
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2022

Collision Avoidance for
Complex and Dynamic
Obstacles
A study for warehouse safety

Ester Brandås
Sandra Ljungberg

Master of Science Thesis in Electrical Engineering

Collision Avoidance for Complex and Dynamic Obstacles: A study for
warehouse safety

Ester Brandås
Sandra Ljungberg

LiTH-ISY-EX--22/5516--SE

Supervisor: Carl Hynén Ulfsjöö
isy, Linköping University

Håkan Therén
Toyota Material Handling Manufacturing Sweden

Carl Westman
Toyota Material Handling Manufacturing Sweden

Examiner: Daniel Axehill
isy, Linköping University

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2022 Ester Brandås
Sandra Ljungberg

Acknowledgments

We would like to thank our supervisors for their invaluable input during this
thesis work. Carl Hynén Ulfsjöö at Linköping University for always having new
interesting feedback and ideas, and Håkan Therén and Carl Westman at TMHMS,
for all of their support and guidance. We would also like to thank our examiner
Daniel Axehill for his shown interest in the work. In addition, we want to give a
special thank you directed to our fellow thesis writers at TMHMS, Anton Blåberg,
Erik Sellén, Gustav Lindahl, and Robert Sehlstedt, for making this period so en-
joyable. Lastly, we would like to thank family and friends for all of their support.

Linköping, June 2022
Ester Brandås and Sandra Ljungberg

iii

Abstract

Today a group of automated guided vehicles at Toyota Material Handling Man-
ufacturing Sweden detect and avoid objects primarily by using 2D-LiDAR, with
shortcomings being the limitation of only scanning the area in a 2D plane and
missing objects close to the ground. Several dynamic obstacles exist in the envi-
ronment of the vehicles. Protruding forks are one such obstacle, impossible to
detect and avoid with the current choice of sensor and its placement. This thesis
investigates possible solutions and limitations of using a single RGB camera for
obstacle detection, tracking, and avoidance.

The obstacle detection uses the deep learning model YOLOv5s. A solution for
semi-automatic data gathering and labeling is designed, and pre-trained weights
are chosen to minimize the amount of labeled data needed.

Two different approaches are implemented for the tracking of the object. The
YOLOv5s detection is the foundation of the first, where 2D-bounding boxes are
used as measurements in an Extended Kalman Filter (EKF). Fiducial markers
build up the second approach, used as measurements in another EKF.

A state lattice motion planner is designed to find a feasible path around the de-
tected obstacle. The chosen graph search algorithm is ARA*, designed to initially
find a suboptimal path and improve it if time allows.

The detection works successfully with an average precision of 0.714. The filter
using 2D-bounding boxes can not differentiate between a clockwise and counter-
clockwise rotation, but the performance is improved when a measurement of
rotation is included. Using ARA* in the motion planner, the solution sufficiently
avoids the obstacles.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Background and Purpose . 1
1.2 Delimitations and Prerequisites . 2

1.2.1 Automated Guided Vehicle 2
1.2.2 Obstacles and Environment 3

1.3 Related Work . 3
1.4 Problem Statement . 4

2 Theory 5
2.1 Computer Vision . 5

2.1.1 Pinhole Model and Camera Calibration 5
2.2 Vision Based Object Detection . 6

2.2.1 YOLO . 6
2.2.2 Model Evaluation . 7

2.3 Object Tracking Using a Monocular Camera 8
2.3.1 Kalman Filtering . 8

2.4 State Lattice Motion Planning Algorithm 9
2.4.1 Design of the State Space Lattice 10
2.4.2 Graph Search Algorithm . 11

3 Method 13
3.1 System Architecture . 13

3.1.1 Flowchart . 13
3.1.2 Hardware Setup . 13

3.2 Vision Based Object Detection . 14
3.2.1 Fiducial Markers . 14
3.2.2 Data Acquisition . 15
3.2.3 Training a Network for Object Detection 18

3.3 Object Tracking Using a Monocular Camera 18

vi

Contents vii

3.3.1 Tracking of 3D-object with 2D-bounding Boxes 19
3.3.2 Tracking a Fiducial Marker 21

3.4 State Lattice Motion Planning . 21
3.4.1 Building Outer Bound of the Object 21
3.4.2 Checking if an Obstacle is Obscuring a Point 23
3.4.3 Design of the State Space Lattice 23
3.4.4 Graph Search Algorithm . 25

4 Result and Discussion 27
4.1 Vision Based Object Detection . 27
4.2 Object Tracking Using a Monocular Camera 28

4.2.1 Planning and Executing the Tests 28
4.2.2 Tests with Zero Angular Velocity 29
4.2.3 Tests with Non-Zero Angular Velocity 34
4.2.4 Tests Including an Extra Measurement of Rotation 36

4.3 State Lattice Motion Planning . 37

5 Conclusion 43
5.1 Answering the Problem Statements 43
5.2 Future Work . 44

Bibliography 47

viii Contents

1
Introduction

This thesis focuses on improving warehouse safety by implementing collision
avoidance for a group of automated guided vehicles (AGV’s) used at Toyota Ma-
terial Handling in Mjölby, Sweden. The following chapter introduces the thesis
by discussing the identified problem and purpose.

1.1 Background and Purpose

With the development of automated vehicles, the importance of collision avoid-
ance continues to increase. It is a topical issue in today’s warehouses, where hu-
mans co-exist with both manual forklifts and several types of automated vehicles.
A rapidly changing environment gives the incentive to take dynamic aspects into
account when discussing collision avoidance and warehouse safety.

Today a group of automated guided vehicles at Toyota Material Handling Man-
ufacturing Sweden (TMHMS) can detect and avoid objects primarily by using
2D-LiDAR and slowing down or coming to a complete stop if an obstacle gets
too close. The shortcomings of this sensor, shown in Figure 1.1, is the limitation
of only scanning the area in a 2D plane. This entails a risk of missing objects
beneath or above the visible plane.

This master thesis investigates possible solutions and limitations of using a single
RGB camera instead of 2D-LiDAR for obstacle detection, and adds software for
tracking the object and planning a new route around it.

1

2 1 Introduction

AGV - CDI

Manual
vehicle

2D-LiDAR

(a) Scenario with forks close to ground,
usually seen during transportation. The
scanned 2D-plane misses the forks.

AGV - CDI

Manual
vehicle

2D-LiDAR

(b) Scenario with forks lifted, occurs
during loading and unloading of goods.
The scanned 2D-plane misses the forks.

Figure 1.1: Two currently problematic scenarios (a) and (b) using 2D-LiDAR
for collision avoidance.

1.2 Delimitations and Prerequisites

The application is implemented for one of the existing AGV’s at TMHMS, in syn-
chronization with the current system.

1.2.1 Automated Guided Vehicle

The automated guided vehicle used in this thesis, seen in Figure 1.2, is a differen-
tial drive robot with functions for safety fields and emergency stops based on 2D-
LiDAR. The system is compatible with further development and more features
can be added with new software. An external application handles localization,
navigation, and control of the AGV.

(a) Without load. (b) With load.

Figure 1.2: The type of automated guided vehicle (AGV) used in the thesis.

It is a requirement that the solution can handle floor conditions present at the
TMHMS factory. It also needs to communicate with the current software on the

1.3 Related Work 3

AGV. The available sensor, located at the front of the AGV two decimeters over
the floor, is a single RGB camera.

1.2.2 Obstacles and Environment

The AGV can map its static environment when introduced to new surroundings.
It is done with simultaneous localization and mapping (SLAM) and can be recon-
figured each time conditions change.

Several dynamic obstacles exist in tandem with the AGV with the ability to move
position over time, as opposed to the fixed environment. The focus of this thesis
is forklifts since the protruding forks will make the obstacles more complex and
impossible to detect with the current choice and placement of the sensor.

As a limitation, this thesis only includes stacker forklifts with fork sizes 130x60x12
centimeters.

1.3 Related Work

Traditional algorithms for obstacle avoidance often use real-time data from a 2D-
LiDAR when computing a trajectory. Problems with this choice can occur since
some obstacles go unnoticed by the 2D-LiDAR [1]. One approach to solve this
problem is to add a camera to the set of sensors and use vision-based object de-
tection.

Deep learning is a machine learning approach commonly used in vision-based
object detection. Liu et al. [1] discuss one such alternative with a combination
of 2D-LiDAR and data from an RGB camera. A deep learning algorithm stands
for the cognitive part with the visual images as inputs and the probability of
obstacles ahead as output. Jia et al. [2] instead suggest a solution for pallet de-
tection using a deep learning algorithm and data from a time-of-flight camera.
This method results in coordinates of the center of the pallet, and it has a high
recognition rate in complex backgrounds.

An alternative approach, by Chowdhury et al. [3], compare the foreground im-
age with the background image to extract vehicles. Another study, by Nguyen
and Yoo [4], uses image processing with a fuzzy logic fusing strategy for data
from a camera together with data from a 3D-LiDAR. Using fiducial markers, one
can estimate the position of an object. Kallwies et al. [5] examine detection rate,
runtime, and localization accuracy of square fiducial marker detection systems.
It is also possible to structure the obstacle avoidance differently and detect free
space instead of occupied space, a method used by Pazhayampallil [6].

Knowledge of the location of a detected complex object, either in a global world or
relative to the camera, is needed to successfully perform obstacle avoidance. Michels
et al. [7] suggest an approach where supervised learning estimates relative depths
to obstacles in an image. Either camera images labeled with ground-truth dis-
tances to the closest obstacles, or synthetic graphic images, are used to train the

4 1 Introduction

learning algorithm. Masoumian et al. [8] propose a method that uses two deep
networks, where objects are detected and localized in one and the depth of the
image computed in the other. They introduce two models to estimate depth, su-
pervised deep learning and unsupervised deep learning. Supervised learning re-
quires both original depth maps and color images to train the model. Mustamin
[9] instead uses a width-based method for the distance estimation. Their study
shows that a distance between two vehicles can be estimated as long as the actual
vehicle width and the camera’s focal length are known parameters.

The state lattice motion planning algorithm is a popular deterministic method.
Introduced by Pivtoraiko et al. [10], it is built on a discretized state space. Each
state is connected to its reachable neighbors by feasible motions, further referred
to as motion primitives. States and edges build up a connected graph and use
systematic graph search algorithms to find a feasible path.

