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1. Introduction

This paper contains a survey of recent results concerning dissipativity of partial
differential operators. To be more precise, we mean the notion of functional dissi-
pativity introduced in [I5] and its particular case, the so-called LP-dissipativity.

Our joint studies in this area started in 2005, when we found necessary and
sufficient conditions for the LP-dissipativity of second-order differential operators
with complex-valued coefficients.
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under the terms of the Creative Commons Attribution 4.0 (CC-BY) License which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.
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The LP-dissipativity of a partial differential operator arises in a natural way in
the study of partial differential equations with data in LP. The theory of such prob-
lems has a long history. In fact LP-dissipativity appeared in 1937 in the pioneering
work of Cimmino [I6] on the Dirichlet problem with boundary data in L?. Similar
ideas were used in [44, [50]. In [47], the study of degenerate oblique derivative prob-
lem hinges on the weighted LP-positivity of the differential operator. Later we give
more historical information.

In order to introduce the topic in a simple way, let us consider the classical
Cauchy—Dirichlet problem for the heat equation

@ = Au, for t > 0,
ot (1)

u(z,0) = p(x), = eR™,

where ¢ is a given function in CO(R™) N L>°(R").
It is well known that the unique solution of problem () in the class of smooth
bounded solutions is given by the formula

1 @—y|?

u(z,t) = 7/ o(y) et dy, zeR" t>0. (2)

V(@)™ Jrn

From (@) it follows immediately
u(z, )] < [|¢lloes >0, (3)

since
[ =1 >0 (4)
e 4t = .
JarD Jan Y

Inequality (B) leads to the classical maximum modulus principle

[u( Dlloe < llplloos ¢ >0,

and this in turn implies that the norm |u(-,?)]|o is a decreasing function of ¢. In
fact, fix ty > 0 and consider the problem

v

— = Awv, for t > tg,

ot 0 (5)
v(z, to) = u(x, ty), =€ R™

It is clear that the unique solution of (B is given by v(x,t) = u(x,t) (t > to)
and we have

[v( oo < [lulto)lloo, > to,
ie.
[u(, ) lloo < llulsto)lloo, > to.

The L norm is not the only norm for which we have this kind of dissipativity.
Let us consider the LP-norm with 1 < p < co. By Cauchy—Hélder inequality, from
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@) we get

y)re

o< (g Lo ) (e [ w)

(1/p+1/p’ =1) and then, keeping in mind (@)

|z— y\

|u( dy.

y)lPe”

Integrating over R™ and applying Tonelli’s Theorem, we find

/ |u(z, t)|Pde < \/ﬁ/ da:/ y)|Pe”
n T n n
_lz—yl?
\/W/ |de/ e % dw:/ le(y)Pdy

and we have proved that

2
4?‘ dy

[uC)llp < llellp- (6)

As before, this inequality implies that the norm ||u(-, t)||, is a decreasing function
of t.
Let us consider now the more general problem

8_u = Au, for t > 0,
ot
u(z,t) =0, for z € 09, t > 0, (7)

u(z,0) = ¢(z), =€,

where 2 is a domain in R™ and A is a linear elliptic partial differential operator of
the second order

Au = Z aq(x) D%u,

laf <2

the coefficients a, being complex valued. A natural question arises: under which
conditions for the operator A the solution u(x,t) of the problem () satisfies the
inequality (@)?

As we know already, (@) implies that ||u(-,¢)||, is a decreasing function of ¢ and
then

1)l <0 (®)
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On the other hand, at least formally, we have for 1 < p < co,?

d d _
G0l = 5 [ opds =pe [ @uwlu2ds, ()
Q Q

where (-, -) denotes the usual scalar product in C. Since w is a solution of the problem
(@), keeping in mind (@), we have that () holds if, and only if,

Re/ (Au, u)|ulP~2dx < 0.
Q

This leads to the following definition: let A a linear operator from D(A) C LP()
to LP(Q); A is said to be LP-dissipative if

Re/ (Au,u)|u|P~2dr <0, VYuc D(A). (10)
Q

It follows from what we have said before that if A is LP-dissipative and if problem
(@) has a solution, then (&) holds. Here, we shall not dwell upon details of rigorous
justification of the above argument.

We conclude the Introduction by a well-known result (see e.g. [59, p. 215]).
Consider the operator in divergence form with real smooth coefficients

Au = 8i(aij(:v) Bju) (11)

(aj; = a;; € CH(Q)): if a;j(2)&E > 0 for any € € R, z € Q, the operator () is
LP-dissipative for any p. If 2 < p < oo this can be deduced easily by integration by
parts. Indeed we can write

Au, w)|ulP~2de = — | ai; 0;u0;(@|u|P~?)dx
j Uj
Q Q

_ /Q a3y 05 |ulP =205 + 7 Oy (JulP =) )d.
Since
Fi(|ulP=?) = (0 = 2)[ulP>;lu| = (p — 2)|u[P~* Re(7 du)
we can write
B;u[ul~20 + W ([ulP ) = |ulP [T u 0 87 + (p — 2)7 Hyu Re(u 857)).
Setting
[u| Y Pu 05 = & + iy,
we have
aidyufulP 207 + T ([ulP?)) = ai; (& + iny) (& — imi + (p — 2)&).
This implies
Re(ai;djufulP~207w + @ d;([ulP~?))) = (p — D)ay&é&; + aiming

aNote that O¢|u| = O:Vuu = (utT + vt )/ (2vVu ) = Re(usw/|ul).
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and then
Re/ aijaju 8Z(ﬂ|u|p72)dx Z O,
Q

i.e. Ais LP-dissipative. Some extra arguments are necessary for the case 1 < p < 2.

