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Abstract

Speech understanding is a fundamental human atiatyenabldlexible communication among
individuals. Understanding natural speecmormal conditionss afast and automatic process

is facilitated through integratidmetweerprior knowledge about a speech sigaadl multimodal
speech inputdn situations where listening conditioage adversdor example due to hearing
impairment or environmental noise, speech understandin@li®eedandreliance on prior
knowledge increase Prior knowledge about phonology and semaiatiesnvolved impredictive
mechanismshat generates more successful speech understanding. Working memory processing
seems to be involved in influencing theadjty of such predictions. To evaluate the role of

working memory in the quality of linguistic predictions, a cortical comparison using MEG was
used.MEG data from a previous experiment, where participants performed an auditory sentence
completion task vih background noise was analgzesults from statistical analysis, time

domain analysiand time frequency analysis suggests that differences in working memory
processing does not influence the quality of linguistic predictions. Further researchrisdégjui
assess what factors are involvedhe quality of linguistic predictions which could lead to
unsuccessful speech understanding, in order to improve communication in everyday situations.

Keywords: Speech understandinginguistic predictions, Workingremory, ELUmodé.
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1l ntroducti on

Human language has an extensive expressive power that enables flexible communication and
understanding among individuals. The ability to process and understand language is highly
complex andinique to humans. Understanding speech is not just about auditory processing.
Cognition is highly involved in communication, especially when we interpret speech

(Arlinger, 2009). To understand speech, we process, integrate and interpret several types of
information in complex auditory scenes to create a holistic representation of what the
interlocutor means to say. Contextual cues, past experiences and phonology are examples of
information that is used in order to move from perception to meaning whileitigt

speech (Holt & Peelle, 2022).

To understand how this multimodal representation is processed and linked to meaning, it's
crucial to investigate the interplay between highed lowerorder cognitive functions

(Arlinger, 2009). Due to the integrati between perception and cognition, humans are able to
understand speech in complex auditory scenes fast and with ease. However, when listening
conditions ar@dversespeech processing is challenged (Rénnberg et al., 2013). These
challenges can arise several everyday situations, such as when speech is interfered with
background noise for example in classrooms, at airports or in restaurants. Due to the covid
pandemic there has been an increasgrtual meetings and technical signal distortions can
affect communication. People with hearing impairment face challenges ddedrse

listening conditions on a daily basis. It is important to understand how these constraints affect
how we understand speech and how we can aid these processes to impraaétyhef g

speech understanding in everyday situatiéeslermeier (2007) explains thabh@n speech is
degraded, we tend to rely more on information stored in long term memory in order to
compensate for the loss of auditory information. Such informatiotbegmedictions about

the words in a sentence that is currently unfold8ignoret et al. (2018) showed in a study
thatwe guess what the interlocutor means to say based on both the form and meaning of the
previous words of a sentence that is storedng kerm memoryvhich enhance perceptual

clarity.

Even though we base our understanding of speech events in optimal listening conditions by
thinking ahead, predictive mechanisms seem to be more important when listening conditions
arenot optimal(Federmegr, 2007). Research on the quality of such a linguistic prediction in
adverse listening conditions is limited. Previous research on speech understanding in adverse
listening conditions have highlighted the role of working memory in integrating multimodal
speech input with knowledge stored in long term memory, in which linguistic predictions are
formed. Working memory retrieves, stores and processes relevant information simultaneously,
and inhibits irrelevant information (Rénnberg et al., 2013). Such priagdsas partly been
associated with alpha activity within the brain (Yurgil et al., 2020) and more specifically in
fronto-parietal areas (Eriksson et al., 2015). Results from behavioral studies suggest that the
ability to use information in a predictive maer to facilitate speech understanding is related

to working memory capacity when the speech is degraded (Signoret et. al., 2018; Ronnberg et
al., 2013). No neuroscientific studies have been conducted to investigate this relationship
between working memgrand the quality of a prediction. Therefore, it is interesting to
investigate if differences in working memory processing (alpha activity in fjoatetal

areas) during speech processing could influence the quality of linguistic predictions, which
has siown to have an effect on speech understanding.



1.1 Aim of the study

The aim of this study is to investigate the role of working memory on the quality of linguistic
predictions in adverse listening conditions. As an extension to the behavioral ressetstead

by Rénnberg (2019) and Signoret et al. (2018), it is interesting to investigate if working
memory processing differs between higher quality predictions and lower quality predictions,
on a cortical level. This study compares cortical responsesntofrarietal areas of the brain
through magnetoencephalography (MEG) during a sentamogletion task with background
noise. This could assess if differences in working memory processing is involved in
facilitating speech understanding in a predictive wgsults from such a cortical comparison
are valuable to get a broader understanding of the underlying factors of when linguistic
predictions are not successful and for example how we can aid these processes for people with
hearing impairment to facilitatbetter speech understanding. Two hypotheses have been
formulated based oturrentknowledge on speech understanding and working memory.

1.2 Hypothesis

(1) There is a difference in cortical activity in frorpiarietal areas between higher quality
predictions and lower quality predictionsnangparticipants performing a sentence
completion task with background noise.

(2) There is a difference in alpha cortical activity in freptrietal areas between higher

quality predictions and lower qualipredictions, mongparticipants performing a sentence
completion task with background noise.
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2Theory

2.1 The role of cognition in speech comprehension

Speech understanding is a complex ability that relies on both perceptual and cognitive
processingn order to make sense of ambiguous perceptual signs and signals such as speech.
Top-down processing (processing of prior knowledge) integrated withottomup

processing (processing of perceptual informatiorfacilitate speech understanding (Holt &
Peelle, 2022)0On an anatomical levelpdical and subcortical structures of the brain seem to
be involved during speech processamgl are integrated irubcorticatcortical networksn

order to integrate teglown and bottomup information(Chandrasekain et al. 2022)This
highlights the involvement of cognition in speech understanding. Prior knowledge about
words are an example of information that is processedd®m and integrated with the
perceptual inpufHolt & Pellee, 2022). Information abouspoken word that is stored in long
term memory (LTM), consists of multimodal information that has been acquired throughout
the lifespan (Federmeier, 2007). To what degreedtmpn and bottorup processing is active
during processing of speech, dependshencomplexity of the auditory scene (Arlinger,

2009). Federmeier (2007) explains that during adverse listening conditions, prior knowledge
stored in LTM becomes more important. When the sensory signal is distorted in some way,
the brain supplements for theck of auditory information with information about the

linguistic and communicative context it's been used before, stored in LTM. This
supplementary information can consist of knowledge about semantics and phonology, which
activategredictionsabout the words that are unfolding.