Andersson et al. [11] propose an extension to the state lattice motion planning
algorithm [10] that takes both static and dynamic obstacles into account. The
proposed method is a receding-horizon lattice-based motion planner. Moving
obstacles impose constraints on planning time, which gives the method incentive
to have a shorter computational time. It includes a two-step approach, where a
time limit exists on the first graph search. If no feasible solution exists before
the time limit, the dynamic motion planning problem is designed to be fast and
solved in a receding horizon fashion. Another necessary extension when trying
to avoid collision with moving obstacles is permission for the vehicle to wait in
the same state or revisit a previous state.

1.4 Problem Statement

With regards to the identified purpose and requirements taken into account, the
following three research questions are formulated.

• Is it possible to use a single RGB camera to detect complex obstacles in form
of protruding forks?

• Based on data from a single RGB camera, is it possible to track the object’s
position in the world?

• Can motion planning be designed to avoid complex dynamic obstacles based
on RGB-camera data?

2
Theory

This chapter presents theory related to the application. First, some concepts in
computer vision are addressed, then theory related to object detection, tracking,
and avoidance is described.

2.1 Computer Vision

A digital 2D image constructed from an RGB camera is a projection of a real
3D world on a pixelated 2D plane. Translating between a real-world coordinate
and a pixel coordinate requires knowledge of the relation between the camera
coordinate system and the image, gathered by calibration and coordinate system
transfer.

2.1.1 Pinhole Model and Camera Calibration

The pinhole camera model, illustrated in Figure 2.1, describes a real-world object
viewed through a pinhole. Rays of light passing through the aperture cause pro-
jection of an inverted image on the 2D image plane at the back of the camera [12].

Intrinsic parameters depend on the camera and include focal point (cx, cy) and
focal length (fx, fy), defined as the distance between the focal point and the 2D
image plane. These parameters create the camera matrix, which maps the camera
coordinates to the image plane [12].

As the pinhole camera model does not have a lens, applying it to a real-life camera
requires the inclusion of radial and tangential lens distortion. Camera calibration
estimates the intrinsic parameters and distortion coefficients used to rectify the
image from distortion [12].

5

6 2 Theory

Focal length

Focal pointVirtual image plane3D object 2D image

Image plane

Figure 2.1: Visualization of the pinhole model.

2.2 Vision Based Object Detection

Vision-based object detection, recognizing specific objects in an image or video
stream, can be done using only traditional image processing with filters or by
including artificial intelligence approaches. A subset of artificial intelligence is
called deep learning, which traditionally learns from scratch for every new task
by extracting features from structured and labeled data before using the gained
knowledge to classify objects on new data. Rebuilding the solution is required
when conditions change. Pre-processing and human knowledge are both neces-
sary when determining which features are relevant to extract [13]. Deep Learning
consists of neural networks built with layered nodes to mimic the behavior of a
human brain. Deep learning does not need as much data for pre-processing as
traditional machine learning, as it can process unstructured data and automates
the extraction of features and ranking of their importance [14].

A deep learning model can either be trained from scratch or used with pre-trained
weights. The first approach requires more gathered and labeled data than the sec-
ond. Pre-trained weights must have been trained for a similar problem as the new
task to work successfully [14].

2.2.1 YOLO

You Only Look Once (YOLO) is a deep neural network created for object local-
ization. It resizes the image, runs a convolutional neural network, and uses the
calculated confidence of the model as a detection threshold. The model uses
information both of context and appearance during training and learns a gen-
eralization of the representation of objects. YOLO is fast and identifies objects
quickly with a maximum delay of 25 ms run on a Titan X GPU [15].

2.2 Vision Based Object Detection 7

As a first step, YOLO divides the input image into an S x S grid. One grid cell
is responsible for detecting every object with its center present in it by predict-
ing bounding boxes and calculating scores for how confident the model is. The
bounding box itself predicts x- and y-coordinates for its center, width, and height
and confidence of the predictions. Every bounding box is also responsible for pre-
dicting class probabilities, which in testing are used together with the confidence
score to calculate how confident the model is that A: the object in the bounding
box is the predicted class, and B: the bounding box fits the object well [15].

Detecting an overfitted YOLO model is done by analyzing the loss curves gener-
ated during training. When a model gives a smaller loss value for a large number
of epochs for the training data, but the loss value is constant or increases for the
validation data, the model has been overfitted [16]. Bounding box regression loss,
also called box loss, is the mean squared error between the ground truth and the
predicted bounding box with both box size and location taken into account. Ob-
jectness, a score of how likely the box has an object inside, creates a second loss
function [17].

2.2.2 Model Evaluation

Intersection over Union (IoU), the area of the intersection divided by the area of
the union, calculates the overlap between the ground truth and the prediction of
bounding boxes. A value of 0 means no overlap and 1 a full overlap. IoU is used
for setting a threshold α to decide when a model has detected an object correctly
or not. A detected object when IoU ≥ α means a true positive, and with IoU ≤ α
a false positive. A false negative occurs with a missed detection [18].

Precision describes the degree of exactness of the model detecting only the wanted
objects [18]:

P recision =
T ruepositive

T ruepositive + Falsepositive
. (2.1)

The recall is the ratio between the images correctly classified as positive and all
images labeled as positive in ground truth:

Recall =
T ruepositive

T ruepositive + Falsenegative
, (2.2)

and a high value means that all positive labels are classified correctly [18].

The precision-recall curve, p(r), shows the trade-off between precision and recall,
with a theoretically perfect model having both values equal to 1. A network with
high precision and low recall accurately classify positive images but seldom clas-
sifies images as positive. A network with low precision and high recall classifies
positive images well but gives a higher number of false positives [19].

8 2 Theory

Average precision evaluated at the IoU threshold α:

AP@α =

1∫
0

p(r)dr, (2.3)

is the area under the Precision-Recall Curve [19].

2.3 Object Tracking Using a Monocular Camera

One problem studied in signal processing is how to separate a signal s from noise
n, where a measurement yk at sample k is modeled as:

yk = sk + nk . (2.4)

A signal can be reconstructed by either using filtering, prediction or smoothing,
where the available measurements, iterated with l, up to sample m are:

yl , l ≤ m. (2.5)

When a signal is estimated directly when the corresponding measurement is avail-
able, filtering is used and m = k. Prediction uses measurements with m < k hence
the signal is predicted forward in time. Smoothing is the last case, where m > k
and future measurements are used when estimating the signal [20].

2.3.1 Kalman Filtering

Kalman filtering solves filtering, prediction, and smoothing problems while also
being suitable for real-time implementations [20]. The original Kalman filter
assumes a discrete-time linear model, later extended to include continuous-time
systems and nonlinear models. The aim is to minimize the covariance of the
estimation error [21]. A discrete-time linear state-space model is described with:

xk+1 = Fkxk + Gu
k uk + Gw

k wk , (2.6a)

yk = Hkxk + Hu
k vk + ek , (2.6b)

where its measurement relation and the dynamics of the system are linear func-
tions of the state. Fk , Gu

k , Gw
k , Hk , Hu

k are matrices describing the system, ek is the
measurement noise and wk is the process noise, at sample k.

The Kalman filter is initiated with an initial state estimate x0|−1 for sample k = 0,
and initial covariance matrix of the initial state estimate P0|−1. The next step is a
measurement update phase:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1, (2.7a)

x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1 − Hu
k uk), (2.7b)

Pk|k = (I − KkHk)Pk|k−1, (2.7c)

2.4 State Lattice Motion Planning Algorithm 9

where Rk is the covariance of the measurement noise at sample k. This is followed
by a time update phase where Qk is the covariance of the process noise:

x̂k+1|k = Fk x̂k|k + Gu
k uk , (2.8a)

Pk+1|k = FkPk|kF
T
k + Gw

k QkG
uT
k . (2.8b)

The measurement update and time update are then repeated for sample k = k +
1 [21].

The extended Kalman filter (EKF) is an extension of the Kalman filter, using lin-
earization to handle nonlinear models. A nonlinear model can be described as:

xk+1 = f (xk , wk), (2.9a)

yk = h(xk) + ek , (2.9b)

where f and h are nonlinear functions.

The initialization of the state estimate and covariance of the state estimate is
done as been previously described, however, the measurement update phase is
extended to include a linearization step:

x̂k|k = x̂k|k−1 + Kk(yk − h(x̂k|k−1)), (2.10a)

Pk|k = (I − KkHk)Pk|k−1, (2.10b)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1, (2.10c)

where Hk = (∇xh(x)|x=x̂k|k−1
)T . The time update phase is also extended:

x̂k+1|k = f (x̂k|k , 0), (2.11a)

Pk+1|k = FkPk|kF
T
k + GkQkG

T
k , (2.11b)

where Fk = (∇xf (x, 0)|x=x̂k|k−1
)T and Gk = (∇wf (x̂k|k , w)|w=0)T . The measurement

update and time update are then again repeated for sample k = k + 1 [21].

2.4 State Lattice Motion Planning Algorithm

A popular deterministic method in motion planning is the state lattice motion
planning algorithm. This algorithm is introduced by Pivtoraiko et al. [10] with
the goal to find a feasible path between two given states on a discretized state
space while not colliding with arbitrary obstacles. The discrete states are con-
nected to their reachable neighbors, on the discrete grid, by feasible motions. The
states and edges build up a connected graph and create a possibility to use system-
atic graph search algorithms to find a feasible path. A mathematical description

10 2 Theory

of the discrete graph search problem is presented in Bergman et al. [22]:

minimize
{mk

p}N−1
0 ,N

N−1∑
k=0

Lp(mk
p)

subject to x0 = xinit , xN = xgoal ,

xk+1 = fmp
(xk , m

k
p), k ∈ [0, N − 1]

mk
p ∈ P (xk), k ∈ [0, N − 1]

c(xk , m
k
p) ∈ Xf ree, k ∈ [0, N − 1],

where xinit is the state where the vehicle starts and xgoal is the state where it
aims to go. Both states must be part of the state space discretization Xd . mk

p is
a dynamically feasible trajectory, checked by P , that moves the vehicle between
two states on Xd . The resulting state transition to xk+1 from xk is described with
fmp

(xk , mk
p). Xf ree ensures that the trajectory is in free-space and Lp is a cost

function. The solution to the motion planning problem consists of an ordered
sequence of feasible trajectories, motion primitives, that takes the vehicle from
xinit to xgoal .