During the last half a century various aspects of the LP-theory of semigroups
generated by linear differential operators were studied in [II 2 [5, @] 10, T7H21
[32], 33| 38, 40H421 53] 57) [61H63] and others. A general account of the subject can
be found in the book [58]. Some of our earlier results have been described in our
monograph [I2], where they are considered in the more general frame of semi-
bounded operators.

Necessary and sufficient conditions for the L*°-contractivity for general second-
order strongly elliptic systems with smooth coefficients were given in [35] (see also
the monograph [36]). Scalar second-order elliptic operators with complex coeffi-
cients were handled as a particular case. The operators generating L°°-contractive
semigroups were later characterized in [2] under the assumption that the coefficients
are measurable and bounded.

The maximum modulus principle for linear elliptic equations and systems with
complex coefficients was considered by Kresin and Maz’ya. They have obtained sev-
eral results on the best constants in different forms of maximum principles for linear
elliptic equations and systems (see the monograph [36] and the recent survey [37]).

The case of higher order operators is quite different. Apparently, only the paper
[39] by Langer and Maz’ya dealt with the question of LP-dissipativity for higher
order differential operators. In the case 1 < p < oo, p # 2, they proved that, in
the class of linear partial differential operators of order higher than two, with the
domain containing C§°(2), there are no generators of a contraction semigroup on
LP(Q). If w runs over not C§°(£2), but only (C§°(Q))* (i.e. the class of nonnegative
functions of C§°(€2)), then the result for operators with real coefficients is quite
different and really surprising: if the operator A of order k has real coefficients and
the integral

/Q(Au)up_ldac

preserves the sign as u runs over (C§°(Q))™, then either £k = 0,1 or 2, or k =4 and
3/2<p<3.

Let us now give an outline of the paper. Section 2] presents the basic results of
Functional Analysis leading to the concept of abstract dissipative operators.

In Sec. B, we recall our general definition of LP-dissipativity of the sesquilin-
ear form related to a scalar second-order operator. In Sec. H, we give an alge-
braic condition we found, which provides necessary and sufficient conditions for the
LP-dissipativity of second-order operators in divergence form, with no lower order
terms.

Section Bl presents a review on p-elliptic operators, which are operators satisfying
a strengthened version of our algebraic condition.
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Section [0l is concerned with the LP-dissipativity of operators with lower order
terms.

The topic of Sec. [ is the linear elasticity system. More general systems are
considered in Sec.

In Sec.[d we show how the necessary and sufficient conditions we have obtained
lead to determining exactly the angle of dissipativity of certain operators.

Section [I0] presents some of the results obtained by Kresin and Maz’ya concern-
ing the validity of the classical maximum principle.

In Sec. [[d] we briefly describe some other results we have obtained. They con-
cern the LP-dissipativity of first-order systems, of the “complex oblique derivative”
operator and of a certain class of integral operators which includes the fractional
powers of the Laplacian (—A)® with 0 < s < 1.

Section discusses the concept of functional dissipativity, which we have
recently introduced.

The final section of this paper, Sec. [[3] briefly shows how our conditions for
LP-dissipativity and its strengthened variant are getting more and more important
in many respects.

2. Abstract Setting

Let X be a (complex) Banach space. A semigroup of linear operators on X is a
family of linear and continuous operators T'(t) (0 < ¢ < oco) from X into itself such
that T(0) =1, T(t+ s) =T ()T (s) (s,t > 0).
We say that T'(t) is a strongly continuous semigroup (briefly, a C°-semigroup) if
lim T'(t)z =2, VzelX.

t—0t

The linear operator

g — lim LWz -2
t—0+ t

(12)

is the infinitesimal generator of the semigroup T(t).

The domain D(A) of the operator A (possibly not continuous) is the set of
2 € X such that the limit in (I2) does exist.

If T(t) is a C%semigroup generated by A and ug is a given element in D(A),
the function u(t) = T'(t)up is solution of the evolution problem

du
% = AU, (t > 0),
u(0) = wo.

(13)

We remark that it is still possible to solve the Cauchy problem (3] when ug
is an arbitrary element of X. In order to do that, it is necessary to introduce a
concept of generalized solution. For this we refer to [59, Chap. 4].
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One can show that if T'(t) is a Cy semigroup, then there exist two constants
w >0, M > 1 such hat

1T < Me“t, 0<t<o0. (14)
If w=0and M =1 in the inequality ([Id]), we have
1T <1, 0<t<oo

and the semigroup is said to be a contraction semigroup or a semigroup of con-
tractions. If the operator A is the generator of a C°-semigroup of contractions, the
solution of the Cauchy problem ([I3]) satisfies the estimates

[u®)ll < fluoll 0 <t < ooc. (15)

If the norm in (&) is the L>° norm, we have the classical maximum principle
for parabolic equations.

The next famous Hille—Yosida Theorem characterizes the operators which gen-
erate C° semigroups of contractions.

