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Abstract

Unmanned aerial vehicles (UAVs) have emerged as a promising technology in
search and rescue operations (SAR). UAVs have the ability to provide more timely
localization, thus decreasing the crucial duration of SAR operations. Previous
work have demonstrated proof-of-concept in regard to localizing missing people
by utilizing received signal strength (RSS) and UAVs. The localization system is
based on the assumption that the missing person wears an enabled smartphone
whose Wi-Fi signal can be intercepted.

This thesis proposes a two-staged path planner for UAVs, utilizing RSS-signals
and an initial belief regarding the missing person’s location. The objective of
the first stage is to locate an RSS-signal. By dividing the search area into grids,
a hierarchical solution based on several Markov decision processes (MDPs) can
be formulated which take different areas probabilities into consideration. The
objective of the second stage is to isolate the RSS-signal and provide a location
estimate. The environment is deemed to be partially observable, and the problem
is formulated as a partially observable Markov decision process (POMDP). Two
different filters, a point mass filter (PMF) and a particle filter (PF), are evaluated
in regard to their ability to correctly estimate the state of the environment. The
state of the environment then acts as input to a deep Q-network (DQN) which
selects appropriate actions for the UAV. Thus, the DQN becomes a path planner
for the UAV and the trajectory it generates is compared to trajectories generated
by, among others, a greedy-policy.

Results for Stage 1 demonstrate that the path generated by the MDPs prioritizes
areas with higher probability, and intuitively seems very reasonable. The results
also illustrate potential drawbacks with a hierarchical solution, which potentially
can be addressed by considering more factors into the problem. Simulation re-
sults for Stage 2 show that both a PMF and a PF can successfully be used to
estimate the state of the environment and provide an accurate localization esti-
mate. The PMF generated slightly more accurate estimations compared to the PF.
The DQN is successful in isolating the missing person’s probable location, by rel-
atively few actions. However, it only performs marginally better than the greedy
policy, indicating that it may be a complicated solution to a simpler problem.
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1
Introduction

Every year, the Swedish police conduct over 300 rescue operations to search for
people who have disappeared under such circumstances that their health and life
could be in serious danger [1]. These search and rescue (SAR) operations often
involve large search areas. Depending on factors such as the missing person’s
health, the terrain, and the weather, the time it takes to complete a successful
SAR operation is crucial. Unmanned Aerial Vehicles (UAVs), commonly known
as drones, have emerged as a promising technology that can be utilized in SAR op-
erations [2]. The Swedish Police have successfully used UAVs in SAR operations
since they offer the ability to quickly and efficiently search through large open
areas, inaccessible terrain and watercourses. Additionally, they can be deployed
when there is a low cloud base or poor visibility, factors that prevent the use of
helicopters [3]. Thus, the use of UAVs have the potential to provide more timely
localization and thereby minimizing the crucial duration of SAR operations.

Multiple alternative localization techniques, to global positioning system (GPS)
have been studied in literature since not all communicating devices are equipped
with GPS [4]. This is due to factors such as expensive cost, poor performance in
certain weather conditions and vulnerability to jamming [5]. Additionally, a base
station to collect an object’s location using GPS may be unavailable in disaster sit-
uations. Among the alternatives, radio received signal strength (RSS) is attractive
due to its cheap functionality and simplicity. However, RSS-based localization is
considered very inaccurate [6]. The usage of UAVs offers the ability to measure
RSS from different angles with a higher probability of line-of-sight, thus achiev-
ing improved localization accuracy [7].

Previous work has shown that it is possible to build a localization system
based on RSS, using widely available commercial-off-the-shelf (COTS) products
[8]. The utilization of such a system could benefit SAR operations by reducing
the search area and providing position estimates of the missing person. The lo-
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2 1 Introduction

calization system is based on the following two assumptions:

• The missing person wears an enabled smartphone.

• The Wi-Fi signal transmitted by the smartphone can be intercepted by mo-
bile agents at known positions.

In addition, the localization system was shown to be successful when using re-
mote controlled UAVs, providing a localization error of roughly 15 meters [8].
By combining a localization system based on RSS with a path planner for UAVs,
several potential advantages become available. These include faster position es-
timates and reduced operation time. Due to the autonomy of such a system, it
could be deployed quickly and would require few resources to operate.

1.1 Aim

This thesis aims to investigate if a novel planning algorithm can enable more effi-
cient use of UAVs in SAR missions, allowing faster and more accurate localization
of missing people. The planning algorithm is intended to work as an extension
to the current SAR methods used by the Swedish police.

The algorithm’s ability to make intelligent decisions largely depends on it hav-
ing a correct understanding of the environment it acts in. The Swedish police
utilizes a self developed method to generate a probabilistic map of the missing
person’s location. RSS-measurements from UAV on-board sensors will be used
to recursively update this probabilistic map, which will act as input to the plan-
ning algorithm, allowing an efficient decision-making process that maximizes
the probability of finding a missing person and minimizes the duration of the
mission.

The main task of this master thesis is to implement the following two comple-
mentary tasks:

• Planning algorithm for UAVs based on a probabilistic map of the missing
person’s location.

• Recursive updating of the probabilistic map based on RSS-observations.

1.2 Problem formulation

Based on the previously stated goals, this thesis will mainly center around two cat-
egories. These two categories are Search problem and Exploration and map-building.
RSS-measurements will be used to gather information and recursively update a
probabilistic map, which will be used to conduct a search for a missing person of
an unknown location. This leads to the following questions:

• How can the initial probabilistic map be utilized to efficiently locate an
RSS-signal?
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• How can RSS-measurements effectively be used to establish an UAV trajec-
tory that isolates the missing person’s probable location?

The questions identified above are independent but complementary, meaning
that in order to reach the best possible result, both need to be answered in consid-
eration of each other. Since the location of the missing person is unknown, the
environment can be defined as partially observable. Assumptions made in Section
1.3 are used to determine the remaining properties of the environment.

1.3 Assumptions and delimitations

Finite state-space
The search area will be divided into a grid with a finite amount of cells. The
missing person is assumed to be located within one of these cells. Thus, there
are a limited amount of configurations where the agents and the target can be
located in. Therefore, the problem will have a finite state-space.

Stochastic
The system is assumed to be stochastic, which means that the system will model
the uncertainties of the problem in sensor information and action effects. Inter-
ference with RSS-measurements will be modelled as noise.

Missing person
The following three assumptions are made regarding the missing person:

• The missing person wears an enabled smartphone.

• The Wi-Fi signal transmitted by the smartphone can be intercepted by mo-
bile agents at known positions.

The environment is assumed to be static, i.e., changes will only happen as a con-
sequence of the agent making an action. This implies that the missing person’s
location is the same during an entire mission.

Terrain
Terrain such as trees, mountains, rivers or other types of obstacles is not taken
into consideration in this thesis. The simulation environment will consist of a
two-dimensional map of longitudinal and latitudinal coordinates. This delimita-
tion will not affect the direct evaluation of this thesis, but it could affect the real
world usability. Terrain can both disturb signals detected by the drone’s sensors
and interfere with the drone’s path.
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1.4 Swedish Police SAR methods

An essential factor when searching for missing people is the search area. When
the search area has been defined, it is divided into different sectors. These usually
have an area of 1 to 1.5 square kilometers, and their borders can often be found in
the terrain (i.e., roads, paths, power lines and watercourses) [9]. When a search
area has been created and divided into sectors, the question remains, which of
these sectors should be prioritized? To solve this, the police use a self developed
method called the Mattson-method which will be explained in more detail in the
coming section.

The Mattson-method
The Swedish police use a method called The modified Mattson Consensus, hence-
forth referred to as the Mattson-method (MM), to create a structured assessment
of which sectors should be prioritized. First, an assessment group is informed
about the details regarding the disappearance and the missing person. After that,
each member of the assessment group individually rates the sectors and the area
outside the search area (ROW, rest of the world), based on the perception of where
it is most likely that the missing person is located. Every sector is given a rating
in the range of 1-9, where a higher rating indicates that there is an increased
probability that the missing person is located within the sector. These ratings are
based on the individual’s previous experience in SAR operations and sometimes
local terrain knowledge [9].

The results from all the individuals are then compiled, which generates the
probability distribution regarding the missing person’s location within the search
area (POA, probability of area). Experience from actual events and educational
situations has shown that the missing person is found in one of the three to four
most prioritized sectors, in a majority of cases. The Mattson-method introduces
multiple concepts which are essential for the search process:

• Probability of Area (POA): The probability that a missing person is located
in a sector. If a perfect search area has been created, then it is guaranteed
that the missing person is located inside the search area. The total POA-
values for all sectors in the search area will thus be 100%, based on the
assumption that the POA for the ROW equals zero.

• Probability of Detection (POD): This probability represents a value for the
accuracy with which a search resource has conducted a search of a sector.
If a sector has been searched thoroughly, the POD is 100%. POD is thus a
measurement of how carefully a sector has been searched.

• Probability of Success (POS): This probability is used to calculate the
value of the performed search job. The value is obtained through the POA-
and POD-value according to the equation POS = POA · POD.

• POScum: The cumulative value of the completed searches is defined as
POScum. POScum can therefore be seen as a measurement of the search
that has been completed.
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1.5 Related work

There are multiple works in the literature that investigate localization based on
RSS-measurements. These can be divided by the use of terrestrial or mobile an-
chors. Localization using terrestrial anchors is studied in [6, 10]. In [6], the
authors provide an analysis of the main factors that affect the variability of the
received signal power and the accuracy of the RSS-measurements and suggest
possible techniques to alleviate such problems. In [10], the authors investigate
and evaluate how the accuracy of the RSS-measurements are affected by changing
the height and distance between the anchors (signal receiver) and the terrestrial
objects (signal emitter).

Localization with mobile anchors naturally involves path planning and is
studied in [11, 12]. The authors of [11] studied three different pre-determined
trajectories for mobile anchors to traverse an area and demonstrated that any de-
terministic trajectory offers significant benefits compared to random movement.
In [12], the authors proposed a novel trajectory that localized all nodes with high
precision using short time.

Localization with both RSS-measurements and mobile anchors is investigated
in [8] where the authors present a feasibility study on smartphone localization of
missing persons in SAR operations using widely available COTS products. A
proof-of-concept is presented, which consists of several mobile agents carrying
smartphones that measure the RSS of Wi-Fi messages transmitted by the smart-
phone of the missing person. In addition, several successful tests were conducted
with a Quadcopter to show the feasibility of using UAVs in SAR operations.