2.4.1 Design of the State Space Lattice

One way to build a state lattice is by choosing the state space discretization Xd .
The grid resolution is chosen based on the application since a more dense grid
will lead to heavier calculations in the graph search. An example showing a dis-
crete state space with a grid resolution of 2 meters is viewed in Figure 2.2. The

0 2 4 6 8 10
x-coordinate [m]

0

2

4

6

8

10

y-
co

or
di

na
te

 [m
]

Figure 2.2: A state lattice with states (x, y, θ) and a grid resolution of two
meters. The red dots represent the (x, y)-coordinate, and the arrows repre-
sent the feasible heading directions θ = {0, π4 ,

π
2 ,

3π
4 , π, −3π

4 , −π2 , −π4 }.

2.4 State Lattice Motion Planning Algorithm 11

1.0 0.5 0.0 0.5 1.0
x-coordinate [m]

1.0

0.5

0.0

0.5

1.0

y-
co

or
di

na
te

 [m
]

(a) A generated set of motion primitives.
The different colors correspond to the
feasible heading directions.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
x-coordinate [m]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

y-
co

or
di

na
te

 [m
]

(b) The generated motion primitive for
heading direction θ = π

2 shown in a state
lattice with a grid resolution 0.5 meters.

Figure 2.3: An example of generated motion primitives. (a) shows all head-
ing directions θ = {0, π4 ,

π
2 ,

3π
4 , π, −3π

4 , −π2 , −π4 } and (b) shows how the heading
θ = π

2 (purple) builds edges between discrete states. Only one heading is
shown for clarity.

edges that connect the states are called motion primitives, found by solving a
set of boundary value problems (BVPs) offline [22]. Arbitrary obstacles are disre-
garded when computing the motion primitives since they are unknown until the
vehicle drives online.

A position invariant system leads to easier calculations [22], where a motion prim-
itive connecting two states also connects two other identically arranged states. It
is only necessary to compute motion primitives from the origin to neighboring
states since they are reused for all other states in the grid. This is viewed in Fig-
ure 2.3 where one set of motion primitives generated around the origin binds a
discrete set of states.

2.4.2 Graph Search Algorithm

After a formulated discrete graph search problem, finding a feasible path requires
a graph search algorithm. One such algorithm is the A* algorithm [23]. The
algorithm starts with the initialization of a priority queue used to store states
that have been encountered but not yet searched. The state with the highest
priority in the queue, s, is accessed and searched for its neighboring states. If
any neighboring states, s′ , have not yet been encountered, they are added to the
queue. The search is initialized by the starting state sstart . Termination of the
search occurs when sgoal becomes the highest-ranked element in the queue, or

12 2 Theory

when the queue is empty with no more states to search.

Each state has a connected cost, defined as the cumulative cost from sstart to s.
The cost of a neighboring state is the parent’s cost plus the cost of going between
them. The priority connected to a state is, in A*, the combination of the cost and
a heuristic. The heuristic h(s) is an estimated cost of going from s to sgoal and
reduces the number of states to explore in a search. The choice of heuristic is
application-based, but if h(s) is an underestimate of the optimal cost to go for all
s, then A* is guaranteed to find an optimal path [23].

3
Method

The method is divided into four main sections. First a general description of the
system architecture and how the hardware is set up. Then two methods are pre-
sented on how to achieve object detection. Thirdly a method for object tracking
is presented and lastly the motion planning algorithm is described.

3.1 System Architecture

This section describes the structure of the software and hardware of the applica-
tion.

3.1.1 Flowchart

Figure 3.1 shows the general structure of the application. It consists of one main
program, one thread responsible for communicating with the software on the
AGV, and one thread running the object detection, object tracking, and obstacle
avoidance.

3.1.2 Hardware Setup

The communication between the application to software on the AGV is with TCP
socket. M03933 by IFM is the camera head used with the application, located on
the front of the AGV. It works together with the computer M03975, its python
library ifm3dpy [24] and must be calibrated before use.

13

14 3 Method

Start threads

Wait for stop signal

Detect object Track object Avoid object

Recieve message from AGV Send message to AGV

Main program Thread one

Thread two

Figure 3.1: General structure of the application.

3.2 Vision Based Object Detection

The following chapter describes the investigation of two methods to detect ob-
jects, one using fiducial markers and the other an object detection algorithm with
2D-bounding boxes.

3.2.1 Fiducial Markers

A fiducial marker is a square consisting of a binary code that builds up a unique
identification [25]. The idea is to place one or several fiducial markers on the
object and then detect the marker instead of the object itself. The Open Source
Computer Vision library ArUco Marker Detection [26] is used in the implemen-
tation. The library builds on the ArUco Library by Garrido-Jurado et al. [25].

The first step is to generate a marker by choosing a predefined dictionary in the
ArUco module. The chosen dictionary for this thesis consists of 250 markers,
each with a size of 6x6 bits. The size of the marker image in pixels is also speci-
fied. Lastly, the marker ID is chosen, valid between 0-249 for this dictionary. A
generated ArUco marker from this dictionary is shown in Figure 3.2.

Once a marker is generated and placed on the object, it is possible to detect it
in each image frame as long as the camera’s resolution is good enough to see the
square shape of the tag and the inner codification. The output from detection is
the position of the marker’s four corners in the image and its ID. Once the corners
of the marker are detected, it is possible to do pose estimation. A 3D transforma-
tion from the marker coordinate system to the camera coordinate system is done,
including a rotation and translation. A successful estimation requires a known

3.2 Vision Based Object Detection 15

Figure 3.2: An example of a generated ArUco tag with marker ID 1.

marker size and camera matrix, the second found during camera calibration. Af-
ter these steps, it is possible to detect markers placed on an object and find their
poses described in the coordinates of the camera coordinate system.

3.2.2 Data Acquisition

The object detection algorithm requires, in the training stage, data from test runs.
This data includes images of the object as well as corresponding labels. Since
no cloud services are allowed for confidentiality reasons, and the time frame
for data gathering is small, labeling using web-GUI is disregarded. Instead, a
semi-automatic solution for labeling the bounding boxes live during test runs is
designed.

The idea is to place the object in a known location in world coordinates and mea-
sure the eight corners that span the 3D object. The corners are then expressed in
pixel coordinates if a series of coordinate-system transformations are applied. A
selection of the eight corners will always span up the 2D-bounding box in pixel
values, as shown in Figure 3.3.

Three coordinate system transformations are needed to go from world coordi-
nates to pixel coordinates. The first is between the world coordinate system and
the AGV coordinate system. The position of the AGV’s origin (dx,AGV , dy,AGV ,
dz,AGV), as well as its orientation θAGV , are known variables. The coordinate sys-
tem rotates around the z-axis, as seen in Figure 3.4a. The combined translation
and rotation relation is described with:

Px,world
Py,world

Pz,world
1

 =

cos(θAGV) − sin(θAGV) 0 dx,AGV
sin(θAGV) cos(θAGV) 0 dy,AGV

0 0 1 dz,AGV
0 0 0 1

Px,AGV
Py,AGV

Pz,AGV
1

 . (3.1)

The second coordinate system transformation is between the AGV coordinate sys-

16 3 Method

P1 P2

P3P4

P6

P7P8

(a) The eight corners that span up the
entire 3D object.

(b) From this view the corners P1, P2, P7
and P8 span up the 2D-bounding box.

Figure 3.3: In (a) the eight corners are shown and (b) is an example that
shows that four corners will span up the 2D-bounding box.

Information classification: Internal

Y w
o

rl
d

Xworld
Zworld

θAGV

(a) The AGV coordinate system and the
world coordinate system.

Information classification: Internal

YCamera

(b) The AGV coordinate system and the
camera coordinate system.

Figure 3.4: The coordinate systems in relation to each other.

3.2 Vision Based Object Detection 17

tem and the camera coordinate system, as seen in Figure 3.4b. The rotation and
translation are fixed as long as the camera position does not change. The relation
is described with:

Px,camera = −Py,AGV + offsetside, (3.2a)

Py,camera = −Pz,AGV + offsetground , (3.2b)

Pz,camera = Px,AGV − offsetf ront . (3.2c)

The third coordinate system transformation is the camera coordinate system to
the pixel coordinate system. This transformation is not invertible since informa-
tion is lost going from 3D to 2D. The camera matrix found during calibration is
used, and the relation is described with:wu

wv
w

 =

fx 0 cx
0 fy cy
0 0 1

Px,camera
Py,camera

Pz,camera

 , (3.3)

where u and v are the pixel coordinates. Transferring from Homogeneous coordi-
nates to Cartesian coordinates is done by dividing the first two elements with the
factor w. A summary of the semi-automatic labeling during the test runs process
is found in Algorithm 1. Observe step 1, where removing the fiducial markers is
crucial to avoid unwanted features in the data.

Algorithm 1 Semi-automatic labeling during test runs with stationary object lo-
cation.

Step 1: Initialize by finding the world coordinates of the corners spanning
the 3D object.

• Place fiducial markers on the corners and detect them with the camera.
• Transform the detected markers from the camera coordinate system to the

world coordinate system.
• Remove fiducial markers.

Step 2: Find the corresponding pixel values of the 3D-object corners.
• Transform the corners from the world coordinate system to the AGV coor-

dinate system.
• Transform the corners from the AGV coordinate system to the camera co-

ordinate system.
• Transform the corners from the camera coordinate system to pixel values.

Step 3: Find the bounding box.
• Find the center, width and height of the bounding box by checking which

of the corners have the largest and smallest pixel-coordinates both in u
and v direction.

Step 4: Save the image and corresponding bounding box label.
• Move the AGV to a new position and go back to step 2 again.

18 3 Method

3.2.3 Training a Network for Object Detection

YOLOv5s, a small but fast version of YOLO designed to compute detection with
higher speed but lower accuracy than the larger versions available, is the chosen
model for object detection. The forks on the vehicle are chosen as the object to
train with, as they are close to the ground and visible to the camera at smaller
distances than the whole forklift. The weights used for training are yolov5s
from Jocher [27], pre-trained for the COCO dataset.

Training data is created by acquiring 1000 images and their labels using the
method earlier described. 900 images are of forks positioned in several world
locations of the given laboratory space to create different backgrounds with both
humans, clutter, and other types of forklifts. 100 images consist of only back-
ground to reduce false positives [28]. Labels with bounding box coordinates
exceeding the frame size are removed. The resulting training dataset is of 922
images, of which 822 are forks.

250 additional images are collected, half split into validation data and the other
test data. The acquisition occurs during a separate run, with new positions in
the factory. 30 background images are added to each of the splits, resulting in
a division of approximately 80 percent training data, 10 percent validation data,
and 10 percent test data, a general recommendation [29].

