two high speed servo motors that are pow-
ered by the NiMH battery. The auxillary battery is required to sustain a steady
power supply which can not be given by the Raspberry Pi. The Adafruit Servo
Driver component creates and distributes the Pulse Width Modulated (PWM) sig-
nals to the servos. A Raspberry Pi Camera Module has been mounted above the
labyrinth plane in order to enable estimation of the ball position. The Raspberry
Pi 3B+ is used to analyze the video stream and sends control signals to the servo
driver based on the policy derived from the reinforcement learning.

5

6 2 System Description and Model

Figure 2.1: The physical system.

For a more detailed walkthrough on the construction of the physical system, see
[4].

2.1 System Model

The system model for the labyrinth game used in this thesis is presented in [4]. It
was derived by considering the two directions, x and y, independently and then
apply a ball on beam model for each direction. The assumed coordinate system
can be seen in Figure 2.2, where the rectangle is the border of the labyrinth and
the measurements have been taken from each side of the labyrinth to the middle.

x

y

117.5 mm

140 mm

Figure 2.2: The assumed coordinate system.

2.1 System Model 7

In Figure 2.3 the holes are numbered so that they can be easily referenced. Start
and end points are also marked with black and yellow squares respectively.

-20 -10 0 10 20

x [cm]

-15

-10

-5

0

5

10

15

y
 [

c
m

]

Holes on the hard labyrinth level

111
2

3

4
5

6

7

9

1015

16
8

14

13
12

Holes

Figure 2.3: Numbering of the holes on the BRIO labyrinth. The starting
point is marked with a black square and the end point is marked with a
yellow square.

The ball on beam model that is used is presented in Figure 2.4. For the x-direction
the angle β is the clockwise rotation around the y-axis. For the y-direction, how-
ever, the angle is taken to be the counter clockwise rotation around the x-axis.
This is done to keep the state-space representation the same for each direction
[4]. These so called beam angles are used as control signals in the state-space
model since they are controlled by the servos.

Figure 2.4: The ball on beam with notation used in the model.

The model constants have been lifted from [4] and are presented with description
and notations in Table 2.1.

8 2 System Description and Model

Table 2.1: Model constants

Notation Value Description
g 9.82[m/s2] Gravity acceleration
mb 8 × 10−3 [kg] Mass of the ball
rb 6 × 10−3[m] Radius of the ball
Jb 1.152 × 10−7[kgm2] Inertia of the ball
fr 0.0004 Friction coefficient

For the state-space formulation, derived below, the variables used are summa-
rized in Table 2.2. The variables Ff r , ω and ω̇ are the frictional force, the angular
velocity and the angular acceleration respectively.

Table 2.2: The variables used in the state-space representation.

Notation Description

x, y
Positional coordinates in each direc-
tion.

ẋ, ẏ Velocity in each direction.
ẍ,ÿ Acceleration in each direction.

ux,uy
Control signals corresponding to the
tilt angles of the labyrinth plane, i.e,
ux = β in Figure 2.4.

Euler’s first and second law of motion applied to the situation in Figure 2.4 can
be written as

x̂ : −mbgsin(ux) − Ff r =mb ẍ (2.1)

ẑ : −mbgcos(ux) + N =0 (2.2)

G � : Ff r rb − frNrb =Jbω̇, (2.3)

where frNrb has been introduced as rolling resistance torque and fr is the rolling
resistance coefficient. Equations (2.1) and (2.2) inserted into (2.3) yields

−mbg sin(ux) − frmbg cos(ux) − Jbω̇
rb

= mb ẍ⇒
{
ω̇rb = ẍ

}
⇒

⇒mb(1 +
Jb
mbr

2
b

)ẍ = −frmbg cos(ux) −mbg sin(ux)⇒

⇒
{
kb := (1 +

Jb
mbr

2
b

), |ux | < 1.5
π

180

}
⇒ ẍ ≈ −fr

g

kb
−
g

kb
ux

(2.4)

In the last step the small angle approximation is used as the labyrinth plane

2.1 System Model 9

angles are 2 degrees or smaller. The state space representation for the y-direction
is reached in the same way.

As the labyrinth plane is rotated around the x- and y-axis the ball is subject to
compensatory forces resulting from this rotation. The Euler force, the Centrifu-
gal force and the Coriolis force are of some interest. However, previous work has
chosen to disregard these forces as their dependencies,β̇ and β̈ and y-direction
equivalents, are deemed to be small [4]. This is reasonable as long as the change
in labyrinth plane angle happens at a slow enough pace. To avoid sharp tran-
sients of the labyrinth plane angles that would lead to large values on β̇ and β̈
the control signals are low pass filtered before passed to the physical system.

To able to use (2.4) in the simulation environment to approximate the movement
of the ball it needs to be converted to a discrete-time model. By assuming con-
stant acceleration for a small time fraction ∆t and then integrating two times the
complete motion model can be written as

x̂ : ẍi = −fr
g

kb
−
g

kb
ux (2.5a)

ẋi+1 = ẋi + ẍi∆t (2.5b)

xi+1 = xi + ẋi∆t +
ẍi∆t

2

2
(2.5c)

ŷ : ÿi = −fr
g

kb
−
g

kb
uy (2.5d)

ẏi+1 = ẏi + ÿi∆t (2.5e)

yi+1 = yi + ẏi∆t +
ÿi∆t

2

2
, (2.5f)

where fr can be found in Table 2.1 and kb can be found in (2.4). The index i
denotes the current arbitrary time instance and the index i + 1 denotes the time
instance after one time fraction ∆t.

2.1.1 Servo modelling

The system model assumes a constant servo angle during one time frame. How-
ever, the servos are not capable of switching between angles instantaneously due
to physical limits. Therefore an average servo angle during one time frame needs
to be found. To calculate the mean servo angle the servo rise speed has to be
calculated first.

To investigate the servo rise speed a step response of amplitude 1.2◦ was recorded
using an accelerometer and an Arduino Nano. The raw accelerometer data is
presented in Figure 2.5. The values on the vertical axis in Figure 2.5 correlates
with the angle of the labyrinth plane but the unit is arbitrary. Since the interest
lies in the time passed during the servo step, the physical interpretation of these
values is not necessary since it is known that the step in angle represents 1.2◦.

10 2 System Description and Model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1500

-1000

-500

0

500

1000

X 0.48902

Y -139.6 X 0.54391

Y -335.2

X 0.5489

Y -717.6

Figure 2.5: Step response measurements from the accelerometer during an
angle step of 1.2◦.

As can be seen in Figure 2.5 the measurement data is oscillating. It is suspected
that these oscillations are a result of poor measurement equipment and it is hard
to precisely determine the time instances where the step began and where the
step reached it’s resting value of about −500. However, the accelerometer seemed
to detect the beginning of the step at 0.48902 s and the first time where the ac-
celerometer detected the resting value lies between the points [0.54391,−335.2]
and [0.5489,−717.6] in Figure 2.5. Interpolating between these points the resting
value can be estimated to occur at time 0.54606.

The approximate step time is 0.54606 − 0.48902 ≈ 0.05704 s which yields the
approximate rise speed of 1.2/0.05704 ≈ 21◦/s. In section 5.1.4 a sensitivity anal-
ysis of the servo rise speed is carried out and different values are compared using
the success rate on the hardware.

The servo rise speed then gave an upper limit on how large the change in servo
angle can be after one time frame ∆t. This upper limit is denoted

umax ≈ 21∆t [◦]

in Figure 2.6. The time frame ∆t is a measure of how much time that passes
between each call to the motion model during simulation. By increasing this
time the simulation progresses faster as the new state is calculated fewer times
over the course of the simulation but if ∆t is too long the simulation can become
unpredictable in the sense that wall collisions might not be handled correctly.

A general desired steer angle udesired can then be thought of in two different cases.
In Figure 2.6, u1 demonstrates a case where the desired change in steer angle is

2.1 System Model 11

larger than what the servos can deliver in ∆t s and u2 demonstrates a case where
the desired steer angle is within what the servos can deliver.

T ustart

t0 t0 + t t0 + Δt

u

u1

ustart + umax

u2

Figure 2.6: The principal cases in the servo implementation.

Because the desired angle u1 is larger than what the servo can deliver in the time
frame ∆t, the final angle, uf inal , of the servo can not be u1 but is in this case set
to uf inal = ustart + umax.

This is where the servo modeling would stop if the time stepping could be arbi-
trarily fast, using arbitrarily small time steps, but to improve simulation time the
time stepping is only fast enough to sufficiently handle collision with walls. So,
to represent what the servos are doing during each ∆t as accurately as possible
the average servo angle, ū, is calculated and used as the defacto servo angle dur-
ing one ∆t. The formula for ū can be derived from the general expression for the
mean of a function over a period of time.

ū =
1
∆t

∆t∫
0

u dt (2.6)

The integral in (2.6) can be split into two parts, a linear part, from t0 to t0 + t in
Figure 2.6, and a constant part, from t0 + t to t0 + ∆t in Figure 2.6. This can be
written as

ū = ustart +
1
∆t

(t∆u
2

+ (∆t − t)∆u
)
. (2.7)

Where ∆u is defined as ∆u = uf inal − ustart .

12 2 System Description and Model

The time t0 + t in Figure 2.6 is where the steer angle reaches its final value and
cross over from rising linearly to being constant. This time was found using the
maximum angular velocity of the servos

t = ∆t
|∆u|
umax

. (2.8)

Insertion of (2.8) into (2.7) yields

ū = ustart +
1
∆t

(
∆t
|∆u|
umax

∆u
2

+
(
∆t − ∆t |∆u|

umax

)
∆u

)
=

= ustart + ∆u

(
1 − |∆u|

2umax

)
. (2.9)

Equation (2.9) is used in the simulation model to find the average servo angle
during each ∆t.

3
Theoretical background

The theoretical background to this thesis can be split into three major parts. A
description of the Q-learning algorithm that is used to retrieve a steer policy. A
presentation of the Kalman filter that estimates ball position and velocity from
camera images. And lastly, an introduction to Linear Quadratic Regulator since
the Q-learning derived steer policy will be compared to the results of the LQR
developed in [4].

3.1 Q-learning

The reinforcement learning algorithm that is used in this thesis to explore and
solve the BRIO labyrinth is known as a Q-learning algorithm described in [9].
The Q-learning algorithm in itself does not require a model since it is built upon
a generic network of discrete states and discrete actions and its goal is to find
the action in each state that maximises the reward for the remaining session. It
does not use any underlying mathematical model of the system but instead learns
by interacting with the environment and getting a reward for a certain outcome
given a taken action in a certain state. A reward can be positive but also negative
to allow penalizing unwanted behavior. A Q-learning algorithm can be used to
solve the problem with either a discrete or a continuous representation of states,
but in this thesis we solely use the discrete representation.