Path planning for UAVs is studied thoroughly in literature, but differs depend-
ing on the task at hand. UAV path planning with the purpose of localizing ter-
restrial objects through the use of RSS-measurements is addressed in [13, 14].
The authors of [13] propose a novel framework, based on RSS-measurements
and reinforcement learning (RL), that enables autonomous planning for UAVs.
The agent follows an initial scan trajectory of the region to know the number of
nodes, estimate their location and train the agent online during the operation.
Then, the agent forms its trajectory by using an RL trained model to choose
the next waypoints. It results in an improved localization accuracy of multi-
ple objects in a shorter time and path length compared to state-of-the-art pre-
defined trajectory methods. Similarly, [14] formulates an UAV trajectory based on
RSS-measurements by reformulating the problem into two complementary sub-
problems for a disaster scene with multiple regions or cells with varying levels of
importance. The first sub-problem identifies a minimal number of strategic po-
sitions, which act as input to the second sub-problem that constructs an efficient
UAV trajectory that traverses all waypoints. Simulation results demonstrate the
accuracy and effectiveness of the proposed approach in localizing an unknown
number of mobile devices in disaster scenes with regions of varying importance
levels.

Different from above, [15] propose multiple path planning algorithms based
on the traveling salesman problem (TSP) for a UAV that traverses through a se-
quence of waypoints. The results show that the algorithms are able to securely
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localize all the positions in a generic deployment area, even in the presence of
drone control errors. The algorithms produce short path lengths within a reason-
able processing time.

The use of deep reinforcement learning (DRL) for path planning is studied in
[16] where the path planning problem for multiple UAVs (agents) is translated
into a decentralized partially observable Markov decision process (Dec-POMDP),
which is solved through a DRL approach. A combination of global and local map
representations are exploited and fed into a convolutional neural network (CNN).
The network architecture enables the agents to cooperate effectively by dividing
tasks among themselves and make movement decisions based on goals.

The author of [17] extensively investigate different algorithms for exact and
approximate solution to POMDPs. Highlighting reinforcement learning tech-
niques to have great potential for approximate solving of large POMDPs. Many
years later, the authors of [18] presents a novel DRL model called Deep Q-Network
(DQN) which is capable of learning human level control policies on different
Atari 2600 games using high-dimensional neural networks. The model use raw
pixels of the Atari games as input and gave state-of-the-art results in six out of
seven games tested on. To handle the fact that the games are partially observable,
meaning that a single frame is not enough to determine the state of the game,
four consecutive frames were stacked in the state representation, which allowed
the authors to model the problem as a standard MPD.

The authors of [19] introduce a drone surveillance problem modeled as a
POMDP. The drone’s mission is to survey two specific regions, in a grid of equally
sized square regions, while avoiding flying over a ground agent. The drone has
a limited field of view and moves deterministically, while the agent moves prob-
abilistically in the grid. The problem shares certain similarities to our problem
formulation.

In [20], the authors use particle filters to map trajectory history into belief
states for agents, whose position can not be directly observed, in a POMDP envi-
ronment. Consequently, off-policy reinforcement learning is used to map actions
from belief states. The results show that multi-layer resampling methods im-
proved belief state accuracy with respect to ground truth for scenarios in which
sensor fusion may be impracticable.



2
Theory

This chapter introduces the theoretical foundation needed to solve the problem
described in Chapter 1. Section 2.1 provides the reader with the basic knowledge
about RSS-signals, while Section 2.2 and 2.3 are used to explain filters and po-
sitioning techniques, which will later be used to process the RSS-signal. Lastly,
Sectors 2.4 and 2.5 cover several planning algorithm frameworks as well as rein-
forcement learning theory.

2.1 Sensor models

Localization in sensor networks can be described as the application of sensor fu-
sion to distance, distance differences and angle measurements. Sensor fusion can
be defined as the combining of sensory data or data derived from sensory data
from disparate sources such that the resulting information is in some sense bet-
ter than what would be possible when these sources were used individually [21].
The basic sensor model for sensor networks applications is:

y = h(x, p) + e (2.1)

Here, x = (x1, x2)T denotes the (two-dimensional) position of a target and p =
(pT1 , p

T
2 , ..., p

T
n ) contains the locations pk = (pk,1, pk,2)T of each sensor. The dis-

tance (ri) between the target (x) and each sensor (pi) can be calculated through:

ri = ||x − pi || (2.2)

2.1.1 Received signal strength

One possibility is that the sensor estimates the received signal power, or received
signal strength (RSS). Essentially, this means integrating the received signal power

7



8 2 Theory

within a certain frequency band during an integration interval to estimate the
received signal energy during the time interval. RSS provides coarse range in-
formation if the emitted power is known. In the unknown case, two or more
sensors can compare their RSS observations to eliminate the unknown emitted
power [21]. If the set of available measurements is summarized as y = h(x, p) + e,
the Okumura-Hata model can be used to estimate x for RSS measurements:

h(x, pi) = P0 + 10β log10 ri (2.3)

The parameter P0 denotes the received power at reference distance d0 and β is
the path loss exponent. The path loss exponent depends on the environment.
In free space, the path loss increases by 20 dB when the distance between the
transmitter and the receiver increases ten times. This implies that the path loss
exponent has a value of 2 in free space. RSS is thus a measurement of the signal
strength at the location of the receiver. It is usually taken from the received
signal strength indicator (RSSI) of the device. There is no exact definition of
how to achieve this measurement. Different chip manufacturers use different
techniques and parameters to calculate the RSSI result. Therefore, the results
can vary by chipsets of the same manufacturer [22].

2.2 Filter theory

In signal processing, filtering is a process that removes unwanted components
or features, for example noise, from a signal. Filtering can be used to estimate
a hidden state from a potentially incomplete and noisy set of observations. A
dynamic system can be defined by a state space model with a hidden state vec-
tor, from which partial information is obtained by observations. The nonlinear
filtering problem is to make inference on the hidden state, which can be done by
computing or approximating the posterior distribution for the state vector given
all available observations [21].

2.2.1 Models

In application, nonlinear filtering is based on discrete time nonlinear state space
models which relates a hidden state xk to the observations yk :

xk+1 = f (xk , vk), vk ∼ pvk , x0 ∼ px0 (2.4a)

yk = h(xk) + ek , ek ∼ pek (2.4b)

The stochastic noise process, vk , is specified by its known probability density
function (PDF) pvk . The additive measurement noise, ek , is expressed similarly
with known PDF pek while px0 denotes the PDF of the initial state x0 [21]. In
statistical literature, a general Markov model and observation model are often
used, in terms of conditional PDFs:
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xk+1 ∼ p(xk+1 | xk) (2.5a)

yk ∼ p(yk | xk) (2.5b)

2.2.2 Bayesian filtering

The Bayesian solution, to the nonlinear filtering problem, is to compute the pos-
terior distribution p(xk | y1:k) of the hidden state vector, given past observations
[21]. The posterior distribution is given by the general Bayesian update recursion:

p(xk | y1:k) =
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)
(2.6a)

p(yk | y1:k−1) =
∫
R
nx

p(yk | xk)p(xk | y1:k−1) dxk (2.6b)

p(xk+1 | y1:k) =
∫
R
nx

p(xk+1 | xk)p(xk | y1:k) dxk (2.6c)

A measurement update is described in (2.6), which follows from Bayes’ law. A nor-
malization constant and a time update is described in (2.6b) respectively (2.6c),
both follows from the law of total probability. For non-Gaussian or nonlinear
models, there is in general no finite dimensional representation of the posterior
distributions. These can instead be numerically approximated by point mass fil-
ters or particle filters [21].

2.2.3 Point mass filter

The point mass filter (PMF) grids the state space and computes the posterior over
this grid recursively. It is able to represent any posterior distribution and applies
to any nonlinear and non-Gaussian model [21]. Suppose that we have a deter-
ministic grid {xi}Ni=1 of the state space R

nx over N points. At time k, based on
observations y1:k−1, we have computed the relative probabilities (assuming dis-
tinct grid points):

wi
k|k−1 ∝ P (xk = xi | y1:k−1) (2.7)

Satisfying
∑N

i=1 w
i
k|k−1 = 1 (relative normalization with respect to the grid points).

The prediction density, the expected value and the covariance can then be approx-
imated by:
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p̂(xk | y1:k−1) =
N∑
i=1

w
(i)
k|k−1δ(xi − x

(i)
k ) (2.8a)

x̂k|k−1 = E(xk) =
N∑
i=1

w
(i)
k|k−1x

(i)
k (2.8b)

Pk|k−1 = Cov(xk) =
N∑
i=1

w
(i)
k|k−1(x(i)

k − x̂k|k−1)(x(i)
k − x̂k|k−1)T (2.8c)

The Dirac impulse function is denoted by δ(x). The Bayesian recursion (2.6a) is
then used, which gives:

p̂(xk | y1:k) =
N∑
i=1

1
ck

p(yk | x
(i)
k )wi

k|k−1︸                  ︷︷                  ︸
wi
k|k

δ(xi − x
(i)
k ) (2.9a)

ck =
N∑
i=1

p(xk | y1:k)w(i)
k|k−1 (2.9b)

p̂(xk+1 | y1:k) =
N∑
i=1

w
(i)
k|kp(xk+1 | xk) (2.9c)

The normalizing constant ck assures that
∑N

i=1 w
(i)
k|k = 1. It can be noted that the

recursion starts with a discrete approximation (2.8a) and ends with a continu-
ous distribution (2.9c) [21]. The standard approach, to close the recursion, is to
sample (2.9c) at the grid points xi , which computationally can be seen as multi-
dimensional convolution:

w
(i)
k+1|k = p̂(x(i)

k+1 | y1:k) =
N∑
j=1

w
(j)
k|kp(x(i)

k+1 | x
(j)
k ), i = 1, 2, . . . , n (2.10)

The PMF advantage lies in its simple implementation and tuning, basically only
the size and resolution of the grid needs to be considered. The curse of dimension-
ality however limits the application of PMF to small models (with dimensions, nx,
less than two or three) for two reasons. The first reason is that a grid is an inef-
ficiently sparse representation in higher dimensions, and the second reason is
that the multidimensional convolution becomes a real bottleneck with quadratic
complexity in n [21].
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2.2.4 Particle filter

The particle filter (PF) has many similarities with the point mass filter (PMF).
Both filters approximate the posterior distribution with a discrete density of the
form (2.8a). Additionally, both filters are based on a direct application of (2.6)
leading to the numerical resolution in (2.9). There are, however, some major
differences:

• The PF uses a dynamic stochastic grid xki that changes over time, instead of
the deterministic grid xi that is used in the PMF.