The model is trained with the training dataset for 300 epochs with no alterations
to the hyperparameters, a recommendation from Ultralytics [28] when using
YOLO models. The validation data is used after every trained epoch to validate
the created weights.

The box loss for both training and validation data is shown in Figure 3.5a. The
box loss for the training data continuously decreases while the box loss for the
validation data converges to a constant value from approximately epoch 75, a
sign of overfitting. The objectness loss for both training and validation data is
shown in Figure 3.5b, where it is evident that the two curves diverge after epoch
75 and that the model is overfitted.

As recommended [28], the number of epochs is decreased. A value of 75 epochs,
motivated by the start of the curves diverging, is chosen and the model is trained
again on the same dataset as before with the same pre-trained weights and hyper-
parameters.

The best weights from this training are used for object detection. For evaluation
of the final trained model and its weights, precision and recall are used together
to view the AP of the test data. This is presented in Section 4.1.

3.3 Object Tracking Using a Monocular Camera

One object tracking algorithm uses the detected fiducial marker as measurement,
and the other uses the bounding box output from detection with the trained
YOLOv5s model.

3.3 Object Tracking Using a Monocular Camera 19

0 50 100 150 200 250 300
Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Bo
x

lo
ss

Training data
Validation data

(a) Box loss (Bounding box regression
loss) for the training data continuously
decreases while the box loss for the val-
idation data converges at approximately
epoch 75, the model shows sign of over-
fitting.

0 50 100 150 200 250 300
Epoch

0.005

0.010

0.015

0.020

0.025

Ob
je

ct
ne

ss
 lo

ss

Training data
Validation data

(b) Objectness loss for the training data
and validation data diverge at approxi-
mately epoch 75, the model shows sign
of overfitting.

Figure 3.5: Loss functions for training YOLOv5s 300 epochs with pretrained
weights yolov5s.

3.3.1 Tracking of 3D-object with 2D-bounding Boxes

Reich and Wuensche [30] present a method for object tracking using an Extended
Kalman filter (EKF). The initialization of the object state in 3D space, and the cor-
responding initial covariance, is found using a monocular 3D object tracker. Mea-
surements of 2D-bounding boxes are used in the following time steps to improve
the current state estimate in the update step of the EKF. The focus of this master
thesis is the tracking using 2D-bounding boxes after the state initialization.

A coordinated turn model describes the motion of the tracked object. This model
is based on curvilinear particle motion and is described fully by Roth et al. [31].
The state components include the position in the horizontal plane x, y [m], the
magnitude of the velocity vector v [m/s], the heading angle θ [rad] and turn
rate ω = dθ

dt [rad/s]. The motion can, in discrete time with velocity in polar
coordinates, be described with:

xk+1
yk+1
vk+1
θk+1
ωk+1

 =

xk + 2vk

ω sin(ωkT
2) cos(θk + ωkT

2)
yk + 2vk

ωk
sin(ωkT

2) sin(θk + ωkT
2)

vk
θk + ωkT

ωk

+

T 2

2 cos(θk) 0
T 2

2 sin(θk) 0
T 0
0 T 2

2
0 T

[
ak
αk

]
(3.4)

where a [m/s2] is the linear acceleration and α is the rotational acceleration
[rad/s2]. Here it is assumed that a and α are zero during the discretization and
constant between sampling instants. The time update phase of the EKF uses this

20 3 Method

discretized motion model when predicting the state update. The covariance up-
date depends on a linearized version of (3.4). The design parameter Q is based
on the standard deviation of the linear acceleration and rotational acceleration
according to:

Q =
[
σa 0
0 σα

]2

. (3.5)

The standard deviation of linear- and rotational acceleration of the object is not
known, but normal values of linear acceleration for the AGV are between 0.5 to
-1.0 m/s2, and a normal upper bound for the rotational acceleration of approxi-
mately 1.5 rad/s2.

The measurements entering the EKF in the measurement update phase are on the
form:

y2D =

umin
vmin
umax
vmax

 . (3.6)

The first two elements correspond to the upper left corner in pixel coordinates
and the last two to the lower right corner. The measurement equation projects
the state estimate into the measurement space to make the state estimate and
measurement comparable:

ŷ2D = h2D (x̂k|k−1). (3.7)

All eight corners that span the object are found from the tracked pose in global
coordinates. They are transformed from the global coordinate system to the cam-
era coordinate system and projected onto the image plane. A minimum enclosing
2D bounding box is calculated from the eight corners, done similarly as in Sec-
tion 3.2.2. This measurement equation is used when updating the state estimate.
To update the covariance estimate and Kalman gain, a linearized version of the
measurement equation is used instead.

The design parameter R2D describes the uncertainty in the measurement:

R2D =

σumin

0 0 0
0 σvmin

0 0
0 0 σumax

0
0 0 0 σvmax

2

. (3.8)

Reich and Wuensche [30] observed increased noise in image coordinates for closer,
and therefore larger, objects and suggested a standard deviation of 200

d , where d
is the distance from the camera origin to the object’s center. It gives a standard
deviation of 100 pixels for the bounding box corners if the distance to the object
is 2 meters and 50 pixels if the distance to the object is 4 meters.

3.4 State Lattice Motion Planning 21

3.3.2 Tracking a Fiducial Marker

When using fiducial markers in the tracking, the time update phase of the Ex-
tended Kalman filter is the same as described in Section 3.3.1, since the motion
model of the tracked object is the same. The measurement update phase is, how-
ever, different. It enters the EKF linearly in this case since it is possible to directly
access measurements of the states x, y, and θ after the output from the detected
fiducial marker is transformed to global coordinates. This is described with:

ŷmarker =

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

x̂k|k−1
ŷk|k−1
v̂k|k−1
θ̂k|k−1
ω̂k|k−1

 . (3.9)

The design parameter Rmarker describes measurement uncertainty. The fiducial
marker has a higher uncertainty in the rotation measurement than the distance
measurement, which this thesis takes into account when choosing the magnitude
of the elements.

3.4 State Lattice Motion Planning

The obstacle avoidance is done with a lattice planner and includes constructing
the state lattice, generating motion primitives, and finding a good graph search
algorithm.

3.4.1 Building Outer Bound of the Object

Creating an outer bound of a detected object based on the estimated states is
possible since its dimensions are known. Using the information in the covariance
matrix of the state estimate, the uncertainty in x, y, and θ is considered when
creating the outer bound. All elements concerning these three states are extracted
and build a 3x3 sub-matrix:

P =

σ2
x σx,y σx,θ

σy,x σ2
y σy,θ

σθ,x σθ,y σ2
θ

 (3.10)

Since the state estimate covariance is in global coordinates, the covariance P is
transformed to the object’s coordinate system using the rotation matrix R:

PR = RP RT . (3.11)

As a simplification, the covariance between states is assumed to be equal to zero,

22 3 Method

and only the diagonal elements of PR are used. It results in the covariance matrix:

PR,d =

σ2
x,object 0 0

0 σ2
y,object 0

0 0 σ2
θ,object

 . (3.12)

The standard deviations in position and heading can be extracted and described
in the object’s coordinate system.

The uncertainty in the x-coordinate, y-coordinate, and heading is added as object
width and length. It is assumed that the estimated state differ with an absolute
distance σ̃x,object , σ̃y,object and absolute heading σ̃θ,object , based on one standard
deviation. The outer bound of the object, with the added length L′ and width W ′ ,
is illustrated in Figure 3.6. The geometric definitions for the extra length and
width are:

L
′

= |(L + σ̃x,object) cos(σ̃θ,object) + (W + σ̃y,object) sin(σ̃θ,object) − L|, (3.13a)

W
′

= |(L + σ̃x,object) sin(σ̃θ,object) + (W + σ̃y,object) cos(σ̃θ,object) −W |. (3.13b)

L

W

W’

L’

LOuterBound

WOuterBound

Figure 3.6: The extra length and width caused by uncertainty in the state
estimate.

The entire outer bound of the obstacle is described from the object’s origin:

LOuterBound = L + L
′
, (3.14a)

WOuterBound = W + W
′
, (3.14b)

and the change in width and length are symmetrical.

3.4 State Lattice Motion Planning 23

3.4.2 Checking if an Obstacle is Obscuring a Point

In the implementation, it is more calculation heavy to check if a point is inside
an object-oriented bounding box than in an axis-aligned bounding box. The first
step is therefore based on a relaxed condition to check if the point is somewhere
in the smallest axis-aligned bounding box covering the object-oriented bounding
box: the light gray area in Figure 3.7. If the point is inside the gray area, the next
step is to see if it also exists in the red one by checking the scalar products of
vectors. Point P is inside the red area if:

(0 < ⃗P1P · ⃗P1P2 < ⃗P1P2 · ⃗P1P2) ∧ (0 < ⃗P1P · ⃗P1P4 < ⃗P1P4 · ⃗P1P4). (3.15)

Information classification: Internal

P2

P1

P3

P4

P.

Figure 3.7: The red area is the occupied space, and the grey area is the axis-
aligned bounding box covering the object-oriented bounding box. P is the
point to check if located in the occupied space.

3.4.3 Design of the State Space Lattice

The application is developed in a laboratory space of approximately 12 by 12
meters, motivating these dimensions for the state space lattice. The number of
discrete orientations is set to eight:

θ =
{
− 3π

2
,−π

2
,−π

4
, 0,

π
4
,
π
2
,

3π
2

}
, (3.16)

and the grid resolution to 0.5 meters ad hoc. It gives good enough routes with-
out the computation time becoming too large for real-time application. A larger
grid resolution results in less computation time since the graph search problem
becomes smaller.

The AGV uses differential drive kinematics described with a differential drive
model. A unicycle model is a simplified version of the differential drive model [23]
and happens to be easier to use in this implementation. The unicycle model [32]

24 3 Method

is described by:

ẋ = v cos(θ), (3.17a)

ẏ = v sin(θ), (3.17b)

θ̇ = ω, (3.17c)

where x, y, and θ are the AGV’s position and orientation. The input controls
include the linear velocity v and the angular velocity w.

The motion primitives are solved offline using CasADi [33] together with the
nonlinear solver IPOPT [34]. The optimization problem consists of two steps. An
initial motion primitive is solved, where the aim is to move the robot one step
in the discrete orientation space. Since this solution does not guarantee that the
motion primitive will end on one of the discretized states, another optimization
is performed with the first one as the initial guess. Straight maneuvers use the
same procedure. Figure 3.8 shows the generated motion primitives located on
the generated state lattice.

