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Abstract

Autonomous lawn mowers and floor cleaning robots are today easily accessible and are
utilizing well-studied Coverage Path Planning algorithms. They operate in single-floor
environments that are small with simple geometry compared to general urban environ-
ments such as city parking garages, highway bridges or city crossings. A next step for au-
tonomous cleaning is road sweeping of these complex urban environments. In this work,
a new Coverage Path Planning approach, Sampled BA* & Inward Spiral , handling this task
was compared with existing well-performing algorithms BA* and Inward Spiral. The pro-
posed approach combines the strengths of existing algorithms and demonstrates state-of-
the-art performance on three large-scale 3D environments. It generated paths with less
rotation, while keeping the length of the path on the same level. For a given starting point,
the new approach had consistently lower cost (length + rotation) for all environments. For
random starting points, randomness in the new approach caused less robustness, giving
significantly higher cost. To improve the performance of the algorithms and remove bias
from manual tuning, the parameters were automatically tuned using Bayesian Optimiza-
tion. This makes the evaluation more robust and the results stronger.
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1 Introduction

In this chapter, background and the goal of this project will be presented.

1.1 Motivation

For years, robotics has been an active topic in lab environments and is now entering real hu-
man environments by helping humans with dangerous, repetitive and boring labour. A large
part of the processes in industries are today executed by robots having higher speed and
precision than humans [27]. Autonomous robotics has more recently also entered domestic
lives where daily tasks are relieved by easily accessible robots such as with vacuum clean-
ers and lawn mowers. A natural next step is to evolve the developed robotics technology
to tackle more complex tasks in the urban environment such as public streets and parking
garages. Efficiently handling large environments with multiple floors remains a challenge
for the industry to solve.

A company in Linköping, Dyno Robotics, is currently developing an autonomous sweeping
robot. The aim of the robot is to clean streets, parking garages, parks and other outdoor
environments. An autonomous robot includes many complex technological solutions, yet in
its core lies the path planning. Given data about the environment from the sensors the robot
should be able to plan a path that covers all accessible areas in the environment. Making
a good plan that covers the whole area is important. With a well performing path planner,
the cleaning robot will minimize occurrences where spots are revisited in favor of efficient
operation, both in aspect of time and cost. A good plan is short and has few rotations, since
rotation leads to degraded cleaning [4].

Today’s path planning algorithm of Dyno Robotics sweeping robot is assuming flat terrain.
Since this is not the case for many of its intended environments they need an effective path
planning solution that can handle complicated environments with complex surface geometry
and where it is hard to represent the environment on a 2D plane.

The problem of planning a path that covers a region of interest while avoiding obstacles is
called the Coverage Path Planning (CPP) problem [14]. There are two different types of CPP.
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1.1. Motivation

Figure 1.1: A two-floor parking garage. The area to the right is above the area to the left. The
areas are interconnected by an arced ramp. The mission of the sweeper robot is to plan a path
and clean both floors.

(a) Highway bridge (b) City crossing

Figure 1.2: Two environments that were used for evaluating the performance of the algo-
rithms. To clean these environments the planner needs to handle that the bridge overlaps the
road underneath in (a) and the complex geometry because of many obstacles on the sides of
the roads in (b).

The first is Sensor-based Coverage, where the area gets covered by being in the field of view of a
sensor. The goal is to find positions to place the sensor to make every part of the area covered
by the sensor. The second type is Footprint-based Coverage, where the area gets covered by
being visited by the robot. This thesis focuses on the latter, since the cleaning actuator is
under the robot. There is also a distinction between online and offline CPP. Offline methods
requires knowledge about the entire environment, while online methods plans the coverage
path while exploring it. [6]

The CPP problem for covering indoor environments [6], croplands [17] and lawns [10] is a
well studied problem with established solutions. These environments have a flat surface and
are often easily dividable into rooms. This is however, not the case for many outdoor urban
scenarios such as multi-floor parking garages, highway ramps and city streets. Apart from
complex surface geometry with height variations they can also have multiple floors, making
them impossible to represent as a 2D grid to use the established methods.

2



1.2. Aim

According to business leaders, autonomous vehicles are expected to be driving on our streets
and do different tasks in complex environments in just a few years [24]. To solve the CPP
problem in environments with multiple floors and height variations is increasingly relevant
and will enable robots to perform tasks, where simple algorithms are insufficient.

1.2 Aim

This thesis focuses on offline footprint-based CPP that could handle large-scale urban envi-
ronments with multiple floors and complex geometry. A method is developed to make two
well known approaches, Inward Spiral [34] and BA* [31], perform well in a 3D representation
of the environment. The aim is to develop a new better performing algorithm by combining
existing solutions. To evaluate their performances, all three methods will be implemented in
a simulation model of a multi floor parking garage, a highway bridge and a street crossing
(see Figures 1.1 and 1.2).

1.3 Research questions

The input data is a 3D point cloud of the environments and the solution is a path with three
dimensional waypoints. At first, the environment is analyzed to identify traversable and
coverable areas to know what areas are accessible for the robot. Secondly, this information is
used by an algorithm, which returns the solution path. This project will mainly focus on the
latter part by addressing these questions:

1. How does Inward Spiral [34] and BA* [31] perform based on coverage, length of path
and total rotation change over time in realistic outdoor environments?

2. Given a starting point, can both the path length and total rotation be reduced by com-
bining the strengths of Inward Spiral and BA* in a new approach?

3. Using a configuration that was optimized for one starting point, how much does the
performance of BA*, Inward Spiral and the new algorithm worsen for other starting
points regarding coverage, length of path and total rotation?

1.4 Delimitations

The comparisons between the CPP algorithms is made on point clouds from three different
data sets from the same data collection [21]. These point clouds are considered known and all
calculations are made offline. In this project it is assumed that the robot follows the planned
path exactly and that an area has been cleaned if the footprint of the robot has covered it
while following the path. The footprint of the robot is assumed to be a circle with the robot
breadth as diameter.

1.5 Thesis Outline

The outline of this thesis is as follows. Chapter 2 summarizes previous work done in the
field of Coverage Path Planning. Details of the most relevant approaches together with the
problem formulation are presented in Chapter 3. Chapter 4 describes how coverable and
traversable areas are identified from a 3D point cloud. Implementation details of the CPP al-
gorithms and the new approach is described in Chapter 5. The experiment setup and method-
ology are explained in Chapter 6. Results from the experiments are presented in Chapter 7
and discussed in Chapter 8. Chapter 9 concludes the thesis by answering the research ques-
tions and suggesting ideas for future work.
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2 Related Work

The coverage path planning problem is a well known problem with many different solutions.
It has been studied by many researchers throughout the years and in this chapter a summary
of the most relevant approaches will be presented.

2.1 Grid Based Approach

A common approach to solve the coverage path planning problem in 2D is to represent the
region of interest as a grid and visit all cells that could be covered. There are many grid based
algorithms [14].

A simple solution is to follow the walls and make an inward spiral. Appearing in so called
dead zones, could be solved with motion planning algorithms, such as A* [34]. Another spiral
approach divides the area into big cells and subcells. By following a spanning tree through
every free subcell the algorithm provides a close-to-optimal covering path [13].

A benefit of working with grid cells is that they could be assigned property values easily. This
can be used by a Wavefront [33] or a Local Energy Minimization [5] algorithm, which creates a
path by looking for the next unvisited cell with the best metrics. Metrics could be distance to a
specific cell, translational distance, rotational distance or status of neighbour cells. This makes
these types of algorithm more customizable for a specific robot and application comparing to
the spiral based algorithms.

Other grid based algorithms are based on neural networks [32] and has the advantage of
working in environments with dynamic obstacles. In [6], Bormann et al. compared the neural
network approach with a Traveling Salesman Problem solution and the previously mentioned
Local Energy Minimization. The experiments showed that the Local Energy Minimization
was the best approach concerning computational time, total rotation and path length. On the
other hand, it gave a little bit less coverage.
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Generally, the cons of a grid based approaches is the need of approximation and that memory
consumption is often exponential with the size of the area. They also require an accurate
localization of the robot, making them more suitable for indoor environments. [14]

2.2 Cellular Decomposition Approach

An other approach is to decompose the area of interest into obstacle free regions and cover
them by driving back and forth. The decomposition, the angle of the back and forth lines
and the order of regions to cover varies between different algorithms. These algorithms often
assumes that all obstacles and cleaning areas are represented as polygons. [14]

Trapezoidal decomposition is the simplest approach. For every vertex in the polygons, rep-
resenting the obstacles as well as the boundary of the region of interest, a boundary for a
trapezoid shaped cell is created by drawing a line. Unfortunately, this decomposition often
results in a big number of cells which has to be covered one by one and consequently, generate
an ineffective path. [7]

A better performing algorithm is called Boustrophedon decomposition. Instead of making a
boundary for every vertex this algorithm uses only critical vertexes. Fewer cells makes the
path shorter [7]. When the Boustrophedon decomposition were compared with the grid cell
algorithms in [6] it had generally better coverage percentage, but longer computational time
and paths in environments with obstacles.

The Boustrophedon decomposition is a specialization of Morse decomposition, which is a
general way to decompose areas using slicing and critical points. The general method works
for obstacles of any shape and the cells/slices can be shaped as spirals, spikes or any other
shape that can be mathematically described. [7]

Since the paths of these back-and-forth methods includes a lot of turns, which are disadvanta-
geous, Bochkarev and Smith [4] proposed a method that first decomposes the area, and then
plans the path to minimize the number of turns by looking at the altitude of the polygons
and optimize the decomposition.

A different approach is to divide the area by calculating a Voronoi graph which is based on
finding central points between obstacles or cell boundaries. The advantage of this approach,
in comparison to grid cell based approaches, is that its resolution depends on the complexity
of the environment instead of the cell resolution, making it less space consuming. [30]

2.3 Graph Search Approach

An approach proposed in [9] is using graph search. It is based on the A*-algorithm and an
occupancy grid of the environment. Since rotation is expensive, the algorithm’s cost function
is based on turns. The planned path consists of junctions of lines that covers the area and
minimizes the number of turns.

A similar approach is called the BA* algorithm, which is a combination of Boustrophedon
decomposition, which was described in 2.2, and A*. It is an online method that does not
require prior knowledge of the environment. It covers one region at a time by making zig-
zag line paths and a backtracking list of points that are connected to other regions. As soon as
a critical point is reached, it uses A* to find a path to the closest point in the backtracking list.
This loop continues until the backtracking list is empty and all points has been covered. Based
on simulations, this approach was shown to be better than Boustrophedon decomposition in
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terms of the necessity of prior knowledge of the environment, the length of the path and the
number of regions to cover. [31]

2.4 Random Sample Approach

The random sample approach algorithms consist of two steps. Firstly, they sample points
until the area has been covered. Secondly, they find a continuous path that connects these
points in a desirable way [14]. In the literature studies the random sample approach seems to
be applied on Sensor-based CPP applications [8, 15, 11, 12]. However, if the sensor view port
is set to the sweeping robot’s footprint, the same algorithms is possible to apply on cleaning
applications.

One approach to solve the first step is to sample a random uncovered point and then add
the point nearby, which covers most uncovered area, to a list of goals [8]. Another approach
is to sample positions randomly until the area gets covered and then find the best positions
by picking the ones that covers most area one by one from the list of all sampled positions.
Instead of sampling uniformly at random, a more efficient approach is to first sample points
to cover the boundaries of the area, and then sample points inside the area [15].