• The PF aims at estimating the whole trajectory x1:k rather than the current
state xk . This affects (2.6a) in the following way:

p(xi1:k+1 | y1:k) = p(xik+1 | x
i
1:k , y1:k)︸                ︷︷                ︸

p(xik+1 | xk )

p(xi1:k | y1:k)︸        ︷︷        ︸
wi
k|k

= wi
k|kp(xi1:k | y1:k)

(2.11)

• The PF obtains its new grid by resampling from (2.9c), instead of reusing
the old grid as is done in the PMF.

• The PF includes a crucial resampling step. Without the resampling step, the
PF would break down to a set of independent simulations yielding trajec-
tories xi1:k with relative probabilities wi

k . The lack of feedback mechanism
from the observations to control the simulations means that they would
soon diverge. As a result, all weight would tend to zero except for one that
tends to one [21].

There exists multiple different resampling techniques which includes multino-
mial, stratified, systematic-and residual resampling. These methods are described
in more detail in Appendix A. The PF algorithm is described below in Algo-
rithm 1 [21].
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Algorithm 1 Particle Filter

Choose a proposal distribution q(xk+1 | x1:k , yk+1), resampling strategy and the
number of particles N.
Initialization: Generate xi1 ∼ px0

, i = 1, . . . , N and let wi
1|0 = 1/N .

for k = 1,2, . . . do

1. Measurement update: For i = 1, 2, . . . , N

wi
k|k =

1
ck

wi
k|k−1p(yk |xik)

ck =
N∑
i=1

wi
k|k−1p(yk |ik)

2. Estimation: Approximate filtering density and mean

Filtering density: p̂(x1:k |y1:k) =
N∑
i=1

wi
k|kδ(xi:k − xi1:k)

Mean: x̂1:k ≈
N∑
i=1

wi
k|kx

i
1:k

3. Resampling: Optionally at each time, take N samples with replacement
from the set {xi1:k}

N
i=1 where the probability to take sample i is wk|k and let

wk|k = 1/N .

4. Time update: Generate predictions according to the proposal distribution

xik+1 ∼ q(xk+1|xik , yk+1)

and compensate for the importance weight

wi
k+1|k = wi

k|k
p(xik+1|x

i
k)

q(xk+1|xik , yk+1)

2.3 Positioning techniques

2.3.1 Trilateration

Trilateration is a method to determine an unknown location using two or more
other known locations and the measured distances between the known and un-
known locations. The method can be used with different geometries depending
on the needs of the application. It is usually required to have at least three dis-
tance measurements, but in theory, an increased number of measurements should
lead to better estimation of the location [21].
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The measured distance between the target, i.e., the transmitter with an un-
known location, and the receiver creates a circle where the measured distance is
the radius and origin is the location of the receiver. After collecting a number of
distance measurements, the intersection between the circles can be computed as
a point of interest. In a two-dimensional space, the trilateration can be illustrated
as in Figure 2.1, and computed using (2.12).

𝑟1

P1

𝑟2

P2

𝑟3

P3

𝑦

𝑥

Figure 2.1: Trilateration with three distance measurements in two-
dimensions.

r2
1 = x2 + y2

r2
2 = (x − d)2 + y2

r2
3 = (x − i)2 + (y − j)2

(2.12)

Here, r1, r2 and r3 are the radii of the circles, while x and y denotes the potential
position of the missing person. The variables i, d and j are offsets in position.

2.3.2 Gauss-Newton

The Gauss-Newton method is a modification of Newton’s method, used to find
the minimum of a function. The method is numerically optimizing and finds the
target starting with an initial guess x̂(0) which is then moved towards the target
along a search direction f (i) with step size α(i) according to:

x̂(i+1) = x̂(i) + α(i)f (i) (2.13)

The Gauss-Newton algorithm includes 6 steps.
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1. Determine initial guess x̂(0), function f (x) and compute its gradient J(x) =

−∂hT (x)
∂x , also set i := 0.

2. Set α(i) to some value.

3. Compute new estimate using (2.13)

x̂(i+1) = x̂(i) + α(i)(J(x)JT (x))−1J(x)(y − h(x)) (2.14)

4. If cost V (x̂(i+1)) > V (x̂(i)), set α(i) := α(i)/2 and repeat step 3.

5. Stop the process if the change in cost, estimate or size of the gradient is
small enough or if the maximum number of iterations has been reached.

6. If not terminated, set i := i + 1 and repeat from step 2.

2.4 Planning algorithm frameworks

2.4.1 Markov decision process

A Markov decision process (MDP) is a mathematical framework for sequential
decision-making problems in situations where the outcomes are partly random
and partly under the control of the decision maker, referred to as the agent. At
each time step t, the agent receives some representation of the environment’s
state st ∈ S and the agent may choose any action at ∈ A(St) that is available in st .
One time step later, in part as a consequence of its action, the agent finds itself
in a new state st+1 and receives a corresponding numerical reward rt+1 = R(s, a)
[23]. The process is illustrated in Figure 2.2.

Agent

Environment

Action
𝑎𝑡

𝑟𝑡+1

𝑠𝑡+1

State
𝑠𝑡

Reward
𝑟𝑡

Figure 2.2: Interaction between agent and environment.
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Framework

A Markov decision process can be described as a 4-tuple (S, A, T, R) where:

• S is a set of states called state space.

• A is a set of actions called action space.

• T : S × A → Π(S) is the state-transition function giving, for each state and
action, a probability distribution over states. Denoted as T (s′ | s, a) for the
probability of ending up in state, s′ given state s and action a.

• R : S × A → R is the reward function. Denoted as, R(s, a) it returns the
immediate reward for taking action a in state s.

The state and action spaces may be finite or infinite. In this model, the next state
and expected reward only depend on the previous state and the action taken.
This is known as the Markov property - the state and reward at time t + 1 is only
dependent on the state and action at time t [24].

Optimization objective

The goal in a Markov decision process is for the agent to act in a way that max-
imizes the cumulative sum of rewards over the long run. In the finite-horizon
model, the agent should act in order to maximize the expected sum of rewards
that it gets on the next k steps. Thus, the agent should act to maximize:

E
[ k−1∑
t=0

rt

]
(2.15)

Here, rt denotes the reward received on step t. However, it is rare that an ap-
propriate k will be known exactly. In these cases the infinite-horizon discounted
model is used which sums the rewards over an infinite time, but discounts the
rewards geometrically using the discount factor 0 ≤ γ ≤ 1. The agent should then
act so as to optimize:

E
[ ∞∑
t=0

γ trt

]
(2.16)

The discount factor determines the present value of future rewards. In (2.16),
rewards received earlier in its lifetime have a higher value. The smaller the dis-
count factor, the less effect future rewards have on the current decision-making
[24].

Policy

A policy π is the description of the behavior of the agent. A policy can be sta-
tionary and non-stationary. A stationary policy, π(s) : S → A is a state action
mapping that specifies, for each state, an action to be taken. The choice of action
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depends only on the state and is independent of the time step. A non-stationary
policy π(st) is used to choose the action on the t :th-to-last step as a function of
the current state, st [24].

In the finite-horizon model, the optimal policy is not typically stationary. The
chosen actions towards the end of the horizon are generally going to be different
from those in the beginning. In the infinite-horizon discounted model, the agent
always has a constant expected amount of time remaining, so there is no reason
to change action strategies: there is a stationary optimal policy [24].

2.4.2 Partially observable Markov decision process

In a Markov decision process the underlying states can be directly observed, and
therefore the optimal policy π can be calculated and used by executing π(s) for
the current state s. In a partially observable Markov decision process (POMDP)
the agent can not directly observe the underlying states (e.g., position of the
agent) with complete reliability. Instead, the agent makes an observation based
on the action and resulting state [24].

Framework

A partially observable Markov decision process can be described as a 6-tuple (S,
A, T, R, Ω, O) where:

• S, A, T, R describe a Markov decision process.

• Ω is a finite-or continuous set of observations the agent can experience.

• O : S × A → Π(Ω) is the observation function which gives, for each action
and resulting state, a probability distribution over possible observations.
Denoted as O(o | s′ , a) for the probability of making observation o given
that the agent took action a and reached state s′ .

At time step t, the environment is in some state st ∈ S. The agent takes action
at ∈ A(st). One time step later, the environment have transitioned to st+1 ∈ S with
probability T (st+1 | st , a). The agent receives observation o ∈ Ω with probability,
O(o | st+1, a) and at the same time the agent receives a reward rt+1 equal to R(st , a).
The process repeats itself for each action taken by the agent. The agent’s goal
remains to maximize the expected discounted future reward [24].

Belief MDP
Since the agent can not directly observe the environment’s states, it must make
decisions under the uncertainty of the true state of the environment. A solution
to this problem is to keep internal belief states. The agent makes observations,
generates actions and keeps an internal belief state b which represents the prob-
ability distributions over states of the world (e.g., the probability that the agent
is located in a certain cell in a grid world). These distributions provide a basis
for acting under uncertainty and compromise a sufficient statistic for the past



2.4 Planning algorithm frameworks 17

history and initial belief state of the agent. Given the agent’s current belief state,
no additional data about its past observations or observations would supply any
additional information about the state of the world. The process over belief states
is, therefore, Markov and no additional data about the past would help increase
the agent’s expected reward [24].

An illustration of the Belief MDP is presented below in Figure 2.3. The com-
ponent labelled SE is the state estimator, responsible for updating the belief state
based on the current observation, last action and previous belief state. The com-
ponent labelled π is, as previously, the policy that is responsible for generating
actions as a function of the agent’s belief state.

Environment

Action
𝑎𝑡

Belief
𝑏

Agent

Observation
𝑜

SE 𝜋

Figure 2.3: Decomposition of a POMDP agent into a state estimator (SE) and
a policy (π).

Computing belief states

A belief state b is defined as the probability distribution over S. Let b(s) denote
the probability assigned to state s by belief state b. Probabilistic laws require that
0 ≤ b(s) ≤ 1 for all s ∈ S and that

∑
s∈S b(s) = 1. The new degree of belief in some

state s′ , b′(s′) can be obtained from basic probabilistic theory:

b′(s′) = P (s′ | o, a, b)

=
P (o | s′ , a, b)P (s′ | a, b)

P (o | a, b)

=
P (o | s′ , a)

∑
s∈S P (s′ | a, b, s)P (s | a, b)
P (o | a, b)

=
O(o | s′ , a)

∑
s∈S T (s′ | s, a)b(s)

P (o | a, b)
(2.17)
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The denominator P (o | a, b) , can be treated as a normalizing factor, independent
of s′ , that causes b′ to sum to 1. The output of the state-estimation function
SE(b, a, o) is therefore the new belief state b′ [24].