1.0 0.5 0.0 0.5 1.0
x-coordinate [m]

1.0

0.5

0.0

0.5

1.0

y-
co

or
di

na
te

 [m
]

Figure 3.8: The generated motion primitives with a grid resolution of
0.5 meters. The black arrows show the eight discrete orientations θ =
{−3π

2 ,−π
2 ,−

π
4 , 0,

π
4 ,

π
2 ,

3π
2 , π}.

3.4 State Lattice Motion Planning 25

3.4.4 Graph Search Algorithm

A*, described in Section 2.4.2, was implemented to perform the graph search but
some scenarios generated overly large calculation times. Since the goal is com-
patibility with real-time applications, it was necessary to limit the computation
time. ARA* (Anytime Repairing A*) [35], an extension of A* designed to find a
suboptimal solution quickly before tuning during the rest of the available search
time, became the new choice. If time allows, ARA* will find an optimal solution.
To compute efficiently, it reuses previous search efforts and does not recalculate
from scratch during the iterations.

ARA* uses three lists, OP EN , CLOSED, and INCONS, where OP EN is a prior-
ity queue. It executes A* multiple times by starting with a high value of the factor
ϵ that inflates the heuristic h(s) and yields faster searches with fewer state expan-
sions. The heuristic chosen in this implementation is the euclidean distance from
a state s to a goal state sgoal . The cost to go between a state s to a succeeding state
s′ is defined with c(s, s′). The cumulative cost of the current path from the starting
state sstart to state s is defined with g(s). The term locally inconsistent, central in
ARA*, describes when a decrease in g(s) introduces a local inconsistency between
that g-value and the g-value of its successors. When the state is expanded, this
inconsistency is corrected by re-evaluating the g-values of the successors. ϵ′ is
a suboptimality bound. A description of ARA* in pseudocode is found in Algo-
rithm 2. The interested reader is referred to [35] for a full explanation of the
algorithm.

26 3 Method

Algorithm 2 ARA*-algorithm in pseudocode.

procedure fvalue(s)
return g(s) + ϵh(s)

procedure ImprovePath()
while f value(sgoal) > min

s∈OP EN
f value(s) do

s← OP EN.GetP rioritizedElement()
CLOSED.insert(s)
for each successor s′ of s do

if s′ not visited before then
g(s′) = ∞

end if
if g(s′) > g(s) + c(s, s′) then

g(s′) = g(s) + c(s, s′)
if s′ < CLOSED then

OP EN.insert(s′ , f value(s′))
else

INCONS.insert(s′)
end if

end if
end for

end while

procedure Main()
g(sgoal) = ∞; g(sstart) = 0
OP EN = CLOSED = INCONS = ∅
OP EN.insert(sstart , f value(sstart))
ImproveP ath()
ϵ′ = min(ϵ, g(sgoal)/ min

s∈OP EN∪INCONS
(g(s) + h(s)))

Publish current ϵ′-suboptimal solution
while ϵ′ > 1 do

decrease ϵ
OP EN ← OP EN ∪ INCONS
Update priorities f value(s) for all s ∈ OP EN
CLOSED = ∅
ImproveP ath()
ϵ′ = min(ϵ, g(sgoal)/ min

s∈OP EN∪INCONS
(g(s) + h(s)))

Publish current ϵ′-suboptimal solution
end while

4
Result and Discussion

In the following chapter the results are presented and discussed. First the vision
based object detection, secondly the object tracking and thirdly the state lattice
motion planning.

4.1 Vision Based Object Detection

Together with the best weights gathered after training YOLOv5s for 75 epochs,
the test data set is used to evaluate the final model. The model correctly labels
every pair of forks in the test data, and no forks are found in the background
images. The model has both precision and recall values equal to 1. The AP is
0.995 for the confidence threshold range 0:0.5 and 0.714 for 0.5:0.95.

In the solution of this thesis, four different ArUco markers were placed on the cor-
ners of the forks to estimate the object’s location in the semi-automatic labeling
algorithm. Moving the object became time-consuming since the ArUco markers
had to be relocated for each new location. It caused a limitation on the number
of fork positions in the global world of the laboratory space.

If the object’s location in the world was known and automatically updated when
altering the positioning of the forks, an increased number of images and corre-
sponding labels with more diverse features in different environments could have
been gathered. This would lead to less correlated images.

For time efficiency, a single ArUco marker initially estimated an object’s position.
Based on the position and rotation measurement from the marker, it is theoret-
ically possible to find the four corners when an object’s dimensions are known.
It would have given an efficient solution for finding the global location and an

27

28 4 Result and Discussion

increased number of possible fork positions used for the data gathering. This
solution did not work in the current status of this thesis. The ArUco marker
rotation measurements were too noisy to give an accurate approximation of the
real-world location, which led to a faulty minimal bounding box of the object.

4.2 Object Tracking Using a Monocular Camera

The object tracking is done using ArUco marker measurements and 2D-bounding
box measurements from YOLOv5s, separately in two different Extended Kalman
filters. The two results are compared with both each other and the raw ArUco
marker measurements. This is done since the actual position and heading of the
object are unknown and no ground truth values are available. First, the set-up of
the tests is explained in more detail and potential problems and limitations are
brought up. Then three subcategories of test cases and their respective results
are shown and discussed.

4.2.1 Planning and Executing the Tests

Since one limitation with this master thesis is the time available in the lab facility,
the tests are divided into an online and offline part. The computer used is also a
limiting factor, leading to a long sampling time. The application was never im-
plemented on the planned GPU accelerated computer M03975, because of time
limitations. A long sampling time can cause problems since the object’s position
and rotation can change by a large amount in a short time. This is especially
problematic if there are several bad measurements in a row. To compensate for
this phenomenon, the object was driven at an unnaturally slow velocity during
the online data gathering.

Online Data Gathering

The measurements are gathered in the lab facility with a sampling time of 0.5
seconds. After each test, the following data is saved to files:

• Measurements of the AGV’s position and heading expressed in world coor-
dinates.

• Measurements from the ArUco marker transformed live from camera coor-
dinates to world coordinates. This includes both position and heading.

• 2D-bounding box measurements from detections with YOLOv5s.

Both the measurements from the ArUco marker and the 2D-bounding box from
the detection with YOLOv5s are generated on the same camera frame. The ArUco
marker is located on the rotation center of the object since that is the chosen point
to track based on what is most compatible with the coordinated turn model.

4.2 Object Tracking Using a Monocular Camera 29

Offline Calculations and Tuning

After the online data gathering, the rest of the calculations are performed offline.
This includes using the raw measurements as input to each Extended Kalman
filter. This is done with one sample at a time, to simulate how it would work in
an online setting. The first available ArUco marker measurements are set as the
initial values of position and heading for the Extended Kalman filter using ArUco
marker measurements. For the Extended Kalman filter using 2D-bounding box
measurements, the filtered ArUco marker positions are used instead. The initial
heading is set manually in this case and changes between tests since the filtered
ArUco marker measurement of heading is considered too noisy to use as an initial
value for this filter. The last two states, velocity, and angular velocity are set
manually close to zero since all tests are designed to start from a standstill.

The parameters QArUco, RArUco, Q2D , and R2D are also tuned offline, to find val-
ues that yield good performance on the tests. The values are presented in a table
at the start of each subcategory of test cases. The initial state covariance is also
presented there.

4.2.2 Tests with Zero Angular Velocity

The first subcategory of tests includes tests that have zero angular velocity. These
tests show how well the filters perform when the heading is constant, and hence
the focus is on how well the filters can notice changes in position. To make sure
that the filter uses the measurements, and not only bases the estimation on the un-
derlying model, the motions are performed repetitively with changing directions,
and hence the velocity both changes size and sign. Three tests are performed in
this subcategory and can all be seen in Figure 4.1. The tuned parameters for this
subcategory of tests can be found in Table 4.1. R2D is based on the discussion
from Section 3.3.1.

Table 4.1: Tuning parameters and initial state covariance for tests in the
subcategory with zero angular velocity.

ArUco marker 2D-bounding box
Q diag(0.2, 0.1)2 diag(1.5, 0.1)2

R diag(0.4, 0.4, 2π/3)2 diag(200/d, 200/d, 200/d, 200/d)2

P0 diag(0.25, 0.25, 0.1, π/2, 0.1)2 diag(0.25, 0.25, 0.1, π/2, 0.1)2

Figure 4.1a shows how the first test in this subcategory is designed. The object
moves diagonally in front of the AGV with a constant heading in a repetitive
manner. This test yields measurements that are based on a change in both the x-
coordinate and y-coordinate. The 2D-bounding box measurements are observed
in Figure 4.2, they are stable which indicates no large outliers. Figure 4.3 shows
the resulting signals of position and heading. The raw ArUco marker measure-
ments are noisier in heading than in position, getting the largest improvement
after filtering. It is also seen that the filtered signal from the ArUco measure-

30 4 Result and Discussion

x

y

A
G
V

Heading

(a) The object moves diagonally in front of the AGV with a
constant relative heading.

x

y

A
G
V

O
b
je
ct

(b)The object moves straight toward the AGV with a relative
heading of zero.

x

y

A
G
V

Object

Heading

(c) The object moves with a constant relative heading, in a
ninety-degree rotation compared to the AGV.

Figure 4.1: Three tests with a constant relative heading. Each motion is
executed several times.

4.2 Object Tracking Using a Monocular Camera 31

ments works well with smoothing out the noisy heading measurements. The
filter using the 2D-bounding boxes also gives a smooth estimate of the heading.
It is likely possible to optimize both filters’ behavior if the parameters are tuned
more thoroughly and not ad hoc. All three signals follow a similar trend when
looking at the x- and y-coordinate with only small differences. It is not possible
to say which one performs the best since no real ground truth values are available
for reference. However, both filters pick up on changes in both directions, which
was the purpose of this test.

0 10 20 30 40 50
Time [s]

300

400

500

600

700

Pi
xe

l

umin

vmin

umax

vmax

Figure 4.2: The bounding box measurements when the object moves diago-
nally in front of the AGV, as described in Figure 4.1a.

