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Reasoning about uncertainty is one of the main cornerstones of Knowledge Representation.
More recently, combining logic with probability has been of major interest. Rough set
methods have been proposed for modeling incompleteness and imprecision based on
indiscernibility and its generalizations and there is a large body of work in this direction.
More recently, the classical theory has been generalized to include probabilistic rough
set methods of which there are also a great variety of proposals. Pragmatic, easily accessi-
ble, and easy to use tools for specification and reasoning with this wide variety of methods
is lacking. It is the purpose of this paper to fill in that gap where the focus will be on prob-
abilistic rough set methods. A landscape of (probabilistic) rough set reasoning methods and
the variety of choices involved in specifying them is surveyed first. While doing this, an
abstract generalization of all the considered approaches is derived which subsumes each
of the methods. One then shows how, via this generalization, one can specify and reason
about any of these methods using PROBLOG, a popular and widely used probabilistic logic
programming language based on PROLOG. The paper also considers new techniques in this
context such as the use of probabilistic target sets when defining rough sets and the use
of partially specified base relations that are also probabilistic. Additionally, probabilistic
approaches using tolerance spaces are proposed. The paper includes a rich set of examples
and provides a framework based on a library of generic PROBLOG relations that make speci-
fication of any of these methods, straightforward, efficient and compact. Complete, ready to
run PROBLOG code is included in the Appendix for all examples considered.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Probabilistic rough sets

Formal theories for approximate reasoning are numerous and highly varied due to different types of approximate con-
cepts intended to be modeled such as vagueness, imprecision and incompleteness. Rough set theory [2,7,19,25,38,47,48]
ation for
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is one such formal representation and it has been used to model incompleteness and imprecision using indiscernibility rela-
tions and approximations based on such relations. Classical rough set theory has been generalized to use base relations
weaker than equivalence relations [7,8,38]. For instance, tolerance spaces [23,39] are defined in terms of a base relation that
is only reflexive and symmetric. Rough sets are additionally characterized by three regions, a positive region containing all
individuals that are a member of a set, a negative region containing all individuals that are not in the set, and a boundary
region containing elements that may or may not be in the set. For each rough set, these regions are determined by the base
relation used in defining that particular set.

In [9], the authors show how Answer Set Programming (ASP) [10] can be used as a basis for representing and reasoning
about classical rough relations and their generalizations together with standard relations in a nonmonotonic context. ASP is a
knowledge representation framework based on the logic programming and nonmonotonic reasoning paradigms that uses an
answer set/stable model semantics for logic programs. There are many other implementations of libraries and tools for rough
sets in general (see [17,30,32,33] and references there). However, to the best of our knowledge, no implementation of prob-
abilistic approaches have been reported in the literature.

Early in the development of rough set theory and its applications, it was noticed that probabilistic information implicit in
rough set theory was not explicitly formalized and exploited [21]. A natural extension of the rough set method that uses a
probabilistic model was proposed in [43]. Since then there have been many additional proposals and applications of prob-
abilistic rough set methods [12,13,18,37,44–50].

In the standard rough set model, given a crisp set S, the lower and upper approximations of S are defined based on an
underlying equivalence relation. If an equivalence class is a subset of S, then all individuals in that class are in the lower
approximation of S. If an equivalence class intersects with the set S, then that equivalence class is part of the upper approx-
imation for S.

The basic intuition underlying probabilistic rough set methods is based on the observation that for those equivalence
classes in the upper approximation of a set, the proportion of individuals in that class that are in the set in comparison to
those that are not, offers a quantitative measure for any randomly chosen individual in the equivalence class being a member
of the set S. One can then define a membership function l xð Þ which returns this ratio for any individual. l xð Þ, together with
the use of threshold values, can be used for more fine-grain assessments of which individuals are in the boundary region of a
rough set or not.

1.2. Motivations and contributions

Given the widespread use of probabilistic rough set methods, the purpose of this paper is to show how PROBLOG [4–6], a
well-known probabilistic logic programming language, can be used as a basis for representing and reasoning about proba-
bilistic rough relations and their generalizations in a succinct and elegant manner. In fact, the paper will show how a major-
ity of the more well-known probabilistic rough set methods can be generalized and defined using one parameterized
definition (Definition 8.4) that provides the basis for representing and reasoning with any of these methods using PROBLOG

in a straightforward manner. By using higher-order PROBLOG programming techniques, a generic set of PROBLOG relations can
be defined and instantiated for specifying any of the probabilistic rough set methods considered in the paper. This set of rela-
tions can be defined in roughly half a page of PROBLOG (see Program 6).

The paper also proposes a number of new generalizations of existing probabilistic rough set methods not seen in the lit-
erature. Normally, rough set methods assume a target set S that is a crisp set not definable with the elementary equivalence
classes associated with an approximation space. In the first generalization, the paper proposes the use of both crisp sets and
probabilistic sets as input. In the second generalization, the paper proposes the use of probabilistic base relations as a basis
for approximation spaces. These additional generalizations are also subsumed by the parameterized Definition 8.4 for gen-
eralized approximation operators. The paper uses a rich set of PROBLOG examples and reproducible case studies to show the
efficacy of the approaches that are proposed.

Fig. 1 provides an incremental roadmap of the variety of rough set approximation operators considered in the paper. The
lower lane begins with classical approximation spaces and operators and provides definitions of the various generalizations
in the literature. These incremental generalizations lead to Definition 8.4, a definition for generalized probabilistic approx-
imation spaces and operators that can be instantiated to generate the preceding incremental generalizations. The upper lane
in the roadmap begins with classical tolerance-based approximation spaces and operators that use tolerance spaces where
the base relation is only reflexive and symmetric. This is generalized to the probabilistic case which then again leads to Def-
inition 8.4 which subsumes this lane also.

The following contributions are considered in this paper:

1. The paper begins with a thorough summary of rough set methods in the literature and their generalization to probabilis-
tic rough set methods. In doing this, the variety of choices used to define different rough set theories, both non-
probabilistic and probabilistic, are brought to light. A number of definitions for existing and new probabilistic rough
set methods are considered that incrementally generalize each other as reflected in the definition roadmap in Fig. 1.
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Fig. 1. Roadmap of definitions for probabilistic approximation operators.
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2. Definitions of generalized probabilistic approximation spaces and operators are provided. These parameterized definitions
essentially subsume a majority of probabilistic rough set methods considered in the literature. This in itself is not surpris-
ing since the methods are closely related, but it does enable compact, efficient and highly expressive specification mech-
anisms in PROBLOG.

3. As alluded to in the previous point, using the definitions for generalized probabilistic approximation spaces and operators
as a basis, an efficient and compact encoding for a majority of probabilistic rough set methods encountered in the liter-
ature is proposed. It is based on parameterizing both the formal definitions and then using a set of higher-order relational
definitions in PROBLOG that correlate with different parameterizations.

4. A number of new concepts are introduced that enhance the expressibility and use of existing probabilistic rough set
methods.
� The input to a majority of rough set methods is a crisp target set in a domain, generally not definable using the ele-

mentary classes in the quotient set generated by a base relation in the approximation space in question. One then pro-
ceeds to define its lower and upper approximations. The first generalization allows for partially specified, probabilistic
target sets as input to probabilistic rough set methods.

� The base relations used in a majority of rough set methods are non-probabilistic. The second generalization is to allow
base relations to be defined as probabilistic relations.

For both these generalizations to be useful, one has to define a probabilistic neighborhood relation based on the use of
thresholds in order to generate useful equivalence classes or coverings for a generalized approximation space. This is an
additional contribution.
5. Tolerance spaces provide a particularly interesting challenge in terms of generalizing such spaces to their probabilistic

counterparts. This is because individuals in a domain can be in more than one neighborhood at the same time. The paper
identifies why this is a problem for the probabilistic case and then provides a solution in terms of a modified definition for
lower and upper probabilistic approximations.

6. A PROBLOG programming methodology is provided for specifying and reasoning about almost any type of probabilistic
rough set method based on the instantiation of a collection of generic higher-order PROBLOG relations described previously.
The resulting probabilistic rough relations can be combined with non-probabilistic and probabilistic relations defined in
the conventional manner using PROBLOG’s features.

7. A number of examples and case studies are provided throughout, showing the efficacy, expressivity and power of these
concepts. The intent is that the PROBLOG based tool proposed for specifying and reasoning about the variety of probabilistic
rough set methods can be easily usable and reproducible in a straightforward manner. To show this, out-of-the-box exe-
cutable PROBLOG code is provided for a majority of the examples and case studies to guide the potential user of these
techniques.

All the above points contain original results either by synthesizing concepts previously introduced and investigated by
other authors (points 1, 2) or by reporting original developments (points 3–7).
1.3. Feasibility of the approach

The worst-case complexity of computing PROBLOG queries is exponential wrt the number of variables/ground literals. The
same applies to other probabilistic logic programming languages using the Sato distribution semantics [34]. Though still
exponential in the worst case, the techniques used to compute probabilistic queries in PROBLOG exhibit a much better perfor-
mance pragmatically (see also a discussion in Remark 4.1). The PROBLOG solver essentially combines SLD-resolution with
approximation algorithms and methods for representing Boolean formulas and computing their probabilities. As indicated
in [6], PROBLOG’s solver is able to deal with belief bases sometimes containing up to 100000 formulas.
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In fact, PROBLOG has been used in a variety of real-world applications. For example, the PROBLOG web page [28], indicates over
20 papers concerning larger scale applications in biology, actions theories, robotics and tracking, games, natural languages,
as well as in other areas.

The specification framework developed in the current paper is built on top of the PROBLOG engine. It only adds polynomial
time complexity, so it can be applied in the areas mentioned in addition to other areas. Our framework inherits the method-
ology and applications of probabilistic rough sets, so it can be particularly useful when objects can be clustered and gathered
in equivalence classes or tolerance neighborhoods reflecting indiscernibilities/similarities among objects. This typically
occurs and is described in previously cited sources on probabilistic rough sets. It may also occur in the application areas indi-
cated in [28]. In [6], similarity relations are used in link mining for large networks of biological concepts. A typical query
considers whether a given gene is connected to a given disease. As indicated in [6], ‘‘probabilities of edges can be obtained
from methods that predict their existence based on, e.g., co-occurrence frequencies or sequence similarities”. The study
shows that ‘‘the connection query could be solved [. . .] for graphs with up to 1400 to 4600 edges”.

We also demonstrate the use of indiscernibility and similarity relations in the case study discussed in Section 9. There the
case study is simplified for the purpose of presentation and pedagogic clarity. It is intended to serve as a showcase illustrat-
ing the underlying methodology and features described in the paper.