A system that can be described by a number of discrete states s ∈ Rn, each with
a corresponding reward, that are intertwined via actions, each with a set of out-
comes that have probabilities P (Sf |Si , aj), is a Markov Decision Process (MDP).
The variable P (Sf |Si , aj) is the probability to end up in state Sf when action aj is
taken in state Si where the indices f for final, i for initial and j as a numerator for

13

14 3 Theoretical background

the taken action. The rewards connected to each state is R(Si) = ri . An example
MDP is visualized in Figure 3.1, where edges represent transition probability and
nodes represent states and actions.

S1
r1

S2
r2

S3
r3

a1

S4
r4

a2

a1

a2

a2 a1

a2

a1

P(S2|S1,a1)
P(
S1

|S
3,
a1

)

P(
S4

|S
2,
a1

)
P(S3|S4,a1)

P(S1|S2,a2)

P(
S2

|S
4,
a2

)

P(
S3

|S
1,
a2

)

P(S4|S3,a2)

P(
S1

|S
1,
a1

)

P(
S1

|S
1,
a2

)

P(
S4

|S
4,
a2

)

P(
S2

|S
2,
a1

)

P(S3|S3,a2)

P(S4|S4,a1)

P(S2|S2,a2)

P(S1|S1,a1)

P(S2|S3,a1) P(S4|S1,a1)

P(S3|S2,a1)P(S1|S4,a1)

P(S4|S1,a2)

P(S3|S2,a2)

P(S1|S4,a2)

P(S2|S3,a2)

Figure 3.1: A visualisation of a Markov Decision Process.

For example if action a1 is taken in state S1, it can be seen in Figure 3.1 by
following the black arrow from S1 to a1, there are three scenarios. Firstly, with
a probability P (S4|S1, a1), the new state is S4 and a reward of R(S4) = r4 is
acquired. Secondly, with a probability P (S2|S1, a1), the new state is S2 and a
reward of R(S2) = r2 is acquired. Thirdly, with a probability P (S1|S1, a1), the
new state is S1 and a reward of R(S1) = r1 is acquired.

When a number of actions are taken in sequence it results in a state sequence.
The total reward for any given state sequence in an MDP can be retrieved by sum-
ming up the individual rewards. A discount factor γ is used to model urgency
of completion, since a solution of infinite actions is not of interest. The total
discounted reward for any given state sequence in an MDP is

Rtot =
T∑
t=0

γ tR(St),

where 0 ≤ γ ≤ 1 is the discount factor which keeps the sequence finite and makes
immediate rewards weigh in more than future rewards. Following a policy π,
which is a mapping from a state to an action, results in a sequence of states

3.1 Q-learning 15

[S0, S1, S2, ..., ST], which in turn yields a particular cost Rtot . Starting in an ar-
bitrary state s, the value function associated with the policy π is

V π(s) = E

 T∑
t=0

γ tR(St)|S0 = s

 . (3.1)

It then follows that the optimal value function is given by the same expression
for an optimal policy π which maximises the value function according to

V (s) = max
π

V π(s)

= max
π

E

 ∞∑
t=0

γ tR(St)|S0 = s


= max

π
E

R(s) +
∞∑
t=1

γ tR(St)|S1 = s′


= max
π

E
[
R(s) + γV (s′)

]
, (3.2)

which is a recursive function where the optimal policy π and the optimal costs
V (s) and V (s′) are unknown. Equation 3.2 is commonly known as the Bellman
optimality equation and is often used for dynamic programming [1]. The param-
eter s′ is the state in which the ball ends up in by following the optimal policy for
state s. If the optimal cost function is the value expressed in (3.2), with regards
to the policy π, the optimal policy itself can be retrieved as

π∗ = arg max
π

E
[
R(s) + γV (s′)

]
.

By inserting the definition of expectation, into (3.2), the expression in (3.3) can
be acquired.

V (s) = max
π

E
[
R(s) + γV (s′)

]
(3.3)

= max
π

∑
s′

(R(s′ , s, π(s)) + γV (s′))P (s′ |s, π(s)) (3.4)

The sum of s′ is due to the probabilistic nature of the MDP where an action a =
π(s) in state s has a chance to end up in different states s′ . Note that our policy
is still deterministic but that there is a probability that we do not end up in the
discrete state that is desired.

If we introduce the implicit functionQ(s, a), usually called quality function, state-

16 3 Theoretical background

action value function or Q-function, as

Q(s, a) = E
[
R(s′ , s, a) + γV (s′)

]
it follows that

V (s) = max
a
Q(s, a) (3.5)

π(s) = arg max
a

Q(s, a), (3.6)

given (3.3) and (3.1). Thus Q can also be expressed as

Q(s, a) = E
[
R(s) + γ max

a
Q(s′ , a)

]
=

∑
s′

(R(s′ , s, a) + γ max
a
Q(s′ , a))P (s′ |s, a),

so that it can be calculated without knowing the optimal cost function V . This
expression is however still dependant on the probability P (s′ |s, a), which is un-
known in this case. The Q-values are instead approximated iteratively for each
state and action pair with a trial and error method and the cost function and
policy is then acquired from (3.5) and (3.6). An effective way of ordering the
Q-values is by storing them in a matrix with respect to states and actions. This
matrix is called the Q-matrix or tabular Q-function and is visualised in Table 3.1
for a simple example with two states and two actions.

Table 3.1: A representation of the tabular Q-function for a general case with
two states and two actions.

a\s s1 s2
a1 Q(s1, a1) Q(s2, a1)
a2 Q(s1, a2) Q(s2, a2)

Updating the Q-matrix for a certain training instance in which state s and the
taken action a∗ result in state s′ , the estimated Q-matrix entry for (s, a∗) is updated
as

Q̂(s, a∗) = R(s′ , s, a∗) + γ max
a
Q̂(s′ , a).

As it is not desired to completely erase experience from previous iterations, a
learning rate is used to contain parts of the old experiences. This is done accord-
ing to the expression

3.1 Q-learning 17

Q̂k+1(s, a∗) = Q̂k(s, a
∗) + α(R(s′ , s, a∗) + γ max

a
Q̂k(s

′ , a) − Q̂k(s, a∗))

= (1 − α)Q̂k(s, a
∗) + α(R(s′ , s, a∗) + γ max

a
Q̂k(s

′ , a)), (3.7)

where α denotes the learning rate, γ denotes the discount factor, s denotes a
state, a denotes an action, s′ denotes the state retrieved by taking action a∗ in
state s which results in the reward R(s′ , s, a∗).

The learning rate can be initiated with a high value in the beginning of the learn-
ing process to learn as much as possible from the exploration phase but can be de-
creased linearly as the gathered experience becomes more reliable. This is done
to prevent large changes to the expected rewards and by extension to prevent
large changes to the policy.

During the learning process the algorithm is usually initiated with a high prob-
ability to choose a random action and during the process lean more into experi-
ence based actions. This transition can be done in a multitude of different ways.
A simple tactic is to use a linearly decreasing probability that a random action
is chosen. The general idea is that the probability of choosing a random action
decrease as the learning process progresses.

3.1.1 Experience Replay Q-learning

The Q-learning algorithm presented in Section 3.1 takes a step and learns from
the state transition and received reward once. The state transition is then forgot-
ten and thus information from a certain rare experience could likely be overwrit-
ten over time. Additionally the steps taken in sequence are correlated, which
makes the state transitions sequentially biased. This implementation of the Q-
learning algorithm could thus be sensitive to biases entrenched in the data.

The Experience Replay version of Q-learning uses (3.7) to learn from sampled
data, but uses another method to decide which sampled experience is used to
learn from. The experience replay feature is further explained in [11]. Experi-
ence in this context is a collection of a state s, action a taken in this state, reward
r, terminal flag t and state s′ resulting from the action a in state s. The algorithm
saves each experience in memory so that each experience can be learned from
several times. It also allows the Q-learning algorithm to learn from the experi-
ences in a random order, rather than the sequential order they chronologically
occurred in. The memory contains m experiences, from which a batch of b ran-
dom experiences are retrieved from the memory to train on each iteration.

This method is most commonly applied when Q-learning is used to estimate a
parametric model rather than the approach of finding the best possible action in
a specific state, as is done in this project. However, positive rewards are sparsely
distributed and the multitude of states and actions makes a specific state tran-
sition rare. Additionally the expected future reward changes as the Q-learning

18 3 Theoretical background

algorithm progresses, which suggests that experience replay may lead to faster
convergence.

3.2 Discrete Kalman filter

A Kalman filter is used to estimate unknown states of a linear state space model
using model based predictions and measurements. The Kalman filter tries to re-
cursively predict states using the state space model. Measurements are then used
to adjust these predictions to correspond more with the actual states. The Kalman
filter in this thesis is used to improve the positioning of the ball on the physical
system since the image processing yields a noisy approximation of the ball’s posi-
tion. Additionally, the speed cannot be measured directly and the Kalman filter
is used to approximate this state from the position measurements. The Kalman
filter in this thesis needs a discrete-time linear state space model which can be
written in the form

xk+1 = Fkxk + Gu,kuk + Gv,kvk (3.8a)

yk = Hkxk + Dkuk + ek , (3.8b)

where x are the unknown states, u are known control signals, vk is process noise
and ek is measurement noise. The process noise vk is modeled to be normally
distributed with expectation 0 and covariance Qk . Similarly, the measurement
noise ek is modeled to be normally distributed with expectation 0 and covariance
Rk . The index k is a time index.

The standard steps performed in the Kalman filter is described in [6] and is given
by

Time update:

x̂k|k−1 = Fk x̂k−1|k−1 + Gu,kuk|k (3.9a)

Pk|k−1 = FkPk−1|k−1F
T
k + Gv,kQkG

T
v,k (3.9b)

Measurement update:

εk = yk − Hk x̂k|k−1 − Dkuk (3.10a)

Sk = HkPk|k−1H
T
k + Rk (3.10b)

Kk = Pk|k−1H
T
k S
−1
k (3.10c)

x̂k|k = x̂k|k−1 + Kkεk (3.10d)

Pk|k = Pk|k−1 − KkHkPk|k−1, (3.10e)

where (3.9) is the prediction part, often called the time update, whereas (3.10) ad-
justs the prediction using measurements, often called the measurement update.
The iterations start with the initial state estimate x̂1|0 and covariance P1|0. Qk is
the covariance matrix of the process noise vk and Rk is the covariance matrix of

3.3 Linear Quadratic Regulator 19

the ek . When considering an update of a variable, for example x̂i|j , the index i
represents the time instance of the approximation and the index j represents up
to which time instance measurements have been used.