Framework and optimal policy π

A belief MDP can be described as a 4-tuple (B, A, τ , R) where:

• B is a set of belief states over the POMDP states

• A is the same set of actions as for the original POMDP

• τ is the state-transition function, defined as

τ(b, a, b′) = P (b′ | a, b) =
∑
o∈Ω

P (b′ | a, b, o)P (o | a, b) (2.18)

where

P (b′ | a, b, o) =

1 if SE(b, a, o) = b′

0 otherwise
(2.19)

• R : B x A→ R is the reward function on belief states, defined as

R(b, a) =
∑
s∈S

b(s)R(s, a) (2.20)

The policy component of a belief MDP is responsible, as presented in Figure 2.3
for mapping the current belief state into an action. Even if the original POMDP
has a finite number of states, the resulting belief MDP will have a continuous state
space since there is an infinite amount of belief states (in B) as a result of the
infinite amount of probability distributions over the states (S). The belief MDP is
defined in such a way that the optimal policy (π), coupled with the correct state
estimator, will give rise to optimal behavior for the original POMDP [24].

2.5 Reinforcement learning

Reinforcement learning (RL) is one out of three main subareas of machines learn-
ing, and is unique in the way it learns. The idea is to learn not by being provided
the correct solution, but by interacting with the environment [23]. The method
have proven to be very effective when faced with interactive problems. Instead
of providing an immense number of scenarios and what decisions to make, one
can define a framework for what a bad or good decision is and let the agent learn
using trial and error. The three main elements in RL, if we disregard the obvious
agent and environment, are:

• Reward: An instant numeric score the agent receives from the environment
after successfully reaching a new state. The purpose of the reward is to
encourage the agent to make decision which lead to some kind of desired
result.
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• Value function: An estimation of how good an action is in the long run.
One could describe the value given by the value function as the total amount
of rewards an agent can expect over a given future. The purpose of the value
function is to guide the agent to not only select actions which lead to a high
instant reward, but to encourage actions which generates a high rewards
over a sequence of actions.

• Policy: The policy describes what actions to take in a specific state. The
purpose of the policy is to make sure that the agent, placed in a specific
state, takes the action that will generate the highest sum of rewards.

The agent will initially explore the environment to learn its characteristics, and
later exploit the gathered knowledge to evolve into making more and more in-
telligent decisions. This balance between exploration and exploitation (explo-
ration rate) is one of the main challenges in RL and revolves around the trade-off
between taking actions that the agent know will generate high rewards and dis-
cover new actions that could potentially lead to higher rewards in the future [23].

2.5.1 Value iteration

Value iteration is used to compute the optimal MDP policy and its state values.
The value iteration algorithm uses the Bellman optimality equation to update the
state values iteratively:

vk+1(s) = max
a

p(s′ , r |s, a)[r + γvk(s′)] (2.21)

Where vk+1(s) is the updated value in state s, p(s′ , r |s, a) is the transition probabil-
ity dependent on state s and action a, r is the reward received in the new state s′ ,
γ is the exploration rate and vk(s′) is the value of the new state s′ . The optimal
MDP policy is computed by iterating over all states and feasible actions until a
value convergence is reached. As (2.21) describes, a state value for each action is
computed where the highest state value determines the new state value and the
policy [23].

2.5.2 Q-Learning

Q-learning is a type of off-policy temporal difference learning method which tries
to learn optimal policies without explicit knowledge of the environment. The
idea is to update the Q-value, Q(st , at) (also called state action value) for state
st and action at by adding the temporal difference after each step taken by the
agent:

Qnew(st , at)← Q(st , at) + α[Rt+1 + γ max
a

Q(st+1, a) − Q(st , at)︸                                          ︷︷                                          ︸
temporal difference

] (2.22)
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The state action value is updated using the temporal difference error containing
α, which is the learning rate and determines to what extent the new observation
will impact the new state action value. Rt+1 is the instant reward generated by
the action taken. γ is the discount factor, determining the importance of future
state action values. A low discount factor results in a solution that tends to care
less about future rewards than previous ones [23].

2.5.3 Deep Q network

When approaching a problem with large state spaces, Q-learning becomes inef-
ficient [23]. The issue with big and sometimes infinite state spaces can however
be solved using neural networks (NN). Instead of storing Q-values for each state
and action, the state space is fed into an NN which in return generates an ap-
proximation of the Q-values for each feasible action. The NN is essentially an
approximation of the Q-function. The DQN is an example of this and includes
a convolutional neural network (CNN), an experience replay buffer and a target
network [18], all explained in the following sections.

Neural network

A neural network is a group of connected nodes, loosely modeled as the neurons
in a biological brain. The goal of a neural network is to approximate a function
y = f ∗(x), able to predict the output y given an input x. To acquire this function
f ∗, the feed-forward and back-propagation techniques are used to learn parame-
ters θ (weights and biases) for y = f ∗(x; θ) that in the best way possible approxi-
mate the function [25]. Each training instance contains the following steps:

• Forward pass input x through the NN to make prediction y.

• Measure the error compared to the true value.

• Backward pass through all layers in reverse to measure the error’s contribu-
tion from each connection.

• Modify the weights to reduce error.

Compared to many other methods, a feed-forward NN do not use a feedback
loop when predicting the output. Instead, the parameters are changed sequen-
tially during training until an equilibrium is reached, meaning that the network
predictions converge to some kind of true or desired value [25].

A feed-forward NN with one input, two hidden and one output layer is il-
lustrated in Figure 2.4. Each node (or neuron) in the network is a mathematical
function which generates a real value given the weighted sum of the outputs from
the previous neuron layer. The equations in Figure 2.4 are formulated for layer
k and layer j = k − 1 with n and m nodes. (2.23a) and (2.23b) describe the two
functions that build one node operation:



2.5 Reinforcement learning 21

zm =
n∑
i=1

wi,jxi + bj (2.23a)

yk = fa(zm) (2.23b)

The linear combination in (2.23a) depends on the output xj,i and weights wj,i
from the previous layer j. The linear combination, zm acts as input together with
a bias bj into the activation function fa in (2.23b). The activation function can
be both non-linear and linear, but non-linear activation functions are more often
used since they make the network more flexible [25].

𝑤21

𝑤22
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𝑤24

𝑤25

𝑤26
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𝑦1

𝑏2

Figure 2.4: Illustration of a neural network including node computations.

Convolutional neural network

CNNs are a subclass of neural networks created to process grid-like data. The
difference between the NN explained above and the CNN are the convolutions, a
linear operation performed on the input to enable a more efficient computation.
The convolutional layers use a filter (called kernel) to slide over the input data,
as illustrated in Figure 2.5. This operation provides something called feature
maps, which are linear combinations of the information visible to the kernel in
each step. The trick is in using a kernel which is smaller than the input. For
example, processing an image containing thousands or millions of pixels using
a traditional NN would require each pixel to be processed as an individual in-
put variable. However, using a kernel which slides over a group of pixels, small
features can be detected using only tens or hundreds of pixels [25].
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Figure 2.5: Illustration of the process of computing feature maps including
kernel and stride in convolutional layers.

An illustration of a CNN can be found in Figure 2.6. The example CNN con-
tains three convolutional layers, one flattening layer (converts the data into 1D)
followed by a NN with two hidden layers.

Q-value
action 1

Q-value
action n

State

Convolutional layers

Flatten
layer

Figure 2.6: Illustration of deep Q network with convolutional layers.

Experience replay and target network

A problem in using neural networks in reinforcement learning is the instability
the non-linearity causes. Experience replay is one of the main breakthroughs
which improved the stability of the DQN greatly. The method involves storing
the agent experience et = (st , at , rt , st+1) at each time step t in a data set Dt =
{e1, ..., et}. During learning, batches are sampled uniformly at random from the
stored data set (s, a, r, s′) ∼ U (D) and used to update at iteration i using the loss
function (2.24). The benefit in this is that the network will be optimized using
not only the most recent experience, but also experience from other parts of the
training run. This leads to the network constantly being faced with different
scenarios, not only the most recent, making it more stable over time. The loss
function:
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Li(θi) = E(s,a,r,s′)∼U (D)[(r + γ max
a

Q(s′ , a′ ; θ−i ) − Q(s, a; θi))
2] (2.24)

reveals the second method to partly solve the problem with instability. By intro-
ducing a target network, identical to the policy network except using the param-
eters θ−i which are updated by the main policy network’s parameters θi every C
steps. This sequential update of the parameters lead to the target Q-value pro-
vided by the target network is fixed between updates. Meaning that there will be
no moving target to optimize towards [18].



3
Method

This thesis aims to investigate if a novel planning algorithm can enable more
efficient use of UAVs in SAR missions. The planning algorithm should be able to
locate a missing person based on RSS-measurements and an initial belief of the
person’s whereabouts. Since SAR operations often involve large search areas, the
planning algorithm has been divided into two stages:

• Stage 1: Locate an RSS-signal.

• Stage 2: Isolate the signal and provide a location estimate.

The objective of the first stage is to locate an RSS-signal. The initial belief, of the
missing person’s whereabouts is used to create a trajectory that prioritizes areas
with a high probability (POA). As soon as the RSS-signal is detected, the second
stage is initiated. The second stage uses a state estimator, based on filtered RSS-
measurements, to update the belief regarding the missing person’s location. A
DQN is simultaneously used to select appropriate actions which creates a tra-
jectory, where the goal is to locate the missing person with as high precision as
possible. The movement is goal oriented since the network has been trained on
millions of simulations and therefore can understand the consequences of differ-
ent actions. As illustrated in Figure 3.1, Stage 1 is an open loop system where
the initial belief is the only input. Stage 2 is a closed looped where each step gen-
erates input to the upcoming decision. The agent will initially follow the path
given by the Stage 1 algorithm, and switch to Stage 2 as soon as an RSS-signal is
detected.

24
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Environment

MDP

Stage 1

SE DQN

Stage 2

Path p (set of actions)

Observation o (RSS-signal)

Belief b Action a

Figure 3.1: System overview including Stage 1 and 2 as well as the environ-
ment.

3.1 RSS-signal

The simulated RSS-signal is modeled according to the theory in Section 2.1. A
normal distributed error is added to the signal to model interference due to fac-
tors such as terrain and weather. The result of the added error are illustrated in
Figure 3.2 and the parameters are presented in Table 3.1. Let y denote the mea-
sured RSS-signal, which is a function of the missing person’s position x and the
positions of the UAVs sensor p according to:

y = h(x, p) + e, e ∼ N (0, σ2)

h(x, p) = P0 + 10βlog10(||x − p||)

Table 3.1: Table of the parameters used to model the simulated RSS-signal.

Path loss exponent β Reference distance d0 P0(d0) Standard deviation σ

2 1 m 40 dBm 8 dBm
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Figure 3.2: RSS over distance distribution. Red dots represent single RSS-
measurements, while the black curve represents the log-distance path loss
model.