1.4. Paper structure

Section 1 provides an introduction and overview of the topic area and the approach taken in the construction of a generic

PROBLOG based tool for probabilistic rough set methods. Section 2 provides an overview of classical rough set methods and a
landscape of choices that can be made when defining the underlying base relations for rough sets. Section 3 provides an
overview of probabilistic rough set methods in the literature. Additionally, it considers an example of the application of
the most basic probabilistic rough set method where information necessary for defining rough sets is generated from a table
of data. Section 4 provides a short summary of PROBLOG and its semantic theory which is based on distributional semantics.
Section 5 provides a generic PROBLOG program structure and template for specifying probabilistic rough sets using informal,
but concise syntax. Section 6 provides some examples that use the generic program structure and also provides executable

PROBLOG code in the appendices based on these examples. Section 7 considers the use of tolerance spaces and their general-
ization to the probabilistic case. Section 8 considers the generalizations of probabilistic rough set methods. It also shows how
all previous probabilistic methods considered so far are subsumed by a new definition of generalized probabilistic approx-
imation spaces and operators. Additionally, the section specifies a small, compact set of higher-order PROBLOG relations used to
specify any of these methods through instantiation. Section 9 then considers a relatively complex case study on a toy rec-
ommendation system that uses many of the concepts considered previously in the paper. The case study is encoded using
the generic PROBLOG relations defined in the previous section and it also shows how different types of relations interact nat-
urally in a PROBLOG program. Section 10 then summarizes results and concludes the paper.

2. Rough set reasoning landscape

2.1. Approximations and approximate/rough sets

In the paper we will consider both classical rough set methods based on the use of indiscernibility relations (reflexive,
symmetric and transitive), as well as their generalizations, where the requirements as to the underlying base relation are
relaxed. For example, rather than using indiscernibility as a basis for the base relation, one may require similarity (proximity,
tolerance) among individuals instead. In this case, transitivity would be removed as a requirement and the focus would be on
reflexive and symmetric base relations instead. These are just two of many choices.

In the rest of the paper we shall assume that:

� ‘dom’ is a fixed finite domain, where x; y, and z (possibly subscripted) are used to denote objects in dom and c and d are
used to denote subsets of dom.
� r#dom� dom, possibly with an index, is a base relation intended to represent indiscernibility. It is assumed that r x; yð Þ
is true if and only if x; yh i 2 r holds. r xð Þ ¼def yjr x; yð Þf gwill signify the equivalence class that an individual x belongs to, i.e.,
the set of individuals equivalent to x. jr xð Þj will be used to denote its cardinality. Later on in the paper, the symbols s and
t will be used for generalizations of the base relation r.

In the following definition we set no requirements on the base relation used to define approximations. The requirements
used in subsequent parts of the paper are listed in Table 1.

Definition 2.1 (Approximations, base relations, boundary regions, approximate sets). Let r be a binary relation on dom and
c#dom . Then the lower approximation cþr and the upper approximation c�r of c wrt r are:
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Table 1
Properties of base relations in terms of approximations and first-order correspondences.

Notation Property of cþr ; c
�
r First-order correspondence Property of r

D cþr ! c�r 8x9y r x; yð Þð Þ Seriality
T cþr ! c 8x r x; xð Þð Þ Reflexivity
B c! c�r

� �þ
r

8x8y r x; yð Þ ! r y; xð Þð Þ Symmetry

4 cþr ! cþr
� �þ

r
8x8y8z r x; yð ÞKr y; zð Þð Þ ! r x; zð Þð Þ Transitivity

5 c�r ! c�r
� �þ

r
8x8y8z r x; yð ÞKr x; zð Þð Þ ! r y; zð Þð Þ Euclidicity

Fig. 2.
require
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cþr ¼def xj8y r x; yð Þ ! y 2 cð Þf g; ð1Þ
c�r¼def xj9y r x; yð Þ ^ y 2 cð Þf g: ð2Þ
The difference c�r n cþr is called the boundary region of c wrt r. The relation r is called the base relation for approximations
cþr ; c

�
r . The pair cþr ; c

�
r

� �
is called an approximate set.
Definition 2.2. [Approximation space, rough approximations, rough sets] If the base relation r of Definition 2.1 is an equiv-
alence relation (reflexive, symmetric and transitive) then AS ¼ dom;rh i is called an approximation space and the approxima-
tions defined by (1)–(2) are called rough approximations. A rough set is an approximate set with the base relation being an
equivalence relation.�
Remark 2.3. Note that arbitrary (n-argument with n > 1) approximate relations can be modelled by assuming that the
domain dom consists of n-tuples of elements of ‘‘more elementary” domains. In the rest of the paper we will deal with a lan-
guage with arbitrary relations. Definition 2.1 applies to such relations as well. �

Given an approximation space AS ¼ dom;rh i, any set c#dom can be partitioned into three disjoint regions:

� POSAS cð Þ ¼ cþr ¼
S

r xð Þjr xð Þ# cþr
� �

, the positive region of c in AS;
� BNDAS cð Þ ¼ c�r n cþr ¼

S
r xð Þjr xð Þ# c�r n cþr

� �� �
, the boundary region of c in AS;

� NEGAS cð Þ ¼ dom n c�r ¼
S

r xð Þjr xð Þ# dom n c�r
� �� �

, the negative region of c in AS.
2.2. Correspondences between approximations and properties of base relations

The properties listed in Table 1 have been extensively investigated in the area of modal logics and correspondence theory
that studies the relation between modalities and Kripke accessibility relations [40]. Insights from these areas have been used
to relate properties of approximations to properties of the underlying base relation r (see, e.g., [8,47]). In particular:

� D ensures that the lower approximation of a set is included in its upper approximation;
� T ensures that the lower approximation is included in the approximated set;
� B ensures that the approximated set is included in the lower approximation of the upper approximation of the set;
� 4 ensures that the lower approximation of a set is included in the lower approximation of its lower approximation (so that
iterating lower approximations does not change the result of its first application);
� 5 ensures that the upper approximation of a set is included in the lower approximation of its upper approximation.
Remark 2.4. Note that requirement D is equivalent to the seriality of the base relation r. The inclusion of the lower approx-
imation in the upper approximation is fundamental in approximate reasoning. However D alone does not guarantee that an
Relationships among properties of base relations considered in the paper. An arrow P ! Q indicates that the requirements P are weaker than the
ments Q.
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object is indistinguishable/similar to itself. Therefore, in the methods considered in this paper we will assume (at least) T, the
reflexivity of r. Of course, D is entailed by T.�

Fig. 2 shows dependencies among properties of binary relations that are used as a basis for approximations. These depen-
dencies are well-known frommodal logic, and later, rough set methods (see, e.g., [40,47]). Note that the bottom of the figure,
D, defines serial relations while the top, T5, defines equivalence relations. TB corresponds to tolerance relations. Note also
that T5 ¼ TB4 (in modal correspondence theory they both correspond to S5).

In the specification of rough set methods in PROBLOG, users will have the ability to represent selections of these properties
in PROBLOG programs when specifying different approximation relations. This is shown in several sections of the paper.

3. Probabilistic rough set reasoning landscape

In this section, the focus will be on classical rough sets, where the base relation r is an equivalence relation. A brief
description of the different ways to generalize classical rough set methods to probabilistic rough set methods is provided.
There have been many investigations of probabilistic generalizations of classical rough set theory in the literature
[12,13,18,37,44–50].

In the classical theory, for a rough set c and for any object x 2 cþr , its associated equivalence class r xð Þ is a subset of the
target set c;r xð Þ# c. Similarly, for any object x 2 c�r , its equivalence class r xð Þ intersects with c and the overlap must be non-
empty (r xð Þ \ c –£). The starting point for probabilistic generalizations of rough sets is to take into account the degree of
overlap that equivalence classes have with the target set c. These proportions can then be used as a basis for determining
such quantities as the probabilities of individual objects relative to rough target sets, the degree of dependencies between
rough sets, and construction of probabilistic rough set approximations, among others. The most basic generalization begins
with the concept of rough membership function introduced in [43] (see also [20]).

Let dom be a finite set of individuals, P : 2dom ! 0;1½ �, be a probability function on the powerset of dom, and r be a binary
relation that is also an equivalence relation on dom. The triplet ASP ¼ dom;r; Ph i is called a probabilistic approximation space
[21].

Given ASP ¼ dom;r; Ph i, by definition of P, it can be assumed that

� P r xð Þð Þ is known for all r xð Þ in the quotient set of dom, denoted dom=r and defined as r xð Þjx 2 domf g;
� for each set c#dom and equivalence class r xð Þ, the probabilities P cð Þ and P c jr xð Þð Þ are known.
Definition 3.1 (Rough membership). Given ASP ¼ dom;r; Ph i, for a subset c#dom, the rough membership functionwith regard
to c is:
lc;r xð Þ ¼def P cjr xð Þð Þ:

The function lc xð Þ provides a quantitative degree to which the object x belongs to the rough set c. It is defined as the con-

ditional probability P cjr xð Þð Þ which characterizes the probability that a randomly chosen individual in r xð Þ is a member of
the rough set c. Assuming a finite domain, it is often computed as the proportion,
lc;r xð Þ ¼ jc \ r xð Þj
jr xð Þj : ð3Þ
In a similar manner, the membership function l can be generalized to rough set inclusion [26], the degree to which a rough
set d is a subset of another rough set c. This inclusion, denoted by v djcð Þ, is defined as,
v djcð Þ¼def jc \ dj
jcj : ð4Þ
If d is an equivalence class r xð Þ 2 dom=r, then
v r xð Þjcð Þ ¼ jc \ r xð Þj
jcj ð5Þ
where it can easily be seen that v r xð Þjcð Þ ¼ lc;r xð Þ.
Given a membership function lc;r xð Þ for a rough set c, one can now define the classical rough set approximation operators

for c probabilistically in terms of lc;r xð Þ.

Definition 3.2 (Probabilistic approximations). Given ASP ¼ dom;r; Ph i, and c#dom, the probabilistic lower and upper
approximations of c wrt r are defined by:
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cPþr ¼def xjlc;r xð Þ ¼ 1:0
n o

¼ xjP c j r xð Þð Þ ¼ 1:0f g; ð6Þ

cP�r ¼def xjlc;r xð Þ > 0:0
n o

¼ xjP c j r xð Þð Þ > 0:0f g: ð7Þ
The difference cP�r n cPþr is called the probabilistic boundary region of c wrt r.
Given a probabilistic approximation space ASP ¼ dom;r; Ph i, any set c#dom can be partitioned into three disjoint

regions:

� POSASP cð Þ ¼def cþr ¼
S

r xð ÞjP cjr xð Þð Þ ¼ 1:0f g ;
� BNDASP cð Þ ¼def c�r n cþr ¼

S
r xð Þj0 < P cjr xð Þð Þ < 1:0f g;

� NEGASP cð Þ ¼def dom n c�r ¼
S

r xð ÞjP cjr xð Þð Þ ¼ 0f g.