The second problem is often a variant of the Travelling Salesman Problem (TSP), which is a
well studied problem with many different exact and approximate solvers. In [8] the points
are connected using a shortest path graph and an approximation to the TSP. A chained Lin-
Kernighan TSP algorithm [1] was used in [11] to connect the points and a bi-directional
rapidly-exploring random tree (RRT) algorithm [26] was applied between the points to avoid
obstacles. Since these generated paths are rarely smooth, an algorithm to smoothen the gen-
erated path using a variation of RRT has been proposed [12].

2.5 3D approaches for Coverage Path Planning

Covering an uneven terrain based on a 2D algorithm with a back-and-forth approach leads
to skipped spots and overlaps. When the robot is tilting, its range and the localization could
be affected. To solve this problem, a Side-to-side 3D CPP approach was proposed in [17]. By
using Digital Elevation Model (DEM) of the terrain, cylinders representing the paths can be
placed side by side across the terrain to take the height differences in concern when setting
the distance between the paths. The cylinder approach can also be used to find the angle that
gives the best coverage efficiency.

Another similar 3D approach, which can be applied to any back-and-forth CPP algorithm
as well, is to use the DEM to find the angle that minimizes the energy consumption. It can
be done by calculating the power needed to execute every path with regard to the height
differences for different angles. [18]

Just like [17, 18], the approach in [22] is originally made for agricultural applications as well.
It also uses DEMs and creates a plan with side-by-side paths across the area. However, in
this approach, the area is first decomposed into subregions based on the slope steepness. In
each subregion, an optimal "seed curve" is found by finding a curve that minimizes the cost
function. A "seed curve" could be an edge segment or a contour line, which unlike the other
approaches does not have to be straight line. The coverage path plan is created by making
subsequent paths side-by-side with an offset from the "seed curve" until the area is covered.
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2.5. 3D approaches for Coverage Path Planning

The literature of the grid search algorithms in 2.3 did not mention that they could be used in
3D. However, since the paths are dynamically constructed based on neighbour cells and A*
can be used in 3D as well, it should be possible to apply them on non-planar surfaces as well.

An advantage of the random sampling approaches mentioned in 2.4 is that they can be used
in 2D and 3D. They works good for handling complex structures, but lacks the desirable
regularity compared to other methods. One way of solving this issue is to make the algorithm
two-phased. In the first phase, waypoints on simple planar surfaces are structured in a grid
and covered using a back-an-forth strategy. In the second phase, all points that has not been
covered are covered using random sampling. [11]
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3 Background

In this chapter, the most relevant approaches mentioned in Chapter 2 are detailed. The prob-
lem formulation is presented, as well as relevant theory for the method used in the experi-
ments.

3.1 Problem formulation

We define a point cloud of the environment, W , as a set of points, p PW , with the coordinates
[x, y, z] P R3. The geometry of the robot is defined as a 3D region R, transformed by the robots
pose (position and rotation). Wcov Ď W is a set of points p that are classified as coverable by
the robot. A point, p, is coverable if R can be placed in such way that no point in W\Wcov
is inside R if p is inside R and is reachable from a given starting position ss P R3 without
collisions. Additionally, the height difference ∆z between two points inside R, p1, p2 PWcov,
can not be bigger than the maximum robot step height, hR

max.

The Coverage Path Planning (CPP) problem is to find a path P starting from ss with sequential
positions s P P such that every point p P Wcov must have been inside R at least once after
placing R at every position in P.

3.2 Evaluation Measures

There are combinatorically many ways to create a path that solves the CPP problem. The
choice of plan has to be based on the most sufficient properties. These properties are de-
scribed below.

• Coverage - Defined as

C =
Np

cov

Np
tot

(3.1)

where Np
cov is the amount of covered points and Np

tot is the total amount of coverable
points. In theory, C has to be 1 to solve the CPP problem, but in reality it is often lower
and balanced against other properties.
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• Length of Path - As path length is related to operation cost and time, minimizing the
path length is of interest. The length of the path is the total traveled distance when
moving through all waypoints in a path.

• Total Rotation - The optimal cleaning path for the sweeping robot is a straight path.
Turns are not only expensive time-wise and energy-wise, but are also increasing the
risk of missing spots. Therefore, a good path should have as few turns as possible.
Comparisons are made by calculating the total amount of degrees that the robot rotated
while executing the path.

• Computational time - The complexity of CPP algorithms can vary a lot. Even though
an algorithm with higher complexity gives a slightly better path, a lower complexity al-
gorithm could be more attractive if it saves time and requires cheaper components. An
algorithm with low computational time is also more applicable in bigger environments.
However, in offline applications this property has lower importance than the others.

3.3 Algorithm: BA*

BA* is a CPP algorithm proposed in [31], that is based on Boustrephedon motions and the A*
search algorithm. The algorithm consists of following steps.

1. Cover the local area using the BM algorithm until a critical point is reached.

2. Use a backtracking list to find the next starting point.

3. Use A* to plan a collision free path to the next starting point.

4. Shorten the path using the A*SPT algorithm.

5. Follow the generated path and go to step 1 to cover a new area.

The algorithm will keep repeating these steps until Step 2 can not find a new uncovered
starting point.

Step 1: BM algorithm

The goal of the Boustrophedon motion (BM) algorithm is to cover an unknown area by mov-
ing one step at a time and create a two dimensional tiling model M of the area. The tiles, c,
are squares, with the size of the robot and are allowed overlap with each other. The steps can
only be made in the north, south, west or east direction. The algorithm keeps exploring the
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area until the robot reaches a position where it can not move in any of these 4 directions, a
critical point ccp, see Algorithm 1.

Algorithm 1: BM algorithm
Data: Starting point csp. Model M of the area.
Result: Updated model M of the area. Critical point ccp. Path Plocal until critical point.
Set CriticalPointFound Ñ f alse
ccurr = csp
Plocal = H
while CriticalPointFound is f alse do

Set CriticalPointFound Ñ true
for position cn in direction n P north, south, east, west from ccurr do

if cn is available then
Add tile cn to M
Add tile cn to Plocal
ccurr = cn
Set CriticalPointFound Ñ f alse
break

end
end

end
ccp = ccurr
return M, ccp, Plocal

Step 2: Find next starting point

After a critical point has been reached, the algorithm has to find a new starting point for
exploring the next area. This is made by adding specific tiles to a backtracking list while
covering areas (Step 1). The backtracking list, Lb, is defined as

Lb = tc|c P M and µ(c) ě 1u, (3.2)

where µ(c) is

µ(c) = b(c1, c8) + b(c1, c2) + b(c5, c6) + b(c5, c4) + b(c7, c6) + b(c7, c8), (3.3)

and b(ci, cj) is

b(ci, cj) =

#

1, if ci is free and cj is blocked
0, otherwise

. (3.4)

ci is a neighbouring cell to c according to figure 3.1. A cell is blocked if it has been visited or
if it is inaccessible by the robot.

The next starting point, csp is chosen by picking the position of the closest cell c P Lb according
to Euclidean distance, Manhattan distance or shortest path using only covered cells.

Step 3: A* algorithm

A* algorithm is a well known search algorithm that can be used to find the optimal path
between two points in a grid or graph. The idea is to use a heuristic estimate,

f (s) = g(s) + h(s), (3.5)
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Figure 3.1: Definition of a neighbouring cell ci of c. Used in BA* to find the next starting
point.

where g(s) is the length of the shortest path from the starting position, ss, to a position s
that has been found so far and the heuristic function h(s) is the estimated length between s
and the goal sg. The algorithm is described in Algorithm 2. It uses a priority queue, Qopen,
which stores points that have been found, but its neighbours have not been evaluated yet.
The priority is based on f (s) in equation 3.5. It means that the pop function always returns
the point with the smallest f (s) and removes it from the priority queue. Every iteration starts
with applying pop on Qopen. The returned point is then moved to a list, Qclosed, to keep track
of the points that have been visited. Thereafter, the neighbours of this point are evaluated to
see if the estimated length of the total path gets shorter if the path goes through them. If that
is the case or if a neighbour has not been visited, it gets a new g(s) value and is added to the
Qopen list. It also gets the original point as parent. The parent property is used to backtrack
the path when the goal point has been reached.
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3.3. Algorithm: BA*

In BA*, this algorithm is used to find the shortest path from the critical point ccp (from Step
1) to the next starting point csp (from Step 2). The euclidean distance between s and the goal
sg is used as the heuristic function h(s).

Algorithm 2: A* algorithm

Data: Starting point ss. Goal point sg. Heuristic function heuristic(s).
Result: Path P from ss to sg.
Qopen =empty priority queue
Qclosed = H
g[ss] = 0
parent[ss] = ss
Qopen.push(ss, g[ss] + heuristic(ss))
while Qopen ‰ H do

s Ð Qopen.pop()
if s is sg then

P = H
while s is not ss do

P.push_back(s)
s Ð parent[s]

end
return reversed P

end
Qclosed.push(s)
for neighbour sn of s do

if sn not in Qclosed then
if sn not in Qopen or g[s] + Distance between s and sn < g[sn] then

g[sn] = g[s] + Distance between s and sn
parent[sn] = s
f = g[sn] + heuristic(sn)
if sn P Qopen then

Qopen[sn] = f
else

Qopen.push(sn, f )
end

end
end

end
end

Step 4: A*SPT Algorithm

The A* algorithm in Step 3 generates a collision free path, P, from the critical point ccp to
the next starting point csp. Since this path is based on square tiles, it often includes a lot of
heading changes. Consequently, it will not be the shortest path. A*SPT is an algorithm that
takes a path as input and smooths it out to make it shorter and unbounded to the tile model,
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see algorithm 3. The idea is to find the farthest point from the start with a line-of-sight and
add it to the smooth path P̂. This is repeated until the found point is the goal point.

Algorithm 3: A*SPT algorithm
Data: Path P = ts1, s2, ..., snu.
Result: Smooth path P̂ = tŝ1, ŝ2, ..., ŝku.
k = 1
P̂ = ts1u

while sk is not sn do
for i Pn, n-1, ..., k+1 do

Psk ,si = Straight line path between sk and si
if Psk ,si is collision free then

P̂.push_back(si)
Set k Ñ k + 1

end
end

end
return P̂

Step 5: Follow path and go back to Step 1

When the smooth path P̂ between the critical point and the next starting point has been gen-
erated, the next step is to make the robot follow this path. When the next starting point is
reached, the algorithms goes back to Step 1 and repeats the process.

3.4 Algorithm: Inward Spiral

The Inward Spiral is a grid-based solution to the coverage path planning problem proposed
in [34]. The idea is to clean the area counter-clockwise (or opposite) by keeping the robot as
much to the right as possible and only turn left if the grid cell in front of the robot has been
cleaned already or is inaccessible. This continues until the robot has no valid options, reaches
a dead zone. By using a breadth first search (BFS), it then finds the closest grid cell that has
not been cleaned and finds the shortest path to that point using A*. This cycle repeats until
the area has been covered. In summary:

1. Clean area in an inward spiral motion until a dead zone is reached

2. Find closest uncovered accessible cell using BFS.

3. Find shortest path using A* to the closest uncovered cell and go back to Step 1.

13



3.4. Algorithm: Inward Spiral

Step 1 - Clean area in an Inward spiral motion

The inward spiral motion starts in a corner of the area. If the counter-clockwise the direction
is chosen it follows the right wall until it reaches an obstacle or a covered cell. The algorithm
to create this movement is described in Algorithm 4.