2.2 Predictive brain hypothesis

Predictive mechanisms in speech comprehension is an exampleduivtopgprocessing.

Federmeier (2007) presenketpredictive brain hypothedisatdescribes how the brain

constantly ties to predict the outcome of external events based on information stored in LTM
In other words, the brain constantly thinks ahead of time. In speech understanding, when there
is an opportunity to predict what words are going to unfold based on cohtektain takes

that opportunity. Federmei@urtherexplains that this predictive mechanism influences

language processing through interpretation of contextual and linguistic cues, which affects the
processing speed and the perceived ease of spéebe this predictive mechanism

supplements the auditory sensory information in adoygn manner, even more so during
processing of degraded speech in order to complement a distorted signal. The level of
influence this predictive mechanism has on speech mincedepends on to what extent the
contextual and linguistic cues have been preactiv@edin what degree the contextual cues

are familiar to the speech listenegjgnoret et al., (2018) showed in a study that semantic
(meaningbased) and phonologicdorm-based) priming enhance perceptual clarity in adverse
listening conditions. Furthermore, degraded speech is easier perceived when semantic and/or
phonological information that's been previously presented in a sentence matches the
phonology and seméos in the speech that's currently unfolding. Rénnberg et al., (2013)
emphasize the role of working memory (WM) in integrating auditory inputrdodmation

stored in LTM, in which linguistic predictions are formed.
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2.3The Ease of Language Understergdmodel

Ronnberget al. (2013) presents The Ease of Language Understanding model (ELU). Itis a
theoretical framework that highlights thale of working memory (WM) irsensory cognitive
integration in speech understanding (Figure 1). It is based on a collection atampir

findings about language comprehension during suboptimal listening condBexhdley

(2012) explains thatVM is a limited capacity memory system that interacts with LTM. WM
holds and processes relevant information simultaneously and inhibits cgsgrretevant
information During language processing, WM seems to be involved in compensating for
when speech perception is not optioglmodulate the reliance on prior knowledge

According to the ELUmodel, during optimal listening conditions speech poghension is
facilitated by automatic, implicit and rapid processes. Howévewlversdistening

conditions, the processing of speech becomes a slower explicit process, which requires more
cognitive load. If multimodal language inputs do not match phonological representations in
LTM (due to for example noisy backgrounds or hearing impaitjrsower,explicit

processing is required. A phonological mismatch in RAMBPHO processing (Rapid Automatic
Multimodal Binding of PHOnNology) is what activates these slower, explicit processes
(Rénnberg et al., 2013).

Rénnberg et al. (2013) explains that RBPHO is the process of integrating multimodal
phonological representations with LTM information in an episodic buffer. It's concerned with
phonological processing and tries to match incoming speech sounds to lexical representations
stored in LTM. If theéxical access is successful (which it normally is in normal listening
conditions) the processing is rapid and implicit and does not require explicit processing. When
the RAMBPHO output is ambiguous in relation to representations in LTM a mismatch occurs,
lexical access is delayed and explicit procgskecome involved. These explicit processes
disrupt the fast, automatic feéorward flow of information in order to compensate for
ambiguous RAMBPHO output. Explicit processing operates in seconds andtimplici
processing operates in milliseconds. Therefore, phonological binding during RAMBPHO is a
prerequisite for generating ea$gst andoptimal speech comprehension.

Semantic/phonological
processing in WM

Explicit
processing loop

Semantic
LTM

Auditory speech RAMBPHO Mismatch Speech

input Match —» Lexical access » understanding

Implicit processing

Figure 1: lllustrationof ELU-model adopted from Rénnberg et al., (2013).
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2.4The role of Working Memory in speeghediction

In order to integrate information from semantic (recall of general facts) LTM and episodic
(recall of personal experiences) LTM, in which linguistic predictions are formed, complex
working memory capacity (WMC) seem to be crucial since it reguhe storage and
processing of information simultaneously (Rénnberg et al., 2@Eg)dley (2012) explains
thatWMC is the limited capacity of temporary storage and processing of information that is
useful for the particular tasRccording to the ELU mdel, the role of working memory in
speech comprehension is divided into two functional parésdiction (before mismatch has
occurred) angbostdiction (after a mismatch has occurred). In the-gictive aspect of the

ELU, working memory is suggesteditovolve priming and preuning of RAMBPHO (i.e.
enabling linguistic predictive mechanisms) (Ronnberg et &.1)2&ignoret et al. (2018)

found a positive relationship between performance on a YW and the enhancement of
perceptual clarity due to semta&c and phonological priming with background noise. This
highlights the involvement of working memory capacity in linguistic predictions i pre
dictive processing, and howadbuld berelated to enhanced perceptual clarity. In such
processing, working meony is automatically involved in integratioand modulation of top
down informationabout phonology and semantith speechnput. The ELU also suggests
that priming and tuning of RAMPBPHO is related to directing cognitive resources and
sensory gatingmechanisms (this is further explained in the following section) (Rénnberg et
al., 2@1). Rénnberg et al. (2013) explains that a negative relationship has been found
between the quality of a speech signal and reliance on linguistic knowledge during speech
processing. The more the signal is distorted, the more the brain refiesdictive

mechanisms iorderto avoid a mismatch in RAMBPHGQO his highlights the importance of
investigating what makes a good prediction, when the reliance on predictions iShega.
results presented points towards the involvement of WM in determining the quality of
linguistic predictions during RAMBPHO and hence its involvement in enhancing the
perceptual clarity duringdversdistening conditions

2.5 Cortical activity reléed to Working Memory

Working Memory functions seem to be generated by a frpat@tal network that involves
integration of subcortical and cortical regions (Eriksson et al., 2015). Working memory
processing has been shown to be related to théddH4g and alpha (82 Hz) oscillatory

activity (Yurgil et al., 2020). Therefrontal cortex®FQ has generally been related to giving
rise to alphaactivity. These oscillations have been found to arise from the involvement of
PFC in gating sensory informatiavhile information is updated in working memory and to
inhibit activity that are not involved in sensory processing of speech input (Klimesch et al.,
2007). Gray et al. (2022) suggests that the WM processes that have been associated with alpha
activity cauld be related to the pdictive functional processes described in the EHhbdel
presented by Rénnberg et al. 22 Obleseret al. (2012) explains that an increase in alpha
power has been shown to coincide with an increase in listening effort. Increased listening
effort involves gating of lexical integration atawlinhibit the processingf irrelevant

incoming auditory inpusuch as background noise. When a speech sigdastastedthrough
background noise, such gating and inhibitory mechanisms seem to coincide with increased
alpha activity. Gray et al. (2020) states that it's likely that during adverse listening conditions,
which requires more listening effort, the inhibitory and gating mechanisms require higher
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cognitive load than in normal listening conditions. Therefore, alpha activity may coincide
with the linguistic predictive processes described in teU, as a funebn of increased
listening effort, anallow for more successful phonological binding in RAMBPHO during
degraded speech (Figure 1).