3.2 SAR environment

The SAR environment in this thesis consists of an area outside of Linköping, lo-
cated in "Tinnerö Eklandskap". The area is divided into ten different sectors,
which all are assigned probabilities p, based on how likely it is that the miss-
ing person is located in the sector. The areas of the different sectors range from
1.04-2.65 km2 and the total area is 15.47 km2. The environment and its sectors
are presented in Figure 3.3 and the different probabilities are illustrated in Fig-
ure 3.4.

10∑
i=1

pi = 1
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Figure 3.3: SAR environment divided into 10 different sectors. The red lines
represent the border of the sectors.
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Figure 3.4: Initial probabilities for different sectors. It can be noted that the
sectors east of the centre of the search area generally hold higher probabili-
ties.
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3.3 Stage 1 - signal localization

The objective of the first stage is to locate an RSS-signal using the initial belief
regarding the missing person’s location. By formulating the problem as a MDP, a
trajectory that prioritizes areas with a high initial belief, is developed.

3.3.1 Formulation of MDP

Environment: The SAR environment is discretized into an n by n grid with
square cells, where the cells in the grid are C = {ci,j | 1 ≤ i, j ≤ n}, i.e., ci,j refers
to the cell in the i-th row and the j-th column. Each cell is assigned an individ-
ual probability pi,j , based on the probabilities of the sectors it constitutes parts
of. Cells that are located outside of the search area are assigned zero probability.
Additionally, each cell has the binary feature V = {Visited, Unvisited} indicating
if the cell has been visited by the UAV (agent) previously. This binary feature
correlates with the cell’s probability. Visited cells are assigned zero probability
while cells, with initial probability zero, are marked as visited.

UAV: Let U denote the UAVs position in the grid. The UAV can move in the grid
from its current cell to any adjacent cell in the grid, or hover over the current cell.
The motion of the UAV is modeled by a set of actions A = {H, N, NE, E, SE, S, SW,
W, NW}. The first action corresponds to hovering (staying) in the current cell,
while the next actions correspond to the cardinal and intercardinal compass di-
rections. The effects of all the actions are deterministic and correspond to moving
in the desired direction.

State space: The state space S is the Cartesian product of the UAVs position
(U ) and the status of the cells (V ). Thus, the state space can be denoted as U × V .
The number of states can be calculated through (n · n) · 2n · n.

Rewards: When the agent takes an action and moves into a cell, it receives a
reward based on the cell’s probability. Additionally, the rewards for the cells in
the inner grids are based on both their probabilities and their distance to the next
cell in the route of the outer grid. This is explained in more detail in Section 3.3.2.

3.3.2 Hierarchical solution

Due to the nature of the state space, the number of states quickly becomes very
large when the number of cells (n by n) increases. For example, a 5 by 5 grid
results in 25 · 225 ≈ 839 million states. Therefore, a 3 by 3 grid is selected which
results in a manageable 4608 possible states.

Each cell is then divided into 3 by 3 sub-grid, and the process is repeated until
a cell side length of less than 200 meters is achieved. Thereafter, the problems
are solved hierarchically through value iteration. This process is illustrated in
Figure 3.5 where the blue squares represent the cells in the outer grid, while the
red squares represent the cells in the inner grid. To allow smooth transitions and



3.4 Stage 2 - signal isolation 29

thus avoiding visiting the same cells multiple times, rewards in cells of the inner
grids are based on both their probabilities and their distance to the next cell in
the route of the outer grid. As an example, consider C = {ci,j | 1 ≤ i, j ≤ 3} the
cells of the outer grid in Figure 3.5. The rewards of the cells in the inner grid (red
squares) would then depend on their probability and their distance to cell c3,2.

1 2 3 1 2 3

1

2

3

1

2

3

Figure 3.5: Example of hierarchical solution for multiple MDPs.

3.4 Stage 2 - signal isolation

The objective in the second stage is to isolate the received RSS-signal. This is done
by formulating the problems as a belief-MDP and developing a state estimator,
able to estimate a belief state given the RSS-measurements as well as a deep Q-
network which acts as an action policy.

3.4.1 Formulation of POMDP

Environment: The environment, in Stage 2, shares multiple similarities to the
environment in Stage 1. It is discretized into an m by m grid with square cells of
size δ. The cells in the grid are C = {ci,j | 1 ≤ i, j ≤ m}, i.e., ci,j refers to the cell in
the i-th row and the j-th column. However, the binary feature V is not included.

UAV: The motion of the UAV (agent) is modeled by the same set of actions as in
Stage 1, i.e.,A = {H, N, NE, E, SE, S, SW, W, NW}. The effects of all the actions are
deterministic and correspond to moving in the desired direction. The position of
the UAV, in the grid, is denoted as U and can be directly observed. Non-feasible
actions, i.e., actions that would move the UAV outside the grid, results in the
UAVs remaining in the current cell.

Missing person: The notation MP is used to represent the missing person’s
location in the grid. The person’s location in the grid remains stationary and can
not be directly observed.
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State space: The state space S is the Cartesian product of the UAVs position
(U ) and the missing person’s location (MP ). Thus, the state space can be denoted
as U ×MP . The number of states can be calculated through (n · n)2.

Observations: The UAV observes a set of continuous RSS-signals which is a
function of the UAV-and the missing person’s location according to (3.1). The
probability of observing a signal (O(o|s)) is 1.

Belief MDP

Since the missing person’s location can not be directly observed, a set of belief
states (B) over the POMDP states is formulated. Even though the originating
POMDP has a finite number of states, (n · n)2, there is an infinite amount of belief
states in B since there are an infinite number of probability distributions over the
states of S .

Belief states: The belief state is denoted as B and is a result of the POMDP
states, i.e., B = {U , MP}. It represents the belief regarding the position of the
UAV and the location of the missing person. As an example, consider a 2 by 2
grid where the environment is in state b ∈ B:

b =

 [1 0
0 0

]
,

[
0 1

3
1
3

1
3

] 
The belief state b indicates that the UAV is located in the top left cell and that
there is an equal probability that the missing person is located in the three re-
maining cells.

Rewards: The reward function contains one positive and two negative rewards.
All actions result in a negative reward of -1 while non-feasible actions result in a
negative reward of -2. A continuous positive reward of 1 is given when the sum
of the belief regarding the missing person’s location B(MP ), in a sector of 2 by 2
cells, is larger than 0.95. Thus, the reward is a function of the action and current
belief, i.e., R(b, a).

State estimator

The state estimator (SE) was introduced in Section 2.4.2 and is used to compute
a new belief state based on the current observation, last action and previous be-
lief state SE(b, a, o). In this thesis, the main difficulty lies in updating the belief
state in regard to the missing person’s location, B(MP ) since the agent’s position
can be directly observed. Two different, but similar filters have been developed,
a point mass filter (PMF) and a particle filter (PF). The main difference between
these are that the grid in the PMF is deterministic, while the PF has a dynamic
grid. Consider the notation, b(mpi,j ) as the belief that the missing person is lo-
cated in cell ci,j .
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PMF: The PMF has a deterministic grid {xk}Nk=1 of a two-dimensional state space
with N = (m · δ)2 points. Each distinct grid point has an associated weight ({wk}Nk=1)
which indicates the probability that the grid point represents the true location of
the missing person, satisfying

∑N
k=1 w

k = 1.

• Each grid point is assigned a cell index r, based on which cell c ∈ C that the
grid points lies within. In an m by m grid, the index r for the cell located in
the i-th row and the j-th column can be calculated through r = i ·m + j.

• The belief states in regard to the missing person’s location, B(MP ), can now
be calculated. The value, of each belief state, is computed as the sum of all
weights for the grid points it contains. For example:

b(mpi,j ) =
N∑
k=1

wk,r , where wk,r =

wk , if r = i ·m + j

0, else

• The weights are updated through the use of a probability density function
(PDF), illustrated in Figure 3.6. Suppose that, at time t based on obser-
vations y1:t−1, we have computed the relative weights wk

t|t−1. The agent re-
ceives a new RSS-measurement yt . The probability for observation y at time
t can then be calculated by the following equations:

p(yt | xkt , pt) =
1

σ
√

2π
e
− 1

2

(
y−h(xkt ,pt )

σ

)2

h(xkt , pt) = P0 + 10β log10 ||x
k
t − pt ||

Where pt is the agent’s position at time t, σ is the standard deviation for
RSS-signals and xkt is the location of the grid point at time t. The notation
xt may seem unnecessary, since the location of the grid points are constant
and thus independent of time. However, it becomes important for the PF,
where the location of the particles are dependent on the time. The new
weights can then be calculated by:

wk
t|t =

n∑
k=1

1
ck

p(yt | x
(k)
t )wk

t|t−1

ck =
n∑

k=1

p(xt | y1:t)w
(k)
t|t−1
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Figure 3.6: Illustration of PDF assuming normal distribution, N (µ, σ2). The
red dot represents the position of the agent and the black dots represent
grid points. The blue line represents µ based on measurement y while the
red circles represents µ ± σ .

PF: The PF works similarly to the PMF. The main difference is that the grid
points are replaced by particles. Each particle has an associated weight that indi-
cates the probability that it represents the missing person’s true location. Since
the grid is dynamic, the particle’s cell index continuously needs to be updated.
The value of the belief state b(mpi,j ) is computed as the sum of the weights for
the particles located within the cell ci,j . The PF is implemented according to
Algorithm 1 and the parameters are presented below in Table 3.3.

Table 3.2: Table of the parameters used to model the particle filter

Parameter

Number of particles N = (m · δ)2

Particles density (particles/m2) 1
Resample threshold Nth = Neff/2

Multiple different resampling methods were evaluated. The agent and missing
person were initially placed at random locations in a 30 by 30 grid (m = 30) with
cell size δ = 10m and uniform initial particle weights. The agent then sampled
random actions, totaling 900 steps within the grid, and the estimation error, for
each step, was saved. This process was repeated 300 times for each resample
method, and the results are presented below in Figure 3.7. The results demon-
strate that all the different methods yield acceptable results. In the end, stratified
resampling was selected since it resulted in the lowest final estimation error and
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proved to have a lower computational complexity than multinomial-and residual
resampling.
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Figure 3.7: Results for different PF resampling methods.