Figure 4.1b shows how the second test in this subcategory is designed. The object
moves straight toward the AGV and hence should only yield small differences in
the y-coordinate. It is however noted that the object is moved manually, and small
differences will occur. In Figure 4.4 the 2D-bounding box measurements are
stable which indicate no real outliers. Similar results as the first test are observed
in Figure 4.5. The filtered heading signal, generated from the measurements of
the 2D-bounding boxes, gives an even smoother signal than the signal filtered
from the raw ArUco measurements. Both filters pick up on the change in the
x-coordinate, and only small changes occur in the y-coordinate, which is what is
expected from this test.

The third and last test in this subcategory includes seeing the object passing in
front of the AGV with a constant rotation of 90 degrees. This can be seen in Fig-
ure 4.1c. This is a test where the ArUco marker can not be used normally since
it faces the same direction as the heading of the object. However, for this test,
the marker is moved so that the raw measurements of the x-, and y-coordinates
and heading can be used as a rough comparison. The 2D-bounding box mea-
surements are viewed in Figure 4.7, and it is seen that they are stable, which
indicates no large outliers. The object is moving with an approximately constant
heading of −π

2 radians and the results are viewed in Figure 4.6. Overall, the
tracking correctly captures the general trend in the x-, y-coordinate, and heading
and it is seen that the filtered signal approximately follows the expected heading

32 4 Result and Discussion

0 10 20 30 40 50

13.50

14.00

14.50

x-
co

or
di

na
te

 [m
]

0 10 20 30 40 50
Time [s]

43.80

44.00

44.20

y-
co

or
di

na
te

 [m
]

(a) A comparison of the resulting signals
in x- and y-direction respectively.

0 10 20 30 40 50
Time [s]

-0.20

0.00

0.20

0.40

0.60

He
ad

in
g

[ra
d]

Raw measurement from ArUco marker
Filtered signal from ArUco marker
Filtered signal from 2D-bounding box

(b)A comparison of the resulting signals
of heading.

Figure 4.3: The result when the object moves diagonally in front of the AGV,
as described in Figure 4.1a.

0 10 20 30 40 50
Time [s]

300

350

400

450

500

550

600

Pi
xe

l

umin

vmin

umax

vmax

Figure 4.4: The bounding box measurements when the object moves straight
toward the AGV, as described in Figure 4.1b.

4.2 Object Tracking Using a Monocular Camera 33

0 10 20 30 40 50

13.50

14.00

14.50

x-
co

or
di

na
te

 [m
]

0 10 20 30 40 50
Time [s]

44.11
44.12
44.13
44.14
44.15

y-
co

or
di

na
te

 [m
]

(a) A comparison of the resulting signals
in x- and y-direction respectively.

0 10 20 30 40 50
Time [s]

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

He
ad

in
g

[ra
d]

Raw measurement from ArUco marker
Filtered signal from ArUco marker
Filtered signal from 2D-bounding box

(b)A comparison of the resulting signals
of heading.

Figure 4.5: The result when the object moves straight toward the AGV, as
described in Figure 4.1b

0 10 20 30 40 50

13.40

13.50

13.60

13.70

x-
co

or
di

na
te

 [m
]

0 10 20 30 40 50
Time [s]

43.00

43.50

44.00

44.50

y-
co

or
di

na
te

 [m
]

(a) A comparison of the resulting signals
in x- and y-direction respectively.

0 10 20 30 40 50
Time [s]

-2.00

-1.80

-1.60

-1.40

-1.20

-1.00

-0.80

He
ad

in
g

[ra
d]

Raw measurement from ArUco marker
Filtered signal from 2D-bounding box

(b)A comparison of the resulting signals
of heading.

Figure 4.6: The result when the object moves with a relative 90-degree ro-
tation to the AGV, as described in Figure 4.1c.

of −π
2 . However, smaller fluctuations are noted both in the heading and in the

x-coordinate, the trend occurring at the same time in both signals. When look-
ing at the measurements in Figure 4.7, these fluctuations occur when the object
changes direction on one of the extreme points. Another thing worth noting is
that the filtered signal using 2D-bounding boxes is capable of performing well
on a test that the ArUco marker is incapable of generating a result on. This is
only true for the chosen current location of the marker, but no matter where the
marker is placed, there will be scenarios where it can not be seen by the camera.
It is therefore concluded that the 2D-bounding box measurements give a more
versatile filter where the only limitation is that the object is within the camera
frame.

34 4 Result and Discussion

0 10 20 30 40 50
Time [s]

200

300

400

500

600

700

Pi
xe

l

umin

vmin

umax

vmax

Figure 4.7: The bounding box measurements when the object moves with a
relative 90-degree rotation to the AGV, as described in Figure 4.1c.

4.2.3 Tests with Non-Zero Angular Velocity

The second subcategory only includes one test. This test has non-zero angular ve-
locity, but zero linear velocity. It will show how well the filters perform when the
position is constant, and hence the focus is on changes in heading. The tuned pa-
rameters for this subcategory of tests can be found in Table 4.2. To see any change
in rotation, the second element of the Q2D-parameter representing the standard
deviation of rotational acceleration needs to be increased by a large amount com-
pared to the previous tests. This increase does however not yield good results
on the tests with zero angular velocity. This indicates that the filter in the first
subcategory mainly bases the estimate of heading on the model, and when the
estimate is more based on the measurement, problematic behaviors occur. One
potential reason for this will be investigated in this second subcategory.

Table 4.2: Tuning parameters and initial state covariance for tests in the
subcategory with non-zero angular velocity.

ArUco marker 2D-bounding box
Q diag(0.2, 0.1)2 diag(1.5, 15)2

R diag(0.4, 0.4, 2π/3)2 diag(200/d, 200/d, 200/d, 200/d)2

P0 diag(0.25, 0.25, 0.1, π/2, 0.1)2 diag(0.25, 0.25, 0.1, π/2, 0.1)2

The test includes a counter-clockwise rotation of the object, where the object
moves from a relative heading of zero to a positive π

2 radians, shown in Figure 4.8.
The ArUco marker does not yield measurements for large rotations and the re-
sults are shown in Figure 4.9.

The test generates a heading estimate with the wrong sign on the filtered sig-
nal using the 2D-bounding box measurements, compared to the filtered signal
from the ArUco marker measurements. The reason behind this is found if the
2D-bounding box measurements from both a clockwise and an anti-clockwise ro-

4.2 Object Tracking Using a Monocular Camera 35

A
G
V

x

y
O
b
je
ct

(a) The start position with relative heading equal to zero.
A
G
V

x

y

Object

Heading

(b) The object is rotated from the start position in (a) to a
relative heading of π

2 .

Figure 4.8: The set-up for the test with non-zero angular velocity.

36 4 Result and Discussion

0 10 20 30 40 50

13.80

14.00

14.20

x-
co

or
di

na
te

 [m
]

0 10 20 30 40 50
Time [s]

44.10

44.15

44.20

44.25

44.30

y-
co

or
di

na
te

 [m
]

(a) A comparison of the resulting signals
in x- and y-direction respectively.

0 10 20 30 40 50
Time [s]

-1.50

-1.00

-0.50

0.00

0.50

1.00

He
ad

in
g

[ra
d]

Raw measurement from ArUco marker
Filtered signal from ArUco marker
Filtered signal from 2D-bounding box

(b)A comparison of the resulting signals
of heading.

Figure 4.9: The result when the object rotates counter-clockwise, as de-
scribed in Figure 4.8b.

tation are shown together as in Figure 4.10. These bounding box measurements
are found when the object:

1. Has a heading of zero radians, from approximately time 0 to time 5

2. Moves to a positive π
2 radians, from approximately time 5 to time 25

3. Moves back to zero radians, from approximately time 25 to time 45

4. Moves to a negative π
2 radians, from approximately time 45 to time 70

5. Moves back to zero radians, from approximately time 70 to time 100

It is seen that both the clockwise and counter-clockwise rotations generate the
same trend in the measurements, and therefore the filter will not be able to dif-
ferentiate between the two cases. The reason behind this phenomenon is that the
object is symmetrical around its rotation center. This is one noted case when the
2D-bounding box measurements cause a problematic filtered signal, but several
more cases likely exist since a 2D-bounding box is a simplification of a 3D object.

4.2.4 Tests Including an Extra Measurement of Rotation

To compensate for this limitation in the filter, the last subcategory of tests in-
cludes an extra measurement of rotation for the filter using 2D-bounding box
measurements. The purpose is to see if this extra measurement can help the
filter better differentiate between problematic cases. The extra rotation measure-
ment is the heading of the ArUco marker, but it would have been possible to also
generate the measurement from the camera. The tuned parameters for this sub-
category of tests can be found in Table 4.3, where Q2D is now lowered again to
be the same as in the tests with zero angular velocity. R2D now includes an extra
element caused by the extra measurement.

4.3 State Lattice Motion Planning 37

0 20 40 60 80 100
Time [s]

300

350

400

450

500

550

Pi
xe

l

umin

vmin

umax

vmax

Figure 4.10: The 2D-bounding box measurements when the object moves
from zero radians, goes to positive π

2 radians, back to zero radians, goes to
negative π

2 radians and lastly back to zero radians again.

Table 4.3: Tuning parameters and initial state covariance for tests in the
subcategory with an extra measurement of rotation.

ArUco marker 2D-bounding box
Q diag(0.2, 0.1)2 diag(1.5, 0.1)2

R diag(0.4, 0.4, 2π/3)2 diag(200/d, 200/d, 200/d, 200/d, π/4)2

P0 diag(0.25, 0.25, 0.1, π/2, 0.1)2 diag(0.25, 0.25, 0.1, π/2, 0.1)2

To see if this extra measurement has the desired effect, the same test as in Fig-
ure 4.9, is tested again. The results are viewed in Figure 4.11. It is seen that
the filter now can differentiate between the two rotations, which is the desired
outcome of this test. However, the heading estimates do not reach the desired an-
gles. The reason for this is that no ArUco marker measurements are generated for
large rotations, and hence that will be a limitation when using that measurement
in both filters.

The last test includes the object moving in a curve toward the camera. It uses both
non-zero linear velocity and non-zero angular velocity, and tests change both in
the x-coordinate, y-coordinate, and heading. The results are shown in 4.12, and
it is seen that both filters perform similarly.

4.3 State Lattice Motion Planning

The filtered signal from the ArUco marker measurements, when the object moves
diagonally in front of the AGV, is used to test the state lattice motion planner.