2.6 Magnetoencephalography (MEG)

Magnetoencephalography (MEG) is a Aamasive neuroimaging technique that records brain
activity through sensors that are distributed over the scalp. This techietprtsandrecord
magnetic fields that arise through small changes in electrical activity produced by the neurons
within the brain. Therefore, MEG can be used to study cognilivetibning and its relation

to neural processing. The data from the recordings consists of waveforms that show the
amplitude (signal strength measured in Tesla) and frequency (oscillations measured in Hertz)
of the brain activity in a certain area, at @& point in time (Hansen et al., 2010).

MEG has a high temporal resolution (captures changes in activity in real time) which makes it
optimal for capturing and measuring rapid and complex processing within the brain that
underlies cognitive functionsush as the predictive processes in speech understanding. It's
able to capture brain activity with a precision of snitliseconds. MEG, shared with most
neuroimaging techniques, faces the inverse problem (the difficulty of finding the exact
location produed by the signal). However, MEG is considered to have a higher spatial
resolution (localization of the activity) than a similar neuroimaging technique called EEG
(electroencephalogram). This makes MEG a suitable technique for answering questions about
whenandwherecertain cognitive processes can be observed. The magnetic fields that can be
detected outside of the scalp are extremely samallrequiresuperconducting sensors

(SQUIDS) that are sensitive to extremely small changes in magnetic(fitddseret al.,

2010).

In order to minimize the interference of magnetic fields from sources other than the brain, the
MEG- experiments need to lexecutedn magnetically shielded rooms (Hansen et al., 2010).
Despite thisraw- MEG data is highly contaminated @lto various reasons. Gross et al.

(2013) emphasizes the importance of cleaning the Mia@ before analysis to remove

artifacts (unwanted signals that are visible in the data). This is called the preprocessing step.
During preprocessing, external artifa¢disturbance from magnetic fields outside the body
such as power lines) system related artifacts (signal disturbance due to bad sensors and
SQUID jumps), physiological artifacts (signals due to head movements, heart activity, eye
movement and eye blinkare detected and removed in order to extract the brain signals that
are interesting for the study. He further states that in MEG studies, it's important to report
what preprocessing steps have been utilized and in what order these have been carried out
since this affects the characteristics of the signal.

Gramfort et al. (2014) explains that opspurce software programs, such as the {Ap#hon
package provides algorithms that aid preprocessing and analyzing of ddlEeG This helps

the scientist to faes on the cognitive and neurological aspect of interpretation of the MEG
signal. These algorithms can be implemented by programming a simple script that imports
methods and functions provided by the software program and workseald@interpretand
cleanthe MEG data that does not rely on expert knowledge in physics or mathematics.

14



2.6.1Evoked responses and Time Frequency Analysis

To analyze MEG data, interpretation of evoked responses can be executed. Evoked responses
are the mean amplitude of a cortical response that's lincieed to a specific stimulus. These

are extracted by averaging epochs (a segment of the-Md&seding thats related to a

specific time event) over multiple trials under the same condition. By averaging the epochs,
the waveforms that are related to the stimulus trigger, will enhancenaodrelatedctivity

will degrade. This procedure filters out the evbkesponses that are a result of the external
stimulus trigger that sets off a certain cortical activity. Evoked responses from different
conditions (or the same) can be compared, predicted etc. within subjects and across subjects
depending on the experimil design. In MEG, evoked responseferto the mean amplitude

of the magnetic field signal. These averages are referred to as Event Related Fields (ERF).
Analysis of ERFs can say something about the power of a signdimeeandis therefore
categorzed as a Timelomain analysis. It is also possible to investigate where this-event
related activity is localized (Hansen et al., 2010).

An analysis method that supplements a ttloenain analysis, is a time frequency analysis.
This analysis method revealscillatory activity in a specified time period. Through this, it is
possible to investigate specific frequency bands that are present in the data. Different types of
brain activity are related to certain frequency bands. For exaahpiha (waveforms with

more peaks over time, aroundl8 Hz) andheta (waveforms with fewer peaks over time,
around 48 Hz) activity being related to Working Memory functions (Yurgil et al., 2020). This
can be used to answer questions aboghitivefunctions that have beeaslated to certain
frequencieswhere these frequencies are present in,tthesignal strength of the frequencies
andthespatiallocation of the frequencie¥he result from a time frequency analysis is
typically interpreted through dynamic thrdamensonal plotting that displays changes in
amplitude over frequency and time (Hansen et al., 2010).

2.8 About this study

MEGdata coll ected duri ng tahdeMeaningBated Prédictioas | n
on Cortical Speech Processing Under ChallengisgtLie ni ng Condi ti ons:
Signoret et al. (2020) was provided by Carine Signoret to be used for this study with the
purpose of investigate the role of working memory on the quality of linguistic predictions.

The focus of this study differs frorhé original study, hence only a subset of the Hata

been extracted and used. This study is developed as a bachelor thesis and does not allow for
acquisition of new MEGlata due to limited resources and tiffire experimental design in
Signoret et al. (@20) study is appropriate for the hypothesis testing in this skligyvork

consists of formulating hypotheses, preprocessing and analyzing rawdisita@s well as
interpreting, discussing and connecting the results to previous research in psycholgguistic
and cognitive neuroscience. The raw MHEata is the results from participants performing an
auditory sentence completion task with background noise. This serves the purpose of
investigating the role of working memory on the quality of linguistic prehstduring

adverse listening conditions. The ME@ata consists of recordings of cortical activity and

this can be used to measure if there is a difference in cortical activity between higher quality
predictions and lower quality predictions in the tidmmain and time frequency domain, but

also in what brain areas the potential differences are present.

>
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3 Met sod

The following section is a general description of the experimental design of therstudy

Signoret et al. (2020). The section fADat a
collection of data created and carried out by Signoret et al., (20&rehrelevant to this
study. The section fiData Preprocessing and
study only.