3.3 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is presented in [5]. An LQR is designed to
minimize a quadratic criteria that is based on the control error, e, and the size of
the control signal, u. For a discrete problem this can be written as

min(||e||2Q1
+ ||u||2Q2

) = (3.11a)

min
∑
k

eTk Q1ek + uTk Q2uk . (3.11b)

where k is a time index and Q1 and Q2 are positive semi definite weight matrices
that can be seen as design variables for the regulator characteristic. The LQR
relevant to this thesis requires the system on standard discrete state space form,

xk+1 = Axk + Buk + Nv1,k (3.12a)

zk = Mxk (3.12b)

yk = Cxk + v2,k . (3.12c)

where v1 and v2 are white noises with intensities[
R1 R12
RT12 R2

]
.

An LQR relies on the observed state of a Kalman filter and the optimal linear
controller is given by

uk = −Lx̂k (3.13a)

x̂k+1 = Ax̂k + Buk + K(yk − Cx̂k) (3.13b)

where K is the time invariant version of the Kk presented in Section 3.2. The
feedback is determined by

L = (BT SB + Q2)−1BT SA. (3.14)

Where S is the positively semi definite solution to the matrix equation

S = AT SA + MTQ1M − AT SB(BT S + Q2)−1BT SA

The system needs to meet a few criteria for the technique to be applicable.

• (A, B) is stabilizable

• (A, C) is detectable

• (A,MT , Q1, M) is detectable

• R2 is symmetric and positively semi definite

• R1 − R12R
−1
2 RT12 is positively semi definite

20 3 Theoretical background

• R12 is constant

3.3.1 Gain scheduled LQR

A gain scheduled LQR consists of two or more LQRs that are designed to prior-
itize different control objectives. In [4] one LQR is designed to prioritize trav-
elling along the direction of a given path. Another LQR is instead prioritizing
to reduce the distance to the same path. The control signals from each LQR are
then weighted to construct the effective control signal. The further away from
the path the ball is, the more the second LQR is allowed to influence the effective
control signal. If the ball is in close proximity to the path, the first LQR gets more
influence instead.

4
Implementation

The implementation was made in two stages. The first stage was the software
implementation where a Q-learning algorithm learns a steer policy through ex-
ploration. The second stage was the implementation of the steer policy on the
hardware that allowed the system to use the steer signals given by the policy
low-pass filtered to promote smooth operation.

4.1 Simulation software

Applying reinforcement learning on hardware directly can be time consuming.
Therefore, a simulation environment was developed in Python. It consists of five
parts: the disturbance model, the map, the agent, the reinforcement learning and
post-processing of the retrieved policy.

4.1.1 Disturbance

Disturbance was introduced in the simulation to deal with the fact that the model
probably is not a perfect representation of the true system. Even in the best of
scenarios a perfect match between model and a physical system is impossible. In
addition, when investigating the physical system, three sources of uncertainty
were observed that seemed to impact the behaviour of the ball.

1. The rolling resistance seemed to vary a lot.

2. The coupling between the servos and the labyrinth plane are a bit loose
which makes it difficult to reliably reach an exact desired steer angles.

3. The labyrinth surface is uneven and tilts in random directions.

21

22 4 Implementation

To deal with the first observation and general model errors, the calculated accel-
eration is altered by a random amount. This is achieved by randomly generating
a percentage factor from a uniform distribution and then multiplying the ideal
acceleration by this random factor in each time step. An alternative choice is an
added disturbance, but that does not correspond to the behavior of the physical
system at stationarity. The choice of a uniform distribution instead of a normal
distribution was made to train the network on large disturbances more often.

To deal with the other random disturbances present in the physical system an-
other disturbance source was added. As the ball is respawned at the starting
point a random tilt is generated from a uniform distribution and added to the
steer angle selected by the agent. The choice of a uniform distribution as op-
posed to a normal distribution is that the uniform distribution is strictly limited
by default and the agent is exposed to large disturbances at the same rate as it is
exposed to small disturbances. The aim is to cause the agent to be more careful
in places where a random tilt in a certain direction can cause the ball to end up
in a hole.

In Chapter 5 the two disturbance models are compared and evaluated to find a
good combination of the two.

4.1.2 The map

The map keeps track of the position of walls, holes and the goal, and calculates
the reward or penalty for a certain step. To make these operations easy, the map
was split into tiles of 5x5 mm, every tile is marked with a number declaring
its characteristic. Table 4.1 specifies which number that corresponds to which
characteristic.

Table 4.1: Tile characteristics and their corresponding numerical value.

Numeric value Tile characteristic
0 Free to move space, small negative reward
1 Goal, large positive reward
2 Wall, no reward
3 Hole, very large negative reward
4 Close proximity to hole, medium negative reward

The agent uses the map to determine if a collision has occured with a wall or if the
ball has ended up in a hole, the goal or outside the map. Additionally, the agent
also uses the map to calculate the reward for a certain state transition, based on
the reward modifiers described in Section 4.1.4.

A visual representation of the map in the simulation environment is presented
in Figure 4.1. The green hollow squares represent walls, red hollow squares rep-
resent holes and orange hollow squares represent proximity to holes. The filled

4.1 Simulation software 23

squares represent goal and start position, where the black one is the start position
and the yellow one is the goal position.

Figure 4.1: Visualization of the map in the simulation environment.

4.1.3 The agent

Using a limited set of actions in two dimensions, each dimension for each of the
physical system’s two servos, the agent steers the ball through the map to gather
knowledge about the environment. The ball’s state is expressed in a continuous
space, to achieve a realistic movement, which the agent then maps onto a discrete
state representation due to the Q-learning algorithm defined in 3.1. For each
action the ball is moved in small incremental steps such that collisions with walls
are not missed. For each of these incremental steps six chosen tiles are checked
for collision. The checked tiles are chosen with respect to the ball’s current state.
It is useful to define primary and secondary directions as they play an integral
role in the way the checked tiles are chosen. The primary direction is ±x̂ or ±ŷ
along which the ball has its largest velocity component. The secondary direction
is the direction in which the ball has its smallest velocity component. Presented
in Figure 4.2a is the case where the ball has +ŷ as the primary direction and +x̂
as secondary direction. Presented in Figure 4.2b is the case where the ball has +x̂
as primary direction and +ŷ as secondary direction. Note that these are only two
out of eight possible cases. In Figure 4.2 the x component of the velocity is called
V_x and the y component V_y. How the checked tiles are obtained is presented
in Table 4.2.

24 4 Implementation

5 4

6

V

2

3

1

V_y

V_x

(a) Primary y.

V_x

V_y V
1 2 3

4

56

(b) Primary x.

Figure 4.2: Two cases with different primary axis of movement and how the
checked tiles are chosen in relation to this.

Table 4.2: List of tiles and how they are found.

Tile Obtained by

Tile 1

Obtained by finding the tile closest to the point received
when subtracting rb/

√
2 from the ball’s current position

with respect to the primary direction and adding rb/
√

2
with respect to the secondary direction.

Tile 2
Obtained by finding the tile closest to the point received
when adding rb to the ball’s current position with respect
to the secondary direction.

Tile 3
Obtained by finding the tile closest to the point received
when adding rb/

√
2 to the ball’s current position with re-

spect to both the primary and secondary direction.

Tile 4
Obtained by finding the tile closest to the point received
when adding rb to the ball’s position with respect to the
primary direction.

Tile 5

Obtained by finding the tile closest to the point received
when adding rb/

√
2 to the ball’s current position with re-

spect to the primary direction and subtracting rb/
√

2 with
respect to the secondary direction.

Tile 6
Obtained by finding the tile closest to the point received
when subtracting rb from the ball’s current position with
respect to the secondary direction.

4.1 Simulation software 25

Depending on which tiles are valid or not for each incremental step the collision
is handled in a specific way. The checks are done in the order as they are written
in Table 4.3.

Table 4.3: Collision type given tile invalidity.

Invalid tiles Collision type
2 & 4 inner-corner
4 head-on primary direction
2 & 3 head-on secondary direction
3 outer-corner
5 & NOT 6 outer-corner
1 or 2 head-on secondary direction

An inner corner collision triggered by tile 2 and 4 in combination is handled by
rotating the velocity 180 degrees and multiplying it with the bounce coefficient
cb. It is handled first to make sure that this situation is not overlooked when 4 is
checked individually.

A primary direction collision triggered by tile 4 is handled by flipping the pri-
mary velocity and multiplying it with the bounce coefficient cb. It is handled
early on as collisions happen more often in the primary direction of travel and by
catching this scenario early the collision control can be completed sooner.

A secondary direction collision triggered by tile 2 and 3 in combination, by tile
2 alone or by tile 1 alone is handled by flipping the secondary velocity and multi-
plying it with the bounce coefficient cb.

An outer-corner collision triggered by tile 3, or by tile 5 under the condition that
tile 6 is valid, is handled by bouncing the ball on the tangent line T to the ball
in the contact point it makes with tile 3 or 5. Figure 4.3 displays one possible
situation where an outer-corner collision occurs.

v

A

C
B

x

y

T

Figure 4.3: The ball colliding with tile 3.

The line T is the tangent to the ball in point B. Bouncing the ball on this line is
done by mirroring the velocity v in T and multiplying it with the bounce coeffi-

26 4 Implementation

cient cb. The process of mirroring a two dimensional vector in a line is a known
problem and it is described in [7]. The goal is to find the velocity’s normal com-
ponent to the tangent line and subtracting that twice from v:

v⊥T = v|| ~AB =
v ~AB

| ~AB|2
~AB =⇒

vmirror = v − 2v⊥T =

= v − 2
v ~AB

| ~AB|2
~AB (4.1)

The point B is not known, which makes ~AB ill-defined. However, point A, point
C and the side length of the tiles are known identities. And so, by adding half of
the tile’s side length to point C along both x- and y-axis towards point A, point B
can be found. Thus ~AB = ~AC+ ~CB can be inserted in (4.1). The resulting equation
for handling outer corner collisions is then:

vres = cb

v − 2
v
(
~AC + ~CB

)
| ~AC + ~CB|2

(
~AC + ~CB

) . (4.2)

4.1.4 Reinforcement learning

Reinforcement learning is one of the major parts of the thesis and uses the simu-
lation environment, i.e., the map and agent, described in Section 4.1.3 and 4.1.2
to learn the best possible policy for the model. It is based on the Q-learning
algorithm described in Section 3.1.