Algorithm 4: Generate path that cover the area in an inward spiral motion until a dead
zone has been reached
Data: Starting point csp.
Result: Path Plocal until dead zone.
Set DeadZoneReached Ñ f alse
P = tcspu

ccurr = csp
while DeadZoneReached is f alse do

Set DeadZoneReached Ñ true
for neighbour cn of ccurr for n P right, forward, left do

if cn is covered or inaccessible then
continue

end
Plocal .push_back(cn)
Set ccurr Ñ cn
Set DeadZoneReached Ñ f alse
break

end
end
return Plocal

Step 2 - Find closest uncovered cell using BFS

After reaching a dead zone the robot needs a new starting point for the next inward spiral
motion. Since this method is grid based a BFS algorithm can be used to find the closest
uncovered cell that is free from obstacles. The idea is to walk layer by layer from the original
robot position cs to find the closest uncovered obstacle free cell, see details in Algorithm 5
and figure 3.2.
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Figure 3.2: An example of the BFS algorithm. The number in the cells represents the number
of steps from START. The goal of the algorithm is to find the closest uncoverable cell.

Algorithm 5: Breadth First Search (BFS)
Data: Start cell cs.
Result: Closest uncovered obstacle free cell c f .
Q = tcsu

V = tcsu

while Q ‰ H do
c = Q.pop_front()
for neighbour cn of c do

if cn is inaccessible or is in V then
continue

end
if cn is uncovered then

return cn
end
V = V Y cn
Q = Q.push_back(cn)

end
end
return Failure

If the algorithm does not find a new starting point, the area has been fully covered and the
path planning is finished.

Step 3 - Find shortest path using A* to the closest uncovered cell

When a new starting point has been discovered, the shortest path from the current robot posi-
tion to the new starting point is generated using A*, which is described in detail in Algorithm
2. After reaching the point, the algorithm goes back to step 1 and covers the area in an inward
spiral motion until a new dead zone is reached.
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3.5 Algorithm: Sampling-Based Coverage Path Planning

An approach that is used to cover complex 3D structures was proposed by B. Englot and
F. Hover in [11]. Unlike BA* and Inward Spiral it is a sensor-based CPP algorithm. The
approach can be divided into following steps:

1. Locate planar areas and waypoints for simple back-and-forth covering.

2. Find waypoints in individual complex areas with randomized sampling.

3. Remove redundant waypoints using greedy and pruning algorithms.

4. Create a sequence of points that visits all waypoints using a Traveling Salesman Prob-
lem algorithm.

5. Create collision free paths between all waypoints using RRT.

Step 1 - Planar areas

The first step is to segmentize the data representing the environment into planar areas. In
[11], this was made with a method proposed in [2] where the data was a triangle mesh.

The next step is to generate waypoints for every plane. This is done by choosing a random
point on the plane and expand a grid of waypoints in the four directions north, south, east
and west. It generates new waypoints in every direction along the plane until collision or if
the waypoint is out of range to cover the plane. This generates a set of paths that covers all
planar areas in the environment.

Step 2 - Complex areas

Waypoints on complex areas that could not be expressed as planes are generated using ran-
dom sampling. The algorithm samples positions until every coverable point could be covered
from k different sampled positions.

Step 3 - Remove redundant waypoints

After Step 1 and 2 each point in the area should be covered at least once if the robot visits all
the waypoints. Since some points are covered more than once, there is a possibility that some
of them could be removed, which would reduce the computational time and memory usage
of the algorithm in the following steps. The following algorithms were proposed in [23], and
applied in [11].

At first, a greedy algorithm will be used. It iteratively chooses the set, the path for planar
areas and the waypoint for complex areas, that covers most uncovered points until all points
have been covered at least once.

Then, a pruning algorithm removes every set that does not cover a point uniquely. It itera-
tively chooses the set that minimizes the overlapping with covered points. This algorithm is
also applied to individual rows and columns of the path grids that covers the planar areas.

Step 4 - Traveling Salesman

When the minimum amount of waypoints to cover the area has been generated, the next step
is to generate the path, that visits all waypoints. Before solving this problem, which is called
the Traveling Salesman Problem (TSP), all waypoints has to be represented as a graph.
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The path through the grids on planar areas is trivial since it is a basic back-and-forth motion.
Therefore, each planar area path can be reduced to a pair of points to represent the entry and
exit. To ensure that this pair appear adjacent in the TSP solution, the cost of the edge between
them, is set to zero. All other edges between nodes are given a cost of the Euclidean distance
plus a large number big enough to ensure that the entry-exit pair will be adjacent in the TSP
solution.

TSP is NP-hard, so approximate methods are used in practice. One efficient approximate
mathod, which was used in [11], is to use Lin-Kernighan algorithm [19]. It is an approximate
algorithm giving a non-optimal solution in a relatively short time. The idea is to start with a
tour that is generated in a randomized way and improve it until no more improvements are
possible.

The entry and exit of the sweep paths were defined before starting the TSP algorithm. Since
it is possible that another order or set of entries and exits gives a better solution, different
combinations are tested to see if any changes results in a shorter path.

Step 5 - RRT

After generating a sequence of waypoints, a bi-directional rapidly-exploring random tree
(RRT) algorithm is used to find collision free paths between the waypoints. RRT, described
in algorithm 7, builds two search trees, that are biased to grow towards each other. When
the two trees meet, a path that goes from starting point ps to goal point pg is generated. The
trees grow using the function extend, see algorithm 6. At first, one of the trees is extended
towards a random sampled point prand. If the extension was successful and generated a
new point pnew, the other tree is extended towards pnew. Before the next iteration, the trees
get swapped, meaning that the second tree will now be extended towards a new random
sampled point. [26]

The first step of the extend function is to find the point, pnear, in the search tree, T, that is the
closest to the given point, pext. The second step is to generate a point, pnew, at a user defined
distance from pnear towards pext. If pnew is a traversable point, the point and the edge from
pnear to pnew is added to the search tree. This is illustrated in figure 3.3. The status of the point
is set to Reached if the point reached pext, Trapped if it was untraversable and Advanced if it
was traversable, but did not reach pext. [26]
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Figure 3.3: Illustration of the extend algorithm. R represents the sampled pext point, C is the
closest point in the tree pnear and N is the new node in the tree pnew.
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Algorithm 6: Extend algorithm
Data: Search tree T. Point pext defining the direction of extension. Step size λRRT
Result: New point pnew.
pnear = closest point P T from pext
pnew = point R T closest to the position at a distance λRRT towards pext from pnear
if pnew is traversable then

T = T Ytpnewu
if pnew is pext then

status[pnew] = Reached
else

status[pnew] = Advanced
end

else
status[pnew] = Trapped

end
return pnew

Algorithm 7: RRT Path Planning Algorithm to find a path between to points.

Data: Point cloud of environment W . Start point ps. Goal point pg. Max iterations NRRT
max .

Result: Path P from ps to pg
Ta = tpsu

Tb = tpgu

for k P 1, 2, ..., NRRT
max do

prand = random sampled point in W
pnew = extend(Ta, prand)
if status(pnew) ‰ Trapped then

if status(extend(Tb, pnew)) is Reached then
return Shortest path from ps to pg through Ta and Tb

end
end
swap(Ta, Tb)

end
return Failure

When collision free paths between the points have been generated, the cost of the edges be-
tween the waypoints are set to the distance of the generated paths. Finally, the TSP algorithm
is repeated with the updated costs until a stable solution is found.

3.6 Bayesian Optimization

Many systems have multiple parameters that needs to be tuned. To avoid hand tuned opti-
mization of parameters, automatic approaches have been developed. One of these methods is
HyperOpt [3], which is a library implementing Bayesian Optimization. Bayesian Optimiza-
tion is model-based approach that minimizes a given loss function by tuning parameters.
Starting from a prior probabilistic model it sequentially predicts the input parameters that
would generate the lowest loss and updates the model according to the output. After N it-
erations it makes a final input recommendation that is the set of parameter values that gave
the lowest loss during the optimization. This method is very sample efficient and useful in
situations where it is costly to try new input values. [29]
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4 Terrain Assessment

To make a successful coverage path planning, good information about what regions of the
environment that has to be covered is a necessity. Finding traversable and coverable regions
in a point cloud is not the main focus of this thesis, but an important part of the method to
plan a path on a given point cloud. In this chapter, the problem, method and results will be
presented with some discussion at the end.

4.1 Problem

The problem is to distinguish which points in a given point cloud are reachable for the sweep-
ing robot. In many applications all reachable points should be covered. We make following
definitions for individual points (see figure 4.1):

• Obstacle - Point that can not be inside nor in contact with the robot body

• Traversable - Point that can be visited by the robots geometrical centre.

• Coverable - A point that could be covered by the range of the robot. After visiting every
traversable point, all points that has been within the range of the robot are coverable.

• Inaccessible - Traversable and coverable points that are not accessible since there are
no feasible path to reach them.

For comuptational reasons, the point cloud of the environment can be arbitary discretized
into floors and cells to avoid calculating traversability for every point. Every floor consists
of a two dimensional cell grid where every cell has an elevation height, a Digital Elevation
Model (DEM) of the floor. The maximum size of these cells is the robot footprint area and
could be smaller to get a result with higher resolution. A cell can be:

• Invalid - If the number of points in the cell is too low.
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Figure 4.1: Point definitions.

• Ground - If the elevation height of the cell is close to the lowest point in the point cloud
of the floor.

• Obstacle - A cell with a wall or an obstacle that makes it inaccessible by the robot.

• Inaccessible - Cell that are not accessible since there are no feasible path to reach it from
the main coverable area.

• Coverable - A cell that could be covered by the robot. The criterias are described below.

• Border - An obstacle or invalid cell that has a coverable cell as neighbour.

Coverable points can only exist in coverable cells. Points in all other cells are classified as
obstacle points. Only the points in a cell that are close to the elevation height of the cell are
classified as coverable, the rest are obstacle points as well.

The criterias of a coverable cell is based on three parameters:

• Minimum ceiling height, hC
min - the minimum height of free space in a cell. Free space

is the space between the elevation height of the cell and the lowest point above it, see
figure 4.2

• Maximum step height, hR
max - the height difference between two points that the robot

is able to get over without getting stuck, see figure 4.3

• Minimum number of coverable points in cell, Ncov
min - tuned constant to exclude cells

with insufficient information. The constant is representing a minimum amount of cov-
erable points in the cell to make it count as valid.

The first two are robot specific, while the third is a hand tuned constant that depends on the
density of the point cloud.

The requirements for a coverable cell is following,

• The absolute height difference between the cell and at least one of it’s neighbors has to
be lower than the maximum robot step hR

max.
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Figure 4.2: Definition of free space. It is detected by sorting the z-values of all points in the
cell and find two following points with a height difference bigger than the robot height.

Figure 4.3: Definition of the maximum step height. The biggest height that the robot can go
over without getting stuck

• The minimum ceiling height hC
min has to be bigger than the height of the robot hR.

• The amount of coverable points in the cell have to be more than the minimum number
of coverable points in cell constant Ncov

min

• The cell should be accessible from other coverable cells.

4.2 Method

The method that was used to find all traversable and coverable points in a point cloud can be
divided into four parts:

1. Floor segmentation - Divides the point cloud into different floors.

2. Cell segmentation - For each floor separately creates a DEM of the floor by splitting the
point cloud into cells and finding their elevations. Finds invalid cells.