Theorem 1. A linear operator A generates a C° semigroup of contractions T(t)
if, and only if

(i) A is closed and D(A) is dense in X;
(ii) the resolvent set o(A) contains RT and the resolvent operator Ry satisfies the
inequality

IRAl <3, VA>o0.

>| =

Given z € X, denote by .#(z) the set
I (@) = {a" € X[ (2", ) = [l2|* = [|="]*},

X* being the (topological) dual space of X. The set .#(x) is called the dual set
of x. The operator A is said to be dissipative if, for any x € D(A), there exists
x* € Z(z) such that

Re (z*, Az) < 0. (16)

Another characterization of operators generating contractive semigroups is given
by the equally famous Lumer—Phillips theorem:

Theorem 2. If A generates a C° semigroup of contractions, then

(i) D(A) = X;
(ii) A is dissipative. More precisely, for any x € D(A), we have

Re(z*, Az) <0, Vz*e€ I (x);
(iii) o(A) DRT.
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Conversely, if

() D(A) = X;
(i") A is dissipative;

(ii') o(4) NRY £0,
then A generates a C° semigroup of contractions.

The Lumer—Phillips theorem shows that in order to have a contractive semigroup
the operator A has to be dissipative, i.e. inequality (I6) has to be satisfied. If
X =LP(0) (1 <p < o0) it is easy to see that the dual set . (f) contains only the
element f* defined by

IAIZT2f (@) [ (@)[P~2 i f(z) # 0,

fr(x) = ,
0 if f(x)=0.

Then inequality (6] coincide with (I0). We remark that, in the case 1 < p < 2,
the integral in ([I0) has to be understood with the integrand extended by zero on
the set where it vanishes.

Maz’ya and Sobolevskii [50] obtained independently of Lumer and Phillips the
same result under the assumption that the norm of the Banach space is Gateaux-
differentiable. Their result looks as follows.

Theorem 3. The closed and densely defined operator A4+ has a bounded inverse
for all A > 0 and satisfies the inequality

ITA+ M) < [Re A+ o]
(Ao > 0) if and only if, for any v € D(A) and f € D(A*),
Re(Tw, Av) > Xol|v]|,
Re(I™ f, A*f) = Aol -

Here, I' and I'* stand for the Gateaux gradient of the norm in B and in B*,
respectively. Applications to second-order elliptic operators were also given in [50].
It is interesting to note that the paper [50] was sent to the journal in 1960, before
the Lumer—Phillips paper of 1961 [43] appeared.

3. Scalar Second-Order Operators with Complex Coefficients

In this section, we describe the main results obtained in [9], where we studied the
LP-dissipativity of scalar second-order operators with complex coefficients.
To be precise we consider operators of the form

Au = V(o7 Vu) +bVu + V'(cu) + au,
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where V? is the divergence operator, defined in a domain 2 ¢ RY. The coefficients
satisfy the following very general assumptions:

(i) o is an nx n matrix whose entries are complex-valued measures a* belonging
to (Cp(R2))*. This is the dual space of Cy(f2), the space of complex-valued
continuous functions with compact support contained in €2;

(ii) b = (b1,...,b,) and ¢ = (c1, ..., ¢,) are complex-valued vectors with b;, ¢; €
(Co())™;

(iii) a is a complex-valued scalar distribution in (C3(9))*, where C}(Q) = C*(Q)N
Co(Q).

Consider the related sesquilinear form .2 (u, v)
PL(u,v) = / ({7 Vu, Vv) — (bVu,v) + (u,€Vv) — a(u,v))
Q

on Co' () x Co* ().
The operator A acts from C}(Q) to (C}(€2))* through the relation

ZL(u,v) = —/Q (Au,v)

for any u,v € C}(£2). The integration is understood in the sense of distributions.
The following definition was given in [9]. Let 1 < p < oo. A form £ is called
LP-dissipative if for all u € C(9)
Re £ (u, [ulP~?u) > 0, if p > 2,
(17)
where p’ = p/(p — 1) (we use here that |u|7"2u € C3(Q) for ¢ > 2 and u € C}(2)).
We remark that the form . is LP-dissipative if and only if
Re Z (u, [uP~2u) >0 (18)
for any u € C}(Q) such that |[u[P~2u € C} ().

Indeed, if p > 2, |u|P~?u belongs to C¢(Q) for any v € C}H(Q). If 1 < p < 2, we
prove the following simple fact: u € C3 () is such that |u[P~2u belongs to C}(Q) if
and only if we can write u = Hv||z2,,_p [P 27, with v € C} ().

In fact, if v is any function in C§(Q), then setting u = Hv||12),_p/|v|p/_2ﬁ, we have
u € C}(2) and u* = v belongs to C(£) too. Conversely, if u is such that |u[P~%u
belongs to C}(Q), set v = u*. We have v € C}(Q) and u = ||vHpr [u|P'—27.

Therefore, if 1 < p < 2, condition ([IX) for any u € C§ () such that |u|P~?u €
C3(2) means

Re Z(Jul’ ~2u,u) >0, ifl<p<2,

Re Z(|v[’ "2v,v) > 0

for any v € C}(Q). This completes the proof of the equivalence between condition
@R for any u € C}(Q) such that [u[P~2u € C}(Q) and definition (7).
The first property of dissipative operators we consider is given by the lemma.
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Lemma 1. If a form ¥ is LP-dissipative, then
(Rea/ §,6) >0 VEER™ (19)

This assertion follows from the following basic lemma which provides a necessary
and sufficient condition for the LP-dissipativity of the form & .