Note that the probabilistic approximation operators in Definition 3.2 are equivalent to the approximation operators in
Definition 2.1 in the following sense. Given AS ¼ dom;rh i and ASP ¼ dom;r; Ph i, a non-probabilistic approximation space
and a probabilistic approximation space, respectively, where the dom’s are the same and the base relations r are the same,
for any set c#dom,
POSASP cð Þ ¼ POSAS cð Þ; BNDASP cð Þ ¼ BNDAS cð Þ; and NEGASP cð Þ ¼ NEGASP cð Þ:

Consequently, probabilistic rough set models are a natural extension and will be shown to be generalizations of their clas-

sical counterparts.
In Pawlak et al. [21], a rough probabilistic model is introduced to characterize statistical dependencies between sets of

attributes in an information system, in particular dependencies between input (condition) attributes and target (action)
attributes. This is useful in constructing decision rules that take as input a subset of instantiated input attributes and return
an instantiation of the target attributes. Many such tables of data lack sufficient information to induce deterministic map-
pings and the authors call these tables non-deterministic. Deterministic tables can be handled using the classical rough set
model while non-deterministic tables require a generalization of the classical model that takes account of available proba-
bilistic information in the rough set model. The probabilistic rough set model that is proposed in [21] is defined below in
terms of 0.5-probabilistic approximations.

Definition 3.3 (0.5-Probabilistic approximations). Given ASP 0:5ð Þ ¼ dom;r; Ph i, and c#dom, the 0.5-probabilistic lower and
upper approximation of c wrt r are defined by:
cPþr ¼def xjlc;r xð Þ > 0:5
n o

¼ xjP c j r xð Þð Þ > 0:5f g; ð8Þ

cP�r ¼def xjlc;r xð Þ � 0:5
n o

¼ xjP c j r xð Þð Þ � 0:5f g: ð9Þ

Given a 0.5-probabilistic approximation space ASP 0:5ð Þ ¼ dom;r; Ph i, any set c# dom, can be partitioned into three disjoint

regions:

� POSASP 0:5ð Þ cð Þ ¼def cPþr ¼
S

r xð ÞjP cjr xð Þð Þ > 0:5f g ;
� BNDASP 0:5ð Þ cð Þ ¼def cP�r n cPþr ¼

S
r xð ÞjP cjr xð Þð Þ ¼ 0:5f g;

� NEGASP 0:5ð Þ cð Þ ¼def dom n cP�r ¼
S

r xð ÞjP cjr xð Þð Þ < 0:5f g.

This model has the flavor of a majority rule model. If more than 50% of the objects in an equivalence class r xð Þ, overlap
with c then r xð Þ# cþr . If exactly 50% of the objects in an equivalence class r xð Þ, overlap with c then r xð Þ# c�r n cþr

� �
. If less

than 50% of the objects in an equivalence class r xð Þ, overlap with c then r xð Þ# dom n c�r
� �

. If an object x is in POSASP 0:5ð Þ cð Þ
or NEGASP 0:5ð Þ cð Þ, the idea is that one can be statistically confident that the object does or does not satisfy the properties of
the concept c.

The remaining rough probabilistic models that will be considered in this paper can be viewed as generalizations of Def-
inition 3.2 and Definition 3.3 (although see Remark 3.5) through the use of parameterization. This perspective is elegantly
described in Yao [44].

Ziarko [49] proposed the variable precision rough set modelwhere one allows for different variable levels of set inclusion in
the definitions of approximation operators. Recall from Definition 3.3 that for cPþr ,
r xð Þ# c � v r xð Þjcð Þ > 0:5 � P cjr xð Þð Þ > 0:5: ð10Þ

Generalizing this, for a 2 0;1ð �,
r xð Þ# c � v r xð Þjcð Þ > a � P cjr xð Þð Þ > a: ð11Þ
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For the lower approximation, the majority rule constraint would constrain a to be greater than 0:5. Consequently,
a 2 0:5;1ð �. Additionally, for the upper approximation, in order for it to retain the property of being a dual operator to the
lower approximation, its parameter should be 1� a. This pair of parameters is a;1� að Þ is referred to as the symmetric
bounds. The use of symmetric bounds ensures that the lower approximation is always a subset of the upper approximation.

Definition 3.4 (Variable precision approximations, symmetric bounds). Let a 2 0:5;1:0ð �. Given ASVP að Þ ¼ dom;r; P;ah i, and
c#dom, the variable precision lower and upper approximation(s) of c wrt a and r are defined by:
cVþr ¼def xjlc;r xð Þ � a
n o

¼ xjP cjr xð Þð Þ � af g; ð12Þ

cV�r ¼def xjlc;r xð Þ > 1� a
n o

¼ xjP cjr xð Þð Þ > 1� af g: ð13Þ
The difference cV�r n cVþr is called the variable precision boundary region of c wrt r.
Remark 3.5. Observe that the variable precision lower approximation differs from the 0.5-lower approximation by using
‘P a’ rather than ‘> a’ (with a ¼ 0:5). However, in order to define the classical (non-probabilistic) lower approximation,
one needs a ¼ 1:0. In order to be able to subsume the 0.5-model, with P, as in Eq. (12), one has to use a ¼ 0:5þ � with a
sufficiently small � (0 < � < 1=jdomj). In a similar manner, the 0.5-upper approximation differs from the variable precision
upper approximation (here > is used rather than P). �

Given a variable precision approximation space ASVP að Þ ¼ dom;r;ah i, any set c#dom can be partitioned using parameter a
into three disjoint regions:

� POSASVP að Þ cð Þ ¼
def cVþr ¼

S
r xð ÞjP cjr xð Þð ÞP af g ;

� BNDASVP að Þ cð Þ ¼
def cV�r n cVþr ¼

S
r xð Þj1� a < P cjr xð Þð Þ < af g;

� NEGASVP að Þ cð Þ ¼
def dom n cV�r ¼

S
r xð ÞjP cjr xð Þð Þ 6 1� af g.

Asymmetric bounds for variable precision rough set models were considered in Katzberg and Ziarko [14] (for the more
recent versions see [49,50]). Here one introduces two parameters, a and b, for the lower and upper approximations, respec-
tively, where 0:0 6 b < a 6 1:0. For the cases of rough set inclusion where v r xð Þjcð Þ ¼ P cjr xð Þð Þ, this approach is equivalent
to the most general case we consider which derives probabilistic approximations using a decision-theoretic model [46].

Definition 3.6 (Decision-theoretic approximations). Let 0:0 6 b < a 6 1:0. Given ASDT a; bð Þ ¼ dom;r; P;a; bh i, and c#dom, the
decision-theoretic lower and upper approximation(s) of c wrt a; b and r are defined by:
cDþr ¼def xjlc;r xð Þ � a
n o

¼ xjP cjr xð Þð Þ � af g; ð14Þ

cD�r ¼def xjlc;r xð Þ > b
n o

¼ xjP cjr xð Þð Þ > bf g: ð15Þ
The difference cD�r n cDþr is called the decision-theoretic boundary region of c wrt r.
Given a decision theoretic approximation space ASDT a; bð Þ ¼ dom;r;a; bh i, any set c#dom can be partitioned using the

parameters a and b into three disjoint regions (see Fig. 3):
Fig. 3. Classical vs probabilistic rough set model.
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� POSASDT a; bð Þ cð Þ ¼def cDþr ¼
S

r xð ÞjP cjr xð Þð ÞP af g ;
� BNDASDT a; bð Þ cð Þ ¼

def cD�r n cDþr ¼
S

r xð Þjb < P cjr xð Þð Þ < af g;
� NEGASDT a; bð Þ cð Þ ¼

def dom n cD�r ¼
S

r xð Þ jP cjr xð Þð Þ 6 bf g.

The distinction between the asymmetric bounds variable precision approximation model and the decision-theoretic
approximation model is that the latter proposes methods for specifying the parameters a and b in a theoretically principled
manner using Bayesian decision theory. In this case, the risk in making a wrong choice for particular levels of set inclusion is
quantified and reflected in the choice of a and b used in the definition of the approximation operators. For the interested
reader, techniques for determining a and b are considered in [47,46]. In the remainder of the paper, we will assume that
these parameters are set appropriately by the users of our PROBLOG program specifications.

The following proposition is well-known. It shows that we can focus on the decision theoretic approximation model with-
out loss of generality.

Proposition 3.7. The decision theoretic approximation model subsumes:

� the probabilistic approximation model (Definition 3.2), where a ¼ 1:0 and b ¼ 0:0;
� the 0.5-probabilistic approximation model (Definition 3.3), where a ¼ 0:5þ � and b ¼ 0:5� �, where � is explained in Remark
3.5;
� the variable precision approximation model (Definition 3.4), where b ¼ 1:0� a.

An extension of the variable precision model, called Bayesian Rough Sets, has been introduced and discussed in [37,50].
The idea behind this approach, as expressed in [37], is that ‘‘in some applications, for example in stock market, medical diag-
nosis etc., the objective is to achieve some certainty prediction improvement rather than trying to produce rules satisfying
preset certainty requirements.”

Definition 3.8 (Bayesian approximations). Given ASB ¼ dom;r; Ph i, called the Bayesian approximation space, and c#dom, the
Bayesian lower and upper approximation of c wrt r are defined by:
cPþr ¼def xjlc;r xð Þ > P cð Þ
n o

¼ xjP c j r xð Þð Þ > P cð Þf g; ð16Þ

cP�r ¼def xjlc;r xð Þ � P cð Þ
n o

¼ xjP c j r xð Þð Þ � P cð Þf g: ð17Þ

Given a Bayesian approximation space ASB ¼ dom;r; Ph i, any set c# dom, can be partitioned into three disjoint regions:

� POSASB cð Þ ¼def cPþr ¼
S

r xð ÞjP cjr xð Þð Þ > P cð Þf g ;
� BNDASB cð Þ ¼def cP�r n cPþr ¼

S
r xð ÞjP cjr xð Þð Þ ¼ P cð Þf g;

� NEGASB cð Þ ¼def dom n cP�r ¼
S

r xð ÞjP cjr xð Þð Þ < P cð Þf g.

Before proceeding to a consideration of PROBLOG and how one would use PROBLOG for reasoning with probabilistic approx-
imations of rough sets, an example as to how probabilistic rough sets can be derived from table data is provided.

A common use of rough set reasoning is based on the use of table data. Generally, one assumes a universe of individuals U,
possibly infinite, but one only has access to a finite subset of these individuals dom 	 U. One then associates attribute/value
pairs with these individuals representing input attributes and one is interested in understanding relationships between sets
of individuals defined by these input attributes and sets of individuals defined by target attributes. It is often the case that
these sets of individuals can not be fully characterized in terms of the input attributes and so can be interpreted as rough
sets relative to an indiscernibility relationship implicit in the table of data. Given a table of data, each row can be viewed
as a sample pertaining to an individual. In the following, reference will be made to Table 2 which is also found in Russell
and Norvig [31].

