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Abstract 

Speech understanding is a fundamental human ability that enable flexible communication among 

individuals. Understanding natural speech in normal conditions is a fast and automatic process. It 

is facilitated through integration between prior knowledge about a speech signal and multimodal 

speech inputs. In situations where listening conditions are adverse, for example due to hearing 

impairment or environmental noise, speech understanding is challenged and reliance on prior 

knowledge increases. Prior knowledge about phonology and semantics are involved in predictive 

mechanisms that generates more successful speech understanding. Working memory processing 

seems to be involved in influencing the quality of such predictions. To evaluate the role of 

working memory in the quality of linguistic predictions, a cortical comparison using MEG was 

used. MEG data from a previous experiment, where participants performed an auditory sentence 

completion task with background noise was analyzed. Results from statistical analysis, time-

domain analysis and time frequency analysis suggests that differences in working memory 

processing does not influence the quality of linguistic predictions. Further research is required to 

assess what factors are involved in the quality of linguistic predictions which could lead to 

unsuccessful speech understanding, in order to improve communication in everyday situations.   

 

Keywords: Speech understanding, Linguistic predictions, Working memory, ELU-model. 
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1. Introduction 
Human language has an extensive expressive power that enables flexible communication and 

understanding among individuals. The ability to process and understand language is highly 

complex and unique to humans. Understanding speech is not just about auditory processing. 

Cognition is highly involved in communication, especially when we interpret speech 

(Arlinger, 2009). To understand speech, we process, integrate and interpret several types of 

information in complex auditory scenes to create a holistic representation of what the 

interlocutor means to say. Contextual cues, past experiences and phonology are examples of 

information that is used in order to move from perception to meaning while listening to 

speech (Holt & Peelle, 2022).  

 

To understand how this multimodal representation is processed and linked to meaning, it's 

crucial to investigate the interplay between higher-and lower-order cognitive functions 

(Arlinger, 2009). Due to the integration between perception and cognition, humans are able to 

understand speech in complex auditory scenes fast and with ease. However, when listening 

conditions are adverse, speech processing is challenged (Rönnberg et al., 2013). These 

challenges can arise in several everyday situations, such as when speech is interfered with 

background noise for example in classrooms, at airports or in restaurants. Due to the covid- 

pandemic there has been an increase in virtual meetings and technical signal distortions can 

affect communication. People with hearing impairment face challenges due to adverse 

listening conditions on a daily basis. It is important to understand how these constraints affect 

how we understand speech and how we can aid these processes to improve the quality of 

speech understanding in everyday situations. Federmeier (2007) explains that when speech is 

degraded, we tend to rely more on information stored in long term memory in order to 

compensate for the loss of auditory information. Such information can be predictions about 

the words in a sentence that is currently unfolding. Signoret et al. (2018) showed in a study 

that we guess what the interlocutor means to say based on both the form and meaning of the 

previous words of a sentence that is stored in long term memory which enhance perceptual 

clarity.  

 

Even though we base our understanding of speech events in optimal listening conditions by 

thinking ahead, predictive mechanisms seem to be more important when listening conditions 

are not optimal (Federmeier, 2007). Research on the quality of such a linguistic prediction in 

adverse listening conditions is limited. Previous research on speech understanding in adverse 

listening conditions have highlighted the role of working memory in integrating multimodal 

speech input with knowledge stored in long term memory, in which linguistic predictions are 

formed. Working memory retrieves, stores and processes relevant information simultaneously, 

and inhibits irrelevant information (Rönnberg et al., 2013). Such processing has partly been 

associated with alpha activity within the brain (Yurgil et al., 2020) and more specifically in 

fronto-parietal areas (Eriksson et al., 2015). Results from behavioral studies suggest that the 

ability to use information in a predictive manner to facilitate speech understanding is related 

to working memory capacity when the speech is degraded (Signoret et. al., 2018; Rönnberg et 

al., 2013). No neuroscientific studies have been conducted to investigate this relationship 

between working memory and the quality of a prediction. Therefore, it is interesting to 

investigate if differences in working memory processing (alpha activity in fronto-parietal 

areas) during speech processing could influence the quality of linguistic predictions, which 

has shown to have an effect on speech understanding.  
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1.1 Aim of the study 

The aim of this study is to investigate the role of working memory on the quality of linguistic 

predictions in adverse listening conditions. As an extension to the behavioral results presented 

by Rönnberg (2019) and Signoret et al. (2018), it is interesting to investigate if working 

memory processing differs between higher quality predictions and lower quality predictions, 

on a cortical level. This study compares cortical responses in frontoparietal areas of the brain 

through magnetoencephalography (MEG) during a sentence-completion task with background 

noise. This could assess if differences in working memory processing is involved in 

facilitating speech understanding in a predictive way. Results from such a cortical comparison 

are valuable to get a broader understanding of the underlying factors of when linguistic 

predictions are not successful and for example how we can aid these processes for people with 

hearing impairment to facilitate better speech understanding. Two hypotheses have been 

formulated based on current knowledge on speech understanding and working memory. 

 

1.2 Hypothesis 

(1) There is a difference in cortical activity in fronto-parietal areas between higher quality 

predictions and lower quality predictions, among participants performing a sentence 

completion task with background noise.  

 

(2) There is a difference in alpha cortical activity in fronto-parietal areas between higher 

quality predictions and lower quality predictions, among participants performing a sentence 

completion task with background noise.  

 

  



11 

 

2. Theory 

2.1 The role of cognition in speech comprehension 

Speech understanding is a complex ability that relies on both perceptual and cognitive 

processing in order to make sense of ambiguous perceptual signs and signals such as speech. 

Top-down processing (processing of prior knowledge) are integrated with bottom-up 

processing (processing of perceptual information) to facilitate speech understanding (Holt & 

Peelle, 2022). On an anatomical level, cortical and subcortical structures of the brain seem to 

be involved during speech processing and are integrated in subcortical-cortical networks in 

order to integrate top- down and bottom- up information (Chandrasekaran et al. 2022). This 

highlights the involvement of cognition in speech understanding. Prior knowledge about 

words are an example of information that is processed top-down and integrated with the 

perceptual input (Holt & Pellee, 2022). Information about a spoken word that is stored in long 

term memory (LTM), consists of multimodal information that has been acquired throughout 

the lifespan (Federmeier, 2007). To what degree top-down and bottom-up processing is active 

during processing of speech, depends on the complexity of the auditory scene (Arlinger, 

2009). Federmeier (2007) explains that during adverse listening conditions, prior knowledge 

stored in LTM becomes more important. When the sensory signal is distorted in some way, 

the brain supplements for the lack of auditory information with information about the 

linguistic and communicative context it's been used before, stored in LTM. This 

supplementary information can consist of knowledge about semantics and phonology, which 

activates predictions about the words that are unfolding.  