Lemma 2 ([9]). A form & is LP-dissipative if and only if for all w € C3(Q)

Re/ (@ Vw, Vw) — (1 —2/p){(of — &)V (|w]), lw]| "' wVw)
Q
— (1= 2/p) V(). V()] + [ (Tm(b o+ e). Im(Vu)

+ /Q Re(V!(b/p —¢/p’) — a)w|* > 0.

Condition (M) is necessary and sufficient for the L2- dissipativity, but it is not
sufficient if p #£ 2.
Lemma 2] implies the following sufficient condition.

Corollary 1 ([9]). Let « and [ be two real constants. If
4
7<R€%§7§> + (Regrn,n) +2{(p~ " Tm o7 + p'~ Im o7*)€, )
+ (Im(b + ¢),7) — 2(Re(ab/p — Be/p’), £)
+Re[V'((1 —a)b/p— (1 - B)e/p') —a] 2 0 (20)
for any &, m € R™, then the form &£ is LP-dissipative.
Putting o« = = 0 in (20)), we find that if

pip,a&e SE,E) + (Rearmm) + 2~ Im 7 + p'~ Im 7)€, )

+(Im(b + ¢),n) + Re [V* (b/p—¢/p') —a] >0 (21)

for any &, € R™, then the form & is LP-dissipative.
Generally speaking, condition (2I]) (and the more general condition (20])) is not

necessary.
1 ay
o = ) )
—iy 1

where v is a real constant, b = ¢ = a = 0. In this case, the polynomial (2I]) is
given by

Example 1. Let n = 2 and

(m +7&)* + (n2 —v&)* — (v — 4/ (pp)) €7

For v2 > 4/(pp’) the condition (20) is not satisfied, whereas the LP-dissipativity
holds because the corresponding operator A is the Laplacian.
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Note that the matrix Im ¢z is not symmetric. In what follows (after Corollary[3),
we give another example showing that the condition (2II) is not necessary for the
LP-dissipativity even for symmetric matrices Im o7

4. The Operator V(& Vu)

The main result proved in [9] concerns a scalar operator in divergence form with
no lower order terms:

Au = V' (V). (22)

The following assertion gives a necessary and sufficient condition for the LP-
dissipativity of the operator [@2), where — as before — the coefficients a"* belong
to (Co(2))*.

Theorem 4 ([9]). Let Im .o/ be symmetric, i.e. Im .o/* = Im o/. The form
ZL(u,v) = / (o7 Vu, Vv)
Q

is LP-dissipative if and only if

lp — 2| [(Im o7&, §)| < 24/p — 1{Re 7§, §) (23)
for any & € R™, where | - | denotes the total variation.

The condition (23] is understood in the sense of comparison of measures. Of
course if the coefficients {apy} are complex-valued L> functions (or more generally
LL ), the condition (23) means

loc
p — 2| (Im o/ (2)&, §)| < 2/p — 1 (Re (2)§,¢)

for any ¢ € R™ and for a.e. z € Q.
When this result appeared, it was new even for operators with smooth coeffi-
cients. For such operators it implies the contractivity of the generated semigroup.
Note that from Theorem [ we immediately derive the following well-known
results.

Corollary 2. Let A be such that (Re o7€,&) > 0 for any & € R™. Then

(1) A is L2-dissipative,
(2) if A is an operator with real coefficients, then A is LP-dissipative for any p.

The condition (23)]) is equivalent to the positivity of some polynomial in § and
7. More exactly, ([23)) is equivalent to the following condition:

Z%mews,@ T (Rea/n,n) — 2(1 - 2/p){Tm o7€,7) > 0 (24)

for any &, € R™.

2230003-11
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More generally, if the matrix Im ¢z is not symmetric, the condition
4 - - *
oy (Re e (2)6,£) + (Re o7 (@)n, m) + 2{(p Him o/ (2) + '~ Im a7 (2))€,77) 2 0

(25)

for almost any z € Q and for any £,7 € R™ (p' = p/(p — 1)) is only sufficient for
the LP-dissipativity.

Let us assume that either A has lower order terms or it has no lower order terms
and Im ¢ is not symmetric. Then (23)) is still necessary for the LP-dissipativity of
A, but not sufficient, which will be shown in Example 2] (cf. also Theorem [7 below
for the case of constant coefficients). In other words, for such general operators the
algebraic condition (24)) is necessary but not sufficient, whereas the condition (2I))
is sufficient, but not necessary.