Example 3.9. Suppose one is interested in the relationship between the input attributes Hun; Type and the target attribute
WillWait. Table 2 has 12 samples. Let us create a corresponding variable precision approximation space with symmetric
bounds, ASVP að Þ ¼ dom;r;ah i, where a ¼ 0:5; dom ¼ x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12f g and r is the indiscernibiltiy
relation constructed from the combination of attributes Hun and Type. Since the domain of Hun (Yes, No), has cardinality 2
and the domain of Type (French, Thai, Burger, Italien), has cardinality 4, there are 8 equivalence classes uniquely
distinguished by the values assigned to the attributes. The eight equivalence classes compose the quotient set dom=r: see
Table 3.
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Table 2
Restaurant Example: Russell, Norvig [31, p. 657]with the attributes: Alt: is there a suitable alternative restaurant nearby? Bar: has a bar area? Fri: is today
Friday or Saturday? Hun: hungry right now? Pat: people in the restaurant, Price: the price range, Rain: raining outside? Res: is a reservation made? Type: the
kind of restaurant, Est: host’s waiting time estimate (in minutes), WillWait: will wait for a table?

Example Input Attributes Output

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $ $ $ No Yes French 0� 10 Yes
x2 Yes No No Yes Full $ No No Thai 30� 60 No
x3 No Yes No No Some $ No No Burger 0� 10 Yes
x4 Yes No Yes Yes Full $ Yes No Thai 10� 30 Yes
x5 Yes No Yes No Full $ $ $ No Yes French > 60 No
x6 No Yes No Yes Some $ $ Yes Yes Italien 0� 10 Yes
x7 No Yes No No None $ Yes No Burger 0� 10 No
x8 No No No Yes Some $ $ Yes Yes Thai 0� 10 Yes
x9 No Yes Yes No Full $ Yes No Burger > 60 No
x10 Yes Yes Yes Yes Full $ $ $ No Yes Italien 10� 30 No
x11 No No No No None $ No No Thai 0� 10 No
x12 Yes Yes Yes Yes Full $ No No Burger 30� 60 Yes

Table 3
Conditional probabilities for equivalence classes.

P WW jrHun¼yes;Type¼French
� �

1:0 P WW jrHun¼no;Type¼French
� �

0:0

P WWjrHun¼yes;Type¼Thai
� �

2=3 P WWjrHun¼no;Type¼Thai
� �

0:0

P WWW jrHun¼yes;Type¼Burger
� �

1:0 P WWjrHun¼no;Type¼Burger
� �

1=3

P WW jrHun¼yes;Type¼Italien
� �

1=2 P WW jrHun¼no;Type¼Italien
� �

0:0
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rHun¼yes;Type¼French ¼ x1f g; rHun¼yes;Type¼Thai ¼ x2; x4; x8f g;
rHun¼yes;Type¼Burger ¼ x12f g; rHun¼yes;Type¼Italien ¼ x6; x10f g;
rHun¼no;Type¼French ¼ x5f g; rHun¼no;Type¼Thai ¼ x11f g;
rHun¼no;Type¼Burger ¼ x3; x7; x9f g; rHun¼no;Type¼Italien ¼ fg
For instance, the equivalence class rHun¼yes;Type¼Thai can be characterized as a logical rule as follows:
rYT Xð Þ  hun X; yesð Þ; type X; thaið Þ; ð18Þ

where ‘ ’ is to be understood as an implication from right to left.

The base (target) set of interest will be the set defined by all individuals with attributeWillWait ¼ Yes. This set is denoted
as WW;WW ¼ x1; x3; x4; x6; x8; x12f g. The following logical rule can be defined for WW:
ww Xð Þ  willWait X; yesð Þ: ð19Þ

The interest then is defining the rough set correlate of WW consisting of the lower and upper approximation of WW that

is denoted as WWr and defined as:
WWr ¼ WWþ
r ;WW�

r
� �

: ð20Þ

Recall that rough membership of a base set c is defined as lc xð Þ ¼ P cjr xð Þð Þ, where the conditional probability provides

the probability that an individual, randomly chosen from its equivalence class r xð Þ, belongs to the rough set derived from c.
In the case of the example,
lww xð Þ ¼ P ww xð Þjr xð Þð Þ ¼ jww xð Þ \ r xð Þj
jr xð Þj : ð21Þ
The following logical rule will be useful when defining the approximation operators for WW ,
wwr xð Þ  lww xð Þ: ð22Þ

Table3.9 provides the conditional probabilities required which are derived from rule (22) and the sample data in Table 2.
According to the rough probability model being used,
WWPþ
r ¼ rHun¼yes;Type¼French [ rHun¼yes;Type¼Thai [ rHun¼yes;Type¼Burger ¼ x1; x2; x4; x8; x12f g

WWP�
r ¼ rHun¼no;Type¼French [ rHun¼yes;Type¼Thai [ rHun¼yes;Type¼Burger [ rHun¼yes;Type¼Italien

¼ x1; x2; x4; x6; x8; x10; x12f g;
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The following logical rules can be used to determine membership in WWþ
r and WW�

r , respectively,
3 For
Note th
that is c
lowerWW xð Þ  wwr xð ÞP a;
upperWW xð Þ  wwr xð Þ > 1� a:
Additionally,
POSASVP 0:5ð Þ WWð Þ ¼ rHun¼yes;Type¼French [ rHun¼yes;Type¼Burger [ rHun¼yes;Type¼ThaiÞ
¼ x1; x2; x4; x8; x12f g

BNDASVP 0:5ð Þ WWð Þ ¼ rHun¼yes;Type¼Italien ¼ x6; x10f g
NEGASVP 0:5ð Þ WWð Þ ¼ rHun¼no;Type¼French [ rHun¼no;Type¼Thai [ rHun¼no;Type¼Burger

[rHun¼no;Type¼Italien ¼ x3; x5; x7; x9; x11f g:

The following logical rules can be used to determine membership in POS WWð Þ;NEG WWð Þ and BND WWð Þ, respectively,
POSww xð Þ  wwr xð ÞP a;
BNDww xð Þ  1� a < wwr xð Þ < a;
NEGww xð Þ  wwr xð Þ 6 1� a:
For the purpose of basic reasoning with probabilistic rough sets, Example 3.9 exhibits most of the required functionality.
wwr xð Þ, defined in (22), is a probabilistic predicate where the distribution is derived from the equivalence class r. Associated
with wwr xð Þ are a number of other properties defined using the probability model: lowerWW xð Þ;upperWW xð Þ; POS WWð Þ;
NEG WWð Þ;BND WWð Þ. The idea will be to embed probabilistic rough sets and their properties into PROBLOG programs. One
can then combine probabilistic rough relations/properties such as wwr xð Þ with standard probabilistic and non-
probabilistic relations in defining probabilistic knowledge bases consisting of tables and relational rules. Before proceeding
to more complex examples that do this, a short summary of PROBLOG is provided in the next section.
4. Short summary of PROBLOG and its semantics

In the past decades there has been a fundamental interest in combining logic with probabilities, in particular in the form
of probabilistic programming languages [4,11,24]. One area of major interest has been the development of probabilistic logic
programming languages, including CLP(BN) [3], CP [41], ICL [27], LPMln [16], P-LOG [1], PRISM [35], PROBLOG [5], PROPPR [42].

PROBLOG is a probabilistic extension of PROLOG that is one of the more popular languages due to its ease of use in addition to
having a large user community. PROBLOG 3 will be used in this paper as a basis for specifying the diverse collection of probabilis-
tic rough set models considered in this paper.

Program1: PROBLOG program from the on-line PROBLOG Tutorial [29].
Consider the basic PROBLOG program shown as Program 1 and taken from the on-line PROBLOG Tutorial [29]. It specifies the
well-known Bayesian Network example in [22].A PROBLOG program consists of probabilistic facts, probabilistic clauses, rules
and queries. In Program 1):
an online PROBLOG implementation that can be used for validating examples considered in the paper see https://dtai.cs.kuleuven.be/problog/editor.html.
at the online version is somewhat unstable for larger examples. In this case it is better to download the PROBLOG distribution (accessible at the same site)
ompatible with Python.
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� the probabilistic fact ‘‘0.7::burglary” (Line 2) represents a random variable ‘‘burglary” with probability distribution 0.7::
true, 0.3::false;
� an unannotated fact such as ‘‘person(john)” (Line 1) has the probability distribution: 1.0::true, 0.0::false.

A probabilistic clause is syntactic sugar for a set of conditionalized probabilistic facts. For example, the rule in Line 6 encodes
a set of probabilistic rules, one for each person,
0:8 :: calls johnð Þ : - alarm; person johnð Þ: ð23Þ
0:8 :: calls maryð Þ : - alarm; person maryð Þ: ð24Þ
Clause (23) implicitly represents a probabilistic fact and a clause:
0:8 :: calls aux johnð Þ:
calls johnð Þ : �calls aux johnð Þ; alarm;person johnð Þ:
Given a probabilistic knowledge base, one can query it in various ways. In this example, one specifies two conditional
probabilistic queries,
P burglaryjcalls johnð Þ; calls maryð Þð Þ; P earthquakejcalls johnð Þ; calls maryð Þð Þ:

Here the relation ‘evidence(
)’ is used to specify evidence facts, while ‘query(
)’ is used to specify the question to be asked.

Note that ‘query(
)’ can be used without any ‘evidence(
)’. In the example, the result of these queries would show that
P burglaryjcalls johnð Þ; calls maryð Þð Þ ¼ 0:981939;
P earthquakejcalls johnð Þ; calls maryð Þð Þ ¼ 0:226851:
PROBLOG is based on distribution semantics [5,27,34]. In its very spirit, PROBLOG is like restricted Prolog except that one may
additionally specify particular facts (or consequences of rules) as being probabilistic. This gives rise to many possible worlds.
In each world, probabilistic literals are chosen to be true or false, and the probability of this choice contributes to the prob-
ability of the world. That is, in each world one obtains a pure Prolog program and the worlds differ in the set of facts. Distri-
bution semantics calculates probabilities using the obtained probability distribution on worlds.

The following summary of the semantics follows [15]. A PROBLOG program
P ¼ p1 :: c1; . . . ;pn :: cnf g [ KB;
consists of a set of labeled facts (probabilistic facts), and KB a set of definite clauses, the Knowledge Base. Given a finite set of

substitutions hj1; . . . ; hjij

n o
for each probabilistic fact pj :: cj, let
F ¼ c1h11; . . . ; c1h1i1 ; . . . ; cnhn1; . . . ; cnhnin
� �
be the maximal set of grounded logical facts that can be added to KB. The random variables corresponding to facts in F are
mutually independent, so the program P defines a probability distribution over ground logic programs F 0# F:
P F 0jP� � ¼
Y

cihj2F0
pi �

Y
cihj2FnF 0

1� pið Þ: ð25Þ
The probability that a ground query q is true given a program P is
P qjPð Þ ¼
X
F 0 # F

P qjPð Þ 
 P F 0jP� �
: ð26Þ
P qjPð Þ is 1:0 if there is a substitution h such that F 0 [P � qh otherwise it is 0:0 and P F 0jP� �
is as defined in Eq. 25. P qjPð Þ

is called the success probability of q.