 

2.2 Predictive brain hypothesis 

Predictive mechanisms in speech comprehension is an example of top-down processing. 
Federmeier (2007) presents the predictive brain hypothesis that describes how the brain 

constantly tries to predict the outcome of external events based on information stored in LTM. 

In other words, the brain constantly thinks ahead of time. In speech understanding, when there 

is an opportunity to predict what words are going to unfold based on context, the brain takes 

that opportunity. Federmeier further explains that this predictive mechanism influences 

language processing through interpretation of contextual and linguistic cues, which affects the 

processing speed and the perceived ease of speech. Hence, this predictive mechanism 

supplements the auditory sensory information in a top-down manner, even more so during 

processing of degraded speech in order to complement a distorted signal. The level of 

influence this predictive mechanism has on speech processing depends on to what extent the 

contextual and linguistic cues have been preactivated (i.e., in what degree the contextual cues 

are familiar to the speech listener). Signoret et al., (2018) showed in a study that semantic 

(meaning-based) and phonological (form-based) priming enhance perceptual clarity in adverse 

listening conditions. Furthermore, degraded speech is easier perceived when semantic and/or 

phonological information that's been previously presented in a sentence matches the 

phonology and semantics in the speech that's currently unfolding. Rönnberg et al., (2013) 

emphasize the role of working memory (WM) in integrating auditory input and information 

stored in LTM, in which linguistic predictions are formed.  
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2.3 The Ease of Language Understanding model  

Rönnberg et al. (2013) presents The Ease of Language Understanding model (ELU). It is a 

theoretical framework that highlights the role of working memory (WM) in sensory- cognitive 

integration in speech understanding (Figure 1). It is based on a collection of empirical 

findings about language comprehension during suboptimal listening conditions. Baddley 

(2012) explains that WM is a limited capacity memory system that interacts with LTM. WM 

holds and processes relevant information simultaneously and inhibits or ignores irrelevant 

information. During language processing, WM seems to be involved in compensating for 

when speech perception is not optimal by modulate the reliance on prior knowledge. 

According to the ELU-model, during optimal listening conditions speech comprehension is 

facilitated by automatic, implicit and rapid processes. However, in adverse listening 

conditions, the processing of speech becomes a slower explicit process, which requires more 

cognitive load. If multimodal language inputs do not match phonological representations in 

LTM (due to for example noisy backgrounds or hearing impairment) slower, explicit 

processing is required. A phonological mismatch in RAMBPHO processing (Rapid Automatic 

Multimodal Binding of PHOnology) is what activates these slower, explicit processes 

(Rönnberg et al., 2013). 

 

Rönnberg et al. (2013) explains that RAMBPHO is the process of integrating multimodal 

phonological representations with LTM information in an episodic buffer. It's concerned with 

phonological processing and tries to match incoming speech sounds to lexical representations 

stored in LTM. If the lexical access is successful (which it normally is in normal listening 

conditions) the processing is rapid and implicit and does not require explicit processing. When 

the RAMBPHO output is ambiguous in relation to representations in LTM a mismatch occurs, 

lexical access is delayed and explicit processing become involved. These explicit processes 

disrupt the fast, automatic feed-forward flow of information in order to compensate for 

ambiguous RAMBPHO output. Explicit processing operates in seconds and implicit 

processing operates in milliseconds. Therefore, phonological binding during RAMBPHO is a 

prerequisite for generating easy, fast and optimal speech comprehension. 

 

 
Figure 1: Illustration of ELU-model adopted from Rönnberg et al., (2013). 
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2.4 The role of Working Memory in speech prediction 

In order to integrate information from semantic (recall of general facts) LTM and episodic 

(recall of personal experiences) LTM, in which linguistic predictions are formed, complex 

working memory capacity (WMC) seem to be crucial since it requires the storage and 

processing of information simultaneously (Rönnberg et al., 2013). Baddley (2012) explains 

that WMC is the limited capacity of temporary storage and processing of information that is 

useful for the particular task. According to the ELU model, the role of working memory in 

speech comprehension is divided into two functional parts; pre-diction (before mismatch has 

occurred) and post-diction (after a mismatch has occurred). In the pre-dictive aspect of the 

ELU, working memory is suggested to involve priming and pre-tuning of RAMBPHO (i.e. 

enabling linguistic predictive mechanisms) (Rönnberg et al., 2021). Signoret et al. (2018) 

found a positive relationship between performance on a WM- test and the enhancement of 

perceptual clarity due to semantic and phonological priming with background noise. This 

highlights the involvement of working memory capacity in linguistic predictions in pre-

dictive processing, and how it could be related to enhanced perceptual clarity. In such 

processing, working memory is automatically involved in integration- and- modulation of top-

down information about phonology and semantic with speech input. The ELU also suggests 

that priming and tuning of RAMPBPHO is related to directing cognitive resources and 

sensory- gating mechanisms (this is further explained in the following section) (Rönnberg et 

al., 2021). Rönnberg et al. (2013) explains that a negative relationship has been found 

between the quality of a speech signal and reliance on linguistic knowledge during speech 

processing. The more the signal is distorted, the more the brain relies on predictive 

mechanisms in order to avoid a mismatch in RAMBPHO. This highlights the importance of 

investigating what makes a good prediction, when the reliance on predictions is high. These 

results presented points towards the involvement of WM in determining the quality of 

linguistic predictions during RAMBPHO and hence its involvement in enhancing the 

perceptual clarity during adverse listening conditions. 