The outer bounds of the detected object, at two different samples, are viewed in
Figure 4.13. Only the current state and its covariance, in each sample, are used to
create the outer bound. It would however also be possible to predict the motion

38 4 Result and Discussion

0 5 10 15 20 25
13.75

13.80

13.85

13.90

13.95

x-
co

or
di

na
te

 [m
]

0 5 10 15 20 25
Time [s]

44.10

44.15

44.20

y-
co

or
di

na
te

 [m
]

(a) A comparison of the resulting signals
in x- and y-direction respectively.

0 5 10 15 20 25
Time [s]

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

He
ad

in
g

[ra
d]

Raw measurement from ArUco marker
Filtered signal from ArUco marker
Filtered signal from 2D-bounding box

(b)A comparison of the resulting signals
of heading.

Figure 4.11: The result when the object rotates counter-clockwise, as de-
scribed in Figure 4.8b. The filtered signal using 2D-bounding box measure-
ments also uses the raw rotation measurement from the ArUco marker.

13.0 13.5 14.0 14.5
x-coordinate [m]

44.00

44.05

44.10

44.15

44.20

44.25

y-
co

or
di

na
te

 [m
]

(a) A comparison of the resulting signals
in x- and y-direction.

0 10 20 30 40 50
Time [s]

-0.10

0.00

0.10

0.20

0.30

0.40

He
ad

in
g

[ra
d]

Raw measurement from ArUco marker
Filtered signal from ArUco marker
Filtered signal from 2D-bounding box

(b)A comparison of the resulting signals
of heading.

Figure 4.12: The object travels toward the AGV starting at rotation 0 and
moving in a curvilinear motion. The filtered signal using 2D-bounding
box measurements also uses the raw rotation measurement from the ArUco
marker.

4.3 State Lattice Motion Planning 39

12.0 12.5 13.0 13.5 14.0 14.5
x-coordinate [m]

43.0

43.5

44.0

44.5

45.0

y-
co

or
di

na
te

 [m
]

(a) The outer bound of the object at sam-
ple 50.

12.5 13.0 13.5 14.0 14.5
x-coordinate [m]

43.0

43.5

44.0

44.5

45.0

y-
co

or
di

na
te

 [m
]

(b)The outer bound of the object at sam-
ple 1.

Figure 4.13: The red rectangle is an approximation of the detected object
based on known dimensions. The light blue rectangles include uncertainties
in the length and width of the object, as well as the rotation. The gray area is
the outer bound of the object taking this uncertainty into account.

of the object m-steps ahead in each sample and use all this knowledge to create
m-number of outer bounds. The uncertainty would increase the further into the
future the object is predicted, potentially causing no feasible path to be found at
all if the uncertainty becomes too large.

The red obstacle, in Figure 4.13, is the detected object if no uncertainty is taken
into account. The light blue rectangles show the rectangle rotated with one stan-
dard deviation, with added width and length based on the uncertainty in the x-
and y-coordinate. The gray rectangle is the risky area where the object might be
located. It can be seen in Figure 4.13a that the gray area fully covers the original
object as well as the uncertain versions, and hence creates a valid outer bound.
In Figure 4.13b a limitation with this approach is shown, where the sample has
a large uncertainty in the estimated rotation. At a first glance, the outer bound
covers the original object as well as the uncertain versions. However, a smaller
standard deviation in the rotation would yield a larger length of the object. It is
therefore observed that this approach works for small uncertainties, but not as
well for larger ones.

The resulting planned paths can be seen in Figure 4.14. The planned path works
as expected, and the obstacle is avoided when it obscures the path. The shown
paths are the last iterations from ARA*, and are therefore optimal paths that
would be the same as if A* was run instead.

Figure 4.15 shows some of the suboptimal solutions from the same test. The ϵ′-
suboptimal solution guarantees that the length of the found solution is no larger
than ϵ′ times the length of the optimal solution [35]. This is seen to be true,
and thus a trade-off between computational time and path quality can be used to

40 4 Result and Discussion

12 13 14 15 16 17
x-coordinate [m]

40

42

44

46

48

50

y-
co

or
di

na
te

 [m
]

(a) No obstacle.

12 13 14 15 16 17
x-coordinate [m]

40

42

44

46

48

50

y-
co

or
di

na
te

 [m
]

(b) Obstacle appear.

12 13 14 15 16 17
x-coordinate [m]

40

42

44

46

48

50

y-
co

or
di

na
te

 [m
]

(c) Obstacle in the way.

Figure 4.14: Results from the motion planning with ARA*, where the de-
tected obstacle follows a diagonal line from a filtered signal generated with
measurements from the ArUco marker. The bottom arrow shows where the
AGV is currently located, and the upper arrow where the AGV aims to go.
The detected obstacle is shown in red and the planned path in blue. (a)
shows the planned path when no obstacle has yet been detected. (b) shows
the planned path when the obstacle is detected. (c) shows the new planned
path when the obstacle crosses the original planned path.

decide if more iterations should be made or if the path generated is good enough.

ARA* generates, in some scenarios, an unintuitive path when the heuristic is
inflated. One such example is seen in Figure 4.16. Intuitively, the chosen path
would be a straight line from start to goal when there are no obstacles in the
world. However, since ARA* priorities the node search based on g(s) + ϵh(s), it
will instead prioritize a longer route if h(s) is smaller. Hence, when ϵ > 1 in this
scenario, the dotted green line will be chosen even though there are no obstacles
present. If more time is available, ARA* will however generate the optimal path
eventually. This is also seen with the solid green line when ϵ has decreased.

4.3 State Lattice Motion Planning 41

12 13 14 15 16 17
x-coordinate [m]

40

42

44

46

48

50

y-
co

or
di

na
te

 [m
]

(a) The red path shows the ϵ′ = 1.163
suboptimal solution with length 9.30
meters and the green path shows
the ϵ′ = 1.052 suboptimal solution with
length 8.591 meters. Lastly the blue
path shows the ϵ′ = 1 suboptimal so-
lution with length 8.591 meters.

12 13 14 15 16 17
x-coordinate [m]

40

42

44

46

48

50

y-
co

or
di

na
te

 [m
]

(b) The red path shows the ϵ′ = 1.147
suboptimal solution with length 9.181
meters. The blue path shows the ϵ′ = 1
suboptimal solution with length 8 me-
ters.

Figure 4.15: Two different searches with ARA* are viewed, where some cho-
sen suboptimal solutions are drawn with dotted lines. The bottom arrow
shows where the AGV is currently located and the upper arrow where the
AGV aims to go.

42 4 Result and Discussion

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x-coordinate [m]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y-
co

or
di

na
te

 [m
]

(a) The red paths show the heuristics
from the successors of the start node to
the goal node.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x-coordinate [m]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y-
co

or
di

na
te

 [m
]

(b) The green dotted path is generated
when ϵ > 1 and the solid green line is
generated when ϵ = 1.

Figure 4.16: An example when ARA* generates an unintuitive first path
when ϵ > 1. The start node and goal node are green. The successors of
the start node, and the path there, are seen in blue. In (a) the length of
the heuristic is shown in red. In (b) the resulting paths are shown for two
scenarios of ϵ.

5
Conclusion

5.1 Answering the Problem Statements

Three problem statements were presented in Chapter 1.4 and analyzed in this
master thesis. Each research question is in the following Section addressed sepa-
rately.

• Is it possible to use a single RGB camera to detect complex obstacles in form
of protruding forks?

To perform vision based object detection using one RGB camera, a deep learning
approach using a YOLOv5s model was chosen. After data acquisition, the model
was trained with custom data to detect 2D-bounding boxes around forks. A good
result was found with an average precision of 0.714, for a confidence threshold of
0.5:0.95, on the test data. To conclude, detecting complex obstacles with a single
RGB camera is possible.

• Based on data from a single RGB camera, is it possible to track the object’s
position in the world?

Two methods were designed to track the object’s position in the world. One Ex-
tended Kalman filter using raw measurements from a detected ArUco marker
and the other 2D-bounding boxes from the YOLOv5s detection. The second one
uses the assumption that an initial object state estimate in 3D space is known, a
limitation that does not exist with the first. Both filters result in similar perfor-
mance when the angular velocity is zero. The filter using 2D-bounding box mea-
surements performs less reliably when adding a non-zero angular velocity. An
identified potential reason is that measurements from a clockwise and counter-
clockwise rotation result in similar 2D-bounding box measurements. An extra

43

44 5 Conclusion

rotation measurement was added to better differentiate between the cases. Im-
proved results were obtained. To conclude, tracking the object’s position in the
world based on a single RGB camera is possible.

• Can motion planning be designed to avoid complex dynamic obstacles based
on RGB-camera data?

A state lattice motion planning approach was designed to avoid complex dynamic
obstacles. To limit the computation time an anytime planner ARA* was imple-
mented, which can find suboptimal paths in a shorter time than A*. The results
show that the obstacles are sufficiently avoided. Therefore, it is concluded that
motion planning based on RGB-camera data can be designed to avoid complex
dynamic obstacles.

5.2 Future Work

This master thesis has only begun to uncover the potential problems and possibil-
ities with using a single RGB camera for collision avoidance. Several interesting
aspects that would benefit from more research and improvement exist.

Because of time limitations, the application was never implemented on the com-
puter M03975. This would be interesting to test to see if all calculations, object
detection, tracking, and motion planning, could be done during the critical time
limit imposed by real-time applications or if more optimization is needed.

The object detection works well in this application, but several possible improve-
ments exist. One potential problem is that all training, validation, and test data
is gathered in the laboratory facilities at Toyota Material Handling Manufactur-
ing Sweden. The detection would most likely not perform as well upscaled in a
factory setting. Including a large amount of data in diverse environments would
solve this problem.

The object tracking using 2D-bounding box measurements is more robust with an
added measurement of object rotation. This measurement is, in this application,
extracted from an ArUco marker. In future work, it would be interesting to see if
a similar measurement can be generated differently and make the ArUco marker
obsolete. Two potential ways to approach this problem would be to use deep
learning or look at SIFT features in consecutive frames.

This master thesis did not focus on the initialization of the object state in 3D
space, something worth developing. One way to approach this would be as pro-
posed by Reich and Wuensche [30] with a monocular 3D object tracker. Another
possible aspect is to include an additional RGB camera to see if this is solvable
using stereo-vision.

The state lattice motion planner works well in this application but could be im-
proved. ARA* is currently the implemented graph search algorithm, but other
graph search algorithms could perform even better. D* Lite [36] is a graph search
algorithm that works well in dynamic environments where the edge costs can

5.2 Future Work 45

change while the robot moves toward the goal. Another suitable graph search
algorithm that has the potential to work well for this application is the Anytime
Dynamic A* algorithm [37].