Remark 4.1. The complexity of computing probabilities of queries directly using (26) is exponential wrt the number of
distinct probabilistic predicates occurring in the program. However, as indicated in [5], ‘‘as fixing the set of facts yields an
ordinary logic program, the entailment check can use any reasoning technique for such programs.” Such techniques are
typically much more efficient, however, still exponential in the worst case. A better performance may be achieved by
statistical sampling or using bounds, where the set of possible worlds where the given query is true is approximated by their
subset and superset [5].�

PROBLOG extends classical PROLOG with stratified negation and uses the symbol n+ for negation. As mentioned before, the
main difference between PROBLOG and PROLOG is that PROBLOG supports probabilistic facts. The following provides an incomplete
list of those parts of PROBLOG (and PROLOG) used in the paper, in addition to a number of other useful features. For additional
features the reader is referred to the PROBLOG on-line tutorial [29] and related literature, including [4,5], in addition to other
references there.
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� To specify probabilistic predicates, an operator ‘::’ is used. If a is a tuple of constants, p is a relation symbol and r 2 0:0;1:0½ �
is a real number, then the specification:
r :: p að Þ ð27Þ
states that p að Þ is true with probability r and false with probability 1� rð Þ.
Probabilistic predicates can be used to specify probabilistic facts and heads of probabilistic clauses.
� Queries are used to compute probabilities. The probability of p að Þ is returned as the result of the query:
query p að Þð Þ: ð28Þ
� Evidence is used to specify any observations on which one wants to condition a probability. Each piece of evidence is
specified using a binary relation evidencewhere the first argument indicates a fact and the second one indicates a clas-
sical truth value:

evidence p að Þ; trueð Þ: evidence q bð Þ; falseð Þ: ð29Þ
They indicate that p að Þ is true (respectively, q bð Þ is false). Evidence facts are useful in computing (conditional) probabil-
ities by restricting worlds to those where (in this case) p að Þ is true (respectively, q bð Þ is false).
Queries can be also be used inside the bodies of rules by using the subquery predicate:

subquery p að Þ; P; ListOfEv idenceð Þ ð30Þ
which evaluates p(a) and returns P as the conditional probability of p(a) given the evidence listed in ListOfEvidence.
ListOfEvidence may also be empty.
� Annotated disjunctions support choices. If r1; . . . ; rk 2 0:0;1:0½ � such that 0:0 6 r1 þ . . .þ rk 6 1:0; a1; . . . ; ak are tuples of
constants and p is a relation symbol then an annotated disjunction is an expression of the form:
r1 :: p a1ð Þ; . . . ; rk :: p akð Þ: ð31Þ
It states that at most one of r1 :: p a1ð Þ; . . . ; rk :: p akð Þ is chosen as a probabilistic fact. If r1 þ . . .þ rk ¼ 1:0 then exactly one
of the listed literals is selected, otherwise there is an implicit null choice indicating that none of the options is taken with
the probability 1� r1 þ . . .þ rkð Þ. An annotated disjunction may occur as a fact or as a head of a rule.
� Negation is expressed by n+, where ‘n’ stands for ‘not’ and ‘+’ stands for ‘provable’. That is, n+ represents negation as failure.
For backward compatibility the connective ‘not’ can be used instead of n+.4

A number of standard PROLOG commands, available in PROBLOG will also be used:

� call p; �að Þ, where p is a relation symbol and �a abbreviates 1 to 8 parameters. When call p; �að Þ is encountered as a sub-goal, it
evaluates p �að Þ;
� findall X;Q ; Lð Þ: creates a list L of all values of X making query Q Xð Þ true;
� predicates from a standard library lists:
– list to set L; Sð Þ: computes S from L by removing duplicates;
– length L;Nð Þ: computes N as the length of the list L.
– intersection L1; L2ð Þ: computes the intersection of the two lists L1 and L2.

5. Implementing probabilistic rough sets in PROBLOG

5.1. The structure of programs used in the paper

In [9] the authors developed a generic program structure for Answer Set programs which could be used as a tool for
implementing (non-probabilistic) rough sets and their generalizations. Program 2, adapted from [9], shows a corresponding
structure for PROBLOG programs that takes into account probabilistic rough sets and their generalizations. For the sake of read-
ability, a number of program structuring keywords, not belonging to the syntax of PROBLOG, will be used. These are written in
boldface font and should be treated as comments:

� constants – specify global constants using one-argument relations, like alpha 0:9ð Þ;
� crisp/probabilistic set(s) – specify the domain ‘dom0 used, in addition to explicitly specifying or implicitly generating
crisp or probabilistic sets. Specifications may use crisp and/or probabilistic predicates. For simplicity we assume that
all constants occurring in a program have to belong to its domain ‘dom’;
4 The connective ‘not’ tends to be avoided to emphasize that the negation operator used in PROLOG and PROBLOG differs from classical negation.
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� crisp/probabilistic base relation(s) – specify explicitly or generate base relations. The relations may be crisp and/or
probabilistic. The properties that may be considered (T, B, 4, 5) are listed in Lines 11–13 and should be selected or com-
mented out in order to reflect the desired properties of relations. The property T is required in all rough set generaliza-
tions as it corresponds to the requirement that any object is indistinguishable from/similar to itself.
� approximations – specify or generate lower and/or upper approximations for concepts and relations. Additionally define
other approximation operators;
� knowledge base – specify a background knowledge base using PROBLOG rules and facts.

Note that we assume that for each crisp set ci there is a base relation ri . . .ð Þ used for approximating ci. For example, a base
relation for similarity among company clients is different from similarity among items being offered by the company. For the
same reasons we allow for many domains.

Program2: The structure of PROBLOG programs used in the paper.

Program 2 provides the basic structure of a program using informal syntax. In Line 1, the standard PROLOG library ‘lists’ is
loaded. It provides built-in operations on lists.

As in [9], properties T, B, 4, 5 formulated in Lines 11–14, reflect first-order conditions shown in Table 1.

6. Some examples

6.1. Probabilistic rough set reasoning

Example 6.1. An instantiation of the program template (Program 2) considered in Section 5.1 is shown in Program 3 where,
in addition to Table 2, we use data for table rating contained in Table 4. An executable PROBLOG code for this example is shown
in A.1. A brief description of the program is now provided and a number of queries that use this example are then considered
that illuminate the use of probabilistic rough sets.

Consider the annotated program schema shown as Program 3.
Table 4
Restaurant rating table.

Restaurant TypeOf Rating Restaurant TypeOf Rating Restaurant TypeOf Rating

r1 French 4 r6 Italien 3 r11 Korean 3
r2 Thai 3 r7 Burger 1 r12 Chinese 4
r3 Burger 2 r8 Thai 5 r13 Japanese 5
r4 Thai 4 r9 Japanese 4 r14 Chinese 3
r5 French 5 r10 Steak 5 r15 Italien 2
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Program3: PROBLOG program schema for Example 6.1. For executable PROBLOG code see A.1.

� In Lines 2–3, constants a and b are bound to 0:5, respectively. Symmetric bounds are used for this example so b ¼ 1� a.
� Lines 4–5 specify two domains: for Table 2 and Table 4.
� Lines 7–9 specify schemata for the actual table data.
� Line 11 defines the crisp set ww Xð Þ of interest. Since it is not definable relative to the indiscernibility relation r based on
the two attributes hun and type, a rough set correlate wwR Xð Þ will be defined in Line 28 with its lower and upper approx-
imations and regions (Lines 29–33).
� In Line 12, base facts about the base relation r X;Yð Þ are defined using the relation s X;Yð Þ. Pairs of individuals having the
same values for attributes hun and type are in s X;Yð Þ.
� Lines 14–17 specify the properties of r X;Yð Þ and generate the transitive closure of s X;Yð Þ, since we are interested in an
equivalence relation among individuals.
� Line 18 specifies the useful relation r1 X; Lð Þ, which given an individual X, returns a list L containing all individuals in X’s
equivalence class r Xð Þ ¼ X½ �.
� Lines 19–20 specify the generic relations for the lower and upper approximations of the rough set wwR Xð Þ (lower X;Cð Þ
and upper X;Cð Þ, respectively). The parameter C is a relation for a crisp set. In the example, it is ww.
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� Lines 21–24 define the rough membership relation rmb X;C; Pð Þ which computes the rough membership function
l xð Þ ¼ jC[r Xð Þj

jr Xð Þj . This provides the probability that a randomly chosen individual in X’s equivalence class r Xð Þ, belongs to

the rough set correlate wwR Xð Þ of C ¼ ww Xð Þ. For the sake of clarity, we denote this relation by rmb since mu is reserved
for a generic definition of l, which will be provided in Program 6.
� Lines 25–27 specify the generic region relations for a rough set, taking its crisp set correlate C as an input parameter.
� Line 28 in the knowledge base, specifies the probabilistic clause that defines the probability that an individual is in the
rough set wwR Xð Þ, in terms of rmb X;ww; Pð Þ.
� Lines 29–30 define the instantiations of the generic relations lower X;Cð Þ and upper X;Cð Þ for the crisp relation ww.
� Lines 31–33 define instantiations of the generic relations pos X;Cð Þ; bnd X;Cð Þ and neg X;Cð Þ, representing the positive,
boundary and negative regions for ww, respectively.
� Lines 24–36 specify probabilistic clauses for the relationwillLike P;Rð Þwhich provides the probability a person Pwill like a
restaurant R depending on whether P is hungry and the rating of R.
Remark 6.2.
It is important to emphasize the use of PROLOG meta-predicates in the definition of the rough membership relation

rmb X;C; Pð Þ which takes a relation C as input parameter, and uses the meta-predicates findall=3 and call=2. Since the main
approximation relations, lower X;Cð Þ;upper X;Cð Þ; pos X;Cð Þ;neg X;Cð Þ, and bnd X;Cð Þ, are all defined in terms of rmb X; C; Pð Þ,
this provides an elegant, compact, higher-order relational technique for dealing with multiple numbers of rough set
specifications through simple instantiation. In our case, the crisp set of interest, C ¼ ww is used throughout. Later in the
paper, even more use will be made of such meta-predicates and higher-order programming techniques. �

Given this specification, one can now combine crisp, probabilistic and rough probabilistic relations in additional rules to
reason about individuals and their restaurant preferences. Here are some examples. The relation willmeet X;Y ;Rð Þ is defined
in terms of a crisp relation type Y;Rð Þ and a rough probabilistic relation wwR Yð Þ:
willmeet X;Y;Rð Þ : �type Y ;Rð Þ;wwR Yð Þ: ð32Þ

The query ‘query(willmeet(jim,Y,thai))’, will return the information that jim will meet individuals x2; x4 and x8 with proba-
bility 0:667 and will meet individual x11 with probability 0:0. This makes sense since the probability of jimmeeting someone
at a thai restaurant is restricted to those individuals willing to wait to go to a thai restaurant, where waiting is determined by
the probabilistic rough relation wwR Yð Þ. The next rule uses the subquery relation and conditionalizes the conclusion on the
probability that Y0s rough membership in wwR will be greater than 0:7.
willmeet X;Y;Rð Þ : �type Y ;Rð Þ; subquery wwR Yð Þ; Pð Þ; P > 0:7: ð33Þ