 

2.5 Cortical activity related to Working Memory  

Working Memory functions seem to be generated by a fronto-parietal network that involves 

integration of subcortical and cortical regions (Eriksson et al., 2015). Working memory 

processing has been shown to be related to theta (4-8 Hz) and alpha (8-12 Hz) oscillatory 

activity (Yurgil et al., 2020). The Prefrontal cortex (PFC) has generally been related to giving 

rise to alpha- activity. These oscillations have been found to arise from the involvement of 

PFC in gating sensory information while information is updated in working memory and to 

inhibit activity that are not involved in sensory processing of speech input (Klimesch et al., 

2007). Gray et al. (2022) suggests that the WM processes that have been associated with alpha 

activity could be related to the pre-dictive functional processes described in the ELU-model 

presented by Rönnberg et al. (2021). Obleser et al. (2012) explains that an increase in alpha- 

power has been shown to coincide with an increase in listening effort. Increased listening 

effort involves gating of lexical integration and to inhibit the processing of irrelevant 

incoming auditory input such as background noise. When a speech signal is distorted through 

background noise, such gating and inhibitory mechanisms seem to coincide with increased 

alpha activity. Gray et al. (2020) states that it's likely that during adverse listening conditions, 

which requires more listening effort, the inhibitory and gating mechanisms require higher 
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cognitive load than in normal listening conditions. Therefore, alpha activity may coincide 

with the linguistic pre-dictive processes described in the ELU, as a function of increased 

listening effort, and allow for more successful phonological binding in RAMBPHO during 

degraded speech (Figure 1).  

2.6 Magnetoencephalography (MEG) 

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that records brain 

activity through sensors that are distributed over the scalp. This technique detects and record 

magnetic fields that arise through small changes in electrical activity produced by the neurons 

within the brain. Therefore, MEG can be used to study cognitive functioning and its relation 

to neural processing. The data from the recordings consists of waveforms that show the 

amplitude (signal strength measured in Tesla) and frequency (oscillations measured in Hertz) 

of the brain activity in a certain area, at a certain point in time (Hansen et al., 2010).  

MEG has a high temporal resolution (captures changes in activity in real time) which makes it 

optimal for capturing and measuring rapid and complex processing within the brain that 

underlies cognitive functions such as the predictive processes in speech understanding. It's 

able to capture brain activity with a precision of sub-milliseconds. MEG, shared with most 

neuroimaging techniques, faces the inverse problem (the difficulty of finding the exact 

location produced by the signal). However, MEG is considered to have a higher spatial 

resolution (localization of the activity) than a similar neuroimaging technique called EEG 

(electroencephalogram). This makes MEG a suitable technique for answering questions about 

when and where certain cognitive processes can be observed. The magnetic fields that can be 

detected outside of the scalp are extremely small and require superconducting sensors 

(SQUIDS) that are sensitive to extremely small changes in magnetic fields (Hansen et al., 

2010).  

In order to minimize the interference of magnetic fields from sources other than the brain, the 

MEG- experiments need to be executed in magnetically shielded rooms (Hansen et al., 2010). 

Despite this, raw- MEG data is highly contaminated due to various reasons. Gross et al. 

(2013) emphasizes the importance of cleaning the MEG- data before analysis to remove 

artifacts (unwanted signals that are visible in the data). This is called the preprocessing step. 

During preprocessing, external artifacts (disturbance from magnetic fields outside the body 

such as power lines) system related artifacts (signal disturbance due to bad sensors and 

SQUID jumps), physiological artifacts (signals due to head movements, heart activity, eye 

movement and eye blinks) are detected and removed in order to extract the brain signals that 

are interesting for the study. He further states that in MEG studies, it's important to report 

what preprocessing steps have been utilized and in what order these have been carried out 

since this affects the characteristics of the signal.  

Gramfort et al. (2014) explains that open- source software programs, such as the Mne-Python 

package provides algorithms that aid preprocessing and analyzing of MEG- data. This helps 

the scientist to focus on the cognitive and neurological aspect of interpretation of the MEG 

signal. These algorithms can be implemented by programming a simple script that imports 

methods and functions provided by the software program and works as a tool to interpret and 

clean the MEG- data that does not rely on expert knowledge in physics or mathematics.  
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2.6.1 Evoked responses and Time Frequency Analysis  

To analyze MEG data, interpretation of evoked responses can be executed. Evoked responses 

are the mean amplitude of a cortical response that's time- locked to a specific stimulus. These 

are extracted by averaging epochs (a segment of the MEG-recording that is related to a 

specific time- event) over multiple trials under the same condition. By averaging the epochs, 

the waveforms that are related to the stimulus trigger, will enhance and uncorrelated activity 

will degrade. This procedure filters out the evoked responses that are a result of the external 

stimulus trigger that sets off a certain cortical activity. Evoked responses from different 

conditions (or the same) can be compared, predicted etc. within subjects and across subjects 

depending on the experimental design. In MEG, evoked responses refer to the mean amplitude 

of the magnetic field signal. These averages are referred to as Event Related Fields (ERF). 

Analysis of ERFs can say something about the power of a signal over time and is therefore 

categorized as a Time-domain analysis. It is also possible to investigate where this event- 

related activity is localized (Hansen et al., 2010). 

An analysis method that supplements a time-domain analysis, is a time frequency analysis. 

This analysis method reveals oscillatory activity in a specified time period. Through this, it is 

possible to investigate specific frequency bands that are present in the data. Different types of 

brain activity are related to certain frequency bands. For example, alpha (waveforms with 

more peaks over time, around 8-12 Hz) and theta (waveforms with fewer peaks over time, 

around 4-8 Hz) activity being related to Working Memory functions (Yurgil et al., 2020). This 

can be used to answer questions about cognitive functions that have been related to certain 

frequencies; where these frequencies are present in time, the signal strength of the frequencies 

and the spatial location of the frequencies. The result from a time frequency analysis is 

typically interpreted through dynamic three-dimensional plotting that displays changes in 

amplitude over frequency and time (Hansen et al., 2010). 

2.8 About this study 

MEG-data collected during the study ñThe Influence of Form-and Meaning-Based Predictions 

on Cortical Speech Processing Under Challenging Listening Conditions: A MEG Studyò by 

Signoret et al. (2020) was provided by Carine Signoret to be used for this study with the 

purpose of investigate the role of working memory on the quality of linguistic predictions. 