Example 2. Let n = 2, and let 2 be a bounded domain. Denote by o a real
function of class Cp?(Q2) which does not vanish identically. Let A € R. Consider the

operator (22)) with
1 iDL (0?)
o = )
—z’)«?l (02) 1

Au =0 (8111, + 1\ (0'2) 82’&) + 82(*2.)\81 (0'2) Ohu + 8211,),

ie.

where 0; = 9/0x; (i = 1,2). By definition, we have L2-dissipativity if and only if
Re /Q((ﬁlu + A1 (0%) Opu)O1T + (—iND1 (02) Oru + Do) DoTi) d > 0
for any u € Co' (), i.e. if and only if
, |Vul>de — 2\ /Q 01(0%) Im (01T Opu) dz > 0
for any u € Co*(Q). Taking v = o exp(itzz) (t € R), we obtain, in particular,
t2/ o2dz — t/\/ (91(0))2dz + / Vodz > 0. (26)
Q Q Q
Since
[ @i(e*)zda >0,

we can choose A € R so that (26) is impossible for all ¢ € R. Thus, A is not
L2-dissipative, although (Z3)) is satisfied. Since A can be written as

Au = Au — i)\(621(02)61u — 811(02)82’11,),

this example shows that (23) is not sufficient for the L2-dissipativity of an operator
with lower order terms, even if Im o7 is symmetric.

2230003-12
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5. The p-Ellipticity

Let us consider the class of operators
Au = V(o7 Vu) + bVu + V(cu) + au. (27)

with L coefficients, such that the form (25]) is not merely nonnegative, but strictly
positive, i.e. there exists x > 0 such that

pip,@emm@ T (Re.7 (@), m) + 2((p~ " Im a7 (z) + '~ I 7™ ()€, )
> w(IE + 1) (28)

for almost any = € Q and for any &, € R™. The class of operators ([217]) whose
principal part satisfies ([28) and which could be called (strongly) p-elliptic, was
recently considered by several authors.

Carbonaro and Dragicevié¢ [6] [7] showed the validity of a so-called (dimension
free) bilinear embedding. Their main result is the following.

Theorem 5 ([6]). Let P = exp(—tL4),t > 0 and let p > 1. Suppose that the
matrices A, B are p-elliptic. Then for all f,g € C§°(R™), we have

/0 /R VB @IV P g(@)ldedt < Clfllpllgll (20)

with constant depending on ellipticity parameters, but not dimension.

We note that if A and B are real accretive matrices then (29) holds for the full
range of exponents p € (1,00).

In a series of papers [23H26] Dindo$ and Pipher proved several results concerning
the LP solvability of the Dirichlet problem. Their result hinges on a regularity
property for the solutions of the Dirichlet problem for the equation

given by the next result

Lemma 3 ([23], p. 269]). Let the matriz A be p-elliptic for p > 2 and let B have
coefficients B; € L3S, (Q) satisfying the condition

loc
|Bi(z)| < K(6(x))™!, VxeQ, (31)

where the constant K is uniform, and 6(x) denotes the distance of x to the boundary
of Q. Suppose that u € Wlif(Q) is a weak solution of Eq. [B0) in Q, an open subset
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of R™. Then, for any ball B,(x) with r < 6(x)/4

[, TPl < o [y
r{Z B

2r($)

1/q 1/2
( / |u<y>|qdy> <Cy ( / |u<y>|2dy>
Br(lv) B27‘($)

for all ¢ € (2,-2£] when n > 2, and where C1,Cs depend only on p-ellipticity

' n—2
constants and K of BI). When n = 2, q can be any number in (2,00). In particular,

u|P=2)/24; belongs to WL2(9).

loc

and

Dindos and Pipher used this result in an iterative procedure, which is similar to
Moser’s iteration scheme (used in Moser’s proof of the celebrated De Giorgi-Nash—
Moser regularity theorem for real divergence form elliptic equations). Differently
from the real coefficients case, where the procedure can be applied for any p and
leads to the boundedness of the solution (and then to its Holder continuity), here
the iteration scheme can be applied only up to a threshold determined by the p-
ellipticity of the operator. This is sufficient to obtain an higher integrability of the
solution.

Dindos and Pipher uses this regularity result in the study of the existence for
the Dirichlet problem

61(au(:v)8ju) + bz(:v)azu =0 inQ,
u(z) = f(x) a.e. on 08, (32)
Nao(u) € LP(092),

where f isin LP(0). Here, a > 0 is a fixed parameter and Nz,a(u) is a nontangential
maximal function defined using LP averages over balls

1/2
Foulu)s) = sup (f lu(z)leZ)
z€l, (y) Bs(z)/2(x)

(y € 0Q) where the barred integral indicates the average and T'y(y) is a cone of
aperture a. To be precise, they say that the Dirichlet problem ([32)) is solvable for a
given p € (1,00) if there exists a C' = C(p,2) > 0 such that for all complex-valued
boundary data f € LP(9€) N Bf/é (09) the unique “energy solution” satisfies the
estimate

[Ne.a ()] Looqy < CllFllson)-

Since the space Bf/é(aQ) N LP(09) is dense in LP(0N) for each p € (1,00), there
exists a unique continuous extension of the solution operator f +— u to the whole
space LP(0€)), with u such that Na ,(u) € LP(02) and the accompanying estimate

HNQ,G(U)HLP(BQ) < C| fllzran) is valid.

2230003-14



Bull. Math. Sci. 2022.12. Downloaded from www.worldscientific.com
by LINKOPING UNIVERSITY on 09/12/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A survey of functional and LP-dissipativity theory

Their results have been extended by Dindos, Li and Pipher to systems and in
particular to elasticity in [22].

We mention that — as Carbonaro and Dragicevié [6] show — the p-ellipticity
comes into play also in the study of the convexity of power functions (Bellman
functions) and in the holomorphic functional calculus.