Bibliography

[1] Zesen Liu, Chuanhong Guo, Sheng Bi, Kezheng Yu, Guojun Peng, and
Yuyang Yue. A robot obstacle avoidance approach with lidar and rgb cam-
era data combined. 2021 IEEE 11th Annual International Conference on
CYBER Technology in Automation, Control, and Intelligent Systems (CY-
BER), pages 140–145, 2021.

[2] Fengyuan Jia, Zhaosheng Tao, and Fusong Wang. Pallet detection based
on halcon and alexnet network for autonomous forklifts. 2021 Inter-
national Conference on Internet, Education and Information Technology
(IEIT), pages 86–89, 2021.

[3] Partha Narayan Chowdhury, Tonmoy Chandra Ray, and Jia Uddin. A vehicle
detection technique for traffic management using image processing. 2018
International Conference on Computer, Communication, Chemical, Mate-
rial and Electronic Engineering (IC4ME2), pages 1–4, 2018.

[4] Tri Nguyen and Myungsik Yoo. Fusing lidar sensor and rgb camera for ob-
ject detection in autonomous vehicle with fuzzy logic approach. 2021 Inter-
national Conference on Information Networking (ICOIN), pages 788–791,
2021.

[5] Jan Kallwies, Bianca Forkel, and Hans-Joachim Wuensche. Determining and
improving the localization accuracy of apriltag detection. 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 8288–8294,
2020.

[6] Joel Pazhayampallil. Free space detection with deep nets for autonomous
driving. 2015.

[7] Jeff Michels, Saxena Ashutosh, and Ng Andreq Y. High speed obstacle avoid-
ance using monocular vision and reinforcement learning. Proceedings of the
22nd International Conference on Machine Learning, 2005.

[8] Armin Masoumian, David G.F. Marei, Saddam Abdulwahab, Julián Cris-
tiano, Domenec Puig, and Hatem A. Rashwan. Absolute distance predic-
tion based on deep learning object detection and monocular depth estima-

47

48 Bibliography

tion models. Artificial Intelligence Research and Development, Oct 2021.
ISSN 1879-8314. doi: 10.3233/faia210151. URL http://dx.doi.org/
10.3233/FAIA210151.

[9] Nurul Fathanah Mustamin. Relative distance measurement between mov-
ing vehicles for manless driving. 2017 International Seminar on Applica-
tion for Technology of Information and Communication (iSemantic), pages
1–4, 2017.

[10] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially con-
strained mobile robot motion planning in state lattices. Journal of field
robotics. 26(3), pages 308–333, 2009.

[11] Olov Andersson, Oskar Ljungqvist, Mattias Tiger, Daniel Axehill, and
Fredrik Heintz. Receding-horizon lattice-based motion planning with dy-
namic obstacle avoidance. 2018 IEEE Conference on Decision and Control
(CDC), pages 4467–4474, 2018.

[12] MathWorks. What is camera calibration? URL https://se.mathworks.
com/help/vision/ug/camera-calibration.html.

[13] IBM Cloud Education. Ai vs. machine learning vs.
deep learning vs. neural networks: What’s the differ-
ence?, . URL https://www.ibm.com/cloud/blog/
ai-vs-machine-learning-vs-deep-learning-vs-neural-networks.

[14] IBM Cloud Education. What is deep learning?, . URL https://www.ibm.
com/cloud/learn/deep-learning.

[15] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016.
doi: 10.1109/CVPR.2016.91.

[16] Jeremy Jordan. Evaluating a machine learning model.,
Aug 2018. URL https://www.jeremyjordan.me/
evaluating-a-machine-learning-model/.

[17] Jonathan Hui. Real-time object detection with yolo, yolov2 and now
yolov3, Aug 2019. URL https://jonathan-hui.medium.com/
real-time-object-detection-with-yolo-yolov2-28b1b93e2088.

[18] Qisong Song, Shaobo Li, Qiang Bai, Jing Yang, Xingxing Zhang, Zhiang Li,
and Zhongjing Duan. Object detection method for grasping robot based on
improved yolov5. Micromachines, 12(11), 2021. ISSN 2072-666X. URL
https://www.mdpi.com/2072-666X/12/11/1273.

[19] Kiprono Elijah Koech. On object detection metrics with worked ex-
ample, Mar 2022. URL https://towardsdatascience.com/
on-object-detection-metrics-with-worked-example-216f173ed31e.

http://dx.doi.org/10.3233/FAIA210151
http://dx.doi.org/10.3233/FAIA210151
https://se.mathworks.com/help/vision/ug/camera-calibration.html
https://se.mathworks.com/help/vision/ug/camera-calibration.html
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/deep-learning
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://www.mdpi.com/2072-666X/12/11/1273
https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e
https://towardsdatascience.com/on-object-detection-metrics-with-worked-example-216f173ed31e

Bibliography 49

[20] Fredrik Gustafsson, Lennart Ljung, and Mille Millnert. Signal processing.
Studentlitteratur, Lund, 1:3 edition, 2010.

[21] Gustaf Hendeby. Performance and Implementation Aspects of Nonlinear
Filtering. PhD thesis, 03 2008.

[22] Kristoffer Bergman, Oskar Ljungqvist, and Daniel Axehill. Improved op-
timization of motion primitives for motion planning in state lattices. In
2019 IEEE Intelligent Vehicles Symposium (IV), pages 2307–2314, 2019. doi:
10.1109/IVS.2019.8813872.

[23] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[24] IFM. Python api reference - o3r documentation, 2022.

[25] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-
Jiménez. Automatic generation and detection of highly reliable fidu-
cial markers under occlusion. Pattern Recognition, 47(6):2280–2292,
2014. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2014.01.
005. URL https://www.sciencedirect.com/science/article/
pii/S0031320314000235.

[26] OpenCV. Open source computer vision library: Aruco marker detection,
2015.

[27] Glenn Jocher. Train custom data · ultralytics/yolov5 wiki, 2022.
URL https://github.com/ultralytics/yolov5/wiki/
Train-Custom-Data.

[28] Ultralytics. Tips for best training results - yolov5 documenta-
tion, 2021. URL https://docs.ultralytics.com/tutorials/
training-tips-best-results/.

[29] Pragati Baheti. Train, validation, and test sets: How to split your ma-
chine learning data, 2022. URL https://www.v7labs.com/blog/
train-validation-test-set.

[30] Andreas Reich and Hans-Joachim Wuensche. Monocular 3d multi-object
tracking with an ekf approach for long-term stable tracks. In 2021 IEEE
24th International Conference on Information Fusion (FUSION), pages 1–7,
2021. doi: 10.23919/FUSION49465.2021.9626850.

[31] Michael Roth, Gustaf Hendeby, and Fredrik Gustafsson. Ekf/ukf maneu-
vering target tracking using coordinated turn models with polar/cartesian
velocity. In 17th International Conference on Information Fusion (FUSION),
pages 1–8, 2014.

[32] Ricardo Carona, A. Pedro Aguiar, and José Gaspar. Control of unicycle type
robots tracking, path following and point stabilization. 11 2008.

https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://docs.ultralytics.com/tutorials/training-tips-best-results/
https://docs.ultralytics.com/tutorials/training-tips-best-results/
https://www.v7labs.com/blog/train-validation-test-set
https://www.v7labs.com/blog/train-validation-test-set

50 Bibliography

[33] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz
Diehl. CasADi – A software framework for nonlinear optimization and op-
timal control. Mathematical Programming Computation, 11(1):1–36, 2019.
doi: 10.1007/s12532-018-0139-4.

[34] Andreas Wächter and Lorenz T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57, May 2006. ISSN 0025-
5610. doi: 10.1007/s10107-004-0559-y. Copyright: Copyright 2008 Else-
vier B.V., All rights reserved.

[35] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun. Ara*: Anytime a*
with provable bounds on sub-optimality. In Proceedings of (NeurIPS) Neu-
ral Information Processing Systems, pages 767 – 774, December 2003.

[36] Sven Koenig and Maxim Likhachev. D*lite. In Eighteenth National Confer-
ence on Artificial Intelligence, page 476–483, USA, 2002. American Associ-
ation for Artificial Intelligence. ISBN 0262511290.

[37] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Se-
bastian Thrun. Anytime dynamic a*: An anytime, replanning algorithm. In
Proceedings of the Fifteenth International Conference on International Con-
ference on Automated Planning and Scheduling, ICAPS’05, page 262–271.
AAAI Press, 2005. ISBN 1577352203.

	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Background and Purpose
	1.2 Delimitations and Prerequisites
	1.2.1 Automated Guided Vehicle
	1.2.2 Obstacles and Environment

	1.3 Related Work
	1.4 Problem Statement

	2 Theory
	2.1 Computer Vision
	2.1.1 Pinhole Model and Camera Calibration

	2.2 Vision Based Object Detection
	2.2.1 YOLO
	2.2.2 Model Evaluation

	2.3 Object Tracking Using a Monocular Camera
	2.3.1 Kalman Filtering

	2.4 State Lattice Motion Planning Algorithm
	2.4.1 Design of the State Space Lattice
	2.4.2 Graph Search Algorithm

	3 Method
	3.1 System Architecture
	3.1.1 Flowchart
	3.1.2 Hardware Setup

	3.2 Vision Based Object Detection
	3.2.1 Fiducial Markers
	3.2.2 Data Acquisition
	3.2.3 Training a Network for Object Detection

	3.3 Object Tracking Using a Monocular Camera
	3.3.1 Tracking of 3D-object with 2D-bounding Boxes
	3.3.2 Tracking a Fiducial Marker

	3.4 State Lattice Motion Planning
	3.4.1 Building Outer Bound of the Object
	3.4.2 Checking if an Obstacle is Obscuring a Point
	3.4.3 Design of the State Space Lattice
	3.4.4 Graph Search Algorithm

	4 Result and Discussion
	4.1 Vision Based Object Detection
	4.2 Object Tracking Using a Monocular Camera
	4.2.1 Planning and Executing the Tests
	4.2.2 Tests with Zero Angular Velocity
	4.2.3 Tests with Non-Zero Angular Velocity
	4.2.4 Tests Including an Extra Measurement of Rotation

	4.3 State Lattice Motion Planning

	5 Conclusion
	5.1 Answering the Problem Statements
	5.2 Future Work

	Bibliography