The focus of this study differs from the original study, hence only a subset of the data has 

been extracted and used. This study is developed as a bachelor thesis and does not allow for 

acquisition of new MEG-data due to limited resources and time. The experimental design in 

Signoret et al. (2020) study is appropriate for the hypothesis testing in this study. My work 

consists of formulating hypotheses, preprocessing and analyzing raw MEG-data as well as 

interpreting, discussing and connecting the results to previous research in psycholinguistics 

and cognitive neuroscience. The raw MEG- data is the results from participants performing an 

auditory sentence completion task with background noise. This serves the purpose of 

investigating the role of working memory on the quality of linguistic predictions during 

adverse listening conditions. The MEG- data consists of recordings of cortical activity and 

this can be used to measure if there is a difference in cortical activity between higher quality 

predictions and lower quality predictions in the time-domain and time frequency domain, but 

also in what brain areas the potential differences are present.  
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3. Methods      
The following section is a general description of the experimental design of the study from 

Signoret et al. (2020). The section ñData Collectionò is a description of the materials and 

collection of data created and carried out by Signoret et al., (2020) that are relevant to this 

study. The section ñData Preprocessing and Analysisò describes the steps executed for this 

study only.  

3.1 Experimental design 

Ongoing brain activity was recorded using MEG while participants performed an auditory 

sentence completion task with background noise. Each participant partook in 288 trials in 

randomized order in one session in the original experiment (Signoret et al., 2020). For this 

study, data from 144 trials have been picked from the original study. 

The participants were provided with the sentences used for this study prior to the experiment 

to store information about them in LTM. The sentences consist of phonological and semantic 

cues that relate to the final word of the sentence in regard to form and meaning. Before the 

final word of the sentence is presented, there is a prediction delay time period where the 

processing of a linguistic prediction is thought to happen based on the phonological and 

semantic cues. After the final word was presented, participants were asked to provide a 

response to assess if they recognize the final word from the sentences they were provided 

prior to the experiment. If they provide a ñyesò response they have made a high-quality 

prediction since they recognize the final word with the support from phonological and 

semantic cues within the sentence. If they provide a ñnoò response they have made a low-

quality prediction since they do not recognize the final word, even with the support from 

phonological and semantic cues. The recorded cortical activity from the prediction delay time 

window is compared across participants between two conditions; the participants makes a 

high-quality prediction, and the participant makes a low-quality prediction.  

3.2 Data collection 

3.2.1 Participants 

Twenty-one participants were recruited from Linköping University (mean age = 25.2, SD = 

5.50). Data from ten of these participants were randomly selected for this study. The 

participants are all native Swedish speakers without hearing impairment or neurological 

deviations. The participants' hearing threshold were tested with an AC40 audiometer. 

According to the American National Standards Institutesô standard for normal hearing, 

participants threshold at hearing frequencies should lay within the range of 0.125-8 kHz 

(ANSI, 2004). This was done to determine if the inclusion criteria for hearing was met. The 

Edinburgh Handedness Inventory measurement was used to assess the lateralization of 

participants' use of the right or left hand (Oldfield, 1971; Signoret et. al 2020).  

3.2.2 Ethics 

After being provided with information about the study, all participants signed a consent form 

that was created in accordance with the guidelines from the Declaration of Helsinki. All 
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ethical considerations were reviewed and approved by the Regional Ethics Committee in 

Linköping (2015/158-31). A questionnaire was provided to the participants to assess if they 

could partake in MEG- recordings safely (Signoret et al., 2020). 

3.2.3 Materials 

The material used in this study is derived from the sentence-material created by Signoret et 

al., (2020). The sentences used were all in Swedish and familiar to the participants. All final 

words for each sentence were identical and consisted of one syllable and three phonemes. The 

final words in the sentences, correspond with the preceding words in the sentence, with 

regards to meaning and form. For example, ñThe nearest doctor is so far, weôll have to drive 

there in your carò. There was a total of 48 different sentences with different final words. The 

final words were picked based on a sentence completion test prior to the experiment where 21 

students at Linköping University (12 males; mean age = 23.3, SD = 2.15 years) were asked to 

end each sentence with what they considered the best suited final word. These final words 

were later evaluated by 10 other students at Linköping University (5 males; mean age = 24.1, 

SD = 1.73). They were asked if the final word in the sentences was the one they expected. The 

final words that had the highest probability score (measure of a word's predictability in a 

sentence), (M = 0.95, SD = 0.003) were chosen as final words for the experiment.  

3.2.4 Procedure 

All participants were provided with the 48 sentences. They were instructed to read them at 

home prior to the MEG experiment to get familiarized with the sentence-material and store 

this information in LTM. The experiment was carried out at The National Facility for 

Magnetoencephalography (NatMEG), Department of Clinical Neuroscience, Karolinska 

Institutet. The participants were prepared for the MEG experiment, by being asked if they 

read the sentence material. They were asked to read it once more to ensure they were 

familiarized with the sentences. Participants were instructed to listen to the sentence presented 

for each trial and provide a motor response to assess if the final word was the one they 

expected (the one they had read prior to the MEG-experiment). The participants were 

instructed to provide their response by pushing a yes/no button with the index or middle 

finger. 50% of the participants were asked to use their right hand and 50% to use their left 

hand to counterbalance the lateralized motor activity.  

The brain activity for all trials were recorded using MEG. A summary of the experimental 

trials set up is illustrated in figure 2. 144 trials from the original study were picked for this 

study. At the beginning of each trial a centered white cross on a black background was 

displayed on a screen in front of the participants. This was used as a fixation point for the 

participants to look at to avoid eye-movement. Simultaneously, auditory white background 

noise was played. Throughout all trials, the first part of the sentences was auditorily presented 

with background noise at 80% intelligibility. The final word for all trials were auditorily 

presented with 50% intelligibility. The sentences and background noise were presented 

through ear-tubes to both ears.  

The sentences were presented 1,000- 3,840 ms after trial onset, since the duration of the first 

part of the sentences (all words except the final word) varied. The first part of all the 

sentences ended 6,400 ms from trial onset. After, there was a prediction delay period of 1,600 

ms. The duration of the prediction delay was set so that knowledge-based linguistic prediction 

could be generated and maintained in working memory. The final word was presented 8,000 
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ms after trial onset, with the longest word ending at 9,240 ms after trial onset. The motor 

response (pushing a yes/no button) was provided at 2,800 ms after the final word had been 

presented. The delay period between presentation of the final word and motor response was 

implemented to avoid cortical motor activity to contaminate the MEG-recordings of linguistic 

processing. Participants were also instructed not to blink during this period and the prediction 

delay period to avoid contamination. During the motor response period, the background noise 

faded to silence and the white fixation cross on the display was replaced by the question ñWas 

the final word the correct one? (i.e., the one you had read before).ò Participants had 2,000 ms 

to answer the question by providing a motor response. The trial ended 12,800 ms after trial 

onset followed by an inter-trial interval (ITI) of 1,000 ms. All participants were allowed seven 

shorter breaks during the session to rest, ask questions and to evaluate their alertness on a 

scale between 1 (=extremely alert) to 9 (=very sleepy). MEG- recordings for one session (one 

participant) were approximately 1 hour. 