The Q-learning algorithm described in Section 3.1 is built upon discrete states.
This discretization can be done in a multitude of ways. The states are position
and velocity, both in x̂ direction and ŷ direction separately. The position dis-
cretization, consisting of tiles, is mentioned in Section 4.1.2. The discretization
of speed is discretized with regards to two parameters: how many degrees of
freedom that is manageable in the Q-matrix and the maximum velocity that is
common on the physical system. More degrees of freedom in the representation
of the ball velocity can give a more precise policy but leads to a larger system to
train, which takes time or may not converge at all. In Figure 4.4 the Kalman filter
estimate of the speed during one run on the physical system is shown to motivate
why discretizing the speed over 0.08 m/s is not useful, the ball will only on rare
occasions travel faster than that.

4.1 Simulation software 27

0 10 20 30 40 50 60 70 80

Time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
b

s
o

lu
te

 v
e

lo
c
it
y
 [

m
/s

]

Absolute ball velocity

Figure 4.4: The absolute ball velocity during a run on the physical hardware.

The states are not the only parameters that needs to be discretized. The action
space needs to be considered as well. This discretization needs to be precise
enough to navigate accurately through the labyrinth in narrow passages, but
also aggressive enough to overcome frictional forces and imperfections in the
labyrinth surface. This is done with respect to degrees of freedom and control an-
gle variety. More degrees of freedom in the action space can give a more precise
policy but, once again, leads to a larger system to train.

The algorithm is iterated until a certain amount of moves, from now on called
learning operations, has been made in total. The total amount of learning opera-
tions is the learning operation limit which defines the amount of state transitions
that are performed. Each learning operation is either done by taking a random
action or exploiting previous knowledge to decide on the best action for the cur-
rent state. The probability to take a random action is decreased linearly as the
learning process progresses. This is due to the common principle of exploring
early on and gradually start to trust the gathered experience.

The learning rate is decreased linearly throughout the learning process from a
defined start value to a defined end value. During the exploration phase of a Q-
learning algorithm it is important to gather as much information as possible from
the learning operations since all information is new. Therefore a higher learning
rate is used in the beginning. As the learning process progresses the learning rate
is decreased to avoid adjusting the learned path drastically based on one extreme
case rather than the summed experience from the previous exploration.

To mimic the fact that a game can be either lost or won, a so called terminal state

28 4 Implementation

is implemented. Reaching a terminal state ends a specific session. Usually when
Q-learning is applied these sessions are called episodes and they are restarted
by resetting the ball’s position to the start position. However, in this project the
agent often terminates a session after a low amount of learning operations due
to ending up in a hole. This early termination makes the objective of reaching
goal difficult to achieve. To mitigate this shortcoming, two complementary reset
handlers were implemented to reset the ball when a terminal state occurred.

The first handler can be described as a full reset handler. It restarts the ball from
the start position, given that a certain amount of learning operations has been
taken since the last full reset or that the terminal state is also the goal state. The
session from one full reset to another full reset is called an episode in this project
and the number of learning operations in one episode are called episode step
limit.

The second handler can be described as a partial reset handler. It restarts the ball
from a position that the ball recently had, given that the terminal state was not
the goal state and a certain amount of learning operations has not been taken.
The session from one partial reset to another partial reset is called an attempt in
this project. Thus an episode consists of one or more attempts.

The experience retrieved from each learning operation is stored in an experience
replay buffer. When an experience is added to the buffer the oldest experience is
removed if the buffer already contains the maximum amount of experiences. A
random subset of experiences are sampled from the buffer to learn from in the
Q-learning algorithm. One of these samples will always be the newest sample to
guarantee that each experience is used at least once in the learning process.

To reduce the rate at which the Q-values increases in the Q-matrix, since a high
growth rate might lead to instability where suboptimal policies are enforced, the
Q-matrix was complemented with a secondary Q-matrix. During training the pri-
mary Q-matrix is used to select the current best action for a certain state. The sec-
ondary Q-matrix is used to determine the expected future reward. The secondary
Q-matrix is then updated by low-pass filtering the expected future reward of the
primary network.

Reward design

A central part of reinforcement learning is to determine how much reward should
be given for a given state-action pair. In this thesis the reward is determined by
the ball’s velocity and the trait of the end tile. The rewards are set in relation to
the reward of taking an action.

The main objective is to reach goal without falling into a hole, in a non infinite
time. Therefore, taking an action should not be that expensive as a longer and
safer route is better than a short route with a high risk of failure. However, if it is
free to take an action there is a risk that the learner easily finds the local optimum
to just stay in start without moving at all which is not desired. Doubling the
reward for a step would be equivalent to halving the other rewards.

4.1 Simulation software 29

The reward for going into a hole was set with respect to the local optimum that
can occur if it is cheaper for the agent to run into a hole than to stay still for an
entire episode. To avoid that an optimal path is to run straight in to a hole, the
reward for ending up in a hole is about twice as expensive as staying still for an
entire episode.

The reward for reaching the goal was set with the idea that the reward needed to
be large enough to cover the expenses of travelling through the labyrinth. This
value was highly dependent on the map as the ball does not go the same speed
or the same distance on every map. The reward for staying still during an entire
episode was used as reference.

The reward scaling based on velocity was set after the preliminary tests on the
hardware. It became clear that the policy was too aggressive in certain areas. As
the speed is discretized there is a maximum value on the speed that the policy
can sense and be trained for. On rare occasions the ball reached higher levels
of speed than what the policy was trained for and that led to poor control. To
mitigate this two types of rewards in relation to speed were tested.

Firstly, a reward to the square of the speed was implemented. Going slow was
not a problem, going faster than the discretization could detect was. Therefore a
quadratic scaling seemed fitting. As the speeds are in order 10−1[m/s] an ampli-
fication factor was needed to ensure the speed penalty was not overshadowed by
the reward of just taking an action.

Secondly, a constant reward was applied when going over or under certain ve-
locity thresholds. The reward for taking an action was set to zero for this im-
plementation since penalizing the agent with a negative reward under a certain
velocity threshold is sufficient to avoid an optimal path of not moving. The two
implementations are tested and compared with each other in Chapter 5.

Lastly, in an effort to promote paths that are not in close proximity to holes a
negative reward was set on tiles adjacent to holes. This was done because the
agent would steer close to holes despite the addition of disturbance. If the reward
was too low the policy would behave nervously when tested on the hardware. If
the reward was not low enough there was no change in behavior.

4.1.5 The policy smoothing

Once the training has been completed there are certain grid coordinates that are
valid positions but have not been reached in the simulation environment due to
the radius of the ball being larger than the chosen grid size defined in chapter
4.1.2. This is a problem because the position estimation on the hardware is sub-
ject to errors that may position the ball in a coordinate where the steer policy
never has been trained and thus is not a product of simulation experience, but
rather a random initialization. This is why a policy smoothing script has been
implemented. The method described in this section aims to extend the policies
to the tiles in proximity to walls which have not been explored.

30 4 Implementation

The technique is inspired by a simple moving average, described in [8], which
smooths noisy data by creating a data subset of sequential averages. In a data set
where all data points are equal in the sense that they have the same quality, this
is useful as is. In our environment this is not the case. A state which has been
visited several times by the agent will correspond to an action that has proven to
be the most beneficial over and over again, while a state that has not been visited
at all will correspond to a randomly initiated action. Therefore the term "well
trained" is introduced as a way of differentiating between which actions that are
reliable and can be used when smoothing the policy. An action is only deemed to
be in need of smoothing if it does not meet the requirement of being well trained.

First an evaluation of which tiles are considered ’well trained’ is done by extract-
ing the highest expected future reward, with respect to the action space, for each
tile position under the condition that the ball has zero velocity. If the expected
future reward is below a certain threshold QT in a tile, it is considered poorly
trained and is thereby a candidate that should be smoothed. Walls, holes and
tiles in proximity to walls will always be considered poorly trained, due to the
fact that the ball can not be positioned in these tiles during simulation, and thus
always be subject to smoothing.

Iteratively the policy in each poorly trained tile is retrained by looking at the sur-
rounding tiles and their corresponding actions. This is done separately for every
velocity combination. In Figure 4.5 a visualisation of which tiles are considered
during the retraining process of a poorly trained tile for one velocity combination.
The actions considered in the neighboring tiles are the ones for the same velocity
combination as in the investigated poorly trained tile that is being retrained. The
purple tiles represent the poorly trained tiles, the darker purple tile is the one
currently being retrained. The green tiles represent walls, whereas the red tiles
represent part of a hole. The numbers represent expected future reward. The
tiles with pronounced black borders are tiles considered but not deemed well
trained enough to be a candidate to learn from. A poorly trained tile requires at
least two neighbouring well trained tiles to be retrained. The blue tiles with blue
borders are deemed well trained enough to learn from.

A neighboring tile’s action is relevant to the estimation of the new smoothed ac-
tion if itself is not poorly trained, is not a wall, hole or outside of the map. If
at least two candidates are found, a new action can be generated. This is done
by first averaging the candidate actions. The averaged action’s closest match in
the discrete action space is then used. In Figure 4.6 the expected future reward
for zero velocity is shown for a policy. The white areas are considered to be well
trained, as there is at least one move that is expected to give a reward larger than
the threshold QT .

4.1 Simulation software 31

1010

10

1 11

10

Figure 4.5: A visualisation of the retraining process of a poorly trained tile.
In this example, the threshold QT is between 1 and 10. Green tiles represent
walls, red tiles represent holes, purple tiles represent poorly trained tiles.
The dark purple tile is retrained, where tiles with black pronounced borders
are candidates deemed not well trained enough to use in training and blue
borders are deemed well trained enough.

0 10 20 30 40 50
x pos [m]

0

10

20

30

40

y
po

s [
m
]

Heatmap to visualize poorly trained tiles.

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Figure 4.6: heatmap before smoothing. The heat intensity represents the
expected future reward in a tile for zero velocity.

In Figure 4.7 the policy from Figure 4.6 has been smoothed. The remaining
poorly trained tiles are either walls, center point of holes or unreachable areas
with less than two well trained neighbouring tiles.

32 4 Implementation

0 10 20 30 40 50
x pos [m]

0

10

20

30

40

y
po

s [
m
]

Heatmap to visualize policy smoothing.

−2

0

2

4

6

8

10

Figure 4.7: heatmap after smoothing. The heat intensity represents the ex-
pected future reward in a tile for zero velocity.

4.2 Software adjustments for policy deployment on
the physical system

To apply the policy learned in the simulation environment to the physical system
some adjustments have been done to the physical system’s software. The software
running the labyrinth is split into three parts: ball tracking, controller and servo.