3.1 Experimental design

Ongoing brain activity was recorded using MEG while participants performed an auditory
sentenceompletion task with background noise. Each participant partook in 288 trials in
randomized order in one session in the original experiment (Signoret et al., 2020). For this
study, data from 144 trials have been picked from the original study

The partici@nts were provided with the sentences udeethis study prior to the experiment

to store information about them in LTM. The sentences consist of phonological and semantic
cues that relate to the final word of the sentengegard tdorm and meaning. &ore the

final word of the sentence is presented, there is a prediction delay time period where the
processing of a linguistic prediction is thought to happen based on the phonological and
semantic cues. After the final word was presented, participamésasked to provide a

response to assess if they recognize the final word from the sentences they were provided
prior to the experiment. I f t hBighqualityovi de a
prediction since they recognize the final word withghpport from phonological and
semantic cues within the sentence. lov-f they
quality prediction since they do not recognize the final word, even with the support from
phonological and semantic cues. The recordeticabactivity from the prediction delay time
window is compared across participants between two conditions; the participants makes a
high-quality prediction, and the participant makewa-quality prediction.

3.2 Data collection

3.2.1Participants

Twenty-one participants were recruited from Linkdping University (mean age = 25.2, SD =
5.50). Data from ten of these participants were randomly selected for this study. The
participants are all native Swedish speakers without hearing impairment or gexablo
deviations. The patrticipants' hearing threshold were tested with an AC40 audiometer.
According to the American National Standar
participants threshold at hearing frequencies should lay within the rande26{80kHz

(ANSI, 2004). This was done to determine if the inclusion criteria for hearing was met. The
Edinburgh Handedness Inventory measurement was used to assess the lateralization of
participants' use of the right or left haoidfield, 1971;Signoretet. al 2020).

3.2.2Ethics

After being provided with information about the study, all participants signed a consent form
that was created in accordance with the guidelines from the Declaration of Helsinki. All
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ethical considerations were reviewed and appd by the Regional Ethics Committee in
Link6ping (2015/15831). A questionnaire was provided to the participants to assess if they
could partake in MEGrecordings safely (Signoret et al., 2020).

3.2.3Materials

The material used in this study is deriieain the senteneeaterial created by Signoret et

al., (2020). The sentences used were all in Swedish and familiar to the participants. All final
words for each sentence were identical and consisted of one syllable and three phonemes. The
final words in he sentences, correspond with the preceding words in the sentence, with

regards to meaning and form. FxxamplefiT he near est doctor is so f
there in yourcaro . Twasa itotal of 48 different sentences with different final woidse

final words were picked based on a sentence completion test prior to the experiment where 21
students at Link6ping University (12 males; mean age = 23.3, SD = 2.15 years) were asked to
end each sentence with what they considered the best suiteadntalThese final words

were later evaluated by 10 other students at Linkdping University (5 males; mean age = 24.1,
SD = 1.73). They were asked if the final word in the sentences was the one they expected. The
final words that had the highest probabiktgore (measure of a word's predictability in a
sentence), (M = 0.95, SD = 0.003) were chosen as final words for the experiment.

3.2.4Procedure

All participants were provided with the 48 sentences. They were instructed to read them at
home prior to the ME experiment to get familiarized with the sententaterial and store

this information in LTM. The experiment was carried out at The National Facility for
Magnetoencephalography (NatMEG), Department of Clinical Neuroscience, Karolinska
Institutet. The paitipants were prepared for the MEG experiment, by being asked if they
read the sentence material. They were asked to read it once more to ensure they were
familiarized with the sentences. Participants were instructed to listen to the sentence presented
for each trial and provide a motor response to assess if the final word was the one they
expected (the one they had read prior to the ME@eriment). The participants were
instructed to provide their response by pushing a yes/no button with the index & midd
finger. 50% of the participants were asked to use their right hand and 50% to use their left
hand to counterbalance the lateralized motor activity.

The brain activity for all trials were recorded using MEG. A summary of the experimental
trials set upsg illustrated in figure 2. 144 trials from the original study were picked for this
study. At the beginning of each trial a centered white cross on a black background was
displayed on a screen in front of the participants. This was used as a fixatiofopthet
participants to look at to avoid eyeovement. Simultaneously, auditory white background
noise was played. Throughout all trials, the first part of the senterasssuditorily presented
with background noise at 80% intelligibility. The final wdad all trials wereauditorily
presented with 50% intelligibility. The sentences and background noise were presented
through eattubes to both ears.

The sentences were presented 1,@0840 ms after trial onset, since the duration of the first

part of tre sentences (all words except the final word) varied. The first part of all the

sentences ended 6,400 ms from trial onset. After, there was a prediction delay period of 1,600
ms. The duration of the prediction delay was set so that knowlzaigg linguist prediction

could be generated and maintained in working memory. The final word was presented 8,000
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ms after trial onset, with the longest word ending at 9,240 ms after trial onset. The motor

response (pushing a yes/no button) was provided at 2,80aenshaf final word had been

presented. The delay period between presentation of the final word and motor response was
implemented to avoid cortical motor activity to contaminate the Mé&tardings of linguistic
processing. Participants were also instructedto blink during this period and the prediction

delay period to avoid contamination. During the motor response period, the background noise
faded to silence and the white fixatWasn cr os
the final word tle correct one? (i.e., the one you had read befole) Par t i ci pant s he
to answer the question by providing a motor response. The trial ended 12,806rmrsal

onset followed by an intdrial interval (ITl) of 1,000 ms. All participants were allowed seven

shorter breaks during the session to rest, ask questions and to evaluate their alertness on a

scale between 1 (=extremely alert) to 9 (=very sieedEG- recordings for one session (one
participant) were approximately 1 hour.

Visual display

100

Intelligibility (%)

Auditory stimulus | Baseline  Sentence Prediction delay ~ Final word Response  ITI  Next trial

Time (ms) } } } } i T t

0 1000 3840 6400 8000 9240 10800 12800 13800

Figure. 2: lllustration of the experimental trial adopted from Signoret et al. (20&f1e.The
tmeewi ndow of interest for this study is APrec

3.2.5MEG Acquisition

The brain activity wasacorded on the Elekta Neuromag TRIUX with a-8d@nnel whole

scalp system (102 Magnetometers). The sampling rate was 2,000 Hz with an online bandpass
filter from 0.1- 660 Hz. It was recorded in a magnetically shielded, squadfed room.

Ocular activity(activity related to eyenovements, blinks etc.) was recorded through
electrooculography (EOG) and cardiac activity (heeldted activity) was recorded through
electrocardiograph{ECG). The auditory and visual stimuli were synchronized with the MEG
recading and behavioral responses using a software stimuli delivery program called
Presentation (Version 18.1, Neurobehavioral Systems, Inc. Berkeley, CA) (Signoret et al.,
2020).