In this case, ‘query(willmeet(jim,X,R)’ will return information that willmeet jim; x1; frenchð Þ and willmeet jim; x12; burgerð Þ

with probability 1:0. If one replaces P > 0:7 with P > 0:6, one can additionally conclude
willmeet jim; x2; thaið Þ;willmeet jim; x4; thaið Þ and willmeet jim; x8; thaið Þ, also with probability 1:0.The final query in this
example uses a rule that combines standard relations, typeOf Y ;Rð Þ and willmeet X;Y;R; Tð Þ, a probabilistic relation
willLike P;Rð Þ, and a rough probabilistic relation wwR Pð Þ:
willmeet X; P;R; Tð Þ : �typeOf R; Tð Þ;willLike P;Rð Þ;wwR Pð Þ: ð34Þ

In this case, suppose jim wants to meet a client x12 at a Chinese restaurant. What choice of Chinese restaurant would

result in the highest probability of them meeting given the behavior of x12? The query ‘query(willmeet(jim, x12, R, chinese)’
would result in the following choices willmeet jim; x12; r12; chineseð Þ;willmeet jim; x12; r14; chineseð Þ, with probabilities 0:6
and 0:25. Consequently, jim should choose restaurant r12. Note that these probabilities do not sum up to 1:0 since proba-
bilistic relation willLike P;Rð Þ is involved.
6.2. Decision rules

A common application of rough set theory is rule induction via the generation of reducts. Rather than delve into rule
induction in the general case, this section shows how one can define decision rules for a concept c, based on the three regions
POS cð Þ;NEG cð Þ, and BND cð Þ. Yao [45] considers a semantically sound means of constructing three-way decision rules for a
concept c based on the regions.Recall in Example 6.1, that one constructed a variable precision probabilistic approximation
space AVP að Þ ¼ dom;r;ah i, where r was derived from Table 2. The table can be described as an information system which is a
formal counterpart of a table:
I ¼ dom;At; Vaja 2 Atf g; Iaja 2 Atf gh i; ð35Þ

where dom is a finite empty set of objects, At is a set of attributes, Va are the value domains for each attribute in At, and
Ia : U ! Va is an information function which maps an object to its attribute value, for each attribute a. The information table
associated with the part of Table 2 used in Example 3.9 is,
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Iww ¼ dom; Hun; Type;WillWaitf g; yes;nof g; French; Thai;Burger; Italienf gh g;
IHun; IType; IWillWait

� �i:

The indiscernibility relation, r in AVP að Þ was defined using the subset of attributes A ¼ Hun; Typef g#At as follows
r x; yð Þ � 8a 2 A Ia xð Þ ¼ Ia yð Þð Þ;

where two objects are in the same equivalence class if they share the same values for attributes A.

For each equivalence class in the quotient set dom=r associated with AVP að Þ, one can provide a logical definition in terms of
conjunctions of attribute/value pairs. For instance,
Des rHun¼yes;Type¼French
� � ¼ Hun ¼ yes ^ Type ¼ French

..

.

Des rHun¼no;Type¼Burger
� � ¼ Hun ¼ no ^ Type ¼ Burger

Des WWð Þ ¼ WillWait ¼ Yes
Des WWð Þ describes the target set of all individuals that are willing to wait. Let x½ � 2 dom=r. In the classical case, if
x 2 POS WWð Þ, it belongs to WW with certainty. If x 2 NEG WWð Þ, it does not belong to WW with certainty. If
x 2 BND WWð Þ, if can not be decided with certainty whether or not it belongs to WW. Consequently, one has three types
of decision rules:

� Des x½ �ð Þ!PDes cð Þ for x½ �# POS cð Þ;
� Des x½ �ð Þ!NDes cð Þ for x½ �#NEG cð Þ;
� Des x½ �ð Þ!BDes cð Þ for x½ �#BND cð Þ.

A more fine-grained approach introduces the notion of relative certainty. There are many ways to do this, but for this dis-
cussion, the following will be used, where P;N, and B stand for positive, negative, and boundary region, respectively,
H 2 P;N;Bf g and cf is a function that returns the certainty factor for a decision rule,
cf Des x½ �ð Þ!HDes cð Þð Þ ¼ lc;r xð Þ ¼ jc \ r xð Þj
jr xð Þj ¼ P cjr xð Þð Þ: ð36Þ
cf can be understood as a confidence value for concluding the right-hand side of the rule. This results in three types of
decision rules,

� Des x½ �ð Þ!P
cf

Des cð Þ;
� Des x½ �ð Þ!N

cf
Des cð Þ;

� Des x½ �ð Þ!B
cf

Des cð Þ.

In the first two cases, cf ¼ 1:0, and cf ¼ 0:0, respectively, so with absolute certainty, one can be confident that for
y 2 x½ �; y 2 c and not y 2 c, respectively. For the third rule, 0:0 < cf < 1:0, so for any y 2 x½ �, one can not say anything with
certainty.

In the probabilistic case, the certainty factor for all three rule types would be in the interval 0:0 6 cf 6 1:0, so the question
then becomes what rule type should be applied in what situation. The following approach (one of many) would take addi-
tional probabilistic information into account in determining which rule to use:

� Des x½ �ð Þ!P
cf

Des cð Þ if cf P a;

� Des x½ �ð Þ!B
cf

Des cð Þ if 1� a < cf < a;

� Des x½ �ð Þ!N
cf

Des cð Þ if cf 6 1� a.

The following are some instantiations of these decision rules for Example 3.9:5
clarity, we write cf > a rather than cf P aþ �, etc. (see Remark 3.5).
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Des rHun¼yes;Type¼French
� �!P

cf
Des WWð Þ if cf > 0:5)

H xð Þ ¼ yes ^ Type xð Þ ¼ French!P
1:0

WillWait xð Þ ¼ Yes;

Des rHun¼yes;Type¼Italien
� �!B

cf
Des WWð Þ if cf ¼ 0:5)

H xð Þ ¼ yes ^ Type xð Þ ¼ Italien!B
2=3

unknown;

Des rHun¼yes;Type¼Thai
� �!N

cf
Des WWð Þ if cf < 0:5)

H xð Þ ¼ yes ^ Type xð Þ ¼ Thai!N
1=3

WillWait xð Þ ¼ Yesð Þ:

The first rule is always safe to use since cf ¼ 1:0 and it will always be correct when used. The second rule is relatively safe

since 1:0� 1=3 ¼ 2=3, so statistically it will be correct two times out of three. Recall that an N rule asserts the conclusion is
not true. The last rule should not be used due to lack of information. It’s precondition is in the boundary region of the concept
WillWait.

These decision rules can then be encoded in PROBLOG and then used to reason about the probabilistic rough set WW.

Example 6.3. In this example, the PROBLOG code required is shown as Program 4. Extending the PROBLOG code in Program 3 for
the decision rule encoding is straightforward and compact. In the full code (see A.1), one does not require a rule for each
equivalence class. There is one rule each for positive, negative, and boundary regions, respectively, where the a check is built
into the definitions for pos X;Cð Þ;neg X; Cð Þ and bnd X;Cð Þ. rmb X;C; Pð Þ implements lc;r xð Þ. dom1 Xð Þ is a domain check to
restrict individuals to the table data being processed.

Program 4: PROBLOG program encoding decision rules from Example 6.3.

Each of the queries in Lines 4–6 results in the facts about the rules’ conclusions that are true, and each fact also returns
the certainty factor associated with application of the decision rule:

drP(x1,ww,1.0), drP(x2,ww,0.67), drP(x4,ww,0.67), drP(x8,ww,0.67), drP(x12,ww,1.0);

drN(x3,ww,0.33), drN(x5,ww,0.0), drN(x7,ww,0.33), drN(x9,ww,0.33), drN(x11,ww,0.0);

drB(x6,ww,0.5), drB(x10,ww,0.5).
7. Generalization toward tolerance spaces

There are many commonsense scenarios where viewing similarity or indiscernibility between individuals as an equiva-
lence relation does not apply, in particular in regard to transitivity. For example [23], in Fechner’s weight-lifting sensitivity
example, it is given that one has a set of small weights (in grams), x; y and z, each weighing 10, 11 and 12 grams, respectively.
Let s be a tolerance relation. s x; yð Þ and s y; zð Þ, but :s y; zð Þ. In other words, weights differing by 1 gram are indistinguishable
from one another when held in the palms of both hands, while weights differing by 2 or more grams are distinguishable.
Another example is resemblance [39], where just because Jim resembles Fred and Fred resembles Frank does not imply that
Jim resembles Frank.So far, the approaches considered have focused on approximation spaces, ASDT a; bð Þ ¼ dom;r; P;a; bh i,
where the base relation r is an equivalence relation. The generalization to tolerance spaces removes the constraint of tran-
sitivity placed on the base relation r as considered in Section 2.2. The paper [36] provides a detailed discussion on theory and
choices when using tolerance spaces in the rough set context.

Definition 7.1 (Tolerance relation, tolerance space, tolerance neighborhood). A tolerance relation s on a set dom, is a relation
s#dom� dom, that is reflexive and symmetric. A tolerance space TS ¼ dom; sh i, consists of a domain dom and a tolerance

relation s. The tolerance neighborhood of x wrt s, denoted ns, is ns xð Þ ¼def yjs x; yð Þf g.
Note that given a tolerance space TS, the family of equivalence classes generated from r and their partition of dom used in

approximation spaces is generalized to a family of neighborhoods generated from s. The set ns xð Þ : x 2 domf g is a covering of
dom. Generally, to derive s, one assumes an application dependent allowed tolerance between individuals x; y, in order to
determine neighborhoods. For example, one may consider:
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y 2 ns xð Þ �def j/ xð Þ � / yð Þ j < �x; ð37Þ

where / is a measurement function associated with the domain of interest. One can assume a tolerance for each individual xi,
or a common tolerance � for the whole domain dom. Another way to state this is,
8x; y 2 dom s x; yð Þ � j/ xð Þ � / yð Þ j < �ð Þ:

When appropriate, the notation TSs ¼ dom; s;/; �h i can be used to make the measurement function / and the tolerance

constant � explicit.
Given a neighborhood operator ns, one can also derive its tolerance relation s:
8x; y 2 dom s x; yð Þ �def y 2 ns xð Þ
� 	

:

Assuming a measurement function / and a tolerance constant �,
8x; y 2 dom s x; yð Þ � y 2 ns xð Þ � j/ xð Þ � / yð Þ j < �ð Þ:
Definition 7.2 (Tolerance-based rough membership). Given TS ¼ dom; sh i, and c#dom, the tolerance-based rough membership
function with regard to c is
lc;s xð Þ¼defP cjns xð Þð Þ ¼ jc \ ns xð Þj
jns xð Þj :
Tolerance-based approximations are straightforward generalizations of rough approximations where equivalence classes
and partitions are replaced by neighborhoods and coverings. It is important to note that an individual x, can now be a mem-
ber of more than on neighborhood. This contrasts with rough approximation spaces where an individual has one unique
equivalence class it belongs to.
Definition 7.3 (Classical tolerance-based approximations). Given ASP ¼ dom; s; Ph i, and c# dom, the lower and approximation
of c wrt s are defined by:
cþs ¼def x j lc;s xð Þ ¼ 1:0
n o

¼ x j P c j ns xð Þð Þ ¼ 1:0f g; ð38Þ

c�s ¼def x j lc;s xð Þ > 0:0
n o

¼ x j P c j ns xð Þð Þ > 0:0f g: ð39Þ
The difference c�s n cþs is called the tolerance-based boundary region of c wrt s.
It is then relatively straightforward to generalize tolerance approximations to tolerance-based probabilistic approxima-

tions with a qualification. As pointed out, since it can be the case that an individual can belong to more than one neighbor-
hood, for a particular tolerance space, this has to be taken into account when defining what tolerance-based probabilistic
approximations mean semantically.