The three parts cooperate using the Robot Operating System (ROS) framework
so that the different scripts can work independently and synchronise informa-
tion between the scripts using so-called topics. Most of the software regarding
controlling the labyrinth was reused, with minor adjustments, from [4]. In Figure
4.8 it is shown how the software on the physical system communicates between
modules. Sharp edged boxes represent a piece of hardware and rounded boxes
represents software modules. The dotted arrow from simulation environment to
the Controller is not an actual connection but rather that the simulation environ-
ment produces a policy that is extracted into the controller. This policy is then
used to map actions from positions and estimated velocities.

4.2 Software adjustments for policy deployment on the physical system 33

RPi
 ROS

Ball
Tracking
Python

Angles
Controller

Python
Servo Input

Python

Position

Adafruit
Servo
Driver

ServosLabyrinthRPi
Camera

Policy

Simulation
Environment

Figure 4.8: A schematic showing how different parts of the physical system
cooperates, both in hardware and in software.

4.2.1 Ball tracking

The task of the ball tracking script is to estimate the position of the ball using the
Raspberry Pi camera available on the hardware and the computer vision library
OpenCV that is available for Python.

The ball tracking script uses the CIELAB color space, often called LAB color
space, to ease the detection of the ball in an image. The L in the abbreviation
stands for the perceived lightness, A for the color grade red to green whereas
B is for the color grade blue to yellow. Due to the previous project using the A
color grade to find a red colored ball in the labyrinth the same approach was used
in this project with the added feature of blurring the image before converting it
from RGB to LAB. This allowed for a less aggressive erode and dilation filtering
compared to the previous implementation. The erode and dilation filters are ap-
plied after the masking in the A dimension of the LAB color space to smooth
contours and remove remaining grainy features. In addition the labyrinth was
colored green to contrast the red ball further.

4.2.2 Policy Mapping Controller

The task of the controller is to, determine the current state such that an optimal
angle can be retrieved from the policy. The current state is given by a Kalman fil-
ter which, based on the positions from the ball tracking script, estimate the ball
velocity and position. Based on the estimated position and velocity the closest
discrete state can be determined and best discovered action mapped out. Apply-

34 4 Implementation

ing a new angle to the labyrinth plane up to 25 times per second may end up in a
twitchy behaviour, therefore a forgetting factor was applied to make the control
smoother. The cost of the forgetting factor implementation is a less responsive
controller.

If an action is done and no movement is detected an unstuck procedure is acti-
vated. To directly angle the plane aggressively in a direction is risky due to the
possibility that the ball in close proximity to a hole. However, an impulse of the
plane angle is still desirable in order to get the ball moving again. Thus the un-
stuck procedure produces two distinct steps in the direction of the current steer
signal. The first step with half the maximum steer angle, the second step with
maximum steer angle. If the ball is still stuck after the two impulses the unstuck
procedure starts to alternate between two directions. The directions are chosen
to be ±26◦ beside the initial direction and the amplitude of the steer signal is still
the maximum steer angle. The unstuck procedure is immediately stopped and a
normal operation is recovered once a velocity over a certain threshold has been
detected.

4.2.3 Servo

The servo script retrieves desired outputs, expressed in angles, from the con-
troller and translates these to usable PWM signals using the Adafruit Servo Driver
library for Python. The reason this is separate from the controller script is for his-
torical reasons regarding the previous project using C++ in the controller script.
To still allow the old project to be run on the hardware this part was not inte-
grated into the new controller script.

5
Results

As some of the simulation parameters were set ad hoc and in relation to each
other, a sensitivity analysis was performed as a basis of discussion for the chosen
parameter values. The results are split into two phases. Phase one investigates
the sensitivity of simulation parameters that are independent of the full map.
Phase two investigates the sensitivity of the rest of the simulation parameters
that might depend on the full map.

Phase one and two contains a baseline around which the sensitivity analyses were
performed. A summary of the analyses can be found in Table 5.1, which also
includes the phase in which a parameter is tested.

5.1 Phase one

The sensitivity analyses of the simulation parameters in this section was done on
a small section of the medium map to improve simulation times but still have the
physical system to validate the policy on. The start and goal points of the small
section are marked out in Figure 5.1 with the start point in black and the goal
point in yellow.

35

36 5 Results

Table 5.1: Overview of parameter sensitivity analysis.

Simulation parameter Section
Phase 1: 5.1
Discretization of speed 5.1.1
Discretization of actions 5.1.2
Disturbance factors 5.1.3
Servo response time 5.1.4
Time between actions 5.1.5
Bounce coefficient 5.1.6

Phase 2: 5.2
Episode step limit 5.2.1
Reward goal 5.2.2
Reward hole 5.2.2
Reward velocity 5.2.2
Reward hole proximity 5.2.2
Primary learning rate 5.2.3
Secondary learning Rate 5.2.4
Learning operations limit 5.2.5

Figure 5.1: Visualization of the small map section used in Phase one.

All parameters are, however, not independent of the map size and can not be
tested on a small section of the map and these will be investigated in phase two.
The performance of each policy was evaluated by following it 50 times on the
physical system. If one parameter test indicated particularly poor performance
25 runs were deemed sufficient to approximate the success rate. The success rate,

5.1 Phase one 37

denoted HW for hardware success rate, is the percentage of runs reaching goal.
The baseline parameters for phase one are presented in Table 5.2. These parame-
ter values are used for all parameters that are not tested in a specific sensitivity
analysis during phase one.

Table 5.2: Simulation parameters used as baseline in phase one.

Parameter Value
Speed discretization [0,±0.02,±0.04,±0.06] m/s
Action discretization [0,±0.2,±0.4,±0.8,±1.2] ◦

Proportional disturbance 20 %
Tilt disturbance 0 ◦

Servo rise speed 24 ◦/s
Time between actions 0.08 s
Bounce coefficient 0.35
Episode step limit 2000
Reward goal 400
Reward hole −4000
Reward velocity −800
Reward hole proximity −20
Primary learning rate Linear 0.8 to 0.5
Secondary learning rate 0.8
Learning operations limit 40 × 106

5.1.1 Analysis of the speed discretization

The discretization of speed, mentioned in Section 4.1.4, is a trade off between fast
training and giving the Q-learning algorithm precise knowledge of how the ball is
moving which could lead to better control on the physical system. Observations
on the physical system, using the Kalman filter estimates, shows that the ball
rarely reaches speeds above 0.08 meters per second [m/s]. To discretize speeds
above this level would not be efficient.

Nine different parameter sets were designed to determine the sensitivity in dis-
cretization of speed. This sensitivity analysis compares three different maximal
detectable speeds, 0.08 [m/s], 0.06 [m/s] and 0.04 [m/s], and three levels of dis-
cretization, 5 points, 7 points and 9 points. For example, the discretization with
maximal detectable speed 0.06 [m/s] and 7 points corresponds to the following
discretization: [−0.06,−0.04,−0.02, 0, 0.02, 0.04, 0.06] [m/s]. For each discretiza-
tion option the success rate of the policy on the physical system is presented in
Table 5.3.

38 5 Results

Table 5.3: Resulting success rates for the different sets of speed discretiza-
tions.

Speeds [m/s] HW [%]
Option 1 [0,±0.02,±0.04] 64
Option 2 [0,±0.03,±0.06] 56
Option 3 [0,±0.04,±0.08] 60
Option 4 [0,±0.0134,±0.0268,±0.0402] 68
Baseline [0,±0.02,±0.04,±0.06] 90
Option 5 [0,±0.0267,±0.0534,±0.0801] 64
Option 6 [0,±0.01,±0.02,±0.03,±0.04] 68
Option 7 [0,±0.015,±0.03,±0.045,±0.06] 72
Option 8 [0,±0.02,±0.04,±0.06,±0.08] 68

By comparing options 1, 3 and 5 to the others it seems like a too sparse dis-
cretization results in poor performance. By comparing options 6 through 8 to
the baseline there is a slight decline in performance which might be due to a lack
of training, as these many points of discretization leads to a higher number of
states. Additionally, option 1 performs rather poorly but has the same sparsity as
the baseline. However, it lacks a representation of higher velocities which might
be the reason to the performance loss.

5.1.2 Analysis of the action discretization

The discretization of the action space, mentioned in Section 4.1.4, is a trade off
between fast training and giving the Q-learning algorithm a wider range of angles
that can be utilized by the agent to move.

The different action spacing configurations and their corresponding success rates
can be found in Table 5.4.

Table 5.4: Resulting success rates for the different sets of action discretiza-
tions.

Action [◦] HW [%]
Option 1 [0,±0.2,±0.3,±0.6] 76
Option 2 [0,±0.2,±0.4,±0.8] 64
Option 3 [0,±0.2,±0.5,±1.0] 64
Option 4 [0,±0.2,±0.3,±0.6,±0.9] 56
Baseline [0,±0.2,±0.4,±0.8,±1.2] 84
Option 5 [0,±0.2,±0.5,±1.0,±1.5] 72
Option 6 [0,±0.2,±0.3,±0.6,±0.9,±1.2] 76
Option 7 [0,±0.2,±0.4,±0.8,±1.2,±1.6] 56
Option 8 [0,±0.2,±0.5,±1.0,±1.5,±2.0] 40

5.1 Phase one 39

It is difficult to draw any clear conclusions from the results. Options 1, 4 and 6
all have the same action sparsity, yet option 4 performs worse. This is surprising
for two reasons. Option 1 lacks a strong steer input that can be used to avoid
holes by accelerating quickly in an opposite direction which should lead to poor
performance. Option 6 has a larger amount of states which should lead to un-
reliable training and thus poor performance. Option 4 should then be a good
compromise but that is not the case. By comparing options 7 and 8 to the rest it
can be seen that these perform worse, which could be due to the lack of training
as a result of more states. However, option 6 contradicts this hypothesis. This
raises the suspicion that the policy generated by option 6 could be a statistical
outlier. The baseline performs the best and based on the results in Section 5.1.1
seems reliable.

5.1.3 Analysis of disturbance

The disturbance is added to simulate model errors and the unpredictability of
the physical system. This is done with disturbance in two stages as described in
Section 4.1.1, one proportional disturbance and one tilt disturbance.

The proportional disturbance randomly scales the anticipated acceleration with
a uniformly distributed percentage. The maximum percentage is the proportion
parameter tested in this section.

The tilt disturbance adds a uniformly distributed tilt offset to the simulated labyrinth
plane that holds for the duration of an episode. The maximum tilt offset is the
tilt disturbance parameter that is tested in this section.

The different values on the disturbance variables are tested both in unison and
isolated. The success rates of the disturbance configurations are presented in
Table 5.5.