3.3Data Preprocessing & Analysis

Raw neuromagnetic data filé®rmat fif) for 10 randomly selected participants were
provided, where the raw MEG recording was split it fies for each participant. An
overview of the workflow for preprocessing and analysis can be seen in Table 1.

Table 1: Overview of workflow br MEG- preprocessing and analysis.
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Preprocessing step Step in code

Remove bad channels 1.5 @First part of Preprocessiay
Remove EEG channels 1.6 @First part of Preprocessiay
Downsample data (300Hz) 1.7 @First part of Preprocessiay
CreateEpochs 2.4 @iSecond part of Preprocessing
High-pass filter (cubff freq = 1Hz) 2.5 [iSecond part of Preprocessing

Independent component analysis (ICA) | 2.6 @iSecond part of Preprocessing

Removal of ECG & EOG artifacts 2.7 fiSecond part of Preprogsing)
Get ERFs 3.2 [Third part of Preprocessiny
Baseline correct ERFs 3.2.1 fiThird part of Preprocessiny

Low-pass filter ERFs (cenff freq = 40Hz) | 3.2.2 @Third part of Preprocessiny

Low-pass filter epochs (cuiff freq=40Hz)|3 . 3. 1 (A Third pa3ag

Baseline correct epochs 3.3.2 (AThird p¢g
Get TFRs 3.3.2 (AThird ps¢
Time-domain analysis (groujevel) 4 . (ASt ati BRE<@)
Time- frequency analysis (grotipvel) 5 (AStatistical

3.3.1MEG Preprocessing

A Python script (Python version 3.9.:as created to clean up the raMEG recordings by
detecting and removing unwanted data componentsaaestiernal artifacts (disturbance

from magnetic fields outside the body such as power lisgs)em related afacts (signal
disturbance due to bad sensors and SQUID jupdphysiological artifacts (signals due to

head movements, heart activity, eye movement and eye blinks) (Gross et al., 2013). The
Python script was created in Jupyter Lab (version 3.3.2¢saed through the graphical user
interface Anaconda Navigator (version 2.1.4) to allow access to packages that are necessary
for the functions implemented in the processing steps.

Imports and read files

In the first part of the code, the relevant packagexe imported (Table 2). All steps of the
preprocessing codmnsistof functions from the open source MRgthon package (version
0.24). It contains buHin functions specialized for processing and analyzing
neurophysiological data (for example MEG &G) (Gramfort et al., 2013). Mne functions
that visualize data, automatically detect bad channels, give information about the data, filter
the data, create epochs and extract ERFs and TFRs have been used in the script for the
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preprocessing part. Other ioped packages that have been used have purposes such as
numerical operations and enable interactive plotting. The split raw files for each participant
were read and automatically merged into one single representation through a function from
the Mne Pytha package (appendix 1, section 1.2).

Table 2: Packages and modules imported in script for preprocessing of rawddtaG

Package name Purpose

Mne (version 0.24) Analyzing and visualizing MEG dat

Numpy (version 1.19.3 Numerical operations

Os(version 3.8) Interacting with operating system
Matplotlib (3.3.2) Interactive visualizations and plottir
Scipy (1.5) Statistical functions

Remove unwanted channels and downsample data

The first step of the preprocessing was to remove unwantedelbameluding broken

channels (flat MEGignals) and EEG channels. Detection and removal of bad channels was
initially through automatic rejection (appendix 1, section 1.5). To ensure that all bad channels
had been removed, visual inspection of plotted data wagxecutedand flat channels

rejected if contamination was confirmed (appendix 1, section 1.5). No bad channels were
removed from the data. Afterwards, MEG, STIM (stimulus trigger) EOG (ocular activity) and
ECG (cardiac activity) channels wayeked,and EEG (electroencephalography) channels
removed (appendix 1, section 1.6) since these channels are not necessary for the study.
Further, the data was downsampled from a sample frequency of 1000Hz to 300Hz (appendix
1, section 1.7)This speedip computation in subsequent steps of preprocessing (Gross et al.,
2013). Lastly the new, downsampled files with accurate channels were saved locally to folders
on the computer. The data now consists of one raw file for each participant.

Find events and create epochs

The single files for each participant were read and loaded. Epochs (relevant segments from the
MEG recording) were created by first detecting the prediction delayviim#ow (Figure 2)

and the trials for this study. By detectimmtjer values from the STIM channel the relevant

trials and events were found and annotated (appendix 2, section 2.3). Trials marked with
trigger 221 (start of prediction delay for trials used in this study) followed by trigger 200

(final word was the exmed one) and trials marked with 221 followed by trigger 201 (final

word was not the expected one) were included (Table 3).
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Table 3: Mapping of trigger values and evainotations. All triggers refer to trials used for
this study.

Trigger Annotation | Notes Number of
value trials
221 correct Prediction delay period for processing of | 144

linguistic predictions.

200 expected Participant hits t hD92
quality prediction.

201 not Participant hi t gualityh|D52
expected prediction.

Subsequently, empty arrays named epochs_200 (event 221 followed by 200) and epochs_201
(event 221 followed by 201) were created (appendix 2, section 2.4.1). These were eventually
filled with the segments for event 2200 and221-201 (appendix 2, section 2.4.2). Epochs

were created and the arrays filled, using a function from thepdokage (appendix 2, section
2.4.2). Epoch duration was set from 500 ms before the start of the prediction delay to 2,000
ms after the predictiodelay. A highpass filter with a cubff frequency of 1 Hz was applied

to the created epochs but no baseline correction, for good ICA performance in the following
step (appendix 2, section 2.5) (Gramfort et al., 2014).

ICA analysis and removal of eye aheart related components

Independent Component Analysis (ICA) was performed on epochs_200 and epochs_201
respectively, to identify and remove ay@vements, blinks and heart related activity. ICA is a
computational method that is used to separate thevamdtte MEG signal (separates spatial
information from temporal information) into subcomponents (Makeig, et al., 1996). First, the

ICA was fitted to the data (appendix 2, section 2.6.1 & section 2.6.3). 64 principal

components were passed through the Blorithm during fitting, this is the number of ICA
components that are intended to fitfacdpprpamdi
method was used and is one of three Klgorithms provided in the MA@ackage (appendix

2, section 2.6.& section 2.6.3) (Gramfort et al., 2014). Automatic detection and rejection of
artifacts were executed after the ICA was fitted.