Recall that the intuition behind the probabilistic rough set methods that have been encountered so far is that the degree
of overlap of an individual’s neighborhood with a target set c determines whether that individual is in the lower or upper
approximation of c. Conceptually, the focus is on neighborhoods in the boundary region of c. If a neighbor N overlaps with
a degree greater than a then it is defined as being in the lower approximation. In a similar manner, if a neighbor N overlaps
with a degree greater than or equal to b then it is defined as being in the upper approximation. Suppose an individual belongs
to two neighborhoods, N1 and N2. For N1, the overlap is greater than a, but for N2, the overlap is less than b. In this case, the
individual would be defined as being in both the positive and negative region of the target set c, which does not make sense
and is undesirable.

In order to remedy this situation, the definitions of tolerance-based probabilistic approximation operators have to be con-
strained to rule out such situations. Let’s focus on the definition of lower approximation since similar arguments apply to the

upper approximation. Rather than define membership in a lower approximation cþs as xjlc;s xð ÞP a
n o

, an additional con-

straint is added as follows:
cPþs ¼def xj8y x 2 ns yð Þ ! lc;s yð Þ � a
� 	n o

: ð40Þ
By the symmetry of tolerance relations, x 2 ns yð Þ is equivalent to y 2 ns xð Þ. Therefore, the additional constraint (40) states
that for an individual x to be in the lower approximation of c, the degree of overlap of cwith any neighborhood for which x is
a member, must be greater than a. A similar argument applies for the definition of the upper approximation. This additional
constraint ensures that an individual can only belong to one region of a rough set.

Definition 7.4 (Tolerance-based probabilistic approximations). Let 0:0 6 b < a 6 1:0. Given ASDT a;bð Þ ¼ dom; s; P;a; bð Þ, where
s is a tolerance relation, the decision-theoretic tolerance-based lower and upper approximation(s) wrt a; b and s are defined by:
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cDþs ¼def xj8y x 2 ns yð Þ ! lc;s yð Þ � a
� 	n o

¼ xj8y x 2 ns yð Þ ! P cjns yð Þð Þ � að Þf g; ð41Þ

cD�s ¼def xj8y x 2 ns yð Þ ! lc;s yð Þ > b
� 	n o

¼ xj8y x 2 ns yð Þ ! P cjns yð Þð Þ > bð Þf g: ð42Þ
The difference cD�s n cDþs is called the tolerance-based probabilistic boundary region of c wrt s.
8. Some generalizations of probabilistic rough sets

In Section 7, the generalization of the equivalence relation r to a tolerance relation s was considered and it was shown
that defining tolerance-based probabilistic approximation operators was relatively straightforward. In essence, this
approach works for any binary relation t : U � U that generates a covering for U. Since in our paper t is defined to satisfy
at least reflexivity (T), it is serial, which guarantees that for any set c; cDþr # cD�r . T also guarantees that the relation t generates
a covering for U;8y9xt x; yð Þ.

So far, definitions of similarity or tolerance relations t, have been defined qualitatively. In the following generalization,
this property is relaxed. Assume a binary tolerance relation s based on measuring the quantitative resemblance between
two individual images in terms of probabilities. For instance, Table 5 below shows the probabilistic resemblance relation
between a set of visual images given the following probabilistic facts about the resemblance relation:
0:4 :: sc v i1;v i2ð Þ: 0:8 :: sc v i1;v i3ð Þ: 0:7 :: sc v i1;v i4ð Þ:
0:5 :: sc v i2;Vi3ð Þ: 0:9 :: sc v i2;v i4ð Þ: 0:6 :: sc v i3;v i4ð Þ:
The PROBLOG Program 5, shows how such tables can be generated in a straightforward manner.

Program5: The PROBLOG program which can be used to compute probabilities in Table 5.

Given this technique, one can reason about probabilistic similarity or tolerance relations t, using PROBLOG. Given that
neighborhoods are defined in terms of t, Definition 7.1 would also need to be generalized in the following manner.

Definition 8.1 (Probabilistic neighborhood(s)). Let 0:0 6 c 6 1:0. Given ASDT a;b;cð Þ ¼ dom; t; P;a; b; ch i and x 2 dom, by the
probabilistic neighborhood of x wrt c, we mean the set:
nt;c xð Þ ¼def yjP x; yh i 2 tð ÞP cf g:
Definition 8.2 (Probabilistic neighbor-based rough membership). Let 0:0 6 c 6 1:0 and nt;c xð Þ be a probabilistic neighborhood
parameterized using c. Given ASDT a; b;cð Þ ¼ dom; t; P;a; b; ch i, for c#dom, the probabilistic neighbor-based rough membership
function with regard to c is:
lc;t;c xð Þ ¼ P cjnt;c xð Þ� � ¼ jc \ nt;c xð Þj
jnt;c xð Þj : ð43Þ
Let us now show that lc;t;c xð Þ can be understood as a probability distribution.
esemblance.

Vi1 Vi2 Vi3 Vi4

1.0 0.4 0.8 0.7
0.4 1.0 0.5 0.9
0.8 0.5 1.0 0.6
0.7 0.9 0.6 1.0
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Proposition 8.3. Let ASDT a; b;cð Þ ¼ dom; t; P;a; b; ch i, where t#dom� dom is a (probabilistic) base relation constrained by T
together with a subset of the properties B;4;5f g, and nt;c xð Þ are (probabilistic) neighborhoods derived from c. Let

P0t;c x 2 cð Þ ¼def lc;t;c xð Þ. Then P0t;c satisfies the Kolmogorov probability axioms.

Proof. Note that by axiom T, for every x 2 dom;nt;c xð Þ –£, so jnt;c xð Þj – 0:0.

Axiom 1: for all x 2 dom, and c#dom; P0 x 2 cð ÞP 0:0:
Table 6
Approx

Type

Class
O

0.5-A
Varia

A
(s

Deci
A

Baye
A

Class
A

Tole
P
O

Gene
A

P0 x 2 cð Þ ¼def P cjnt;c xð Þ� � � 0:0:
Axiom 2: for every x 2 dom; P0 x 2 domð Þ ¼ 1:0:
P0 x 2 domð Þ¼defldom;t;c xð Þ ¼ jdom \ nt;c xð Þj
jnt;c xð Þj ¼ jnt;c xð Þj

jnt;c xð Þj ¼ 1:0:
Axiom 3: for c1; c2 #dom such that c1 \ c2 ¼£, and for every x 2 dom,P0 x 2 c1 [ c2ð Þ ¼ P0 x 2 c1ð Þ þ P0 x 2 c2ð Þ:
P0 x 2 c1 [ c2ð Þ¼deflc1[c2 ;t;c xð Þ ¼ j c1[c2ð Þ\nt;c xð Þj
jnt;c xð Þj ¼ j c1\nt;c xð Þð Þ[ c2\nt;c xð Þð Þj

jnt;c xð Þj :
Since c1 \ c2 ¼£, also c1 \ nt;c xð Þ� � \ c2 \ nt;c xð Þ� � ¼£. Therefore:
j c1 \ nt;c xð Þ� � [ c2 \ nt;c xð Þ� �j ¼ jc1 \ nt;c xð Þj þ jc2 \ nt;c xð Þj:

Hence,
P0 x 2 c1 [ c2ð Þ ¼ j c1\nt;c xð Þð Þ[ c2\nt;c xð Þð Þj
jnt;c xð Þj ¼ jc1\nt;c xð Þjþjc2\nt;c xð Þj

jnt;c xð Þj ¼
jc1\nt;c xð Þj
jnt;c xð Þj þ

jc2\nt;c xð Þj
jnt;c xð Þj ¼ P0 x 2 c1ð Þ þ P0 x 2 c2ð Þ:
The following definition provides a general and abstract means of considering many probabilistic rough set methods and
will serve as the basis for specifying such methods in PROBLOG.

Definition 8.4 (Generalized probabilistic approximation space and operators). Let 0:0 6 b < a 6 1:0 and 0:0 6 c 6 1:0. Then
GAS ¼ dom; t;a; b; ch i is a generalized probabilistic approximation space, where t#dom� dom is a (probabilistic) base relation
constrained by T together with a subset of the properties B;4;5f g, and nt;c xð Þ are (probabilistic) neighborhoods derived from
c. Additionally, given a set c#dom, the generalized lower and upper approximation(s) wrt a; b; c and t are defined by:
cGþt;c ¼def xj8y x 2 nt;c yð Þ ! lc;t;c xð Þ � a
� 	n o

¼ xj8y x 2 nt;c yð Þ ! P cjnt;c xð Þ� � � a
� �� �

; ð44Þ

cG�t;c¼def xj8y x 2 nt;c yð Þ ! lc;t;c xð Þ > b
� 	n o

¼ xj8y x 2 nt;c yð Þ ! P cjnt;c xð Þ� �
> b

� �� �
: ð45Þ
The difference cG�t;c n cGþt;c is called the generalized boundary region of c wrt t.
Lemma 8.5. Definition 8.4 subsumes Definitions 3.2, 3.3, 3.4, 3.6, 3.8, 7.3 and 7.4, where each definition can be instantiated
by the relevant values for t;a; b, and c, in addition to choosing the elementary granule types used, as shown in Table 6. �
imation operators (� is explained in Remark 3.5, which also applies to Bayesian approximations).