Table 5.5: Resulting success rates for the different sets of disturbance com-
binations.

Proportional [%] Tilt disturbance [◦] HW [%]
Option 1 15 0 68
Baseline 20 0 90
Option 2 25 0 84
Option 3 20 0.05 80
Option 4 20 0.1 68
Option 5 20 0.15 76
Option 6 0 0.15 78

From Table 5.5 it seems like the semi static disturbance does in fact not increase
policy performance in presence of the proportional disturbance and isolated it
does not achieve the same performance level as the proportional disturbance. In
addition the results that this disturbance model produces are not consistent, that

40 5 Results

there would be a local minima for the tilt disturbance 0.1 seems unlikely and
might stem from fluctuations in policy to policy performance. In conclusion, tilt
disturbance is not used in the baseline. When comparing option 2 with the base-
line both perform quite well. The reason why option 2 was not used as baseline
is that adding more disturbance does not seem to further increase performance.

5.1.4 Analysis of servo rise speed

Three different values for the servo rise time, mentioned in Section 2.1.1, will
be tested around the approximated servo rise time for a servo angle step. The
tested values are 40 ms, 50 ms and 60 ms. The rise times gives three sets of servo
rise speeds that will be used in the simulation environment. The step amplitude
was presented in 2.1.1 as 1.2◦ which for the tested rise times gives the servo rise
speeds 1.2/0.04 = 30◦/s, 1.2/0.05 = 24◦/s and 1.2/0.06 = 20◦/s. The results of
the servo rise speed sensitivity analysis are presented in Table 5.6.

Table 5.6: Resulting success rates for the servo rise speeds.

Rise speed [◦/s] HW [%]
Option 1 30 74
Baseline 24 88
Option 2 20 86

When comparing option 2 and the baseline there is no significant difference in
performance and they both perform well. Option 1 performs worse which sug-
gests, in comparison to the other 2, that the rise speed is too quick in this config-
uration. The baseline still performs the best.

5.1.5 Analysis of time between actions

The time between actions, mentioned in Section 2.1.1, effectively determines a
time horizon during which the desired steer angle will not change. A too short
time between actions has the effect that all actions more or less leads to the cur-
rent state as the state of the ball will not have time to change. A too long time
between actions, in consideration to the labyrinth environment where the dis-
tance to a wall is usually short, will make several actions lead to the same states.
Some state where the ball has the velocity zero next to a wall, for example a state
where the ball is stuck in a corner. Both of these cases cause issues due to the fact
that the Q-learning algorithm needs to be able to find a preferable action, which
is difficult if many actions lead to the same end state. The sensitivity analysis of
time between actions is presented in Table 5.7.

5.2 Phase two 41

Table 5.7: Resulting success rates for the different times between actions.

Time [s] HW [%]
Option 1 0.04 72
Option 2 0.06 36
Baseline 0.08 88
Option 3 0.1 84
Option 4 0.12 48

It is difficult to draw any clear conclusions from the results as they fluctuate. Op-
tion 3 and baseline performs the best which suggests that time between actions
in the baseline is an acceptable choice.

5.1.6 Analysis of the bounce coefficient

The bounce coefficient, mentioned in Section 4.1.3, determines how much energy
is retained when the ball hits a wall, and by extension how the agent will use the
walls as it travels through the labyrinth. Different values on this parameter was
tested around the baseline to find out how sensitive the end result is to changes
in said parameter.

The results of testing the sensitivity of the bounce coefficient are presented in
Table 5.8.

Table 5.8: Resulting success rates for the different bounce coefficients.

Bounce coefficient HW [%]
Option 1 0.25 80
Option 2 0.3 82
Baseline 0.35 88
Option 4 0.4 82
Option 5 0.45 85

The results are very similar and the differences are statistically insignificant, and
thus the baseline is an acceptable choice.

5.2 Phase two

The sensitivity testing of the learning parameters in this section was done on the
full medium map. The parameters tested in this section are not independent of
the map size, therefore the full map was used to determine their effect on the
resulting success rates. The baseline parameters for phase two are presented in
Table 5.9. These parameters are used for all parameters that are not tested in a
specific sensitivity analysis during phase two.

42 5 Results

Table 5.9: Simulation parameters used as baseline in phase two.

Parameter Value
Speed discretization [0,±0.02,±0.04,±0.06] m/s
Action discretization [0,±0.2,±0.4,±0.8,±1.2] ◦

Proportional disturbance 20 %
Tilt disturbance 0 ◦

Servo rise speed 24 ◦/s
Time between actions 0.08 s
Bounce coefficient 0.35
Episode step limit 20000
Reward goal 10000
Reward hole −40000
Reward velocity −800
Reward hole proximity −50
Primary learning rate Linear 0.8 to 0.5
Secondary learning rate 0.8
Learning operations limit 650 × 106

5.2.1 Episode step limit

The episode step limit, mentioned in Section 4.1.4, is a measure of how deep the
agent explores the labyrinth. If the value is too small it may not be able to reach
the set goal point, and if excessively large it makes the learning process slower.

Three different tests were designed to determine the sensitivity with regards to
the episode step limit parameter. The results of the testing are presented in Table
5.10.

Table 5.10: Resulting success rates for the different episode step limits.

Episode step limit HW success rate [%]
Option 1 15000 24
Baseline 20000 50
Option 2 25000 28

The results suggest that the baseline is a good choice. It is surprising that option
2 is drastically worse than the baseline, it was anticipated that as long as the goal
point is reliably reachable the performance should be similar. The reason for the
drastically worse performance might be due to inefficient training.

5.2.2 Rewards

The rewards, mentioned in Section 4.1.4, are the tools that are available to shape
the behaviour of the derived policy and, to some extent, the training efficiency.

5.2 Phase two 43

The agent needs to know what is good and what is bad to be able to evaluate a cer-
tain move in a certain state. If the evaluation yields unclear results the simulation
might not converge to any optimal policy which, of course, is not desired.

Four different tests were designed to explore the sensitivity of each reward around
the baseline. A policy was derived for each configuration and then tested on the
physical system to determine its effectiveness.

Goal

The result of the sensitivity analysis performed on the goal reward is presented
in Table 5.11.

Table 5.11: Resulting success rates for the different goal rewards.

Goal reward HW success rate [%]
Option 1 7500 48
Baseline 10000 50
Option 2 12500 46

The performance of the policies resulting from the different goal rewards is roughly
the same. The baseline can therefore be considered an acceptable choice.

Hole

The result of the sensitivity analysis performed on the hole reward is presented
in Table 5.12.

Table 5.12: Resulting success rates for the different hole rewards.

Hole reward HW success rate [%]
Option 1 -20000 34
Baseline -40000 36
Option 2 -60000 24
Option 3 -80000 10

It was first thought that as long as the hole reward was negative enough it would
not affect policy performance to a large extent. The results suggests otherwise
and it is clear that a too large value results in poor performance. It is, however,
not clear as to why this loss in performance occurs. One possible explanation
could be that a too negative reward affects the state close to the hole too much.
The effect is that states that could be good candidates along the trajectory are not
valued as much to reach the goal, since the reward for them are lower. Another
interesting observation is that the baseline also had a significant decrease in per-
formance compared to the results in 5.11. In other words the policy performance
seem to fluctuate from training to training, even though the parameters are the
same for both training sessions.

44 5 Results

Hole proximity

The result of the sensitivity analysis performed on the hole proximity reward is
presented in Table 5.13.

Table 5.13: Resulting success rates for the different rewards on hole proxim-
ity.

Hole proximity reward HW success rate [%]
Option 1 0 28
Option 2 -15 26
Option 3 -20 26
Option 4 -25 44
Option 5 -30 28
Option 6 -35 24
Option 7 -40 50
Baseline -50 46
Option 8 -60 36

In this analysis it is not as clear which value on the reward that is the best option.
Option 4 and option 7 might be contenders. Comparing the result of the baseline
in this section to the result in section 5.2.2 and 5.2.2 it seems like the result can
vary between separately trained policies. Therefore the contending options 4 and
7 were retrained and evaluated a second time yielding the results in Table 5.14.

Table 5.14: Reevaluation of options four and seven.

Hole proximity reward HW success rate [%]
Option 4 -25 40
Option 7 -40 36

The reevaluation confirms that option 7, like the baseline, fluctuates in success
rate whereas option 4 seems rather consistent and could be a better option than
the baseline. There is no guarantee that option 4 would continue to yield a con-
sistent success rate if evaluated a third time. However, the agent showed some
desired characteristics when following the policy from option 4 when compared
to the baseline. Primarily, the agent behaved less aggressively near multiple holes
and was not as nervous when it needed to travel past individual holes. Option 4
could be useful to generate a more consistent policy.

Velocity

The result of the sensitivity analysis performed on the velocity reward is split
into two parts corresponding to the two implementations. The first results, pre-
sented in Table 5.15, is for the implementation where the baseline is used and the
velocity is rewarded with a negative quadratic scaling of the reward.

5.2 Phase two 45

Table 5.15: Resulting success rates for the different velocity rewards of
quadratic implementation.

Velocity reward HW success rate [%]
Option 1 -600 48
Option 2 -700 20
Baseline -800 50
Option 3 -900 50

The second results, presented in Table 5.16, corresponds to the implementation
where the velocity has a negative reward under the absolute velocity of 0.01 [m/s]
and over 0.07 [m/s]. These limits were set ad hoc but with two things in mind.
Firstly, 0.01 [m/s] is the threshold where the unstuck sequence activates on the
hardware. Secondly, the highest velocity that is with certainty correctly fit into
the speed discretization is 0.07 [m/s] as the highest value in the discretization is
0.06 [m/s] and the spacing is 0.02 [m/s] which means that a velocity infinitely
close to 0.07 [m/s] would be correctly approximated by 0.06 [m/s] if the dis-
cretization were to continue.

Table 5.16: Resulting success rates for the different velocity rewards of
threshold implementation.

Velocity reward HW success rate [%]
Option 1 -15 20
Option 2 -25 8
Option 3 -35 20

When inspecting the success rates in Table 5.16, it is clear that something has
happened to the performance of the resulting policy when compared to the first
implementation of velocity reward. One possible reason to the performance de-
cline could be that it is harder for the Q-learning algorithm to distinguish be-
tween actions if the immediate reward for different actions are the same. For
example, if the ball is travelling in the x̂ direction with velocity 0.04 the differ-
ence in immediate reward between doing nothing and deaccelerating slightly is
non existent. However, if there is a hole in the direction of travel deaccelerat-
ing would be preferable which the implementation of negative quadratic scaling
rewards immediately.