Automatic detection and rejection of heart and eye related artifacts is based on activity from
ECG (cardiac activity) and EO@cular activity) channels. For this, the singel raw data file

(that was saved prior to epoching) was read. The first processing step for automatic detection
was to create epochs for the ECG and EOG signals respectively (appendix 2, section 2.7). For
the ECG signal, the epoch duration was set from 5,00 ms beforartheato 5,00 ms after a
heartbeatThe epoch duration for EOG was set to the same as ECG but in relation to eye
blinks and horizontal and vertical eye movements. The baseline for EOG andeCia

was set to 2,00 ms. The values for epoch duration and baseline correction are in line with
recommendations from Gramfort et al. (2014). The epochs were saved in variables
eog_epochs and ecg_epochs (appendix 2, section 2.7). The second stepaticadétection
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was to search for ICA components in ecg_epochs and eog_epochs that are related to ECG and
EOG activity. This is done by an Mmeol (appendix 2, section 2.7). This procedure detects

what ICA components that are related to cardiac activitiyagrocular activity. The Mne tool
calcul ates an Al CA component scoreo that 1ind
component is associated with ECG or EOG activity (Gramfort et al., 2014). Lastly, to remove

the detected ECG and EOG artifacts fromepechs of data we wanted to clean, ICA was

applied to epochs_200 and epochs_201 (appendix 2, section 2.7.2). After cleaning, STIM,

ECG and EOG channels were removed. The new, cleaned version of the epochs were locally
saved to folders on the computer. Thanber of eye and heart related artifacts that were

removed from the raw MEG data ranged from 1 to 5.

ExtractERFs and TFRs

The clean epoch files created in the previous step, were loaded and read (appendix 3, section
3.1). ERFs were extracted by averagihe epochs for each condition. This was done with an
Mnetool (appendix 3, section 3.2). A baseline correction was applied to the evoked responses
(appendix 3, section 3.2.1) to transform all data to the same scale (Gross et al., 2013). After, a
low-pass filter below 40 Hz was applied to ERFs, in order to seppaise and keep the

signals that are relevant to the study (appendix 3, section 3.2.2:2ndhe gamma

frequency range (>40 Hz) is more likely to consist of signals that contaminate the data (Gross
et al., 2013). The ERFs were saved to local foldarthe computer (appendix, section 3.2.3).

The ERFs were subsequently visualized in plots and saved to local folders on the computer
(appendix 3, section 3.2.4).

TFRs were extracted by first applying a lpass filter of 40 Hz to the clean epochs fohbot
conditions (appendix 3, section 3.3.1) to suppress noise and keep the signals that are relevant
for the study. A baseline correction was applied to epochs (appendix 3, section 3.3.2) to
transform all data to the same scale (Gross et al., 2013). paametric sliding window

approach called Morlet Wavelet transform, was used to transform the waveforms into the
time-frequency domain. First, the frequency of interest was defined (appendix 3, section

3.3.3) and the number of cycles per frequency (appendigcdion 3.3.3). After, a morlet was
applied to the epochs for each condition using a-koé(appendix 3, section 3.3.4). Lastly,

the created TFRs for each participant were saved to local folders on the computerfasshdf5
(appendix 3, section 3.3.5)

3.3.2Statistical analysis

Statistical analysis was performed using a Python script (version 3.9.12) which was created in
Jupyter Lab (version 3.3.2), accessed through the graphical user interface Anaconda
Navigator (version 2.1.4). A time domain anaywas performed to test if there is a

difference in cortical activity in frontparietal areas between higher quality predictions and
lower quality predictions, across participants performing a sentence completion task. A time
domain frequency analysis waerformed to test if there is a difference in alpha cortical
activity in frontoparietal areas between higher quality predictions and lower quality
predictions, across participants performing a sentence completion taskré&eésd fields

(ERFs) and Tmefrequency representations (TFRs) were compared across all participants
using the Mne python package (version 0.24). Normal distribamohequal varianosere
assumedby using an Mn@ython tool Therefore, a parametric pairetest was used in both
analysedo test for differences between the two conditions.
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Time-domain analysis

A list of all ERFs for each participant was created for each condition (appendix 4, section

4.2). Grand averages were created for each condition by averaging the ERFistthatres

the lists through an Mne tool (appendix 4, section 4.3). A lowpass filter of 30 Hz was applied
to suppress noise sources (appendix 4, section 4.3). The grand average responses were plotted
and saved to local folders on the computer (appendigation 4.4). In the first step of the t

test, two arrays were created and data from the lists of ERFs were extracted using the Numpy
module (appendix 4, section 4.5.1). The MEG channels and their respective indices, that
correspond to frontparietal area were identified based on visual inspection of plotted raw
sensor data (appendix 1, section 1.3). The identified channels and the prediction delay time
window were inserted into the arrays (appendix 4, section 4.5.1e% wvas executed

through a fungébn imported from the Scipy module (appendix 4, section 4.5.2). Lastly, the p
and t value were printed (appendix 4, section 4.5.2). The potential difference in grand average
responses over time within the picked channels was plotted through @& it@pendix 4,

section 4.6).

Time frequency analysis

A list of TRFs for each participant was created for each condition in the same way as for
ERFs (appendix 5, section 5.2.1). Subsequentiyesttwas performed in the same way as
described for ERFs but withFRs as input data (appendix 5, section 5.2). Grand average
responses, created in the previous section, were read (appendix 5, section 5.3). TFRs were
created for the grand averages for each condition using Morlet Wavelet transform through
functions from tie Mne and Numpy package (appendix 5, section 5.4). A potential difference
in the time frequency domain across all channels and frequencies was calculated through a
Mne tool (appendix 5, section 5.6). A joint plot was created to visually inspect where a
potential difference is present spatially and in what frequency bands this potential difference
exists (appendix 5, section 5.6).
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4 Resul t s

4.1 Descriptive statistics

Five participants were excluded from the study due to technical issues regarding the reading
of raw MEG fiffiles in the preprocessing step. No bad channels were removed from the raw
MEG data. The number of eye and heart related artifacts that were refrawetie raw

MEG data ranged from 1 to 5. The mean number of epochs for high quality predictions was
lower than the mean number of epochs for low quality predictibaisl€4).

Table 4: Results from preprocessing of MEGata.

Participant | Number Number of Number of Number of Total

ID of bad ECG+EOG epochs for epochs for number of
channels | artifacts high quality | low quality epochs
removed | removed predictions predictions

0121 0 5 50 91 141

0122 0 1 54 81 135

0125 0 4 38 99 137

0127 0 3 44 88 132

0129 0 1 45 92 137
mean=0 mean=2.8 mean=46.2 mean=90.2 mean=136.5
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Figure 3: Average evoked sponses in ME&ignals (amplitude over time) across all
participants for a) high quality predictions, b) low quality predictions, in the prediction delay
time window (01.6 s).
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4.2 Time Domain analysis

No significant difference in cortical activity in fronfmarietal areas between highality
predictions and lovguality predictions was found (p = 0.934, t = 0.088).