3. Cell classification - Finds the biggest connected area of coverable cells - the main cover-
able area. Finds border, inaccessible and obstacle cells as well.

4. Point classification - Classifies points in the point cloud using following steps:

a) Sets all points that are not in the main coverable area as obstacle.

b) Sets all points in the main coverable area that are more than a robot radius away
from an obstacle point as traversable.

c) Sets all points that are within a robot radius from a traversable point as coverable.
Set unclassified points to inaccessible.

These parts are described in detail below.
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4.2. Method

Floor Segmentation

The first step was to divide the point cloud into different floors. Following steps, proposed
in [28], were made:

1. The point cloud was divided into thin boxes with thickness ∆hL laying upon each other.

2. The amount of points in every box were counted and put into a histogram. The local
maximas were identified.

3. A threshold parameter NF
min was hand tuned based on the histogram to exclude local

maximas with low amount of points. After the tuning, all local maximas that had a
value bigger than NF

min were seen as potential ground heights of a floor.

4. The potential ground heights were examined to detect ceilings of rooms by requiring
height difference of at least hC

min.

5. When the ground height of every floor was known, the original point cloud was cut at
these heights into segments. To include all points of the ground floor in case of small
inclinations an offset parameter hF

o f f set was hand tuned and added to the ground floor
heights. The result is one point cloud for each floor.

Cell Segmentation

Next step was to make a DEM of each floor, Ei. The point cloud of the floors was transformed
into a 2D grid with cells, where every cell had an elevation height. It was assumed that every
valid cell had only one elevation, ec. The method to find the elevation height was proposed
in [28].

Firstly, the point cloud was simply projected on a 2D plane and divided into square cells to
create a 2D-grid M. Secondly, the elevation for every cell was found and invalid cells were
detected. It was done using Algorithm 8. The idea of the algorithm was to sort the z-values
for all points in a cell and then find two following points with a height difference that was
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4.2. Method

bigger than the robot height hR. The elevation height of the cell in the DEM was set to the
height of the lowest point.

Algorithm 8: Find elevation for each cell and detect invalid cells
Data: 2D-grid M of environment. Point cloud W . Minimum number of coverable points

in cell Ncov
min. Robot height hR. Maximum step height hR

max.
Result: DEM E of the environment
for cell c P M do

Wc = points in W inside cell c
Zc = z-values of Wc
for zi in sorted Zc do

if |zi´1 - zi| > hR then
break

end
end
ec = zi´1
Wc,cov = Points in Wc with a z closer than hR

max from ec
if Number of points in Wc,cov > Ncov

min then
Add a cell c with ec as elevation height and Wc,cov as coverable points to E

else
Add cell c to E as Invalid

end
end

Cell Classification

After finding the elevation height of the cells, the heights were used to classify the accessibil-
ity of the cells for the robot. Some of the cells were already classified as invalid in the previous
step. The classification algorithm is described in Algorithm 9. It is based on the idea of doing
a breadth first search starting from a ground cell which was presented in [28].

First, all ground cells, cells with the same height as the lowest z of the floor, zF were inserted
into a set of ground cells Eground. All these cells are potential starting points for a cluster
of connected coverable cells, an island. These islands were built using a breadth first search
on the DEM of the environment. When all islands had been detected, the biggest island,
consisting the biggest amount of cells was chosen as the main coverable area, Ecov. All cells
in Ecov were classified as coverable. Cells in other islands were classified as inaccessible. Cells
that were neither invalid, coverable or inaccessible were classified as obstacle cells.
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4.2. Method

For later calculations of traversable points a set of border cells, Eborder had to be generated.
This was done by looking for uncoverable neighbours of every cell of the main covarble area,
see details in Algorithm 10.

Algorithm 9: Detect the main coverable area

Data: Height zF of the floor ground. DEM E of the floor
Result: Coverable cells Ecov
Eground = cells in E with elevation close to zF

I = H
while Eground ‰ H do

cstart Ð arbitrary cell in Eground
Evisited = tcstartu

Qcov = tcstartu

while Qcov ‰ H do
ccurr Ð Qcov.pop()
for neighbour cn of ccurr do

if cn is not accessible from ccurr then
continue

end
if cn is in Evisited then

continue
end
if cn is in Eground then

Eground = Eground / cn

end
Evisited = Evisited Y cn
Qcov.push(cn)

end
end
I = I Y Evisited

end
Ecov = the set with biggest amount of cells in I
return Ecov

Algorithm 10: Detect all border cells of the main coverable area
Data: Coverable cells Ecov. DEM E of the environment.
Result: Border cells Eborder.
Eborder =H
for cell c in Ecov do

for neighbour cn of c in E do
if cn is not in Ecov then

Eborder = Eborder Y c
end

end
end
return Eborder

Point Classification

The last step in the terrain assessment is to classify the points into traversable, coverable and
obstacle/inaccessible. The purpose is to stop the path planning from making waypoints that
are close to obstacles, where there is a risk of collision.
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4.2. Method

Figure 4.4: Illustration of the distance dcollision = da + db, where da = 1?
2

sc and db = 0.5bR.
The red point is a border point. Yellow area is untraversable due to risk of collision. sc is the
side length of the cells and bR is the breadth of the robot

First, all coverable points for every cell in the main coverable area Ecov were extracted as
a potentially coverable point cloud Wp,cov. Then, a point was created for every border cell
in Eborder and put into a border point point cloud Wborder. The (x, y)-position of the created
points were set to the center position of the border cell. The z value was set to the elevation
height of the neighbouring coverable cell in Ecov.

A point was classified as traversable if the distance to the closest border point was bigger
than

dcollision =
1
?

2
sc + 0.5bR

where sc is the side length of the square cells in the cell grid and bR is the breadth of the robot.
See motivation and explanation in Figure 4.4.

The idea was to first assume that every coverable point was traversable. Then, go through
every border point and set points nearby as untraversable. Thereafter, the algorithm detects
all inaccessible points by finding coverable points that are not within the robot range from a
traversable point. It is assumed that the robot covers all points within a radius rR from the
position of the robot. The algorithm is described in detail in algorithm 11 and illustrated in
figure 4.5.
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4.3. Results

Figure 4.5: Illustration of the point classification algorithm. First, border points and potential
coverable points are identified. Secondly, coverable points that are not close to border points
are classified as traversable. Thirdly, only points that are reachable from the traversable points
are classified as coverable, the rest are inaccessible.

Algorithm 11: Find traversable positions for the robot and all coverable points.
Data: Potentially coverable point cloud Wp,cov. Point cloud Wborder with border points.

Distance dcollision from a border point to robot position with no risk of collision.
Radius range of robot rR

Result: Coverable point cloud Wcov. Traversable point cloud Wtrav.
Wtrav = Wp,cov
for point p in Wborder do

Wcollision = points in Wtrav closer than dcollision from p
Wtrav = Wtrav / Wcollision

end
Qcov = Wp,cov / Wtrav
Wcov = Wp,cov
while Qcov ‰ H do

pcov ÐQcov.pop()
if distance from pcov to the closest point in Wtrav is bigger than rR then

Wcov = Wcov / pcov
end

end
return Wcov, Wtrav

4.3 Results

Three different point clouds were classified; a two-storey parking garage (Figure 1.1), a high-
way bridge ramp (Figure 1.2a) and a city street with a crossing (Figure 1.2b).

Two floors were detected in the parking garage and the highway bridge point clouds. The
histogram in figure 4.6 shows the number of points for different heights. By looking at the
histogram a tuned threshold value NF

min, represented as the orange line in the figure, was
chosen to leave the three highest peaks as potential ground heights. Since the peak in the
middle in Figure 4.6a and the first peak in Figure 4.6b does not fulfill the requirement of
having hF

min meters free until next peak, the floor segmentation algorithm classified it as a
false ground height. Finally, the other two peaks defined the heights of the floor ground and
the point cloud could be divided.
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Table 4.1: Hand tuned parameters used in Terrain Assessment. Ncov
min was tuned based on the

density of the point cloud. NF
min was tuned to make a reasonable floor segmentation using

the histograms in Figure 4.6. hF
o f f set was tuned to include all points of the ground of the floor.

Parameter Explanation
Parking
garage

Highway
bridge

City
crossing

Ncov
min Min. coverable points in cell 12.5 12.5 25

NF
min Min. points in ground layer 105 4 ¨ 104 1.5 ¨ 104

hF
o f f set Ground floor height offset 0.7m 2m 0.1m

Table 4.2: Parameters used in Terrain Assessment. Values of Real data parameters are based
on data from the real world provided by the developers of the robot. Prediction parameters
are based on predictions provided by the developers of the robot. Values of Resolution pa-
rameters are minimised to give a good resolution while keeping the computational time on a
reasonable level.

Parameter Value Explanation Based on
bR 0.75 m Breadth of robot Real data
hR 1 m Height of robot Real data

hR
max 0.2 m Max. step height of robot Prediction
sc 0.5 m Cell size. Length of side. Resolution

∆hL 0.1 m Thickness of each layer Resolution
hF

min 2 m Min. height of a floor Real data

(a) Parking garage (b) Highway bridge

Figure 4.6: The histograms used for floor segmentation. Two major peaks at the height can
be identified for both environments. They represent the height of the ground of the two
floors. The other peaks are obstacles and ceiling. The orange line represents the hand tuned
NF

min parameter, representing the minimum amount of points in a layer to be classified as
a potential ground floor height. By neglecting all peaks under this line it leaves only three
peaks to possibly represent the height of a ground floor. One peak is then excluded, since it
has less than 2 meter distance until next peak.

The values of hand tuned parameters for each environment is presented in Table 4.1. Values
and explanation of all common parameters are presented in Table 4.2. The result of the terrain
assessment is shown in figure 4.7 and tables 4.3 and 4.4.
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4.3. Results

(a) Parking garage. Floor 1 (b) Parking garage. Floor 2

(c) Highway bridge (d) City crossing

Figure 4.7: Result of Terrain Assessment. Green points represents traversable areas, yellow
are only coverable and grey are points that are obstacle and inaccessible points

Table 4.3: Result Cell classification of the Terrain Assessment. COVERABLE area can possibly
be covered by the robot. OBSTACLE area that has an elevation height that makes it inacessi-
ble. INACCESSIBLE area is the area that could be covered, but is not connected to the main
coverable area. INVALID area consists of cells that does not have enough information to be
evaluated. TOTAL is the total area of the floor, including areas with no points.

Environ- Floor COVERABLE OBSTACLE INACCESSIBLE INVALID TOTAL
ment # [m2] [m2] [m2] [m2] [m2]

Garage 1 694 235 2 2290 3220
Garage 2 1208 378 44 1941 3570
Bridge 1 2116 693 433 16368 19610
Bridge 2 521 217 849 18024 19610

Crossing 1 1296 436 0 8119 9850
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4.4. Discussion

Table 4.4: Result of Point Classification of Terrain Assessment. TRAVERSABLE points are
drivable positions and can be visited by the robot. If the robot would visit all these points, all
COVERABLE points would be covered. INACCESSIBLE are the points that could be covered,
but is too far away from a TRAVERSABLE point. OBSTACLE points are not allowed to be
within the range of the robot. TOTAL is the total amount of points in the point cloud

Environ- COVERABLE TRAVERSABLE INACCESSIBLE OBSTACLE TOTAL
ment # # # # #
Garage 1 171 664 (45%) 1 089 865 (42%) 43 027 (2%) 1 411 447 (54%) 2 626 138
Bridge 900 137 (38%) 837 584 (35%) 31 632 (1%) 1 433 675 (61%) 2 365 444
Crossing 1 133 544 (35%) 1 030 455 (32%) 40 813 (1%) 2 054 517 (64%) 3 228 874

4.4 Discussion

As shown in figure 4.7 the results of the terrain assessment are in line with expectations.
Points that were classified as traversable were on a distance from obstacle points with cover-
able points in between, similar to the illustration in figure 4.1.