5.2.3 Primary learning rate

When updating the values of the primary Q-matrix the primary learning rate,
mentioned in Section 4.1.4, states the ratio between how much of the new infor-
mation that is learned and how much of the values in the secondary Q-matrix that
are retained. The primary learning rate can be a static value, but in this report it
is linearly declining as the training progresses to fine tune the policy towards the

46 5 Results

end of simulation. To explore the sensitivity of the primary learning rate, nine
policies were tested on the physical system. The result of the sensitivity analysis
is presented in Table 5.17.

Table 5.17: Resulting success rates for the different primary learning rate
configurations.

Primary learning rate HW success rate [%]
Option 1 [0.7, 0.4] 24
Option 2 [0.7, 0.5] 32
Option 3 [0.7, 0.6] 44
Option 4 [0.8, 0.4] 24
Baseline [0.8, 0.5] 46
Option 5 [0.8, 0.6] 20
Option 6 [0.9, 0.4] 40
Option 7 [0.9, 0.5] 32
Option 8 [0.9, 0.6] 0

By comparing the different options it seems that the primary learning rates with
a mean value of 0.65 performs rather well, that is option three, six and base-
line. For the other configurations a probable cause for the performance loss is
underfitting or overfitting. The baseline is an acceptable choice according to the
sensitivity analysis. In Figures 5.2 and 5.3 the training measurements for two
different primary learning rate setups are shown.

In the figures 5.2 and 5.3 "Total reward per iteration" is the accumulated reward
for each attempt throughout the training process. "Steps per iteration" is the
total amount of steps taken during each attempt. The third graph, "Total reward
divided by step per iteration", represents the total reward for an attempt divided
by the amount of steps in the same attempt. All graphs are smoothed with a
moving average in order to make trends easier to observe. As an effect, the initial
and end values may be exaggerated, for example steps per iteration graph in
Figure 5.3.

The setup in Figure 5.2 is Option 6 from Table 5.17 and the setup in 5.3 is Option
8. In Table 5.17 it is clear that these options are very different when it comes to
performance and when we compare the training data the graphs do differ as well.
Looking at the end of the "Total reward per iteration" and "Steps per iteration"
graphs, an exponential behaviour can be observed in 5.3 that is not pronounced
in Figure 5.2. This could be a sign of overfitting which could explain the poor
performance of Option 8.

5.2 Phase two 47

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

−40000

−30000

−20000

−10000

0

10000

To
ta
l r
ew

ar
d

Total reward per iteration

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

200

400

600

800

St
ep

s

Steps per iteration

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

−1000

−800

−600

−400

−200

0

To
ta
l r
ew

ar
d
pe

r s
te
p

Total reward divided by step per iteration

Figure 5.2: The resulting statistics from training the policy with primary
learning rate [0.9, 0.4].

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

−40000

−30000

−20000

−10000

0

To
ta
l r
ew

ar
d

Total reward per iteration

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

100

200

300

400

500

600

St
ep

s

Steps per iteration

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

−1000

−800

−600

−400

−200

0

To
ta
l r
ew

ar
d
pe

r s
te
p

Total reward divided by step per iteration

Figure 5.3: The resulting statistics from training the policy with primary
learning rate [0.9, 0.6].

48 5 Results

5.2.4 Secondary learning rate

To prevent the expected rewards in the primary Q-matrix from growing too fast
from a good or a bad move a secondary learning rate, mentioned in Section 4.1.4,
in combination with a secondary network is utilized. To explore the sensitivity
of the secondary learning rate a few adjacent values to the baseline were tested
on the physical system. The result of the sensitivity analysis is presented in Table
5.18.

Table 5.18: Sensitivity analysis result of the secondary learning rate.

Secondary learning rate HW success rate [%]
Option 1 0.65 24
Option 2 0.7 40
Option 3 0.75 36
Baseline 0.8 28
Option 4 0.85 12
Option 5 0.90 16
Option 6 0.95 4

This result shows once again that the performance of the baseline policy is not
consistent. In this sensitivity analysis option two and three shows promising re-
sults that are close to the previously displayed results of the baseline. It could
prove useful to decrease the secondary learning rate when developing a high per-
formance policy, however not too much as option one suggests.

5.2.5 Learning operations limit

The learning operations limit, mentioned in Section 4.1.4, is a measure of how
much training the agent does in the simulation environment. Too few learning
operations and the path does not converge. Too many learning operations on the
other hand, makes the policy overfitted. In both cases performance suffers. The
results of the sensitivity analysis of the learning operations limit are presented in
Table 5.19.

5.3 Experience replay evaluation 49

Table 5.19: Sensitivity analysis result of the learning operations limit.

Learning operations limit HW success rate [%]
Option 1 450×106 32
Option 2 500×106 48
Option 3 550×106 40
Option 4 600×106 36
Baseline 650×106 50
Option 5 700×106 52
Option 6 750×106 68
Option 7 800×106 60
Option 8 850×106 40

By comparing the results it seems that more training results in better policy per-
formance to a certain degree. Option eight performs poorly compared to option
six and seven. This could either be due to overfitting or a statistical variation.
Baseline and option five performs to a similar degree as has been observed pre-
viously from the baseline. Option one also performs poorly, which instead could
be to underfitting or a statistical variation. Ideally it seems that the learning op-
erations limit could benefit from being set higher.

5.3 Experience replay evaluation

Experience replay, mentioned in Section 3.1.1, uses past state transitions multiple
times to extract more information about the environment. This is done by sam-
pling a random subset of experiences stored in a memory. The memory stores
information for 300000 state transitions and each sampled subset consists of b
state transitions. In Table 5.20 the success rate for experience replay with two
different sample sizes are presented side by side with the results of the baseline
without experience replay. That is, a sample size of 1 means no experience replay
is used.

Table 5.20: Success evaluation of experience replay.

Sample size HW success rate[%]
Baseline 1 44
Option 1 2 8
Option 2 3 0

The results from this test shows that experience replay cannot be used without
extensive complimentary modifications. Lower learning rate and larger sample
sizes in combination with less training could improve the results as that would
decrease the risk of overfitting which may be the reason to the poor performance.

50 5 Results

5.4 The best performing policy achieved

The sensitivity analyses in Section 5.1 and 5.2 showed that the baseline could
benefit from some adjustments. A new policy was developed with adjusted pa-
rameters in an effort to improve performance further. In Table 5.21 the adjusted
parameter set is presented with adjusted parameters marked by an asterisk.

Table 5.21: Simulation parameters used in an effort to boost performance.

Parameter Value
Speed discretization [0,±0.02,±0.04,±0.06] m/s
Action discretization [0,±0.2,±0.4,±0.8,±1.2] ◦

Proportional disturbance 20 %
Tilt disturbance 0 ◦

Servo rise speed 24 ◦/s
Time between actions 0.08 s
Bounce coefficient 0.35
Episode step limit 20000
Reward goal 10000
Reward hole −40000
Reward velocity −900
Reward hole proximity* −25
Primary learning rate Linear 0.8 to 0.5
Secondary learning rate* 0.7
Learning operations limit* 750 × 106

The distribution of the failed runs, referring to which hole the run was termi-
nated in, are presented in Figure 5.4. The holes are identified by the numbers
declared in Figure 2.3. It is clear that the policy derived from the RL algorithm
struggled the most with hole six. This was partly due to the plane being slightly
warped which was most evident around the top right and bottom left corner in
Figure 5.5.

Figure 5.5 shows the trajectory of a successful run on the hardware where the ball
can be observed rolling in the wrong direction in the passage by hole six several
times, due to the warped plane, before successfully passing.

5.4 The best performing policy achieved 51

Figure 5.4: The distribution of the holes that the ball fell in out of 50 rounds.

-20 -10 0 10 20

x [cm]

-15

-10

-5

0

5

10

15

y
 [

c
m

]

RL policy on medium labyrinth level

Ball path

Goal

Figure 5.5: The trajectory of a successful run on the physical system using
RL derived policy.

In Figure 5.6 then simulated trajectories are presented to show the expected tra-
jectory. Comparing with Figure 5.5 it can be seen that the navigation in the sim-
ulation environment is better. This is of course due to the fact that the policy
is trained to control the model and the modelled disturbances implemented in

52 5 Results

the simulation environment, not the more unpredictable physical system. When
applied to the physical system it still works well, but some issues occur in cer-
tain areas like the area in between hole one and two, and then in the passage
between hole five, six and seven. It is not clear from Figure 5.5, but the policy
also struggles to overcome the labyrinth plane tilt in the bottom left corner of the
map.

0.00 0.05 0.10 0.15 0.20 0.25
x pos [m]

−0.20

−0.15

−0.10

−0.05

0.00

y
po

s [
m
]

0 5 10 15 20 25
Time [s]

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Ab
so

lu
te
 v
el
oc

ity
 [m

/s
]Figure 5.6: The resulting paths following the policy in the simulation envi-

ronment.

In Figure 5.7 the reward progression during the training is presented. Perhaps
the most important thing to note is that the total reward per iteration increases
linearly towards the end of training and not exponentially which can be a sign of
overfitting.

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

−40000

−30000

−20000

−10000

0

10000

To
ta
l r
ew

ar
d

Total reward per iteration

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

250

500

750

1000

1250

St
ep

s

Steps per iteration

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e6

−1000

−800

−600

−400

−200

0

To
ta
l r
ew

ar
d
pe

r s
te
p

Total reward divided by step per iteration

Figure 5.7: The reward progression during simulation.

5.5 Gain Scheduling LQR evaluation 53

5.5 Gain Scheduling LQR evaluation

The LQR with gain scheduling had the best performance when [4] was conducted,
then the control method managed 78.2 % success rate. However, the physical
system is made of wood, a material that is sensitive to changes in humidity and
temperature that over time could affect the the way the physical system behaves.
There are also plastic linkages between the servos and the labyrinth plane that
could have gotten worn out from repeated tests and investigations since the 78.2
% success rate were achieved. Another factor that might affect the performance is
that the wooden plane has been colored, which might have warped the labyrinth
plane or introduced irregularities on the surface. Thus the gain scheduled LQR
was tested again to find out if the physical system has gotten harder to control
since [4] were conducted.

The hole statistics are presented in Figure 5.8 and, judging by this figure, the
irregularities seems to have increased over time. In Figure 5.9 the trajectory of a
successful run on the hardware can be seen. From this trajectory it can be seen
that the LQR struggles in the same places that the RL derived policy in 5.4 do
which suggests that the tilt working against the control algorithms is stronger in
these areas. Specifically the area around hole 1 and in the bottom left corner by
hole 13 there seem to be a lot of tilt to overcome. Another area that is difficult for
both algorithms is the passage between hole six and four. The RL derived policy
drives the ball back and forth here for some reason and the LQR struggles to avoid
hole 6. The place where the LQR loses in comparison to the RL derived policy is
around hole 12 where the ball falls in 8 out of 50 times instead of 2 times like the
RL policy. A comparison in success rate between the different control methods is
presented in Table 5.22.