Magnetometers (GFP)

40 High quality predictions

Low quality predictions

35 A
30 A
251
£ 20

15/

10-|

-0.5 0.0 0.5 1.0 1.5 2.0
Time (s)

Figure 4: Average amplitude (T) in MEGignals for high quality predictions afav-quality
predictions across all papants during the prediction delay time windowl(® s).
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4.3Time Frequency Domain Analysis

No significant difference in alpha activityi(82 Hz) in frontoparietal areas between high
quality predictions antbw-quality predictions was found (p = (88, t =-1.086).A potential
difference in frequency was found at 2.0 hidd dhe magnitude of the difference was between
3-4 T (Figure 5) The potential difference is around left latefi@ntal and right posterier
temporal areas.

Amplitude (T)
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Figure 5: Difference in averagedquency (Hz) and amplitude (T) in MESEnals between
high quality predictions anldw-quality predictions across all participants during the
prediction delay timavindow. Topo-plot shows the spatial location, frequency and time of
detected difference. Bolors illustrate the magnitude of the difference in amplitude.
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5Di scussi on

In this study, the role of working memory on the quality of linguistic predictions in adverse
listening conditions was evaluated. Cortical responses between high quality predictions and
low-quality predictions during a sentence completion task were comhfrat®th the time

domain and time frequency domain across participants. No difference in agerplifede in
fronto-parietal areas between high quality dma-quality predictions was found across
participants. No difference in average alpha activitironto-parietal areas between high

guality andlow-quality predictions was found.

Results from a previous study by Signoret et al (2018) using a behavioral method, showed that
participants who performed better at a working memory test, also demonstrated enhanced
perceptual clarity during semantic and phonological priming. This poséiggonship points
towards that working memory processing could be involved in determining the quality of
linguistic predictions. However, no such involvement of working memory can be assessed
based on the results from this study. We did not observéeastite in average amplitude in
fronto-parietal areas between when participants made higher quality predictions and lower
quality predictions. No difference in alpha activity that has been associated with working
memory and listening effort (Obleser et 2012; Yurgil et al., 2020), betweéigh- and low
quality predictions was observed. Therefore, the hypothesized connection between alpha
activity and successful phonological binding in RAMBPHO (thegictive functional

processes in the EL-Unodel) maddy Gray et al. (2022) is not supported by the results of

this study. In relation to previous research, it seems logical that when listening conditions are
adverseand listening effort increases, people with higher WMC have a higher ability to
process thepeech signal and simultaneously check back and forth if the semantic and
phonological cues match the words that are unfolding. Participants with higher WMC would
be better at inhibiting the processing of irrelevant informationhagialighting of the

information that seems relevant which would result in higher quality predictions. However,
the results from this study did not show any difference in alpha activity in frontoparietal areas
betweerhigh- and lowquality predictions.

It is possible that the ugaal number of epochs for each condition have had an effect on the
results (high quality predictions; mean = 46.2, low quality predictions; mean = 90.2). When
activity is averaged across trials and participants, random uncorrelated noise degrades, and
pha® locked linguistic predictive activity enhances (Hansen et al., 2010). When averaging
epochs for each condition, the evoked responses for high quality predictions will probably
consist of more noise from unwanted activity then the evoked responses tnrdbty

predictions. Through visual inspection of the average evoked responses across all participants,
this could be likely (Figure 3). This noise could mask a potential difference in both average
amplitude and frequency betweleigh- and lowquality predictions across participants. A

larger sample size than the one used for this study could have minimized the risk of unequal
amount of noise in the two conditions.

There are more preprocessing steps that could have been implemented in the method to
suppras noise sources. Even thouglv MEG data is less noisy than other neuroimaging
technigues, such as EEG (Hansen et al., 2010) it is possible that the epochs created are not
completely clean from unwanted activity prior to averaging, which can have ahaifthe
results. No automatidetection method, such as Maxwelltering, was applied to

compensate for environmental noise or head movements (Gross et al., 2013). However,
Signoret et al. (2020) used an Elektra MEG system to record brain activity wiglsments
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SSS (signaspaceseparation) (Gross et al., 2013). Therefore, environmental and muscular
signals have been separated from the signals generated by the brain beBweddia was
processed for this study.

No visual inspection of cardiac andocular activity was performed to detect what ICA
components that should be removed from the data. A combination of visual and automatic
methodss recommended (Gross et al., 2013). This could result in some of these artifacts still
being present in thepochs and in turn affect the results. Due to limited time and resources,
this was not possible for the current study. However, automatic detection using ECG channels
is quite effective for removal of heart activity, since activity from heartbeats atenwttyand
constant, which makes them easier to detect (Gross et al., 2013). However, a sufficient
amount of the eyaelated activity probably has been removed using EOG channels on epochs
but also through lowpass filtering. Higher frequency oscillatioaie generally related to

muscle artifacts (eyelinks and eyenovements) and (especially the gamma frequency range
>40 Hz, see; Gross et al., (2013)). IBw pasdiltering with a frequency cuoff of 40 Hz the
potential remaining artifacts may have beemoved. It is possible that even though noise

could still be present in the epochs due to artifacts, the averaging of epochs into evoked
responses removed a sufficient amount of this random, uncorrelated noise to test for a
potential difference. Furthermgreven though MEG has relatively high spatial resolution, it

is still possible that the channels that were selected to correspond tefevigial areas do

not actuallypick-up activity that come from these areas, due to the inverse problem (see
Hanseret al. (2020) for the inverse problem). This could have an effect on the results since
the difference in activity might have been recorded by other channels that were excluded.

Automation of the workflow could have been more efficient by creating one script connecting
all the Mne modules and processing steps, as well as looping over all participants. Due to
computer memory limitations, the workflow was split up into steps aegarticipant was
processed at a time.