 

 
Figure. 2: Illustration of the experimental trial adopted from Signoret et al. (2020). Note. The 

time- window of interest for this study is ñPrediction delayò. 

 

3.2.5 MEG Acquisition 

The brain activity was recorded on the Elekta Neuromag TRIUX with a 306-channel whole-

scalp system (102 Magnetometers). The sampling rate was 2,000 Hz with an online bandpass 

filter from 0.1- 660 Hz. It was recorded in a magnetically shielded, sound-proofed room. 

Ocular activity (activity related to eye-movements, blinks etc.) was recorded through 

electrooculography (EOG) and cardiac activity (heart-related activity) was recorded through 

electrocardiography (ECG). The auditory and visual stimuli were synchronized with the MEG 

recording and behavioral responses using a software stimuli delivery program called 

Presentation (Version 18.1, Neurobehavioral Systems, Inc. Berkeley, CA) (Signoret et al., 

2020).   

 

3.3 Data Preprocessing & Analysis 

Raw neuromagnetic data files (format; fif ) for 10 randomly selected participants were 

provided, where the raw MEG recording was split into 3-4 files for each participant. An 

overview of the workflow for preprocessing and analysis can be seen in Table 1. 

Table 1: Overview of workflow for MEG- preprocessing and analysis. 
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Preprocessing step Step in code 

Remove bad channels 1.5 (ñFirst part of Preprocessingò) 

Remove EEG channels 1.6 (ñFirst part of Preprocessingò) 

Downsample data (300Hz) 1.7 (ñFirst part of Preprocessingò) 

Create Epochs 2.4 (ñSecond part of Preprocessingò) 

High-pass filter (cut-off freq = 1Hz) 2.5 (ñSecond part of Preprocessingò) 

Independent component analysis (ICA) 2.6 (ñSecond part of Preprocessingò) 

Removal of ECG & EOG artifacts 2.7 (ñSecond part of Preprocessingò) 

Get ERFs 3.2 (ñThird part of Preprocessingò) 

Baseline correct ERFs 3.2.1 (ñThird part of Preprocessingò) 

Low-pass filter ERFs (cut-off freq = 40Hz) 3.2.2 (ñThird part of Preprocessingò) 

Low-pass filter epochs (cut-off freq = 40Hz) 3.3.1 (ñThird part of Preprocessingò) 

Baseline correct epochs 3.3.2 (ñThird part of Preprocessingò) 

Get TFRs 3.3.2 (ñThird part of Preprocessingò) 

Time-domain analysis (group-level) 4. (ñStatistical analysis; ERFsò) 

Time- frequency analysis (group-level) 5. (ñStatistical analysis; TFRsò) 

 

3.3.1 MEG Preprocessing 

A Python script (Python version 3.9.12) was created to clean up the raw- MEG recordings by 

detecting and removing unwanted data components such as external artifacts (disturbance 

from magnetic fields outside the body such as power lines), system related artifacts (signal 

disturbance due to bad sensors and SQUID jumps) and physiological artifacts (signals due to 

head movements, heart activity, eye movement and eye blinks) (Gross et al., 2013). The 

Python script was created in Jupyter Lab (version 3.3.2), accessed through the graphical user 

interface Anaconda Navigator (version 2.1.4) to allow access to packages that are necessary 

for the functions implemented in the processing steps.  

Imports and read files 

In the first part of the code, the relevant packages were imported (Table 2). All steps of the 

preprocessing code consist of functions from the open source Mne Python package (version 

0.24). It contains built-in functions specialized for processing and analyzing 

neurophysiological data (for example MEG and EEG) (Gramfort et al., 2013). Mne functions 

that visualize data, automatically detect bad channels, give information about the data, filter 

the data, create epochs and extract ERFs and TFRs have been used in the script for the 
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preprocessing part. Other imported packages that have been used have purposes such as 

numerical operations and enable interactive plotting. The split raw files for each participant 

were read and automatically merged into one single representation through a function from 

the Mne- Python package (appendix 1, section 1.2).  

Table 2: Packages and modules imported in script for preprocessing of raw MEG data.  

Package name Purpose 

Mne (version 0.24) Analyzing and visualizing MEG data 

Numpy (version 1.19.3) Numerical operations 

Os (version 3.8) Interacting with operating system 

Matplotlib (3.3.2) Interactive visualizations and plotting 

Scipy (1.5) Statistical functions  

 

Remove unwanted channels and downsample data 

The first step of the preprocessing was to remove unwanted channels, including broken 

channels (flat MEG signals) and EEG channels. Detection and removal of bad channels was 

initially through automatic rejection (appendix 1, section 1.5). To ensure that all bad channels 

had been removed, visual inspection of plotted raw data was executed, and flat channels 

rejected if contamination was confirmed (appendix 1, section 1.5). No bad channels were 

removed from the data. Afterwards, MEG, STIM (stimulus trigger) EOG (ocular activity) and 

ECG (cardiac activity) channels were picked, and EEG (electroencephalography) channels 

removed (appendix 1, section 1.6) since these channels are not necessary for the study. 

Further, the data was downsampled from a sample frequency of 1000Hz to 300Hz (appendix 

1, section 1.7). This speed up computation in subsequent steps of preprocessing (Gross et al., 

2013). Lastly the new, downsampled files with accurate channels were saved locally to folders 

on the computer. The data now consists of one raw file for each participant.  

 

Find events and create epochs 

The single files for each participant were read and loaded. Epochs (relevant segments from the 

MEG recording) were created by first detecting the prediction delay time-window (Figure 2) 

and the trials for this study. By detecting trigger values from the STIM channel the relevant 

trials and events were found and annotated (appendix 2, section 2.3). Trials marked with 

trigger 221 (start of prediction delay for trials used in this study) followed by trigger 200 

(final word was the expected one) and trials marked with 221 followed by trigger 201 (final 

word was not the expected one) were included (Table 3).  
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Table 3: Mapping of trigger values and event annotations. All triggers refer to trials used for 

this study.  

Trigger 

value 

Annotation Notes Number of 

trials   

221 correct Prediction delay period for processing of 

linguistic predictions. 