A fault of this process is that it only makes sure that all coverable cells are connected in a
main coverable area, but does not ensure that all traversable points are connected. Therefore,
in scenarios such as in Figure 4.8 a few small clusters of traversable points with connected
coverable points are in fact inaccessible.

The algorithm did also struggled with classifying some parts. An example is the wall of the
ramp in the parking garage environment. The floor segmentation divided the environment
into two floors and classified the cells separately without taking the classification of the other
floor into account. For a wall of a ramp that ranges over multiple floors this became a prob-
lem. The classification of the first floor classified wall points at the floor splitting height as
coverable. Most of these points were later classified as inaccessible by the point classification,
but it still caused some unexpected classifications of points on the ramp close to the wall, see
figure 4.9.

The used method gave results that were good enough to be used for the main focus of this
thesis. Because of faults in the terrain assessment, some clusters of points that were classified
as coverable will be unreachable for the robot. This means that the CPP algorithms will not
be able to reach 100% coverage, which is something that needs to be taken into consideration
when evaluating these algorithms.

The method included some unwanted hand tuning and a few false classifications. For future
work, it would be recommended to find a more reliable method that does not include any
biased hand tuning and can handle the scenarios where this method gave incorrect classifi-
cations.
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4.4. Discussion

Figure 4.8: Part of the crossing environment showing that the used method does not make
sure that all traversable areas are connected. In narrow passages like in this scenario, this
creates small clusters of traversable point that are unreachable. Green points are traversable,
yellow points are coverable and purple points are inaccessible.

Figure 4.9: Part of the wall of the ramp in the parking garage environment where the terrain
assessment did some unexpected classification. A result of classifying the two floors sepa-
rately without taking the other floor into account. Green points are traversable, yellow points
are coverable and purple points are inaccessible.
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5 Coverage Path Planning

The main focus of this thesis is coverage path planning (CPP) of large-scale urban environ-
ments with multiple floors. This chapter describes implementation details of existing CPP
algorithms and theory for a new approach incorporating strengths of existing solutions.

5.1 Environment representation

The main problem with CPP over multiple floors is the representation of the environment.

One approach is to make a 2D plane representation of each floor and to cover them using
well known approaches seperatly. This would require floor segmentation, which in scenarios
such as a spiral ramp in a parking garage, is not trivial even with hand-tuning. Another
disadvantage is that it would make a plan for each floor separately and not take the full path
over multiple floors into consideration when optimising the path.

Another approach could be to transform the point cloud into a voxel grid with algorithms
such as OctoMap [20]. This method however, transforms multiple points into boxes, which
means that information gets lost. Good coverage can not be achieved without having high
voxel resolution and paths that seems shortest in the voxel grid can in reality be unfeasible or
longer [25].

Taking these arguments into consideration, the representation of the environment in this
project was chosen to be a point cloud with classified points. The points were classified as
coverable, traversable and inaccessible/Obstacle, see details and definitions in Chapter 4. No
discretizations were made and all calculations were directly made on the points in the given
point clouds.

5.2 Motion Planner

The motion planning is an important base of many coverage path planning algorithms. It
solves the problem of planning the shortest obstacle free path between two given points. The
same motion planner was used for all implemented algorithms. It was based on A* described
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5.2. Motion Planner

Figure 5.1: Neighbour positions, N, of a point S, were generated by taking a step in 8
directions from S and choosing the closest traversable point. All points in the figure are
traversable.

in algorithm 2 to find the shortest path and A*SPT, see algorithm 3 to make the path smoother.
If no path was found by the A*, the RRT algorithm, see Algorithm 7 was used. It is more
reliable but does not generate the optimal path.

To find neighbour positions of a point is a task that is frequently required in both motion
planning and in CPP. The neighbours of a position were given by taking a step in 8 directions
from the position and taking the closest traversable point from that spot, see Figure 5.1.

Another task that is common and handled by the Motion Planner is to check the validity
of a path between two points. This function assumes that the two points are traversable.
The validation is described in detail in algorithm 12. If the closest traversable point is the
same as the original point it means that this point is on the border between traversable and
untraversable space, and that the path could not be valid. However, if the distance is smaller
than the resolution, the step size, the path is traversable. If the distance between two points
is bigger, the line-of-sight path between these points is divided into small steps and is only
valid if every step ends on a position close to a traversable point, see figure 5.2.
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Figure 5.2: An example of a valid (upper illustration) and an invalid (lower illustration) step
between two points. The line-of-sight path between the points are divided into three steps. At
each step the algorithm calculates the distance to the closest traversable point. If the distance
is bigger than the untraversability threshold (see red circle in lower illustration) the path will
be classified as invalid.

Algorithm 12: Algorithm that returns if a step between two points is valid or not.
Data: Start point ps. Goal point pg. Step size λ. Threshold radius for untraversability

rtrav.
Result: A boolean, representing whether the path is valid or not.
if pg is ps then

return False
end
dtot =

∣∣pg ´ ps
∣∣

if dtot ă λ then
return True

end
Nsteps = dtot/λ
~D = Direction vector from ps to pg of length λ
for step i P 1, 2, ..., Nsteps do

Set si Ñps + i ¨ ~D
if Distance to nearest traversable point to si > rtrav then

return False
end

end
return True

5.3 Coverage Path Planner

The focus of this project was to evaluate different CPP algorithms. These algorithms had
many common functions that are used to calculate the path that covers the area. The algo-
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rithms BA* and Inward Spiral that were described in section 3.3 and 3.4 are based on a two
dimensional world representation with tiles. To make them applicable directly on a point
cloud and efficient in a multi floor environment following modifications were made.

• Instead of moving between tiles c, the path P consisted of traversable points p.

• To keep track of covered areas, BA* adds tiles to a model and Spiral marks cells as
visited. Instead, this was handled by marking all coverable points as covered within a
radius, rR from the visited position. When covering a path between two points, posi-
tions along the path were visited as well with such frequency that it made sure that all
points along the path within the radius were covered.

• A point was classified as visited if the distance to the closest point in the visited path P
was smaller than a threshold rvisited.

• Getting neighbour positions is a task required in both BA* and Inward Spiral. Instead
of receiving tiles nearby in each of the 4 directions this function returned traversable
points in 8 directions, as previously described in Section 5.2.

• A neighbour point was blocked if the point was classified as visited or if the path to the
point was classified as invalid by Algorithm 12.

The two algorithms BA* and Inward Spiral has the same structure, but different ways of
solving following steps:

1. CPP Step 1 - Find a path that covers the area until it reaches a dead end. Follow the
path.

2. CPP Step 2 - Find a new starting point.

3. CPP Step 3 - Find the shortest path from the dead end to the next starting point. Follow
the path and go back to CPP Step 1.

5.4 BA* implementation

This section describes details about the implementation of BA* algorithm. The implementa-
tion of CPP Step 1 was mostly based on Algorithm 1. Since the number of neighbours was
eight instead of four the priority order was set to north, south, northeast, northwest, south-
east, southwest, east, west. The used BM algorithm is described in Algorithm 13. CPP Step 2
and 3 were implemented according to Section 3.3, with the modifications described in Section
5.3. An illustration that shows a simplified plan of the implemented BA* is shown in Figure
5.3.

5.5 Inward Spiral implementation

The implementation of the Inward spiral algorithm was based on Section 3.4. Just like in the
BA* implementation the number of neighbours were increased and the priority order had
to be changed. The priority for the neighbours were set to backwards-right, right, forward-
right, forward, forward-left, left, backwards-left. CPP Step 1 was implemented by applying
this change of priority and the modifications in Section 5.3 to Algorithm 4. BFS, Algorithm 5,
was implemented with the same modifications for the CPP Step 2. For CPP Step 3, the same
solution was implemented as for the BA*. Unlike the original description of the Inward Spiral
algorithm in Section 3.4, the smoothing of the path, see Algorithm 3, was applied on the A*
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Algorithm 13: CPP Step 1 for BA*. A modified BM algorithm (Algorithm 1)
Data: Starting point psp. Traversable point cloud Wtrav
Result: Covering path Wlocal
Set CriticalPointFound Ñ f alse
pcurr = psp
Plocal = H
while CriticalPointFound is f alse do

Set CriticalPointFound Ñ true
for point pn PWtrav in direction n P north, south, northeast, northwest, southeast,

southwest, east, west from pcurr do
if pn is not blocked then

Plocal .push_back(pn)
pcurr = pn
Set CriticalPointFound Ñ f alse
break

end
end

end
return Plocal

Figure 5.3: An illustration how the BA* algorithm would solve the CPP. Green arrows are the
main path that covers new points. When reaching a dead zone, the robot needs to travel to a
new uncovered spot. Red arrows are symbolising these movements when no new points are
covered.

path in the implementation. An illustration that shows a simplified plan of the implemented
Inward Spiral is shown in Figure 5.4.

5.6 Sampled BA* and Inward Spiral

The BA* algorithm generates straight back-and-forth paths across the area, while the Inward
Spiral follows the walls of the environment and goes in a spiral motion towards the center.
The advantage of BA* path is the straight paths that are optimal for cleaning and works well
on big open areas. However, a real world outdoor environment has many obstacles and
uneven walls that requires the path to adjust to the environment by following the geometry
of the borders. This is better done by the Inward Spiral.
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Figure 5.4: An illustration how the Spiral algorithm would solve the CPP. Green arrows are
the main path that covers new points.

We propose the novel approach Sampled BA* and Inward Spiral to handle covering of envi-
ronments that consists of both open areas and many obstacles. It is based on the idea of the
Sampling-Based Coverage Path Planning algorithm described in Section 3.5. The general idea
is to minimize the cost f (P) of path P, defined as

f (P) = Length of P + Total rotation of P (5.1)

by covering open areas with BA* and more complex areas with Inward Spiral. This is done
by covering segments of the area with BA* and Inward Spiral starting from random sampled
edge points and then connect these segments with a Traveling Salesman algorithm [16]. A
random edge point is found by sampling a random uncovered point, check if it is accessible
from the starting point using RRT (see Algorithm 7) and then find the closest inaccessible
point using BFS (modified Algorithm 5).

The new algorithm Sampled BA* & Inward Spiral , see Algorithm 14, follows these steps:

1. Initialise a list of detached path segments S.

2. PART I: For Nφ = 4 different angles φi, define north as the angle φi and start covering
using the BA* algorithm (Section 5.4) starting from a traversable edge point of a ran-
domly sampled uncovered area. This is illustrated in Figure 5.5a. Stop covering when
the distance to the next starting point, given by CPP Step 2, exceeds d1

max.

3. If none of these Nφ paths had a cost f (P) per coverage C (Equation 5.1 and 3.1) that
were lower than C1

min, set the points covered by the path with the biggest coverage as
explored. Otherwise, choose the path with the lowest cost per coverage. Add it to S and
set its covered points as explored and covered.