Grid example
To create an understanding of how a belief MDP works, the following grid exam-
ple has been developed. It consists of a 2 by 2 grid and is presented below in
Figure 3.8. The agent’s position can be directly observed and is indicated by the
circle, while the goal state remains unknown and is indicated by the star. Assume
that a state s ∈ S is defined by the position of the agent p ∈ P and the position
of the goal state g ∈ G. This results in S = P × G where S is finite and consists of
16 possible states. The agent maintains a sensor model and can therefore observe
when it is located in the goal state (o ∈ O, o = 0 if p , g and o = 1 if p = g).
There are four possible actions, North, East, South and West. These actions always
succeed and only affect the agent’s position, the goal state remains stationary. If
no movement is possible in a particular direction, the agent remains in the same
location. Assume that the agent initially is located in cell 1 and have made obser-
vation o = 0, meaning non-goal state. Assume that the goal state is equally likely
to be located in one of the remaining cells. The initial belief state then becomes:
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b =

 [1 0
0 0

]
,

[
0 1

3
1
3

1
3

] 
A belief state is denoted by two variables, the probability of the position of
the agent and the probability of the position of the goal state. For example,
b(1, 2) = (1, 0) implies that the probability that the agent is located in cell 1
and that the goal is located in cell 2 is 1 respectively 0.

1 2

3 4

Figure 3.8: Grid POMDP environment.

The agent then takes action East and observes its own position and a non-goal
state (o = (2, 0)). The new belief states can be calculated by the following equa-
tions:

b′(2, 1) =
O((2, 0) | (2, 1), East)

∑
s∈S T ((2, 1) | s, East)b(s)

P (o | a, b)
= ... =

(1, 0)
P (o | a, b)

b′(2, 2) =
O((2, 0) | (2, 2), East)

∑
s∈S T ((2, 2) | s, East)b(s)

P (o | a, b)
= ... =

(1, 0)
P (o | a, b)

b′(2, 3) =
O((2, 0) | (2, 3), East)

∑
s∈S T ((2, 3) | s, East)b(s)

P (o | a, b)
= ... =

(1, 1
3 )

P (o | a, b)

b′(2, 4) =
O((2, 0) | (2, 4), East)

∑
s∈S T ((2, 4) | s, East)b(s)

P (o | a, b)
= ... =

(1, 1
3 )

P (o | a, b)

The new belief state thus becomes:

b =

 [0 1
0 0

]
,

[
0 0

0.5 0.5

] 
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3.4.2 Simulation environment

A simulation environment was created using OpenAI Gym, an open source Python
library for developing and comparing reinforcement learning algorithms and en-
vironments by providing a standard API [26]. The Gym API implements an
agent-environment loop, illustrated in Figure 3.9, which is suitable for MDP and
POMDP problems.

Agent
(policy)

Environment

ActionReward Observation

Figure 3.9: Agent-environment loop in OpenAI Gym.

The agent-environment loop introduces a concept called timestep, continuously
used in this thesis. A timestep consists of the agent performing an action and
observing how the environment’s state changes. In the Gym, this is done by exe-
cuting the step function which takes an action and then returns an observation, a
reward, and a done signal indicating if the environment has entered a terminal
state. A done signal may be issued after a fixed number of timesteps or if the
agent has succeeded in completing some tasks within the environment.

In this thesis, the observation consists of the current belief state described in
Section 3.4.1, which also describes possible actions space and rewards. Two dif-
ferent criterions are used to issue the done signal. The first is based on a fixed
number of timesteps while the second criterion is based on Kullback-Liebler (KL)
divergence (also called relative entropy), which is a statistical measure of how
two probability distributions differ. Consider P the probability distribution, in
regard to the missing person’s location within the grid, at timestep t − 1 and Q
the same probability distribution at timestep t. The relative entropy DKL(Q||P )
is calculated for each timestep. If the average relative entropy DKL,average, for a
fixed number of timesteps tfix, falls below a certain limit DKL,limit, a done signal
is issued (DKL,average < DKL,limit → done). The second criterion can only be issued
when a 2 by 2 section of the grid consists of 0.95 of the missing person’s proba-
bility distribution within the grid, to ensure that the person’s location has been
isolated within a certain area. It is also worth mentioning that the agent moves
strictly between the centroids of the cells, while the missing person is located
in a random, arbitrary position within a cell. The simulation environment was
defined according to the parameters presented in Table 3.3.
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Table 3.3: Parameters used to define the simulation environment.

Parameters

Grid size [rows, columns] 30 x 30
Cell size [m] 10 x 10
Maximum allowed timesteps rows * columns
tfix 10
DKL,limit 5e-3

3.4.3 DQN

As mentioned previously, a DQN can be constructed in a few different ways. To
simplify the implementation of the DQN and speed up the training, Stable Base-
lines 3 were used. It is a set of reinforcement learning algorithms implemented
in PyTorch, based on the API from OpenAI gym. Stable Baselines 3 includes
features such as vectorized environments, therby allowing faster training of RL
agents. The DQN used in this thesis comes from the famous article Play Atari
with Deep Reinforcement Learning by DeepMind Technologies [27] which used an
RBG-image representing the environment as input. The letters, (R)ed, (G)reen
and (B)lue are each inputs to one of the three input channels in the first convolu-
tional layer where the agent position is green, and the missing person probability
is red. These two are the only variables used to represent the state space, hence
the third layer (Blue) contains only zeros.

Figure 3.10 shows the RGB representation of the environment, defined accord-
ing to the belief state space, with the known location of the agent represented as
1 in the agent’s cell and the unknown missing person location representation as
a probability distribution. The 3D input matrix, including all three matrices, is
transformed to an RGB image, i.e., rescaling the original matrix values from 0-1
to 0-255 before it is feed into the CNN.
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Figure 3.10: Input frame to DQN

The network is constructed by three convolutional layers followed by a flattening
layer and fully connected output layer, all shown in Figure 3.11. The flattening
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layer is used to convert the two-dimensional feature maps created by the convolu-
tional layers into one dimensional arrays, able to be feed into each neuron in the
output layer. Each output neuron represents a state action value (Q-value), hence
nine output neurons are used, one for each action. Additionally, the DQN uses
experience replay and a target network, which are both described in Section 2.5.3.
All DQN parameters are presented in Table 3.4.

RGB image

Convolutional
layers

Flatten
layer

Linear output 
layer (head)

Figure 3.11: Architecture of CNN from Stable Baselines 3.

Training the network
As explained in Section 2.5.3, the CNN is trained to find the set of parameters
which best map the input to the output. This is done using Algorithm 2.

Algorithm 2 Training loop

for episode in training_session do
state = environment.reset()
done = False
while done == False do

action = select_action(state)
observation, reward, done = environment.step(action)
next_state = state_estimator(observation)
memory.push(state, action, next_state, reward)
batch = optimize_model(memory)
state = next_state
if episode % T ARGET _UPDAT E == 0 then

target_network = policy_network

The action was selected using the ϵ − Greedy policy, which selects the action
based on the exploration rate, denoted as ϵ, previously mentioned in Section 2.5.
Initially ϵ was set to 1, meaning that 100% of the actions were randomly sampled
and not selected using the network. The variable was then linearly decreased over
the training session to a final value of 0.05.

The initial location of the agent is randomly sampled from one of the cell cen-
troids and the missing person location is sampled depending on the initial prob-
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ability distribution, meaning that the person is more likely to be placed in a cell
with high probability. Both positions are resampled each time the environment
is reset.

Table 3.4: Hyperparameters used in DQN model.

Hyperparameter

ϵmin 0.05
ϵmax 1
Optimizer Adam
Activation function Tanh
Learning rate 1e-4
Loss function Huber loss
Batch size 32
Buffer size 1e6
Target update 1e4
γ 0.99

3.5 Evaluation methods

As mentioned in Section 3.4, Stage 2 consists of two main parts. A state estima-
tor, used to estimate the current belief state of the environment and a deep Q-
network, used to select appropriate actions based on the estimator’s belief state.
The state estimator provides a localization estimate, while the DQN acts as the
path planner, hence the algorithm developed in Stage 2 was evaluated on those
two attributes, its localization and path planning capabilities. Since two different
state estimators were developed, an additional evaluation of the PMF and PF was
carried out.

3.5.1 Path planning evaluation

The DQNs path planning capabilities were evaluated using three different path
planners based on three different policies. These consist of a greedy, a lawn-
mower and a random policy. All path planners use the PMF as the state esti-
mator and the KL-divergence is deactivated, meaning that the episode is only
terminated when the maximum allowed steps are reached.

The greedy policy has access to the same information as the DQN, i.e., the
agent’s location and the missing person’s probability distribution generated from
the state estimator. The greedy policy always select the action which moves the
agent towards the global maximum, i.e., the cell with the highest probability. The
method relies on the current state representation and exploits it to the fullest. An
illustration of the greedy policy is presented in Figure 3.12b.

The second evaluation algorithm used to test the performance of the DQN is
a lawn-mower policy, illustrated in Figure 3.12a. The last evaluation policy is a
random policy, i.e., each agent action is sampled randomly.
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(a) Lawn-mover policy.
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(b) Greedy policy.

Figure 3.12: Different policies used to evaluate the DQN.

3.5.2 Localization evaluation

To evaluate the best performing state estimator, developed in this thesis, Gauss-
Newton and trilateration were used as comparisons. The different localization
systems were compared using identical agent paths, and the initial location of
the missing person and agent was the same for all the simulations. The path
was determined by the greedy policy which, as explained in Section 3.5.1, always
guides the agent towards the global probability maximum.

At each timestep t, the RSS-measurement yt was used to directly estimate the
distance de,t between the agent and the missing person. The estimated distance
was then saved, together with the agent’s position pt , in a list. A distance limit
of 100 meters was used to sort out unreliable measurements, i.e., estimated dis-
tances larger than 100 meters were neglected. Additionally, both Gauss-Newton
and trilateration used a measurement limit of 5 measurements, i.e., at least five
saved measurements (de,t , pt) were required to compute localization estimates for
both methods. The Gauss-Newton method needs a good initial estimate to func-
tion well. In this thesis, the initial estimation of the algorithm was the position of
where the strongest RSS had been received. If no RSS-signal had been received,
the initial estimation was randomly sampled from the grid. The function, mini-
mized by the Gauss-Newton algorithm, was:

S(p̂) =
m∑
i=1

ri(p̂)2 (3.2)

The equation shows the sum of squared residuals, where p̂ is the position estimate
of the missing person and m is the number of observations. The residuals were
computed as follows:
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ri(p̂) = de − |p̂ − p| (3.3)

Here, p denotes the position of the agent. At each timestep, the Gauss-Newton
position estimate p̂t , was saved to a list, as long as the estimated position was
within the grid. The final position estimate was computed as the mean of all
prior estimates.