144 

200 expected Participant hits the ñyesò button. High 

quality prediction. 

Ḑ 92 

201 not 

expected  

Participant hits the ñnoò button. Low quality 

prediction. 

Ḑ 52 

 

Subsequently, empty arrays named epochs_200 (event 221 followed by 200) and epochs_201 

(event 221 followed by 201) were created (appendix 2, section 2.4.1). These were eventually 

filled with the segments for event 221-200 and 221-201 (appendix 2, section 2.4.2). Epochs 

were created and the arrays filled, using a function from the Mne package (appendix 2, section 

2.4.2). Epoch duration was set from 500 ms before the start of the prediction delay to 2,000 

ms after the prediction delay. A high-pass filter with a cut-off frequency of 1 Hz was applied 

to the created epochs but no baseline correction, for good ICA performance in the following 

step (appendix 2, section 2.5) (Gramfort et al., 2014).  

 

ICA analysis and removal of eye and heart related components 

Independent Component Analysis (ICA) was performed on epochs_200 and epochs_201 

respectively, to identify and remove eye movements, blinks and heart related activity. ICA is a 

computational method that is used to separate the multivariate MEG- signal (separates spatial 

information from temporal information) into subcomponents (Makeig, et al., 1996). First, the 

ICA was fitted to the data (appendix 2, section 2.6.1 & section 2.6.3). 64 principal 

components were passed through the ICA algorithm during fitting, this is the number of ICA 

components that are intended to fit (appendix 2, section 2.6.1 & section 2.6.3). The óôfasticaôô 

method was used and is one of three ICA algorithms provided in the Mne- package (appendix 

2, section 2.6.1 & section 2.6.3) (Gramfort et al., 2014). Automatic detection and rejection of 

artifacts were executed after the ICA was fitted.  

Automatic detection and rejection of heart and eye related artifacts is based on activity from 

ECG (cardiac activity) and EOG (ocular activity) channels. For this, the singel raw data file 

(that was saved prior to epoching) was read. The first processing step for automatic detection 

was to create epochs for the ECG and EOG signals respectively (appendix 2, section 2.7). For 

the ECG signal, the epoch duration was set from 5,00 ms before a heartbeat to 5,00 ms after a 

heartbeat. The epoch duration for EOG was set to the same as ECG but in relation to eye 

blinks and horizontal and vertical eye movements. The baseline for EOG and ECG epochs 

was set to 2,00 ms. The values for epoch duration and baseline correction are in line with 

recommendations from Gramfort et al. (2014). The epochs were saved in variables 

eog_epochs and ecg_epochs (appendix 2, section 2.7). The second step of automatic detection 
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was to search for ICA components in ecg_epochs and eog_epochs that are related to ECG and 

EOG activity. This is done by an Mne tool (appendix 2, section 2.7). This procedure detects 

what ICA components that are related to cardiac activity and/or ocular activity. The Mne tool 

calculates an ñICA component scoreò that indicates the likelihood that a certain ICA 

component is associated with ECG or EOG activity (Gramfort et al., 2014). Lastly, to remove 

the detected ECG and EOG artifacts from the epochs of data we wanted to clean, ICA was 

applied to epochs_200 and epochs_201 (appendix 2, section 2.7.2). After cleaning, STIM, 

ECG and EOG channels were removed. The new, cleaned version of the epochs were locally 

saved to folders on the computer. The number of eye and heart related artifacts that were 

removed from the raw MEG data ranged from 1 to 5. 

Extract ERFs and TFRs  

The clean epoch files created in the previous step, were loaded and read (appendix 3, section 

3.1). ERFs were extracted by averaging the epochs for each condition. This was done with an 

Mne tool (appendix 3, section 3.2). A baseline correction was applied to the evoked responses 

(appendix 3, section 3.2.1) to transform all data to the same scale (Gross et al., 2013). After, a 

low-pass filter below 40 Hz was applied to ERFs, in order to suppress noise and keep the 

signals that are relevant to the study (appendix 3, section 3.2.2; line 1-2). The gamma 

frequency range (>40 Hz) is more likely to consist of signals that contaminate the data (Gross 

et al., 2013). The ERFs were saved to local folders on the computer (appendix, section 3.2.3). 

The ERFs were subsequently visualized in plots and saved to local folders on the computer 

(appendix 3, section 3.2.4).  

TFRs were extracted by first applying a low-pass filter of 40 Hz to the clean epochs for both 

conditions (appendix 3, section 3.3.1) to suppress noise and keep the signals that are relevant 

for the study. A baseline correction was applied to epochs (appendix 3, section 3.3.2) to 

transform all data to the same scale (Gross et al., 2013). A non-parametric sliding window 

approach called Morlet Wavelet transform, was used to transform the waveforms into the 

time-frequency domain. First, the frequency of interest was defined (appendix 3, section 

3.3.3) and the number of cycles per frequency (appendix 3, section 3.3.3). After, a morlet was 

applied to the epochs for each condition using a Mne-tool (appendix 3, section 3.3.4). Lastly, 

the created TFRs for each participant were saved to local folders on the computer as hdf5-files 

(appendix 3, section 3.3.5).  

3.3.2 Statistical analysis 

Statistical analysis was performed using a Python script (version 3.9.12) which was created in 

Jupyter Lab (version 3.3.2), accessed through the graphical user interface Anaconda 

Navigator (version 2.1.4). A time domain analysis was performed to test if there is a 

difference in cortical activity in fronto-parietal areas between higher quality predictions and 

lower quality predictions, across participants performing a sentence completion task. A time 

domain frequency analysis was performed to test if there is a difference in alpha cortical 

activity in fronto-parietal areas between higher quality predictions and lower quality 

predictions, across participants performing a sentence completion task. Event-related fields 

(ERFs) and Time-frequency representations (TFRs) were compared across all participants 

using the Mne python package (version 0.24). Normal distribution and equal variance were 

assumed by using an Mne python tool. Therefore, a parametric paired t-test was used in both 

analyses to test for differences between the two conditions.  
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Time-domain analysis 

A list of all ERFs for each participant was created for each condition (appendix 4, section 

4.2). Grand averages were created for each condition by averaging the ERFs that exist within 

the lists through an Mne tool (appendix 4, section 4.3). A lowpass filter of 30 Hz was applied 

to suppress noise sources (appendix 4, section 4.3). The grand average responses were plotted 

and saved to local folders on the computer (appendix 4, section 4.4). In the first step of the t-

test, two arrays were created and data from the lists of ERFs were extracted using the Numpy 

module (appendix 4, section 4.5.1). The MEG channels and their respective indices, that 

correspond to fronto-parietal areas were identified based on visual inspection of plotted raw 

sensor data (appendix 1, section 1.3). The identified channels and the prediction delay time 

window were inserted into the arrays (appendix 4, section 4.5.1). A t-test was executed 

through a function imported from the Scipy module (appendix 4, section 4.5.2). Lastly, the p 

and t value were printed (appendix 4, section 4.5.2). The potential difference in grand average 

responses over time within the picked channels was plotted through a Mne tool (appendix 4, 

section 4.6). 