4. Repeat Step 2-3 until E1 of the points are explored.

5. PART II: Start covering using the Inward Spiral algorithm (Section 5.5) starting from
a traversable edge point of a randomly sampled uncovered area, see Figure 5.5b. Stop
covering when the distance to the next starting point, given by CPP Step 2, exceeds
d2

max. Set the points that were covered by the path as explored. If the cost per coverage is
lower than C2

min, add the path to S and set its covered points as covered.

6. Repeat Step 5-6 until C of the points are covered or all points have been explored.
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7. PART III: Add the start and end positions of the paths in S as nodes to a graph tree T.
All nodes are connected with edges with weights

• w = 0, if the edge is between the start and end node of the same path in S.

• Otherwise, distance based according to equation

w = woffset + |sA(x, y)´ sB(x, y)|+

K|sA(z)´ sB(z)|

where sA and sB are the position of the two nodes, woffset is a large number and
K ě 1.

The purpose of woffset is to make sure that the traveling salesman algorithm in the fol-
lowing step always chooses to connect corresponding start and end nodes. Since the
environment could have multiple floors, extra weight K is added to difference in height,
to avoid potential movement between floors.

8. Solve the TSP problem [16] of the cheapest visitation order, PTSP, to visit all nodes in T
(see Figure 5.5c).

9. Walk through every node in PTSP and create an ordered list of paths STSP. For every
node si,

• If si is start node, add corresponding path to STSP.

• If si is an end node, add the corresponding path, but reversed, in S to STSP.

10. Create a continuous path P by following the paths in STSP. Connect them with obstacle
free smooth paths as in CPP Step 3 (same in Sections 5.4 and 5.5). This is illustrated in
Figure 5.5d.

5.7 Parameters

All algorithms mentioned in this chapter has multiple parameters that had to be tuned. They
can be hand tuned or systematically tuned using Bayesian optimization, see Section 3.6.

Visited threshold, rvisited and Step size, λCPP are common parameters for all algorithms and to
set their value is a general problem for CPP. Description of these parameters and theoretical
motivation behind their boundary values in the tuning are described below.

In addition to λCPP and rvisited, BA* algorithm has a parameter representing the direction
angle defining north. The parameters of Sampled BA* & Inward Spiral are presented in Table
5.1.

CPP Step size, λCPP

The parameter CPP Step size λCPP defines the length of each step to a neighbour, see blue
arrows in Figure 5.1. A too small λCPP leads to multiple coverage of the same area. A too big
λCPP results in gaps between paths, which needs to be visited later and makes the covering
path less effective.

The value of the parameter was tuned with boundaries based on the covering radius range of
the robot, rR. It is based on the two scenarios in Figure 5.6. The λCPP in the scenario in Figure
5.6a, shows the step size that would guarantee full coverage for every step without gaps.

λmin
CPP =

?
2 ¨ rR « 1.41rR (5.2)
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(a) For different angles φi, define north N as the angle φi and start covering using the BA* starting from
random sampled edge point R. Keep covering until the distance to the next starting point is too big.
Choose the path with the lowest cost per coverage C = (Len + Rot)/Cov.

(b) Start covering using the Inward Spiral algorithm starting from random sampled uncovered edge
point R. Green boxes in the figure are covered by the best path from BA*, see the first path from left in
Figure 5.5a.

(c) Apply a traveling salesman algorithm to calculate the cheapest route to visit all start and end points
of path. Since the weight between start and end node pairs is set to 0 they will always be connected. S1
and S2 are start nodes, E1 and E2 are end nodes of the paths in the segment list S. E2 is also the start
position of the total path.

(d) The final path. The robot follows all paths according to the cheapest route and connects them using
smooth A*, see purple arrow. Since E2 Ñ S2 starts from and end node, the path is reversed to the path
in 5.5b

Figure 5.5: Simplified illustration of the Sampled BA* & Inward Spiral algorithm. Dark boxes
are untraversable. Green arrows shows paths generated by BA*, blue arrows by Inward Spiral
and purple arrows by the Motion Planner. Red arrows is parts of the paths as well, but
indicates that robot moves over already covered area. 39



5.7. Parameters

Algorithm 14: Sample Based BA* & Inward Spiral.
Data: Starting position ps. P =H. STSP =H.
Result: Path P to cover the area.
SBA* Ð Sample BA* path segments (Algorithm 15)
SIS Ð Sample Inward Spiral path segments (Algorithm 16 with segments in SBA* set as covered)
S Ð SBA* Y SIS
T Ð Empty graph tree
for path Pi in S do

Add start and end point of Pi as nodes in T.
end
PTSP Ð Cheapest route to visit all nodes in T
pcurr Ð ps
for node pi in PTSP do

if pi = pcurr then
continue

end
if pi is a start node then

Pi Ð Path in S with pi as start node
else

Pi Ð Reversed path in S with pi as end node
end
STSP Ð STSP Y Pi
pcurr Ð Last point in Pi

end
pcurr Ð ps
for path Pi in STSP do

PA˚ Ð Shortest path from pcurr to the start of Pi.
P Ð PY PA˚ Y Pi
pcurr Ð Last point in Pi

end
return P

Algorithm 15: PART I: Sample BA*
Data: S =H.
Result: Set of paths S covering local regions.
while exploration goal E1 has not been reached do

sr = random position in uncovered area
pr = closest edge point to sr given by BFS
SBA˚ =H
for angle φ P [0, 1, ..., Nφ] ¨ 2π/Nφ do

while distance to new starting point ă d1
max do

PBA˚ Ð BA* from pr with north = φ
end
SBA˚ = SBA˚ Y PBA˚

end
SBA˚accepted Ð PBA˚ P SBA˚with cost

coverage ą C1
min

if SBA˚accepted =H then
Explore PBA˚ P SBA˚with max coverage

else
Pbest Ð PBA˚ P SBA˚with lowest cost

coverage
Explore and cover Pbest
S = SY Pbest

end
end
return S
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5.7. Parameters

Algorithm 16: PART II: Sample Inward Spiral
Data: S =H.
Result: Set of paths S covering local regions.
while goal coverage C or exploration = 1 has not been reached do

sr = random position in uncovered area
pr = closest edge point to sr given by BFS
while distance to new starting point ă d2

max do
PSpiral Ð Inward Spiral from pr

end
Explore PSpiral

if cost
coverage of PSpiral ą C2

min then
S Ð SY PSpiral
Cover PSpiral

end
end
return S

Table 5.1: Sampled BA* & Inward Spiral parameters.

Parameter Description
E1 Exploration goal for PART I
C Total coverage goal
d1

max Max distance to next starting point in PART I
d2

max Max distance to next starting point in PART II
C1

min Min cost (length + rotation) per coverage in PART I
C2

min Min cost (length + rotation) per coverage in PART II
λCPP Step size
rvisited Visited threshold

is the lower boundary of the step size, since lower step size would result unnecessary cover-
age of same points. The upper boundary

λmax
CPP = (

?
2 + 1) ¨ rR « 2.41rR (5.3)

is based on the scenario in Figure 5.6b. Bigger step size would make the last step (red arrow in
Figure 5.6b) to end up in an already covered area, which would result in ineffective coverage.

CPP Visited threshold, rvisited

CPP Visited threshold rvisited, is a radius that defines if a position has been visited by the robot.
If this radius is too small, a lot of points will be covered multiple times, which makes the path
longer and the algorithm less effective. If it is too big, it will be harder for the algorithms to
find valid points to go to and consequently miss to cover spots because of inaccessibility.

The radius rvisited was set based on the step size and three different scenarios, see Figure 5.7.
It is desired to allow the algorithm to make paths with straight lines side by side. Therefor,
rvisited should be small enough to allow the scenarios in Figure 5.7a and 5.7c. However, rvisited
needs to be big enough to not accept the scenario in Figure 5.7b. The distance between two
side-by-side paths depends on the third step in the figures. If the distance is big, gaps between
the circles allows the algorithm to take steps between the paths, which is unwanted. Therefor,
rvisited was calculated to make the scenario in Figure 5.7a, not allowing any gaps between the
side-by-side paths. This value is big enough to not allow the scenario in Figure 5.7b, but small
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5.7. Parameters

(a) NorthÑNorthÑ EastÑ South. Step
size λmin

CPP =
?

2 ¨ rR « 1.41rR.
(b) North Ñ North Ñ East Û South-west. Step
size λmax

CPP = (
?

2 + 1) ¨ rR « 2.41rR.

Figure 5.6: The two different scenarios that was used to define the boundaries of the CPP Step
size, λCPP. Green circles shows the covering range of the robot at each step.

enough to allow the scenario in Figure 5.7c. Given a step size λ, rvisited is given by

rvisited =
λ
?

2
« 0.71λ (5.4)

The visited threshold needs to be tuned as well, meaning a lower and an upper boundary is
needed. The visited threshold has to be lower than the step size to be able to make a step in
any direction. Consequently, the upper boundary rmax

visited was set to the lower boundary of the
CPP step size (Equation 5.2),

rmax
visited =

?
2rR. (5.5)

The lower boundary was set based on Equation 5.4 for the lower boundary of the step size.
The lowest boundary was set to one standard deviation away from this value in a normal
distribution resulting in

rmin
visited =

λ
?

2
(1´ σ) =

?
2rR
?

2
(1´ 0.341) = 0.659rR (5.6)

42



5.7. Parameters

(a) North Ñ North Ñ East Ñ South.
Should be accepted and not leave any
gaps.

(b) NorthÑNorthÑ EastÛ South-west.
Should not be accepted.

(c) North Ñ North Ñ North-east Ñ
South. Should be accepted.

Figure 5.7: The three different scenarios that was used to define the CPP Visited threshold
rvisited.
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6 Method

This chapter contains details about the method that were used to evaluate the CPP algorithms
that were described in chapter 5.

6.1 Terrain Assessment

Before evaluating the CPP algorithms, the point clouds on which they would operate on, had
to be prepared. Given a point cloud, all traversable positions for the robot and all coverable
points had to be found. The used method and the results of the Terrain Assessment are
described in Chapter 4.

6.2 Experiment 1 - Optimize path for one starting point

The goal of the first experiment was to find the best path among the three algorithms BA*,
Inward Spiral and Sampled BA* & Inward Spiral (Sections 5.4-5.6). Coverage path planning
was solved for three different environments, see Figure 6.1 from a given starting point.

For each algorithm, optimization of the parameters was done using HyperOpt [3], see Section
3.6. The loss function f (P) to minimize was the sum of the total path length and total accu-
mulated path rotation (Equation 5.1) and the number of evaluations N was set to 100. The
algorithms planned paths until they reached 95% coverage or the computational time limit of
250 seconds, whichever was reached first.

6.3 Experiment 2 - Best configuration for other starting points

The goal of the second experiment was to compare the three algorithms with their optimal
configurations given from Experiment 1 for other starting points. For each environment, ten
random points were sampled, see Figure 6.1. For each point, plans were made using the
three algorithms. Plans were made until maximum coverage or the computational time limit
of 400 seconds were reached. Coverage, total rotation and length of path was calculated at
different times during the planning. For BA* and Inward Spiral, calculations were done every
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6.3. Experiment 2 - Best configuration for other starting points

(a) Parking garage

(b) Highway bridge

(c) City crossing

Figure 6.1: Environments that were used. Green area is coverable, grey is inaccessible. Light
green marker is the given starting point used in Experiment 1. Blue markers are the 10 ran-
domly sampled starting points that were used in Experiment 2.
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6.4. Properties

time they reached a dead end. For Sampled BA* & Inward Spiral , every tenth percentage
coverage. At each calculation, Part III of the algorithm (see Section 5.6) was applied on the
segments in S from PART I and PART II. Mean and 95% confidence interval over the starting
points was computed for every time and coverage sample.