The trilateration method iterates over the gathered measurement list, where
each position estimate was computed using 3 sequential measurements. The
agent position p, from each measurement, represented the origin of a circle with
each related de as the radius. If an intersected area between the three circles ex-
ists, the position estimate was set to the centroid of the area. If no intersection
existed, no estimation was given. The final position estimate was computed as
the mean of all prior position estimations.
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Results and evaluation

This chapter consists of the thesis results and an evaluation of these. In Sec-
tion 4.1, the results for the system of hierarchical MDPs, used in Stage 1, is pre-
sented and evaluated. Section 4.2 presents and evaluates the training of the two
DQN-models used in this thesis, while Section 4.3 compares the performance
of the these models against each other. Section 4.4 and Section 4.5 are used to
present and evaluate the path planing capabilities of the DQN and the localiza-
tion capabilities of the selected state estimator. Finally, Section 4.6 present an il-
lustration of the selected state estimator and DQN for a sequence of belief states.

4.1 Hierarchical MDPs

The purpose of Stage 1 is to locate an RSS-signal. This is done by solving a system
of hierarchical MDPs which results in a trajectory that should prioritize areas
with a high probability. Thus, tests were conducted to evaluate how the initial
probabilistic map (IPM) affects the trajectory for the hierarchical solution. These
tests were based on two different sets of precalculated trajectories, referred to as
Set 1 and Set 2. For both sets, the agent was initially located in the centroids
of the different cells in the outermost grid. Each set therefore contained nine
different trajectories, since there are nine different cells in the outermost grid.
The difference, between the two sets, was that the trajectories in Set 1 considered
the IPM while the trajectories in Set 2 did not take the IPM into consideration.
This was done by assigning individual probabilities, based on the IPM, to the
cells in Set 1 while all cells in Set 2 were assigned equal probabilities. Figure 4.1
and Figure 4.2 illustrates the trajectory, for Set 1 respectively Set 2, when the
agent was initially placed in the centroid of the cell located to the upper left in
the outermost grid.

41
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Figure 4.1: Agent trajectory for Set 1 when initially placed in the centroid
of the cell located in the upper left of the outermost grid. The sectors in
the search area are represented by the blue lines. The red lines represent
the path taken by the agent, while the green and black dot represent the
start-respectively current position of the agent. The red crosses represent
the centroids of the innermost grids.
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Figure 4.2: Agent trajectory for Set 2 when initially placed in the centroid
of the cell located in the upper left of the outermost grid. The sectors in
the search area are represented by the blue lines. The red lines represent
the path taken by the agent, while the green and black dot represent the
start-respectively current position of the agent. The red crosses represent
the centroids of the innermost grids.
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Based on the initial probabilities of the sectors, presented in Figure 3.4, the tra-
jectory in Figure 4.1 prioritizes areas with higher probability compared to the tra-
jectory in Figure 4.2. Generally, the method of hierarchically dividing the search
area into 3 by 3 grids, thus avoiding huge state spaces, generates good results
within a reasonable processing time. The results also demonstrate the drawbacks
with the hierarchical solution. As Figure 4.1 shows, the large cell in the bottom
left corners is given last priority. This is logical considering the fact that the cell
only encapsulates a small fraction of the search area, with low initial probability.
However, this leads to the cell being searched last in order, which creates a detour,
since the cell relatively quickly could have been ticked off earlier when the agent
naturally passed it. A possible solution to this problem would be to take the area
of the sectors, that the cells in the outermost grid encapsulates, into considera-
tion in the MDP. It can be noted that no such problem is present in Figure 4.2
which, in this case, is a result of not considering the probabilistic map.

Simulations were performed to further evaluate the trajectories from Set 1
and Set 2. The initial sector probabilities were used to place a missing person in
a random position within a sector. A higher sector probability meant an increased
probability of the missing person being located within the sector. The agent then
travelled the routes for the precalculated two sets of different trajectories. An
RSS-signal was deemed to be located when the distance between the agent and
the missing person was less or equal to 200 meters. 10 000 simulations were per-
formed for each trajectory from the two respective sets and the average travelled
distance until detection (ATDD), for the agent was calculated. The results from
the simulations are compiled in Table 4.1.

Table 4.1: Simulation results for the trajectories in Set 1 and Set 2. ATDD
denotes the average travelled distance until detection. 10 000 simulations
were performed for each starting cell.

Start cell Set 1: ATDD [km] Set 2: ATDD [km]

Upper left 32.27 44.42
Upper center 31.77 39.64
Upper right 32.81 38.21
Middle left 32.17 52.42
Middle center 31.60 31.73
Middle right 32.30 32.91
Lower left 32.52 53.21
Lower center 32.30 38.06
Lower right 33.29 35.69

Table 4.1 shows that the starting cell has a relatively small impact on the ATDD,
for the trajectories in Set 1. The same is not true for the trajectories in Set 2, where
the starting cell has a large impact on ATDD. Even though the trajectories in Set
1 always outperform the trajectories in Set 2, the differences are relatively small
for certain starting cells, i.e., middle center and middle right. These cells con-
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tain large parts of the sectors within the search area, that have high probabilities.
Thus, it can be concluded that the initial probabilistic map only offers minor ben-
efits if the agent starts its route within an area with high probability. All of the
simulations were performed with precalculated trajectories for one type of search
area, where a few neighboring sectors holds a large proportion of the probability.
It is possible that a different type of search area would generate different results.
An alternative would be to generate new probabilities for the sectors for each
simulation, but due to the processing time (around five minutes) it thus creates a
tradeoff with the total number of simulations that can be performed.

4.2 DQN training

Figure 4.3 shows the training results for two separate DQN models, one trained
using the PMF and one using the PF. The models were trained on 4 million
timesteps, and the performance is evaluated by the mean episode length and the
mean episode reward.
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Figure 4.3: Episode length and reward for 4M training episodes. The model
trained with PMF is represented by the black line, and the red line represents
the PF model.

Both models converged at around 2 million time steps, indicating that they have
learned to act efficiently in the environment. The models behaved similarly, how-
ever, the PF-DQN performed slightly better, converging towards a higher reward
and lower episode length, with fewer timesteps. The relation between the episode
length and the reward is reasonable, since the model receives a negative reward
of -1 at each step and a positive reward of 1 if the probability is isolated. Fig-
ure 4.3 indicates that the models have learned to isolate the probability using
approximately 100 steps.

It can be observed that, at the start of the training, the mean episode length
and mean episode reward is lower respectively higher for the PF-DQN, compared
to the PMF-DQN. This behavior has been visible in several other models trained
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during the thesis. At the start of the training, actions are almost exclusively sam-
pled randomly, as described in Section 3.4.3. It can therefore be assumed that,
by almost exclusively random actions, the PF-DQN is more successful at isolat-
ing the probability and achieving the second stop criterion (KL-divergence), de-
scribed in Section 3.4.2. Further testing verified the same result and the reason
is probably due to a higher concentration of weights within a smaller area, which
can be attributed to the resample step included in the PF-DQN. Figure 4.3 demon-
strates that the difference in episode-length and reward becomes smaller towards
the end of the training, when actions are less random and more often sampled by
the models.

As described in Section 2.1, the PMF and PF have similar structures, which ex-
plained the similarity in performance. However, the PF includes the resampling
step which makes the filter more computationally heavy, resulting in a longer
processing time compared to the PMF.

4.3 State estimator comparison

The results of the filter evaluation are shown in Figure 4.4 and 4.5, where the
average estimation error for 500 simulations using both the PMF-DQN and PF-
DQN is displayed. Each simulation is initiated by randomly sampling the agent’s
and missing person’s location. The initial belief regarding the missing person’s
location within the grid is uniform, thus all cells have an equal initial probability.
The KL-divergence used as stop criterion in the training is deactivated, meaning
that each simulation is run until the maximum allowed steps are reached.
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Figure 4.4: Average estimation error for PF-DQN (red) and PMF-DQN
(black).
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Figure 4.5: Average estimation error in intervals for PF-DQN (red) and PMF-
DQN (black).

Figure 4.5a demonstrates that the PF initially performs better than the PMF, es-
timating the missing person’s location with higher accuracy during the approxi-
mately first 95 timesteps. Thereafter, the estimate for the PMF keeps on improv-
ing while the estimate for the PF converges. The final average estimation error
for both models can be seen in Figure 4.5b, where the PMF archives 4.8 meters
compared to the PF 6.9 meters in the final timestep.

Table 4.2: Filter evaluation results.

Average estimation error at PMF PF

50 steps [m] 45.0 30.1
100 steps [m] 11.7 12.5
200 steps [m] 5.5 9.7
400 steps [m] 5.0 8.1
800 steps [m] 4.9 7.2
900 steps [m] 4.8 6.9

One standard deviation of each models estimation along the x-and y-position,
during a single simulation, is displayed in Figure 4.6 and 4.7. The simulations
were run separately but with the same initial configuration and policy. The sim-
ulations were 900 timesteps long, but only 150 are displayed, since both models
converge at around 100 timesteps.
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(a) PMF estimates along x-position with
1 standard deviation.

0 20 40 60 80 100 120 140
Timesteps

0

50

100

150

200

250

E
st
im

at
io
n
y
-p
os
it
io
n

True position

PMF

(b) PMF estimates along y-position with
1 standard deviation.

Figure 4.6: The estimates (black) from 0 to 150 timesteps presented with
1 standard deviation (blue) during a simulation with the PMF-DQN. True
location is represented as a green line.
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(a) PF estimates along x-position with 1
standard deviation.
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Figure 4.7: The estimates (red) from 0 to 150 timesteps presented with 1
standard deviation (purple) during a simulation with the PF-DQN. True lo-
cation is represented as a green line.

As Figure 4.7 and 4.6 show, both models converge toward the ground truth in
under 100 timesteps. The PF shows the best result and continuously outperforms
the PMF, in regard to estimating the missing person´s location, at the majority
of the presented timesteps. The difference in performance could be attributed to
the dynamic grid in the PF, which becomes "finer" when the probability becomes
concentrated within an area. This is illustrated in Table 4.3, where the standard
deviation for the PF is lower then the standard deviation for the PMF, for all
presented timesteps.
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Table 4.3: Filter evaluation results.

1 standard deviation at PMF PF

25 steps 50.8 12.5
50 steps 24.2 4.9
100 steps 2.7 1.2
200 steps 1.2 0.3
400 steps 0.9 0.2
800 steps 0.6 0.01

Along with the result and discussion above, the PMF has been selected as the state
estimator. The decision is partly based on the similarity in performance, demon-
strating that both filters show good abilities in the requested application, thereby
making the decision come down to the complexity of the filters. The PF has the
additional resampling step which seems to result in a lower standard deviation,
but the PMFs estimation has proven to be better over time, which makes the more
computationally demanding PF unnecessary. The PMF is therefore selected to be
used as the state estimator.