The low number of participants is a limitation of this study. Due to limited time and resources,
the technical issue regarding the reading of thiéldé$ could not be solved. However, the

issue was attempted to belved through contact with the MNiython support community.
During saving of MEGecordings they are automatically split intd 3awfif files

(depending on how long the recording is) due to the large size. In these split files, there is a lot
of information about the data stored. One being the number e$péirfiles and the names of

all the split files that are associated with that recording. The read_raw() function from the
Mne-python package will detect this information in the first fdviile and look for all the

files that's associated with the first raw split files and automatically merge and read them. In
the case of this study, the participants that were excluded consisted of 3 8la. fif

However, the read_raw() function would look #ofourth split file that did not exist, hence an
error was generated. According to the Miilipport community, there is information in the

third fif file that tells the read_raw() function to look for a fourth. This could be due to manual
renaming of the iiginal files or other issues during splitting of the recording. This problem
could maybe have been avoided if | had access to more detailed information about the
structure and content of the files. Transferring big sets of data through memory devices back
is risk full and could result in confusian regard tanaming, content and structure of files.
Therefore, involvement in the MEG acquisition, hence full insight in creation of the raw data,
could be beneficial. However, there are advantages to gettiegsato raw MEG data that
someone else collected. Gross et al. (2013) explains how conducting MEG acquisition is a
highly complex, time consuming and resourceful practice that requires expert knowledge and
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practical skills. It is important that this is donorrectly since it affects the data directly.

Expert knowledge such as practical and theoretical knowledge about the equipment, the
recording devices and software programs used to transform the information from the sensors
to a computer etcetera. By getf access to someone else's collected raw MEG data, such
knowledge is not required (though insights in the practice is crucial). This means that the
focus and the time at disposal can be used to process and analyze the data, which is a very
important stepn conducting MEG research. Also, it could be beneficial for scientific
progression to share and make use of the same MEG recordings but for different purposes in
different studies, since it is time and resource effective.

oConclsusi on

This study suggsts that differences in working memory processing is not involved in
determining if someone makesigh- or low-quality linguistic predictionduring adverse

listening conditionsThere seems to be other deteramtsfor what makes a prediction of

high orlow quality in order to facilitate successful speech understanding. Further research is
required in order to identify determiners for what makes a prediction of high or low quality in
adversdistening conditions. It is necessary to further investigate avbgeech listener makes

a lower quality prediction that could lead to unsuccessful speech understanding in order to aid
people with hearing impairment but also enhance the quality of speech understanding in
everyday situations.

7Future research

To further investigate working memory processing in relation to the quality of linguistic
predictions, it could be beneficial to test the hypothesis on a larger sample than the size used
for this study. | consider that the data that currently exists (whglbéan summarized in the
theory section, the ELU model for example) points towards working memory being involved
in facilitating predictions that leads to speech understanding. Therefore, this is worth looking
into further.

In such a study, | would sugdessing an MEGanalysis method based on machine learning.
Such an analysis could involve MVPA (multivariate pattern analysis) that is better at
detecting potential differences in neurological activation patterns for two conditions than the
traditional anfysis of ERFs (Fahrenfort et al., 2018).classifier that implements MVPA can

be easily accessed through the MRgthon packagéGramfort et al., 2014 By applying

MVPA through machine learning, it could be possible to predict if a participant is igoing
make ahigh-quality prediction and achieve speech understanding or not, based on the
neurological activity pattern. The classifier trains on the cortical responses from the prediction
delay window and becomes fitted to investigate the information (bedbency and

amplitude) contained in the distributed patterns in the Mig@als.If the training is

successful, differences in WM processing can determine the quality of linguistic predictions.
The classifier subsequently classifies it as successfutispeeprehension versus

unsuccessful speech comprehension based on potential differences in working memory
processing. The predictamodel will be able to predict if the listener will achieve speech
understanding before the word that is about to unfosdole®n presented, based on working
memory activity patterns. One can speculate about technology making it possible to analyze
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real time MEG data and give feedback to the listener in order to improve linguistic
predictions.
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1 preprocessing
June 25, 2022

1. First part of Preprocessing

Creating fif-files with less information to minimize computation power. This is done by removing
channels we do not want; bad channels (visual inspection and automatic rejection) and EEG (in this
part we want to keep STIM and MEG,ECG and EOG), and downsampling the sampling-frequency
(in this case from 1000Hz to 300Hz). We want to find relevant events and annotate them with our
own lables. Lastly we save the new, downsampled, accurate channels-files to folders on computer.
At the end of this processing part, each participant has one downsampled, raw-file only.

1.2 Import packages

import mne

import os

import os.path as op

import numpy as np

import matplotlib.pyplot as plt
import scipy

import pathlib

#Make plots interactive
Jmatplotlib widget

#Remove outputs that aren't warnings, for faster computation
mne.set_log_level('warning')

1.3 Read and plot raw data

#Read data file
raw = mne.io.read_raw('C:/Users/test/Documents/Karin_kandidat/Raw_data/0129/
~0129_tsss_raw.fif')

#Plot raw data
raw.plot()
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[]:

[]:

[]:

1.4 Plot info and visualize raw data, channels and sensors

#print info
print (raw.info)

#print the first 10 channels
print(raw.ch_names[:10])

#print detailed info on the 101th channel in the list

print(raw.info['ch_names'], 'MEG1011')

#Visualize sensor locations in 2D
raw.plot_sensors(ch_type='mag')

#Visualize sensor location in 3D
raw.plot_sensors(kind='3d',ch_type='mag')

1.5 Find events and create annotations

###Eziract events from stim channel###

events = mne.find_events(raw, stim_channel= 'STI101', shortest_event

#Name relevent event ID/trigger
event_id = {
'start of prediction delay': 221,
'expected' :200,
'not expected':201,

#print dict.eventi-id
print (event_id)

#Print trigger ID for choosen event
print (len(events [events[:,2]== 221]))

#Plot raw data with added event markers
raw.plot (events=events)

1.6 Handel bad channels

#ploi bads:
raw.info['bads']

#add bad channels/mark channel as bad:
raw.info['bads'] += ['insert channel name']
raw.plot_sensors(ch_type='mag')

1



#visual inspection
raw.plot ()

1.7 Select a subset of channels (MEG, STIM, EGG)

[ 1: #Remove EEG channels
raw_meg = raw.copy() .pick_types(meg=True, eeg=False, stim= True, eog=True,_
.ecg=True, exclude=['bads'])

#print number of MEG-channels:
len(raw_meg.ch_names)

#Print info on raw_meg:
print (raw_meg.info)

1.8 Downsampling

[ 1: #Load the data
raw_meg.load_data()

#Dounsampled data without EEG, 300Hz
raw_meg_downsampled= raw_meg.resample(sfreq=300)

#check if succeeded
print (raw_meg_downsampled.info)

#Save downsampled, MEG and STIM data
raw_meg_downsampled.save('C:/Users/test/Documents/Karin_kandidat/
Raw_downsampled/0129/raw_meg_downsampled_0129.fif')
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