Time frequency analysis 

A list of TRFs for each participant was created for each condition in the same way as for 

ERFs (appendix 5, section 5.2.1). Subsequently, a t-test was performed in the same way as 

described for ERFs but with TFRs as input data (appendix 5, section 5.2). Grand average 

responses, created in the previous section, were read (appendix 5, section 5.3). TFRs were 

created for the grand averages for each condition using Morlet Wavelet transform through 

functions from the Mne and Numpy package (appendix 5, section 5.4). A potential difference 

in the time frequency domain across all channels and frequencies was calculated through a 

Mne tool (appendix 5, section 5.6). A joint plot was created to visually inspect where a 

potential difference is present spatially and in what frequency bands this potential difference 

exists (appendix 5, section 5.6).  
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4. Results 

4.1 Descriptive statistics 

Five participants were excluded from the study due to technical issues regarding the reading 

of raw MEG fif files in the preprocessing step. No bad channels were removed from the raw 

MEG data. The number of eye and heart related artifacts that were removed from the raw 

MEG data ranged from 1 to 5. The mean number of epochs for high quality predictions was 

lower than the mean number of epochs for low quality predictions (Table 4).   

 

Table 4: Results from preprocessing of MEG- data. 

 

Participant 

ID 

Number 

of bad 

channels 

removed 

Number of 

ECG+EOG 

artifacts 

removed  

Number of 

epochs for 

high quality 

predictions 

Number of 

epochs for 

low quality 

predictions 

Total 

number of 

epochs 

0121 0 5  50 91 141 

0122 0 1 54 81 135 

0125 0 4 38 99 137 

0127 0 3 44 88 132 

0129 0 1 45 92 137 

 
mean=0 mean=2.8 mean=46.2 mean=90.2 mean=136.5 
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a) 

 

 

 

 

 

 

 

 

 

b)  

 

 

 

 

 

Figure 3: Average evoked responses in MEG-signals (amplitude over time) across all 

participants for a) high quality predictions, b) low quality predictions, in the prediction delay 

time window (0-1.6 s).  
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4.2 Time Domain analysis 

No significant difference in cortical activity in fronto-parietal areas between high-quality 

predictions and low-quality predictions was found (p = 0.934, t = 0.088).  

 

 

 

Figure 4: Average amplitude (T) in MEG-signals for high quality predictions and low-quality 

predictions across all participants during the prediction delay time window (0-1.6 s).  
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4.3 Time Frequency Domain Analysis 

No significant difference in alpha activity (8ï12 Hz) in frontoparietal areas between high 

quality predictions and low-quality predictions was found (p = 0.338, t = -1.086). A potential 

difference in frequency was found at 2.0 Hz and the magnitude of the difference was between 

3-4 T (Figure 5). The potential difference is around left lateral-frontal and right posterior-

temporal areas. 

 

 

Figure 5: Difference in average frequency (Hz) and amplitude (T) in MEG-signals between 

high quality predictions and low-quality predictions across all participants during the 

prediction delay time-window. Topo-plot shows the spatial location, frequency and time of 

detected difference. The colors illustrate the magnitude of the difference in amplitude.  
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5. Discussion 

In this study, the role of working memory on the quality of linguistic predictions in adverse 

listening conditions was evaluated. Cortical responses between high quality predictions and 

low-quality predictions during a sentence completion task were compared in both the time- 

domain and time frequency domain across participants. No difference in average amplitude in 

fronto-parietal areas between high quality and low-quality predictions was found across 

participants. No difference in average alpha activity in fronto-parietal areas between high 

quality and low-quality predictions was found. 

Results from a previous study by Signoret et al (2018) using a behavioral method, showed that 

participants who performed better at a working memory test, also demonstrated enhanced 

perceptual clarity during semantic and phonological priming. This positive relationship points 

towards that working memory processing could be involved in determining the quality of 

linguistic predictions. However, no such involvement of working memory can be assessed 

based on the results from this study. We did not observe a difference in average amplitude in 

fronto-parietal areas between when participants made higher quality predictions and lower 

quality predictions. No difference in alpha activity that has been associated with working 

memory and listening effort (Obleser et al., 2012; Yurgil et al., 2020), between high- and low-

quality predictions was observed. Therefore, the hypothesized connection between alpha 

activity and successful phonological binding in RAMBPHO (the pre-dictive functional 

processes in the ELU- model) made by Gray et al. (2022) is not supported by the results of 

this study. In relation to previous research, it seems logical that when listening conditions are 

adverse and listening effort increases, people with higher WMC have a higher ability to 

process the speech signal and simultaneously check back and forth if the semantic and 

phonological cues match the words that are unfolding. Participants with higher WMC would 

be better at inhibiting the processing of irrelevant information and highlighting of the 

information that seems relevant which would result in higher quality predictions. However, 

the results from this study did not show any difference in alpha activity in frontoparietal areas 

between high- and low-quality predictions.  

It is possible that the unequal number of epochs for each condition have had an effect on the 

results (high quality predictions; mean = 46.2, low quality predictions; mean = 90.2). When 

activity is averaged across trials and participants, random uncorrelated noise degrades, and 

phase locked linguistic predictive activity enhances (Hansen et al., 2010). When averaging 

epochs for each condition, the evoked responses for high quality predictions will probably 

consist of more noise from unwanted activity then the evoked responses for low quality 

predictions. Through visual inspection of the average evoked responses across all participants, 

this could be likely (Figure 3). This noise could mask a potential difference in both average 

amplitude and frequency between high- and low-quality predictions across participants. A 

larger sample size than the one used for this study could have minimized the risk of unequal 

amount of noise in the two conditions.  