4.4 Path planning

The result of the path planning evaluation in Figure 4.8 shows average estima-
tion errors of the DQN, greedy, random and lawn-mower policies over 500 sim-
ulations, all using the PMF. The agent is initially positioned in the same location
each simulation while the missing person’s position is randomly sampled.
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Figure 4.8: Average estimation error for all 4 path planners.
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Figure 4.9: Average estimation error for all 4 path planner in different inter-
vals.

The results in Figure 4.8 show that the policies form two different groups. The
greedy and DQN policies performs well with similar behavior throughout the
simulations. The lawn-mower and random policies perform alike but worse than
the greedy and DQN policy. The lawn-mower and random policies average es-
timation error decreases continuously compared to the DQN and greedy policy,
whose estimation error seems to converge at an average of 200 timesteps. It can be
seen in Figure 4.9b that the average estimation error of the lawn-mower and ran-
dom policies still decreases. The similar results of the random and lawn-mower
policies are reasonable since the state estimator can receive measurements from
any location within the grid. This implies that the state estimation should be
able to improve its belief state as long as the agent moves within the environ-
ment, which is achieved in both policies. However, as explained in Figure 3.2, the
spread in RSS-measurements increases when the distance between the receiver
and emitter increases. This could explain the less favorable results, since neither
the lawn-mower or random policy selected their trajectories based on the belief
state, hence not always moving efficiently in regard to the missing person´s loca-
tion.

The similarity between the DQN- and greedy policy is not as obvious. The
actions of the greedy policy are always based on the current state, while the DQN
uses previous experience, from millions of timesteps, to select actions. The DQN
model has through training learned that the missing person is most likely located
in the area with the highest probability, but not always. This can be compared
to the much more aggressive greedy policy which always explores the grid cell
with the highest probability regardless of the remaining probability distribution.
There is a difference between these two approaches, but how much it affects the
result is hard to tell. However, the DQN is trained on isolating the probability
with KL-divergence as a stop criterion, resulting in a different movement pattern
compared to the greedy policy which could explain the marginally better perfor-
mance.

Although the performance of the DQN is marginally better than the greedy
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policy, the greedy policy is significantly more simple than the DQN. The greedy
policy consist of less than 100 lines of code compared to the thousands included
in the DQN. That, as well as the fact that the DQN needs to be trained on millions
of timesteps to perform similarly to the simple greedy policy, strongly indicates
that the DQN is a complex solution to a simple problem. However, the perfor-
mance of the DQN is strongly connected to the reward function, which have been
iterated during the thesis. It should be noted that there could be a more suitable
reward function which was not explored in this thesis.

Table 4.4: Mean estimation error for all 4 path planners at 5 different
timesteps.

Mean estimation error at DQN Greedy Lawn-mower Random

100 steps 10.3 12.1 57.4 53.9
300 steps 4.2 4.8 22.4 25.4
500 steps 3.7 4.1 12.96 15.0
700 steps 3.6 4.0 9.6 9.6
900 steps 3.5 4.0 7.9 7.4

4.5 Localization

The localization evaluation is a performance test of the PMF compared to Gauss-
Newton and trilateration. Figure 4.10 shows the estimation error for a simulation
where all estimators traveled along the same path. The agent’s and missing per-
son’s initial location was the same for all estimators.
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Figure 4.10: Estimation error for all three estimators.
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Figure 4.11: Average estimation error for all 3 estimators in different inter-
vals.

The results, presented in Figure 4.10, show that the PMF performs better than
Gauss-Newton and trilateration during the majority of the simulation. The Gauss-
Newton and trilateration algorithm establish their first estimation after approx-
imately 75 timesteps. The main reasons behind the missing estimations are the
distance limit and measurement limit, which restricts the algorithms from mak-
ing estimations until at least five estimated distances of less than 100 meters have
been collected. These limits act much like a filter, preventing the algorithms from
making very incorrect estimations due to noisy measurements.

As can be seen in Figure 4.11a, all localization systems manage to decrease
their individual estimation errors, especially the PMF and trilateration. There
could be several reasons for the less favorable behavior of the Gauss-Newton al-
gorithm, but one feature that influences the performance largely is the initial
guess. The initial guess, as explained in 3.5.2, is the estimation related to the
highest RSS-measurement. This is a logical guess since a large RSS-signal indi-
cates that the agent is close to the missing person, which should result in a good
estimation. However, trusting a single measurement could be dangerous given
the unstable nature of the RSS-signal. An alternative method, not explored in
this thesis, which could improve the performance is using the trilateration esti-
mations to initiate Gauss-Newton.

Table 4.5: Filter evaluation results.

Average estimation error at PMF Gauss-newton Trilateration

50 steps [m] 80.0 NaN NaN
100 steps [m] 15.3 49.7 13.0
200 steps [m] 1.9 21.3 7.0
400 steps [m] 1.9 11.9 7.0
800 steps [m] 2.2 8.5 7.0
900 steps [m] 2.2 8.1 7.0
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4.6 DQN-PMF simulation

Figure 4.12 presents a sequence of belief states gathered during a single simula-
tion using the DQN-PMF. The first belief state is shown in Figure 4.12a where the
probability, visible in the bar below the figure, ranges between very low values.
This demonstrates that no clear estimate of the missing person’s location has yet
been established. The following two figures (b and c) illustrate how the probabil-
ity, of the cells located in the area of the missing person, increases and how the
agent moves towards the person. The last three figures (d, e and f) demonstrates
how the agent moves around the missing person, trying to isolate the probability
to the fullest extent.
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Figure 4.12: The blue dot represents the agent’s position, while the red dot
represent the position of the missing person.

The resulting movement made by the agent corresponds to the intuitive solution
to the problem. The state estimation is able to update the belief state close to
the true location of the missing person, making it feasible for the agent to move
in a target-oriented manner towards the area with the highest probability. When
reaching the missing person, the agent moves over and around the identified loca-
tion of interest until the stop criterion is reached, which is a reasonable strategy.
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Conclusions and future work

5.1 Conclusions

This thesis has, through Stage 1, evaluated how a probabilistic map can be uti-
lized to create a path planner capable of efficiently locating an RSS-signal. For-
mulating the problem as a Markov decision process generated generally satisfy-
ing results and also showed promise due to its relatively low processing time.
The method allowed multiple factors to be taken into consideration, such as dis-
tance, probability and potentially area. However, further tests are required, with
different type of SAR environments and alternative path planning methods, to
determine the effectiveness and adaptability of the method.

This thesis has also investigated how RSS-measurements effectively can be
used to establish a UAV path planner that isolates a missing person’s probable
location. Simulation results demonstrate that formulating the problem as a be-
lief MDP and letting the action-policy depend on the current belief, could be an
efficient approach. Two different filters were evaluated and although the PMF
was regarded as the preferred choice, the PF could also be considered a good al-
ternative. Both filters showed good abilities in estimating the belief state of the
belief MDP, which gave the DQN a good perception of the environment to act
upon. The characteristics of the PMF and PF proved to be suitable for the thesis
problem, which lead to a simple implementation and usage.

The fact that a simple greedy-policy generated similar results to the DQN
indicates that the DQN may be a far too complicated solution to a less compli-
cated problem. However, based on experience from this thesis, the behavior of
the DQN is dependent on the reward function and although multiple different
reward functions were evaluated, it is possible that it exists one that leads to bet-
ter results.

54
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It is important to point out that all results from this thesis are based solely on
simulations. In a real-life outdoor scenario, multiple factors exist that could affect
the results, such as sparse RSS-measurements and terrain. Another important
factor is that this thesis is based on the assumption that the missing person wears
an enabled smartphone. In a real-life scenario, this is far from guaranteed, which
affects the usability in real SAR operations.

5.2 Future work

There are several extensions that could be made to this thesis. The following
sections describe some of our suggestions.

Stage 1 extensions
Extending Stage 1 to consider factors such as area and terrain would possibly
create a more efficient path planner. By considering area, the probability of un-
necessary detours could be reduced and since terrain has a great impact on the
possible location, of a missing person, it would thus make the path planner more
suitable for use in real-life SAR operations.

Field tests
A natural extension to this thesis is real-life field tests to demonstrate that the lo-
calization systems works as expected. Even though uncertainty in RSS-measurements
has been taken into consideration in this thesis, the real-life implementation is
far from normally distributed, and reality often comes with many unwanted fea-
tures.

Non-stationary missing person
Another interesting extension is to consider the scenario where the missing per-
son is non-stationary. The two state estimators both consider dynamics in their
standard implementation, which should make it a natural extension.

Extending the sensor model
An interesting extension that could improve the real-world implementation of
the system is to extend the sensor model to include other sources of information
than only the RSS-measurement. Heat camera images or GPS-signals are two
examples which could be used as input to the existing state estimator through
relatively small adjustments. Enabling different sensor input and extending the
state estimator to use several sources of information at once would most likely
improve the belief state of the environment.

Uncertainty in measurement
Uncertainty in sensor measurement can become a problem when the frequency
of the source is low and velocity of the agent is high. This thesis assumes that
a measurement is received each timestep which is of course not always the case.
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The system would have to take the uncertainty in mind to not act too aggressively
on the current belief, which could be the case if the existing system would be
faced with less frequent measurements. By implementing an uncertainty into
the system or by having knowledge about the frequency of the signal source, this
problem could be solved.
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A
Particle filter resampling

There exists multiple different resampling techniques. The following options are
the most common in PF literature. All of the algorithms are unbiased, but have
different computational complexities [21].

1. Multinomial resampling
Generate N ordered uniform random numbers.

uk = uk+1 + ũ
1
k
k , uN = ũ

1
N
N , with ũk ∼ U (0, 1)

Use them to select x∗k according to the multinomial distribution described
below

x∗k = x(F−1(uk)) = xi with i s.t. uk ∈
 i−1∑
s=1

ws,
i∑

s=1

ws


where F−1 denotes the generalized inverse of the cumulative probability
distribution of the normalized particle weights.

2. Stratified resampling
Generate N ordered random numbers.

uk =
(k − 1) + ũk

N
, with ũk = U (0, 1)

Use them to select x∗k according to the multinomial distribution.

3. Systematic resampling
Generate N ordered numbers.

uk =
(k − 1) + uk

N
, with uk = U (0, 1)

Use them to select x∗k according to the multinomial distribution.
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4. Residual resampling
Allocate n′i = [Nwi] copies of the particle xi to the new distribution. Resam-
ple m = N −

∑
n′i particles from xi by making n′′i copies of the particle, xi

where the probability for selecting xi is proportional to w′i = Nwi −n′i using
one of the previously mentioned resampling schemes.
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