Egert [27] shows that the p-ellipticity condition implies extrapolation to a holo-
morphic semigroup on Lebesgue spaces in a p-dependent range of exponents.

Finally, we remark that, if the partial differential operator has no lower order
terms, the concepts of p-ellipticity and strict LP-dissipativity coincide. By strict
LP-dissipativity we mean that there exists x > 0 such that

Re/(,;z{hk Oty O (Jul?~2u)) dz > K;/ IV (| P=2/2) 2 da
Q Q

for any u € C}(Q) such that |u[P~2u € C} ().
One can prove that the operator A is strictly LP-dissipative, i.e. p-elliptic, if and
only if there exists k > 0 such that A — kA is LP-dissipative.

6. LP-Dissipativity for Operators with Lower Order Terms

Generally speaking, it is impossible to obtain an algebraic characterization for an

operator with lower order terms. Indeed, let us consider, for example, the operator
Au = Au+ a(z)u

in a bounded domain 2 C R™ with zero Dirichlet boundary data. Denote by Ay the
first eigenvalue of the Dirichlet problem for the Laplace equation in €. A sufficient
condition for the L2-dissipativity of A has the form Rea < \;, and we cannot give
an algebraic characterization of A;.

Consider, as another example, the operator

A=A+ p, (33)

where p is a nonnegative Radon measure on §2. The operator A is LP-dissipative if
and only if

4
/|w|2du§ —// |Vw|*dx (34)
Q ppJa

for any w € C§°(Q) (cf. Lemma [2). Maz’ya [45, [46] [48] proved that the following
condition is sufficient for (34):

F 1
u(F) <= (35)
capq (F) ~ pp
for all compact set F' C ) and the following condition is necessary:
F 4
_uF) <= (36)
capo(F) ~ pp
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for all compact set F' C Q. Here, capg,(F') is the capacity of F relative to €, i.e.
capg (F) = inf {/ |VulPdz:u € Co™°(Q), u>1on F}
Q

The condition (B8] is not necessary and the condition (36) is not sufficient.

It must be pointed out that a theorem by Jaye, Maz’ya and Verbitsky can pro-
vide a necessary and sufficient condition of a different nature for the LP-dissipativity
of operator (B3). In fact in [31] they proved the following result.

Theorem 6. Let Q be an open set, and let o € (C5°(R2))" be a real-valued distri-
bution. In addition, let A be a symmetric matriz function defined on € satisfying
the conditions

(1.4)  ml|¢P < A@)E-€, and |A(x)¢| < M|, for all € € R™\{0}.
Then

ag. 2 . Xr
( ,h)g/Q(AVh) Vhd

holds for all h € C§°(SY) if and only if there exists a vector field Te L2 () so that
o < div(AT) — (AT) - T in (C°(Q))'.
Keeping in mind that the operator (33]) is LP-dissipative if and only if (34]) holds

for any w € C§°(Q), by taking o = u, A = (4/(pp’))Z, we find immediately that
[(3) is Lr-dissipative if and only if there exists a vector field I' € LZ () such that

loc

4 L
p< —(divl —|T)?
pp,( %)

in the sense of distributions.
In the case of an operator with constant coefficients and lower order terms, we
have found a necessary and sufficient condition. Consider the operator

Au = V' (7 Vu) + bVu + au (37)

with constant complex coefficients. Without loss of generality, we can assume that
the matrix o7 is symmetric.

The following assertion provides a necessary and sufficient condition for the
LP-dissipativity of the operator A.

Theorem 7 ([9]). Suppose that  is an open set in R™ which contains balls of
arbitrarily large radius. The operator BT) is LP-dissipative if and only if there
ezists a real constant vector V' such that

2Re &V +TImb = 0,
Rea+ (RezV,V) <0
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and for any & € R™
p—2|[{(Im &€, §)| < 2¢/p — 1 (Re.w§,¢). (38)
If the matrix Re ¢/ is not singular, the following assertion holds.

Corollary 3 ([9]; cf. also [35]). Suppose that Q is an open set in R™ which con-
tains balls of arbitrarily large radius. Assume that the matriz Re o7 is not singular.
The operator A is LP-dissipative if and only if [B8) holds and

4Rea < —((Re ¢7) ! Imb,Imb). (39)

Now, we can show that the condition (20) is not necessary for the LP-
dissipativity, even if the matrix Im o7 is symmetric.

Example 3. Let n = 1, and let Q = R!. Consider the operator

vp—1
<1+2 P 5 z) u” + 2iu’ — u,
p—

where p # 2 is fixed. The conditions (B8] and (B9]) are satisfied, and this operator
is LP-dissipative in view of Corollary
On the other hand, the polynomial in (21]) has the form

(o

p

2
i.e. it is not nonnegative for any &, n € R.

Recently Maz’ya and Verbitsky [51] (see also [52]) gave necessary and suffi-
cient conditions for the accretivity of a second-order partial differential operator
L containing lower order terms, in the case of Dirichlet data. We observe that the
accretivity of £ is equivalent to the L2-dissipativity of —L.

Their result concerns second-order operators with distributional coefficients

£ =div(AV)+b -V +c, (40)

where A € ((C§°(2)))™*™, b € ((C§°(Q)))™ and ¢ € (C§°(R2))’ are complex valued.