Figure 5.8: The distribution of the holes that the ball fell in. Out of 50 runs
the ball ended up in a hole 27 times.

54 5 Results

-20 -10 0 10 20

x [cm]

-15

-10

-5

0

5

10

15

y
 [

c
m

]

GS on medium labyrinth level

Ball path

Ref. path

Goal

Figure 5.9: The trajectory of a successful run on the physical system using
LQR.

Table 5.22: Comparison of success rates in solving the BRIO labyrinth using
different control methods.

Control method Success rate [%]
Gain scheduled LQR (2020) 78.2
Gain scheduled LQR (2022) 46
Best performing RL policy 66

6
Challenges and future work

The clear challenge that was found when trying to use a simulation derived policy
on a physical system was to find an accurate representation of the disturbances
present. The warp of the labyrinth plane proved to be a real challenge to over-
come. The warping was so large in certain areas that it completely nullified the
steer inputs provided by the policy. This is a perfect area to investigate in future
work. The policy provided by the simulation could be a basis for an online pol-
icy estimation that tweaks the steer signals while running on the physical system
with the goal of mitigating the effects of the warped labyrinth plane.

Further on the subject of warping, it has probably gotten worse since the work
in [4] was performed. This is suspected since a far worse performance of the
gain scheduled LQR was recorded during this thesis than what was presented in
[4]. During this thesis the labyrinth plane was painted green to improve contrast
between the ball and the plane, this could be one contributing factor to worsen
the warp of the plane. Other factors could be the time that has passed since
the last thesis and the fact that the physical system is made from wood. Wood
is largely affected by air humidity and could also be affected by uneven drying
when the plane is heated by sunlight. This could also be a contributing factor to
the wide variance in policy performance between individual training sessions.

As previously mentioned, the modelling of disturbance is a big challenge and
there was one type of disturbance that would have been interesting to implement
if there were more time: observatory disturbance. Giving the Q-learner less accu-
rate knowledge of where the ball is may be a closer match to the ball positioning
available on the physical system. This disturbance could improve the respect
for holes since the Q-leaner would not have perfect knowledge of where the ball
is. It is possible that the other disturbance implementations may benefit from

55

56 6 Challenges and future work

tweaking as well if a new type of disturbance is added.

Other ML algorithms could have been tried as well. By coloring the walls in a
bright colour to distinguish them from the rest of the labyrinth plane it would be
interesting to see what could be achieved with a deep Q-learning algorithm that
trains online using the video feed as input, perhaps similar to the one in [3].

7
Conclusion

The problem formulations stated in Section 1.2 will be collected and summarized
in this section.

1. What challenges arise when using a steer policy derived from simulation?
The policy that is derived in the simulation environment is hard coded on to the
physical system and that shows. Misalignment of the labyrinth plane, beginning
a session without the labyrinth plane in level and other varying factors affect the
performance of the policy and it has no way of compensating for these distur-
bance factors. Despite this shortcoming the Q-learner manages to plan such a
safe path that it more often than not can travel through the entire labyrinth. To
not be dependent on a path to follow and to be able to take advantage of the walls
to stay at a safe distance from holes is the algorithms greatest advantage. One
oversight that was noticed by the end of the thesis work was the observational dis-
turbance. As the labyrinth plane tilts the positioning of the ball becomes faulty.
To either model this dynamic as part of the model or by introducing a random
observational disturbance might make the Q-learner even more cautious and by
extension more successful. The observational disturbance, however, is small.

2. Is it enough to add uncertainty to the motion model in order to bridge the
gap between the simulation environment and the physical system? The gap
has not fully bridged by introduction of disturbance. However, as seen in section
5.1.3 to include disturbance in the simulation environment improves the perfor-
mance of the derived policy greatly. The observable effect is that walls are used to
a larger extent when navigating through the maze. This makes for safer driving
and in turn a higher success rate. However, the walls are not being used to the
extent that they could be. If this is because there is an even better disturbance
model out there or if the rewards can be set differently to promote this behaviour

57

58 7 Conclusion

are subjects for closer investigation. Investigating if it is possible to model the
warping of the labyrinth plane could increase the fidelity of the simulation envi-
ronment and lead to improved performance. To get a complete representation,
fine-tuning online on the physical system could be required.

3. What performance benefits, if any, can be observed using the Q-learning
method compared to a gain scheduled LQR? As seen in Section 5.4 and 5.5 the
RL derived policy outperforms the more classical path following gain scheduled
LQR by some margin, 68 % success rate compared to 46 %. But the LQR still
have some benefits over the RL derived policy, the biggest of which is the ability
to compensate for disturbances that are present on the physical system. There
is a possibility that the two techniques could be combined to achieve even better
performance. By doing path planning in the simulation environment to plan a
safe route, and then follow that route with the gain scheduled LQR to be able to
compensate for disturbances, an even higher success rate might be possible.

Bibliography

[1] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.
doi: 10.1126/science.153.3731.34. URL https://www.science.org/
doi/abs/10.1126/science.153.3731.34.

[2] BRIO, (accessed: 30.12.2021). URL https://www.brio.se/
produkter/alla-produkter/roll-lek-spel/labyrinth/.

[3] Volodymyr Mnih et al. Human-level control through deep
reinforcement learning. Nature, 2015. URL https:
//web.stanford.edu/class/psych209/Readings/
MnihEtAlHassibis15NatureControlDeepRL.pdf.

[4] Emil Frid and Fredrik Nilsson. Path following using gain scheduled LQR
control. diva, 2020. URL http://liu.diva-portal.org/smash/get/
diva2:1451989/FULLTEXT01.pdf.

[5] Torkel Glad and Lennart Ljung. Reglerteori - Flervariabla och olinjära
metoder. Studentlitteratur AB, 2003.

[6] Fredrik Gustafsson. Statistical Sensor Fusion. Studentlitteratur AB, 2018.

[7] Ulf Janfalk. Linjar algebra. MAI LiU, 2014.

[8] MathWorks. Filtering and smoothing data, (accessed:
03.05.2022). URL https://se.mathworks.com/help/
curvefit/smoothing-data.html?fbclid=IwAR1jdXDb4_
N7B0g5yCPNiJNAWvWriMSbvT53ZZjqa593tOp2LEwsk5PrQHE.

[9] Christopher J.C.H. Watkins and Peter Dayan. Technical note q-
learning. Kluwer Academic Publishers, 1992. URL https://
link-springer-com.e.bibl.liu.se/content/pdf/10.1023/A:
1022676722315.pdf.

[10] Yingjun Ye, Xiaohui Zhang, and Jian Sun. Automated vehicle’s behavior
decision making using deep reinforcement learning and high-fidelity simu-
lation environment. Transportation Research Part C: Emerging Technolo-
gies, 107:155–170, 2019. ISSN 0968-090X. doi: https://doi.org/10.1016/

59

https://www.science.org/doi/abs/10.1126/science.153.3731.34
https://www.science.org/doi/abs/10.1126/science.153.3731.34
https://www.brio.se/produkter/alla-produkter/roll-lek-spel/labyrinth/
https://www.brio.se/produkter/alla-produkter/roll-lek-spel/labyrinth/
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
http://liu.diva-portal.org/smash/get/diva2:1451989/FULLTEXT01.pdf
http://liu.diva-portal.org/smash/get/diva2:1451989/FULLTEXT01.pdf
https://se.mathworks.com/help/curvefit/smoothing-data.html?fbclid=IwAR1jdXDb4_N7B0g5yCPNiJNAWvWriMSbvT53ZZjqa593tOp2LEwsk5PrQHE
https://se.mathworks.com/help/curvefit/smoothing-data.html?fbclid=IwAR1jdXDb4_N7B0g5yCPNiJNAWvWriMSbvT53ZZjqa593tOp2LEwsk5PrQHE
https://se.mathworks.com/help/curvefit/smoothing-data.html?fbclid=IwAR1jdXDb4_N7B0g5yCPNiJNAWvWriMSbvT53ZZjqa593tOp2LEwsk5PrQHE
https://link-springer-com.e.bibl.liu.se/content/pdf/10.1023/A:1022676722315.pdf
https://link-springer-com.e.bibl.liu.se/content/pdf/10.1023/A:1022676722315.pdf
https://link-springer-com.e.bibl.liu.se/content/pdf/10.1023/A:1022676722315.pdf

60 Bibliography

j.trc.2019.08.011. URL https://www.sciencedirect.com/science/
article/pii/S0968090X19311301.

[11] Shangtong Zhang and Richard S. Sutton. A deeper look at experience
replay. CoRR, abs/1712.01275, 2017. URL http://arxiv.org/abs/
1712.01275.

https://www.sciencedirect.com/science/article/pii/S0968090X19311301
https://www.sciencedirect.com/science/article/pii/S0968090X19311301
http://arxiv.org/abs/1712.01275
http://arxiv.org/abs/1712.01275

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Goal
	1.2 Problem formulation
	1.3 Related research

	2 System Description and Model
	2.1 System Model
	2.1.1 Servo modelling

	3 Theoretical background
	3.1 Q-learning
	3.1.1 Experience Replay Q-learning

	3.2 Discrete Kalman filter
	3.3 Linear Quadratic Regulator
	3.3.1 Gain scheduled LQR

	4 Implementation
	4.1 Simulation software
	4.1.1 Disturbance
	4.1.2 The map
	4.1.3 The agent
	4.1.4 Reinforcement learning
	4.1.5 The policy smoothing

	4.2 Software adjustments for policy deployment on the physical system
	4.2.1 Ball tracking
	4.2.2 Policy Mapping Controller
	4.2.3 Servo

	5 Results
	5.1 Phase one
	5.1.1 Analysis of the speed discretization
	5.1.2 Analysis of the action discretization
	5.1.3 Analysis of disturbance
	5.1.4 Analysis of servo rise speed
	5.1.5 Analysis of time between actions
	5.1.6 Analysis of the bounce coefficient

	5.2 Phase two
	5.2.1 Episode step limit
	5.2.2 Rewards
	5.2.3 Primary learning rate
	5.2.4 Secondary learning rate
	5.2.5 Learning operations limit

	5.3 Experience replay evaluation
	5.4 The best performing policy achieved
	5.5 Gain Scheduling LQR evaluation

	6 Challenges and future work
	7 Conclusion
	Bibliography