6.4 Properties

All values presented in the results are based on a path P and a coverable point cloud Wcov.
Both P and Wcov consist of three dimensional points p.

Length of path

Length of path, lP was calculated by taking the sum of the euclidean distances between the
N points in the path, P, when visiting them in order, i.e.

lP =
N

ÿ

i=1

|pi ´ pi´1| (6.1)

Total rotation

Total rotation is the sum of the differences in the yaw angle between the vector into each point
and out of each point. After projecting every point in path P on a 2D plane, the total rotation,
φP, was calculated with

φP =
N

ÿ

i=2

| arccos (
pi ´ pi´1

|pi ´ pi´1|
¨

pi´1 ´ pi´2

|pi´1 ´ pi´2|
)| (6.2)

Coverage

Coverage is the percentage of coverable points that has been covered. A point has been
covered if it is within the range radius of the robot rR from any point in path P. If the distance
between two points was bigger than step size λR

cov, steps were taken along the path while
covering points within the range at each step, see algorithm 17.

Algorithm 17: Calculating Coverage
Data: Path P, Coverable point cloud Wcov
Result: Coverage C
Wcovered = H
for point pi PWcov do

if |pi ´ pi´1| ą λR
cov then

Psub = Points along the line from pi to pi´1 with spacing λR
cov

else
Psub = pi

end
for point p P Psub do

Wcovered Ð all points in Wcov within radius rR from p
end

end
return |Wcovered|/|Wcov|
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7 Results

Results from the experiments and used parameter values are presented in this chapter. Figure
7.1 shows paths in the parking garage environment from simulations of the implemented CPP
algorithms.

7.1 Common Parameters

This section presents the values of the common parameters that were used. Same robot ge-
ometry and motion planner was used in all three algorithms. Parameters related to the robot
are presented in Table 7.1. Parameters for the Motion Planner are presented in Table 7.2.

Table 7.1: Robot parameters. Values of Real data parameters are based on data from the real
world provided by the developers of the robot. Values of Resolution parameters are minimised
to give a good resolution while keeping the computational time on a reasonable level.

Parameter Value Explanation Based on
rR 0.375 m Coverage radius Real data

λR
cov 0.2 m Coverage step size Resolution

Table 7.2: Motion Planner parameter. Values of Resolution parameters are set to give a good
resolution while keeping the computational time on a reasonable level. Hand tuned based
on tests parameters are hand tuned by making multiple tests and adjust the values to give
plausible reliance, computational time and paths.

Parameter Value Explanation Based on
λ 0.1 m Step size Resolution

λA˚ 0.5 m Step size used in A* Hand tuned b.o. tests
λRRT 0.3 m Step size used in RRT Hand tuned b.o. tests
rtrav 0.2 m Threshold for untraversability Hand tuned b.o. tests

NRRT
max 10 000 Max iterations in RRT Resolution
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7.1. Common Parameters

(a) BA*

(b) Inward Spiral

(c) Sampled BA* & Inward Spiral

Figure 7.1: Coverage paths on the parking garage environment.
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7.2. Experiment 1 - Optimize path for one starting point

Table 7.3: CPP parameters optimized using HyperOpt on given start position.

BA*
Parameter Parking garage Highway bridge City crossing Prior
λCPP 0.634m 0.557m 0.524m U (0.5, 1)
rvisited 0.473m 0.453m 0.404m U (0.25, 0.5)
φ 4.65 rad 5.34rad 4.70 rad U (0, 2π)
Inwards Spiral
Parameter Parking garage Highway bridge City crossing Prior
λCPP 0.628m 0.737m 0.665m U (0.5, 1)
rvisited 0.499m 0.483m 0.500m U (0.25, 0.5)
Sampled BA* & Inwards Spiral
Parameter Parking garage Highway bridge City crossing Prior
E1 0.865 0.940 0.863 U (075, 0.95)
d1

max 4.13m 4.49m 1.69m U (1, 5)
d2

max 6.94m 7.06m 4.48m U (4, 10)
C1

min 8238 12773 6488 *
C2

min 13645 25989 8141 **
λCPP 0.548m 0.619m 0.554m U (0.5, 1)
rvisited 0.373 0.389m 0.258m U (0.25, 0.5)
* Based on coverable area A: U (0.165A, 0.4A)
** Based on coverable area A: U (0.4A, 0.66A)

Table 7.4: Result of the best found solution for each environment and algorithm

Environment Algorithm Cost Length [m] Rotation [rad]
Parking garage Sampled BA* & Inward Spiral 4077 2999 1078

BA* 4238 2896 1342
Inwards Spiral 5787 3101 2686

Highway bridge Sampled BA* & Inward Spiral 5797 4643 1154
BA* 6385 4562 1823
Inwards Spiral 7213 4440 2773

City crossing Sampled BA* & Inward Spiral 3001 2186 815
BA* 3262 2249 1013
Inwards Spiral 4054 2239 1815

7.2 Experiment 1 - Optimize path for one starting point

Results of Experiment 1 are presented in the Tables 7.3 and 7.4. Sampled BA* & Inward Spiral
consistently performs significantly better on cost than the others. Primarily due to lower
rotation in the Parking garage and Highway bridge environments, but on the single-level
City crossing environment it provided both the shortest length and lowest total rotation.

7.3 Experiment 2 - Best configuration for other starting points

Figures 7.2-7.4 shows sample values from Experiment 2 for Coverage, Length of path and
Total rotation over computational time. Performance of the algorithms from Experiment 2 is
presented in the Figure 7.5.

Computational time

The computational time efficiency were evaluated by looking at the gradient of the graphs
in Figures 7.2a, 7.3a and 7.4a. For all three environments Inward Spiral graph is above the
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7.3. Experiment 2 - Best configuration for other starting points

Table 7.5: Values at 95% coverage in Figure 7.5 from Experiment 2 compared with values
from Experiment 1.

Environment Algorithm Exp.1 Cost Exp.2 Cost Increase [%]
Parking garage Sampled BA* & Inward Spiral 4077 4610 13

BA* 4238 4361 3
Inwards Spiral 5787 5874 2

Highway bridge Sampled BA* & Inward Spiral 5797 6375 10
BA* 6385 6480 1
Inwards Spiral 7213 8745 21

City crossing Sampled BA* & Inward Spiral 3001 3121 4
BA* 3262 3407 4
Inwards Spiral 4054 4225 4

others, making it clear that Inward Spiral is the fastest, followed by BA* and that Sampled
BA* & Inward Spiral is the slowest.

Maximum coverage

The maximum reached coverage for each algorithm varied for different environments. For
the Parking garage environment, Sampled BA* & Inward Spiral reached the highest coverage,
slightly higher than Inward Spiral (See Figure 7.2b). For the Highway bridge, it was the other
way around (See Figure 7.3b) and for the City crossing, BA* reached higher coverage than
the others (See Figure 7.4b). Inward Spiral reached a coverage that was 1% higher than BA*
in the Parking garage and 3% higher in the Highway Bridge.

Length of path

The effectiveness regarding length of the path was fairly the same for Inward Spiral and BA*
for low coverage rates. However, when reaching higher coverage percentages the Inward
Spiral algorithm becomes ineffective. This can be observed in the Figures 7.2-7.4. The length
for Inward Spiral keeps increasing much more than the coverage for higher coverage val-
ues. This can also be seen in Figure 7.5 where the cost increases a lot for the last coverage
percentages compared to the other algorithms.

Total Rotation

The total rotation was significantly higher for Inward Spiral compared to other algorithms,
see Figures 7.2d, 7.3d and 7.4d. The results did also show that the biggest advantage of the
Sampled BA* & Inward Spiral algorithm over BA* is that it’s total path requires less rotation.
It was consistently lower in all environments.

Robustness

In general, the optimal configurations in Experiment 1 seems to give similar results for other
starting points in Experiment 2. Figure 7.5 shows that the Sampled BA* & Inward Spiral
is more cost effective than the other algorithms in all environments except for the parking
garage. When comparing the costs around 95% coverage with the costs in Experiment 1, see
Table 7.5, all costs were slightly higher. BA* was close to the values in Experiment 1 for all
environments. Inward Spiral had some lack of robustness in the bridge environment, where
the cost in Experiment 2 were much higher than in Experiment 1. In the city crossing the cost
were close to the results in Experiment 1, a bit higher in the highway bridge, and significantly
higher in the parking garage environment.
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7.3. Experiment 2 - Best configuration for other starting points

(a) Coverage over computational time (b) Coverage over computational time. Zoomed
view.

(c) Length over computational time (d) Rotation over computational time

Figure 7.2: Results over computational time from Experiment 2 for Parking garage environ-
ment. A path is better if it has higher values in (a) and (b), but lower values in (c) and (d).
The graphs in the figures stops when the maximum reachable coverage is reached.
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7.3. Experiment 2 - Best configuration for other starting points

(a) Coverage over computational time (b) Coverage over computational time. Zoomed
view.

(c) Length over computational time (d) Rotation over computational time

Figure 7.3: Results over computational time from Experiment 2 for Highway bridge environ-
ment. A path is better if it has higher values in (a) and (b), but lower values in (c) and (d).
The graphs in the figures stops when the maximum reachable coverage is reached.
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7.3. Experiment 2 - Best configuration for other starting points

(a) Coverage over computational time (b) Coverage over computational time. Zoomed
view.

(c) Length over computational time (d) Rotation over computational time

Figure 7.4: Results over computational time from Experiment 2 for City crossing environ-
ment. A path is better if it has higher values in (a) and (b), but lower values in (c) and (d).
The graphs in the figures stops when the maximum reachable coverage is reached.
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7.3. Experiment 2 - Best configuration for other starting points

(a) Parking Garage

(b) Highway Bridge

(c) City Crossing

Figure 7.5: Performance results in Experiment 2. Mean and 95% confidence interval over 10
random staring locations.
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8 Discussion

The focus of this thesis was offline footprint-based CPP that could handle complex multi-
floor large-scale environments. Since CPP is NP-hard it is difficult to even find reasonably
good feasible solutions, but many algorithms have been developed to solve this problem.

In this work, two well known algorithms have been compared with a new approach in three
different scenarios. Making all calculations offline made it possible to optimize the solutions
by tuning the parameters of the algorithms to get the best output. An online approach does
not require prior knowledge about the environment and would be able to handle changes in
the environment. However, it would not be able to optimise the path over the full environ-
ment and would most likely be less efficient.

In this chapter results and method are discussed. It also contains some words about the work
in a wider context.

8.1 Results

After doing the Terrain Assessment on the environments, see Chapter 4, two experiments
were made according to Sections 6.2 and 6.3. The paths shown in Figure 7.1 looks as ex-
pected. BA* generates straight back-and-forth paths with movement between dead ends and
new starting points. Inward Spiral generated curved paths that follows the borders of the
environment. Sampled BA* & Inward Spiral, covered open areas with back-and-forth paths
with the optimal driving angle and complex parts of the environment with Inward Spiral
paths. Results from the experiments are discussed below.