Given A = {a;} € ((C§°(Q)))"*™, we denote by A® and A° its symmetric
part and skew-symmetric part, respectively. The accretivity property for —£ can
be characterized in terms of the following real-valued expressions:

P=ReA® d= %[]Imb —Div(Im A°)], o =Rec— %diV(Reb). (41)
We note that P = {p;r} € ((C5°(Q2)))"*".d = {d;} € ((C§(Q)))", and o €
(C5°(2))".
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Moreover, in order that —L£ be accretive, the matrix P must be nonnegative
definite, i.e. P§-& > 0 in (C5°(2)) for all £ € R™. In particular, each p;; (j =
1,...,n) is a nonnegative Radon measure.

The characterization of accretive operators —L is given in the following criterion
obtained in [5I Proposition 2.1].

Theorem 8. Let L be the operator [{U). Suppose that P,d, and o are defined by
). The operator —L is accretive if and only if P is a nonnegative definite matriz,
and the following two conditions hold:

[h]2, = (PVh,Vh) — {ch,h) >0
for all real-valued h € C§°(Q2), and the commutator inequality
(. uVo — oVa)| < [ulslol (42)
holds for all real-valued u,v € C§°(Q).

Under some mild restrictions on H, the “norms” [u]y and [v]3 on the right-hand
side of ([@2) can be replaced, up to a constant multiple, with the corresponding
Dirichlet norms

|(d, uVv —vVu)| < C||Vul|L20)[| Vvl L2(0), (43)

where C' > 0 is a constant which does not depend on real-valued u,v € C§°(f2).

This leads to explicit criteria of accretivity (see [52 Sec. H] for the details).
Indeed Maz’ya and Verbitsky have found necessary and sufficient conditions for the
validity of commutator inequality [3]). For example, when 2 = R™ and d has Lll0 .
components, they prove the following result.

Theorem 9. Let d € [LL . (R™)]",n > 2. The inequality

/ (d, uVo — vVudz| < Of|Val| 2gen | Vol L2 am (44)

holds for any real-valued u,v € C§°(R™) if and only if
d=c+DivF, (45)

where F € BMO (R")"*" is a skew-symmetric matriz field, and c satisfies the
condition

/R le2lul?dz < Cl[Vull2agn), (46)

where the constant C' does not depend on u € C§°(R™). Moreover, if [@dl) holds,
then @R is valid with ¢ = VA~Y(divd) satisfying @0), and F = A~} (Curld) €
BMO((R™)™*™.

In the case n = 2, necessarily ¢ = 0, and d = (=02 f, 01 f) with f € BMO (R?)

in the above statements.
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7. Elasticity

Consider the classical operator of two-dimensional elasticity
Bu= Au+ (1 —2v)" 'VViy, (47)

where v is the Poisson ratio. As is known, E is strongly elliptic if and only if
either v > 1 or v < 1/2. To obtain a necessary and sufficient condition for the
LP-dissipativity of this elasticity system, we formulate some facts about systems of
partial differential equations of the form

A = 0 (7" (2)0n), (48)

where o/"*(z) = {a?jk(:zz)} are m X m matrices whose entries are complex locally
integrable functions defined in an arbitrary domain Q of R™ (1 < 4,57 < m, 1 <
h,k <n).

Lemma 4 ([10]). An operator A of the form @S) is LP-dissipative in Q C R™ if
and only if

/ (Re (7" Opw, Opw) — (1 — 2/p)?|w|~* Re (&7 w, w) Re(w, pw) Re (w, Ipw)
Q

— (1= 2/p) w[ " Re ({o/" w, Byw) Re (1, D)
— (" Opw, w) Re (w, Opw)))dz > 0
for any w € (Co*(Q))™.
In the case n = 2, Lemma [ yields a necessary algebraic condition.

Theorem 10 ([10]). Let 2 be a domain of R%. If an operator A of the form (@S
is LP-dissipative, then

Re (/" (2)&nk) A A) — (1 —2/p)? Re (™" (2)énér)w, w) (Re(X, w))*
— (1 —2/p) Re({(«/"* (2)&&x)w, \)
— (@™ (2)En&) A, w)) Re (A, w) > 0
for almost every x € Q and for any £ € R?, \, w € C™, |w| = 1.

Based on Lemma [ and Theorem [I0] it is possible to obtain the following crite-
rion for the LP-dissipativity of the two-dimensional elasticity system.

Theorem 11 ([10]). The operator (A1) is LP-dissipative if and only if

1 1\° _2v-1)@2v-1)
(3-3) <*5lam 1)

By Theorems [I0 and [IT] it is easy to compare E' and A from the point of view
of LP-dissipativity.
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Corollary 4 ([1I0]). There exists k > 0 such that E — kA is LP-dissipative if and
only if

1 1\° 2w-1)(2v-1)
(5‘§)< G-awE

There exists k < 2 such that kA — E is LP-dissipative if and only if

11\ 2@v-1)
(573) <

As remarked on p. 18 for scalar operators, this is equivalent to saying that F
is strictly LP-dissipative, i.e. E is p-elliptic. The last result was recently extended
to variable Lamé parameters by Dindos et al. [22]. It must be pointed out that
these authors introduce an auxiliary function r(x) (see 22, pp. 390-391]) which
generates some first-order terms in the partial differential operator. In the definition
of p-ellipticity these terms do not play any role, while they have some role in
the dissipativity. Therefore our and their results do not seem to be completely
equivalent.