There are more preprocessing steps that could have been implemented in the method to 

suppress noise sources. Even though raw MEG data is less noisy than other neuroimaging 

techniques, such as EEG (Hansen et al., 2010) it is possible that the epochs created are not 

completely clean from unwanted activity prior to averaging, which can have an effect on the 

results. No automatic-detection method, such as Maxwell-Filtering, was applied to 

compensate for environmental noise or head movements (Gross et al., 2013). However, 

Signoret et al. (2020) used an Elektra MEG system to record brain activity which implements 
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SSS (signal space separation) (Gross et al., 2013). Therefore, environmental and muscular 

signals have been separated from the signals generated by the brain before the raw data was 

processed for this study.  

No visual inspection of cardiac and or ocular activity was performed to detect what ICA 

components that should be removed from the data. A combination of visual and automatic 

methods is recommended (Gross et al., 2013). This could result in some of these artifacts still 

being present in the epochs and in turn affect the results. Due to limited time and resources, 

this was not possible for the current study. However, automatic detection using ECG channels 

is quite effective for removal of heart activity, since activity from heartbeats are rhythmic and 

constant, which makes them easier to detect (Gross et al., 2013). However, a sufficient 

amount of the eye- related activity probably has been removed using EOG channels on epochs 

but also through low-pass filtering. Higher frequency oscillations are generally related to 

muscle artifacts (eye blinks and eye movements) and (especially the gamma frequency range 

>40 Hz, see; Gross et al., (2013)). By low pass filtering with a frequency cut-off of 40 Hz the 

potential remaining artifacts may have been removed. It is possible that even though noise 

could still be present in the epochs due to artifacts, the averaging of epochs into evoked 

responses removed a sufficient amount of this random, uncorrelated noise to test for a 

potential difference. Furthermore, even though MEG has relatively high spatial resolution, it 

is still possible that the channels that were selected to correspond to fronto-parietal areas do 

not actually pick-up activity that come from these areas, due to the inverse problem (see 

Hansen et al. (2020) for the inverse problem). This could have an effect on the results since 

the difference in activity might have been recorded by other channels that were excluded.  

Automation of the workflow could have been more efficient by creating one script connecting 

all the Mne- modules and processing steps, as well as looping over all participants. Due to 

computer memory limitations, the workflow was split up into steps and one participant was 

processed at a time.  

The low number of participants is a limitation of this study. Due to limited time and resources, 

the technical issue regarding the reading of the fif files could not be solved. However, the 

issue was attempted to be solved through contact with the MNE-python support community. 

During saving of MEG-recordings they are automatically split into 3-4 raw fif files 

(depending on how long the recording is) due to the large size. In these split files, there is a lot 

of information about the data stored. One being the number of raw-split files and the names of 

all the split- files that are associated with that recording. The read_raw() function from the 

Mne-python package will detect this information in the first raw fif file and look for all the 

files that's associated with the first raw split files and automatically merge and read them. In 

the case of this study, the participants that were excluded consisted of 3 split fif files. 

However, the read_raw() function would look for a fourth split file that did not exist, hence an 

error was generated. According to the MNE-support community, there is information in the 

third fif  file that tells the read_raw() function to look for a fourth. This could be due to manual 

renaming of the original files or other issues during splitting of the recording. This problem 

could maybe have been avoided if I had access to more detailed information about the 

structure and content of the files. Transferring big sets of data through memory devices back 

is risk full and could result in confusion in regard to naming, content and structure of files. 

Therefore, involvement in the MEG acquisition, hence full insight in creation of the raw data, 

could be beneficial. However, there are advantages to getting access to raw MEG data that 

someone else collected. Gross et al. (2013) explains how conducting MEG acquisition is a 

highly complex, time consuming and resourceful practice that requires expert knowledge and 
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practical skills. It is important that this is done correctly since it affects the data directly. 

Expert knowledge such as practical and theoretical knowledge about the equipment, the 

recording devices and software programs used to transform the information from the sensors 

to a computer etcetera. By getting access to someone else's collected raw MEG data, such 

knowledge is not required (though insights in the practice is crucial). This means that the 

focus and the time at disposal can be used to process and analyze the data, which is a very 

important step in conducting MEG research. Also, it could be beneficial for scientific 

progression to share and make use of the same MEG recordings but for different purposes in 

different studies, since it is time and resource effective.  

6. Conclusions 

This study suggests that differences in working memory processing is not involved in 

determining if someone makes a high- or low-quality linguistic prediction during adverse 

listening conditions. There seems to be other determinants for what makes a prediction of 

high or low quality in order to facilitate successful speech understanding. Further research is 

required in order to identify determiners for what makes a prediction of high or low quality in 

adverse listening conditions. It is necessary to further investigate why a speech listener makes 

a lower quality prediction that could lead to unsuccessful speech understanding in order to aid 

people with hearing impairment but also enhance the quality of speech understanding in 

everyday situations.  

7. Future research 

To further investigate working memory processing in relation to the quality of linguistic 

predictions, it could be beneficial to test the hypothesis on a larger sample than the size used 

for this study. I consider that the data that currently exists (which has been summarized in the 

theory section, the ELU model for example) points towards working memory being involved 

in facilitating predictions that leads to speech understanding. Therefore, this is worth looking 

into further.  

In such a study, I would suggest using an MEG- analysis method based on machine learning. 

Such an analysis could involve MVPA (multivariate pattern analysis) that is better at 

detecting potential differences in neurological activation patterns for two conditions than the 

traditional analysis of ERFs (Fahrenfort et al., 2018). A classifier that implements MVPA can 

be easily accessed through the Mne- Python package (Gramfort et al., 2014). By applying 

MVPA through machine learning, it could be possible to predict if a participant is going to 

make a high-quality prediction and achieve speech understanding or not, based on the 

neurological activity pattern. The classifier trains on the cortical responses from the prediction 

delay window and becomes fitted to investigate the information (both frequency and 

amplitude) contained in the distributed patterns in the MEG-signals. If the training is 

successful, differences in WM processing can determine the quality of linguistic predictions. 

The classifier subsequently classifies it as successful speech comprehension versus 

unsuccessful speech comprehension based on potential differences in working memory 

processing. The predictor- model will be able to predict if the listener will achieve speech 

understanding before the word that is about to unfold has been presented, based on working 

memory activity patterns. One can speculate about technology making it possible to analyze 
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real time MEG data and give feedback to the listener in order to improve linguistic 

predictions.   
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