Experiment 1

The goal of Experiment 1 was to find the best solution that would cover 95% of the area
within the time limit. As shown in Table 7.4, Sampled BA* & Inward Spiral gave consistenly
better results for each of the three environments. Using HyperOpt, solution paths with less
rotation were found and for the Crossing environment a path that was shorter as well. Since
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8.1. Results

all parameters are automatically optimised, the performance of each algorithm is optimised
for the specific environment.

The parameters that gave the best result are presented in Table 7.3. The prior boundaries of
λCPP and rvisited are set based on calculations in Section 5.7 with a small margin. In general
the boundaries seemed to be reasonable. However, for Inward Spiral, the final parameter
value of rvisited was consistently very close to the upper border. Possibly, better results could
have been achieved with higher upper boundary.

It is unexpected that the optimal rvisited for Sampled BA* & Inward Spiral differed quite a lot
from the other algorithms, since the same kind of paths are used. A smaller rvisited enhances
the risk of covering the same point multiple times, but makes the risk of missing spots much
less. Since Sampled BA* & Inward Spiral is focused on minimising the cost per coverage,
missing spots seems to be more expensive than covering the same points multiple times.

Experiment 2

The goal of Experiment 2 was to evaluate the robustness of the configurations from Experi-
ment 1 for other starting points. In addition, it was used to see how the algorithms perform
over time when they does not get stopped until they reach maximum coverage or a high time
limit.

Computational time

Since the process of creating the path for BA* and Inward Spiral are similar computational
time-wise, the difference between them depends mostly on the process of finding a new start-
ing point. Since BFS, that is used in Inward Spiral, is a simpler algorithm than the backtrack-
ing list algorithm of BA*, Inward Spiral is expected to be faster than BA*. In addition to
everything that the other algorithms have, Sampled BA* & Inward Spiral has sampling, cost
calculations and the Traveling salesman problem algorithm, making it more computationally
complex than the others.

Maximum coverage

The definition of reaching maximum coverage is different for the algorithms. BA* stops
when no new starting point fulfills the requirements described in Equation 3.2. Finding
such starting points is slightly harder than finding new starting points for Inward Spiral.
It only requires a new starting point to be uncovered and traversable from current position
using BFS. Sampled BA* & Inward Spiral does only reach it’s maximum coverage when every
traversable point in the environment is explored. Since this task takes a lot of computational
time, the time limit was always reached before reaching maximum coverage for Sampled BA*
& Inward Spiral .

There are two common main reasons why 100% coverage was not reached by the algorithms
in the experiments. First reason is the existence of disconnected islands of coverable points
which is a result of the flaws in the Terrain Assessment. The second is due to the geometry
complexity of the borders of the environment. The path is made out of lines with a given step
size going in 8 different directions. This simple geometry results in missed spots for some
parts along the complex border. Both scenarios are shown in Figure 8.1.

As expected, BA* did not reach the same coverage in the Parking garage and Highway bridge
environments, since the requirements of a valid new starting point in BA* is higher, making it
reach the maximum coverage faster. However, BA* did reach higher coverage anyway for the
city crossing. A possible reason is that the city crossing environment is square (less curved

56



8.1. Results

Figure 8.1: Part of the BA* path in the parking garage, showing an unreachable island of
coverable points and uncovered points along the border. This shows the reason why 100%
coverage were not reached. White points are covered by the path shown as light blue lines.
Grey points are inaccessible and red points are missed coverable points.

borders) with a lot of open spaces, which could be beneficial for BA* since it works best in
those kind of conditions. In theory, it could be beneficial for the Sampled BA* & Inward Spiral
algorithm as well. However, the unexpected low value of rvisited for Sampled BA* & Inward
Spiral in the city crossing, see Table 7.3, could have made it harder to find segments with
acceptable cost per coverage.

Length of path

Covering using spiral motions seems to have fairly the same effectiveness regarding length
of the path as BA* for low coverages. When reaching higher coverage percentages the paths
gets less structured and more movement between starting points is needed. Since this type
of movement does not cover any new points it makes the algorithm ineffective.

Total Rotation

As expected, the curvy paths made the total rotation significantly higher for Inward Spiral
compared to other algorithms.

A big strength of Sampled BA* & Inward Spiral is its low total rotation. One possible reason
is that the path parts with many turns does not pass the cost per coverage requirement in the
Sampled BA* & Inward Spiral algorithm. Since it, unlike BA*, can choose the best driving
angle in different parts of the area, it will cover areas in the angle that makes the path goes
along the longest side, resulting in less rotation. Another reason is that complex areas are
effectively covered by spiral motions in Sampled BA* & Inward Spiral , unlike BA* that needs
to cover those with back-and-forth paths. To cover them with back-and-forth paths a lot of
turns is needed, resulting in more rotation.
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8.2. Method

Robustness

Since the Sampled BA* & Inward Spiral involves some randomness with sampling and a lot
of parameters, it is expected to be less robust. The lack of robustness of Inward Spiral in the
Highway bridge environment was not expected, but a reason could be unfavourable starting
positions.

8.2 Method

In general the used method is reliable and should give the same results if the same point
cloud, start points and parameters are used. Randomness in the hyper optimization of pa-
rameters and in the sampling of positions in Sampled BA* & Inward Spiral can give some
variations, but is minimized by making a large amount of evaluation in the parameter opti-
mization.

Three major components of the method were done to improve the validity of the results.
Firstly, the experiments were made on multiple point clouds of different environments. Sec-
ondly, all parameters in the algorithm were automatically tuned with Bayesian optimization
to avoid hand-tuning. Thirdly, the start points in Experiment 2 were randomly sampled to
avoid picking biased start points that could result in biased results. There were a few parts of
the method that is possible be criticise and a few changes that could have improved validity
of the used method. These parts are discussed below.

Algorithm parameters

The tuning of parameters with hyper optimisation is a big strength of the used method which
makes the results valid and minimises the human involvement. However, the parameter
boundaries for the optimization were still hand tuned. Some boundaries were based on cal-
culations, but most of the boundaries for the parameters in Sampled BA* & Inward Spiral
were set after making some initial tests with big boundary intervals. These tests gave many
unusable paths that did not reach high coverage within reasonable time. The used bound-
aries in the experiments were hand tuned to have a high rate of usable paths, but could have
been biased.

Motion Planner

The Motion Planner, that handled traversability and shortest path plans for all algorithms
seemed reasonable and no problems were found during tests. However, in theory, it has
some flaws. Firstly, the parameters defining step size and untraversability threshold, were
hand tuned on the parking garage point cloud, but could have been automatically tuned with
hyper optimization to make sure they were optimised for any given point cloud. Secondly,
the method assumed that the density of the points was evenly distributed over the point
cloud. This assumption is not entirely true for the given environments and makes areas with
no obstacles but less information undrivable because of low point density. The paths could
have been optimised by driving between positions in 3D space, instead of between points,
but this would not guarantee that the paths were collision free. On the other hand, the path
plans would not be affected by noise in the point cloud as much as with the used method.
Fortunately, the used point clouds did not have much noise and the density of the points
were fairly even for traversable areas.

Robot

A significant approximation done in this method is the assumption that the robot is a spheri-
cal volume that cleans every point inside the sphere. In several ways this is a good approxi-
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8.3. The work in a wider context

Figure 8.2: Neglecting the inclination of the ground results in skipped area. The range of the
sweeper from a bird view perspective is smaller than expected.

mation, but could also differ a lot from a real robot. The real actuator is a square and has two
sweep brushes in the front making the clean area in fact a trapezoid. When the robot moves,
the cleaning actuator geometry can be approximated with a moving circle with a diameter
as big as the distance between the sweep brushes, the robot breadth. By making it spherical
does also take tilting of the robot into consideration. When the road is inclined the range of
the robot is smaller than on flat floor, seen from a bird-view perspective, see Figure 8.2.

A flaw of the used method is that the planned paths does not take motion constraints of the
robot into consideration. For future work there would be interesting to see how the planned
paths performs in a real world environment with a real robot.

Coverage

Coverage was measured in number of points. This makes it easy to relate to the used terrain
assessment method and does not require additional computations. It is based on the assump-
tion that the point distribution over the point cloud is even, which is not always the case. It
would have been better to use a method to measure covered area instead. Since Sampled BA*
& Inward Spiral is based on these coverage measurements such change could definitely affect
it’s performance.

8.3 The work in a wider context

This thesis is a part of the revolution of automation in society. By having robots doing tasks
such as cleaning streets and parking garages, it would replace today’s drivers. This would
take their jobs, but open up possibilities for new work such as maintaining and operating the
robot, as well as handling laws regarding automotive driving in urban environments.

Self-driving robots in urban environments opens up many ethical questions, just like auto-
motive driving, which is an active and well discussed topic today. The low speed of the
cleaning robot and the fact that it is not transporting humans, makes it less dangerous than
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self-driving cars. To avoid putting human health in danger during cleaning of environments
such as parking garages, it could be done safely by doing the cleaning at night, when the
parking garage is closed for visitors.
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9 Conclusion

This chapter contains summarised answers to the research questions in Section 1.3 and ideas
for future work.

9.1 Research questions

The aim written in Section 1.2 was achieved. A new offline footprint-based CPP approach
called Sampled BA* & Inward Spiral was developed and showed promising performance in
different environments compared to existing well known CPP algorithms. The implementa-
tion of BA*, Inward Spiral and the new algorithm is applicable directly on 3D point clouds
with complex terrain geometry and does not require a 2D-grid representation of the envi-
ronment. The used method minimizes total rotation and length of the path by automatically
tuning algorithm parameters for a given point cloud. This makes the used method and the
new algorithm a good choice for Dyno Robotics to use for their sweeping robot, but needs to
be tested onboard a real robot.

BA* vs Inward Spiral - coverage, length of path and total rotation over time

Results of the experiments showed that Inward Spiral reached higher coverage than BA* for
two out of three environments (1% and 3% higher). However, BA* did reach higher coverage
in an environment that were square and open. For both algorithms the coverage is fast in
the beginning and slows down when reaching higher coverage. Inward Spiral is faster. The
length of path over time is more or less the same in the beginning, but changes significant
when reaching higher coverage percentages. Inward Spiral gets less effective than BA*, which
makes the final path longer. The total rotation is significantly lower for BA* than Inward
Spiral.

Can length of path and total rotation be improved with the new approach for one
starting point?

After optimizing the algorithm performances with automatic parameter tuning the new ap-
proach, Sampled BA* & Inward Spiral , generated a path with less rotation than BA* (20-40%
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reduction) and Inward Spiral (50-60% reduction) for all environments. All algorithms gen-
erated paths with similar lengths and the shortest path were different for different environ-
ments. However, Sampled BA* & Inward Spiral algorithm generated the path with lowest
total cost (between 5-30%), defined as length of path + total rotation, for all environments.

How good does the algorithms perform for other starting points?

In general, the optimal configuration performed similarly on other starting points. The Sam-
pled BA* & Inward Spiral showed least robustness and had an increase in total cost (length of
path + total rotation) of 10% and 13% for two environments. BA* and Inward Spiral showed
good robustness, except in one environment where the Inward Spiral performed significantly
worse (21% increase in cost).

9.2 Future work

The next step is to validate these results in real world environments with a real sweeping
robot. Another direction is to compare the new approach with other CPP algorithms and to
see how it performs in other environments.

Terrain Assessment is an adjacent field that could be investigated further and put together
with the method used in this work. As a suggestion, use a method that automates the method
in Chapter 4 and removes all manual tuning. It would be interesting to compare the used
method with other approaches for the motion planner and environment representation to
find further improvements.
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