Definition t c a b c Granule

ical Approx.
perators

Def. 3.2 TB4, crisp crisp 1.0 0.0 0.0 nt;c xð Þ ¼ r xð Þ

pprox. Operators Def. 3.3 TB4, crisp crisp 0:5þ � 0:5� � 0.0 nt;c xð Þ ¼ r xð Þ
ble Precision
pprox. Operators
ymmetric bounds)

Def. 3.4 TB4, crisp crisp 0:5 6 a 6 1:0 1� a 0.0 nt;c xð Þ ¼ r xð Þ

sion-theoretic
pprox Operators

Def. 3.6 TB4, crisp crisp 0:0 6 a 6 1:0 0:0 6 b 6 1:0 0.0 nt;c xð Þ ¼ r xð Þ

sian Rough Sets
pprox. Operators

Def. 3.8 TB4, crisp crisp P cð Þ þ � P cð Þ � � 0.0 nt;c xð Þ ¼ r xð Þ

ical Tolerance-based
pprox. Operators

Def. 7.3 TB, crisp crisp 1:0 0:0 0.0 nt;c xð Þ ¼ ns xð Þ

rance-based
robabilistic Approx.
perators

Def. 7.4 TB, crisp crisp 0:0 6 a 6 1:0 0:0 6 b 6 1:0 0.0 nt;c xð Þ ¼ ns xð Þ

ralized Probabilistic
pprox. Operators

Def. 8.4 T, plus any subset of
{B, 4, 5}; crisp or
probabilistic

crisp or
probabilistic

0:0 6 a 6 1:0 0:0 6 b 6 1:0 0:0 6 c 6 1:0 nt;c xð Þ
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8.1. Implementing generalized approximation operators in PROBLOG

PROBLOGoffers theopportunity todefine second-order relations through theuseofmeta-predicates suchas ‘call’ and ‘apply’, in
addition to set-predicates such as ‘findall’, all which can take relations as arguments. This expressivity provides a compact and
elegant means for specifying and reasoning about generalized probabilistic approximation spaces and operators as defined in
Definition 8.4. This section provides an overview of the library of meta-predicates constructed for such specifications.

Program 6: Generic definitions of rough membership, approximations and regions.
Program 6 provides the generic relations used specifying generalized approximation spaces and operators. The PROBLOG

program in A.2 provides executable code based on this specification. The conjunction ‘call(Upsilon, X, Y), P), call(Gamma,
G), P>=Gamma’ specified in subquery in Line 3 of Program 6 first determines ‘P’ as the probability of t X;Yð Þ and then makes
sure that the probability is greater than or equal to c, as required in Definition 8.1.

We have the following lemma.

Lemma 8.6. [Correctness] Assuming that the relation t is at least reflexive, Program 6 correctly implements generalized
probabilistic approximation spaces as formalized in Definition 8.4.

Assume for each relation ci of interest, the following:

� A relation domi Xð Þ, a base binary relation, upsilonBasei X;Yð Þ and a binary relationupsiloni X;Yð Þ defined from
upsilonBasei X;Yð Þ;
� A crisp relation ci #domi Xð Þ;
� Relations alphai Xð Þ; betai Xð Þ, and gammai Xð Þ, for values ai; bi and ci, for each ci.

Given these relations for each ci, one can instantiate each of the generic relations provided above to generate the proper
general approximation spaces for each ci. These instantiations can then be used for constructing PROBLOG theories that com-
bine the use of many different types of relations in heterogeneous rules, as discussed in Section 9.

Remark 8.7. It is also worth emphasizing that Bayesian Rough Sets are covered by our implementation in the sense that
Alpha and Beta used in Program 6 should be set to the probability ‘P(C)’ where ‘C’ is the target set specified as an argument
(with the adjustment by � as discussed in Remark 3.5 and shown in Table 6).�
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9. Case study: recommendation

The following case study will use a number of the new generalized features that have been proposed in Section 8. In par-
ticular, for the concept Destinations used in the case study, a tolerance space will be used and its base relation will be defined
as a probabilistic relation. Additionally, for the concept Customers, a classical approximation space will be used and its base
relation will also be defined as a probabilistic relation. In the case study, a toy recommendation system will be specified that
provides advice to travel customers as to where a good place to travel might be based on that customers similarity with other
customers and their likes and dislikes.

Let’s begin with the customer domain:
domc eveð Þ: domc jackð Þ: domc kateð Þ: domc markð Þ: ð46Þ

Let’s assume that partial data exists on pairwise similarity between individuals in the customer domain based on previ-

ous surveys and customer history, where each of the customers fits into a customer segment based on such features as tour-
ists traveling with families, single tourists, health tourists, etc. For instance,
0:4 :: sc eve; jackð Þ: 0:8 :: sc eve; kateð Þ: 0:7 :: sc eve;markð Þ:
0:5 :: sc jack; kateð Þ: 0:9 :: sc jack;markð Þ: 0:6 :: sc kate;markð Þ: ð47Þ
The model will also assume that customer segmentation creates a partition. Consequently, the base relation for the Cus-
tomer concept will be an equivalence relation. This creates a probabilistic approximation space AS ¼ domc;rc; Ph i.

In order to take advantage of the generic relations defined in Program 6, the approximation space AS will be recast as a
generalized probabilistic approximation space. The generalized probabilistic approximation space for customers is
GASc ¼ domc;rc;ac;bc; cch i ð48Þ

where ac ¼ 0:9; bc ¼ 0:2 and cc ¼ 0:5, and rc has the properties T (reflexivity), B (symmetry) and 4 (transitivity).

Using the customer data in Eq. (47) and Program 7 below, the following closure of rc would result in, see Table 7.

Program7: The PROBLOG program which can be used to compute probabilities in Table 7.For a runnable PROBLOG code see
respective parts of A.2.

In a similar manner, a resemblance relation between destinations can be defined. The destination domain consists of:
domd keralað Þ: domd marseilleð Þ: domd quebecð Þ: domd suzhouð Þ: domd veniceð Þ: ð49Þ

The base relation sd, will be defined as a tolerance relation, where the following partial data exists about sd, concerning

the pairwise resemblance of destinations to each other:
0:0 :: sd kerala;marseilleð Þ: 0:0 :: sd kerala; quebecð Þ: 0:8 :: sd kerala; suzhouð Þ:
0:6 :: sd kerala; veniceð Þ: 0:9 :: sd marseille; quebecð Þ: 0:0 :: sd marseille; suzhouð Þ:
0:05 :: sd marseille; veniceð Þ: 0:0 :: sd quebec; suzhouð Þ: 0:07 :: sd quebec; veniceð Þ:
0:8 :: sd suzhou;veniceð Þ:

ð50Þ
The generalized probabilistic approximation space for destinations is:
GASd ¼ domd; sd;ad;bd; cdh i; ð51Þ

where ad ¼ 0:8; bd ¼ 0:1, and cd ¼ 0:7, and sd has the properties T (reflexivity), and B (symmetry).

Using the destination data in Eq. (50), the following closure of rd would result in probabilities shown in Table 8.
Given any subset of customers in domc , one can define lower and upper approximations for that subset using GASc and

Definition 8.4. In a similar manner, given any subset of destinations in domd, one can define lower and upper approximations
for that subset using GASd and Definition 8.4.

Given the probabilities in Table 7 and Table 8, one can express rules for calculating success probabilities of recommen-
dations which would be part of the knowledge base for a PROBLOG program, e.g.,
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Table 7
Indiscernibility (rc) among customers.

rc Eve Jack Kate Mark

Eve 1.0 0.86 0.9 0.9
Jack 0.86 1.0 0.54 0.9
Kate 0.9 0.54 1.0 0.6
Mark 0.9 0.9 0.6 1.0

Table 8
Resemb

r

Ker
Mars
Que
Suz
Ven
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lance among destinations using sd and properties of rd .

d Kerala Marseille Quebec Suzhou Venice

ala 1.0 0.0 0.0 0.8 0.6
eille 0.0 1.0 0.9 0.0 0.05
bec 0.0 0.9 1.0 0.0 0.07
hou 0.8 0.0 0.0 1.0 0.8
ice 0.6 0.05 0.07 0.8 1.0
rec X;Yð Þ : �customer Xð Þ; on offer Yð Þ; ð52Þ
v isited X;Y1ð Þ;rd Y ;Y1ð Þ;Y – Y1; ð53Þ

rec X;Yð Þ : �customer Xð Þ; ð54Þ
v isited X1; Y1ð Þ; ð55Þ

rc X;X1ð Þ;X – X1; ð56Þ
rd Y ;Y1ð Þ;Y – Y1: ð57Þ
That is, one recommends destination Y to customer X when:

� Lines (52)–(53): Y is on–offer as a destination and X visited a place Y1, which has a resemblance to Y; or
� Lines (54)–(57): a customer X1 visited a destination Y1 such that customers X and X1 are in the same equivalence class
associated with rc (representing the same tourist market segment), where X1 – X, and the destinations Y;Y1, resemble
each other wrt rd where Y – Y1.

PROBLOG definitions of rec are provided in the section knowledge base of the PROBLOG program included in A.2.
Let’s assume that:

� there are two current customers of interest, Kate and Mark;
� Quebec, Suzhou and Venice are destinations currently on–offer;
� similarity and tolerance relations are specified in Tables 7 and 8 for customers and definitions, respectively;
� and, in a given situation it is uncertain which destinations should be selected to offer as recommendations for each client.
So, for every destination Y on–offer, on offer Yð Þ is selected with probability 0:5. Of course, given additional statistical
knowledge about customers’ preferences, the probabilities could be suitably adjusted to reflect that knowledge.

Table 9 shows the results of the PROBLOG program when executed on query rec ;ð Þð Þ (which would return probabilities for
all customer/destination pairs:

The relation rec is probabilistic due to probabilistic relations in the body of rules defining rec. In order to obtain crisp rec-
ommendations, one could define relations such (c rec) in terms of rough properties of the customer class such as the lower or
upper approximation:
c rec X;Yð Þ : �customer Xð Þ; to offerDþrd
Yð Þ: ð58Þ
The rule in Line (58) results in recommending to each customer X a destination Ywhen Y is in the lower approximation of
on offer (interpreted as certainly on offer). Using data from the case study, query c rec kate;Yð Þð Þ as well as
query c rec mark;Yð Þð Þ is true for Y ¼ venice.

A complete, executable PROBLOG program is provided for the case study described in this section in A.2. In that program,
relations specific to destinations are indexed with d and those specific to customers are indexed with c.

10. Conclusions

This paper has proposed a general framework and programming methodology for specifying and reasoning about prob-
abilistic rough sets using PROBLOG. It provides a definition of generalized probabilistic approximation spaces and operators that
subsumes many of the proposed approaches in the literature. This definition is used as a basis for specification of probabilis-
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Table 9
Probabilities of rec computed by program enclosed in A.2.

rec Quebec Shuzhou Venice

Kate 0.9 0.94 0.83
Mark 0.56 0.92 0.84

P. Doherty and A. Szałas Information Sciences 593 (2022) 546–576
tic rough set methods in PROBLOG. Although the focus is on probabilistic rough set methods, the definitions subsume non-
probabilistic rough set methods too. The general framework can be leveraged not only for use with existing approaches
to probabilistic rough set methods but also with new approaches, due to its generality. The use of meta-predicates in PROBLOG

facilitates efficient and compact specification of these methods in a principled manner with a principled programming
methodology. The framework proposed offers a powerful tool for not only application oriented activity, but also as a research
tool. Examples of the latter shown in the paper, are the generalization of rough target sets to partially specified, probabilistic
target sets, the generalization of base relations as probabilistic base relations and the study of probabilistic tolerance spaces.
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Appendix A. PROBLOG codes for examples

A.1. Executable PROBLOG Program for Example 6.1
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A.2. PROBLOG Program for the Case Study
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