In [I1], we showed that condition ([@9) is necessary for the LP-dissipativity of
operator (1) in any dimension, even when the Poisson ratio is not constant. At
present it is not known if condition (@3] is also sufficient for the LP-dissipativity
of the elasticity operator for n > 2, in particular for n = 3 (see [49, Problem 43]).
Nevertheless, in the same paper, we gave a more strict explicit condition which is
sufficient for the LP-dissipativity of (@7)). Indeed we proved that if

1-2v

— if 1/2

50— 1) ifv<1/2,
(1-2/p)? <

2(1l-v) .

m lfV>1,

then the operator A7) is LP-dissipative.
In [II], we gave also necessary and sufficient conditions for a weighted LP-
negativity of the Dirichlet-Lamé operator, i.e. for the validity of the inequality

/(Au + (1 —2v) 'V divau) [ulf~2u dr <0 (50)
Q

|zl

under the condition that the vector u is rotationally invariant, i.e. u depends only
on ¢ = |z| and u, is the only nonzero spherical component of u. Namely, we showed
that (B0) holds for any such u belonging to (C§°(RY\{0}))¥ if and only if

—(p-D(n+p -2)<a<n+p-2.

8. A Class of Systems of Partial Differential Operators
In this section, we consider systems of partial differential operators of the form

Au = 8h(,;z%h(:v)8hu), (51)
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where 7" (x) = {al;(x)} (i,j = 1,...,m) are matrices with complex locally inte-
grable entries defined in a domain Q C R™ (h = 1,...,n). Note that the elasticity
system is not a system of this kind.

To characterize the LP-dissipativity of such operators, one can reduce the con-
sideration to the one-dimensional case. Auxiliary facts are given in the following
two subsections.

Langer and Maz’ya considered the LP-dissipativity of weakly coupled systems

in [38].

8.1. Dissipativity of systems of ordinary differential equations

In this subsection, we consider the operator
Au = (o (z)u), (52)

where o7 (z) = {aij(x)} (4,7 = 1,...,m) is a matrix with complex locally inte-
grable entries defined in a bounded or unbounded interval (a, b). The corresponding
sesquilinear form % (u,w) takes the form

L(u,w) = /b (g, w') du.
Theorem 12 ([10]). The operator A is LP-dissipative if and only if
Re (o7 ()X, A) — (1 — 2/p)* Re (o7 (x)w, w)(Re(\,w))? — (1 — 2/p) Re({e7 (x)w, \)
— (ot ()N, w)) Re (A\,w) >0

for almost every x € (a,b) and for any \,w € C™, |w| = 1.

This theorem implies the following assertion.
Corollary 5 ([10Q]). If the operator A is LP-dissipative, then

Re (o7 (x)A, A) >0

for almost every x € (a,b) and for any A € C™.

As a consequence of Theorem [I2]it is possible to compare the operators A and
I(d?/dx?).
Corollary 6 ([10]). There exists k > 0 such that A—kI(d?/dx?) is LP-dissipative
if and only if

essinf P(z,\,w) > 0.
(2,2, w)€(a,b) xC™M xCm
IA=lw|=1

There exists k > 0 such that kI(d?/dx?) — A is LP-dissipative if and only if

ess sup Pz, \,w) < oo.
(z,\,w)E(a,b)xCM xC™
X=lwl=1
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There exists k € R such that A — kI(d?/dx?) is LP-dissipative if and only if

ess inf Pz, \,w) > —o0.
(z,X\,w)€E(a,b) xC™M xCM
IAI=lwl=1

8.2. Criteria in terms of eigenvalues of of (x)

If the coefficients a;; of the operator (52)) are real, it is possible to give a necessary
and sufficient condition for the LP-dissipativity of A in terms of eigenvalues of the
matrix of.

Theorem 13 ([10]). Let o be a real matriz {an;} with h,k =1,...,m. Suppose
that of = o/* and o > 0 (in the sense that (of (2)€,€) > 0 for almost every
x € (a,b) and for any & € R™). The operator A is LP-dissipative if and only if

(é - %) (11.(2) + p (2))? < (@) pim (@)

almost everywhere, where py(x) and p,(x) are the smallest and largest eigenvalues
of the matriz of (x), respectively. In the particular case m = 2, this condition is
equivalent to

(% - %) (tre7 (@))? < det o (2)

almost everywhere.

Corollary 7 ([10]). Let o be a real symmetric matriz. Let py(z) and pu,(x) be
the smallest and largest eigenvalues of of (x), respectively. There exists k > 0 such
that A — kI(d?/dz?) is LP-dissipative if and only if

ess inf { (14 /pp'/2) pa(x) + (1 — \/p_p’/2)um(x)} > 0. (53)

z€(a,b)

In the particular case m = 2, the condition (B3)) is equivalent to

ess inf {tr,;z{ pp V(tres (=

- 4det,gz{($):| > 0.
z€(a,b)

Under an extra condition on the matrix 7, the following assertion holds.

Corollary 8 ([10]). Let o be a real symmetric matriz. Suppose that of > 0 almost
everywhere. Denote by pi(x) and p,(z) the smallest and largest eigenvalues of
o (x), respectively. If there exists k > 0 such that A — kI(d?/dx?) is LP-dissipative,
then

ess inf [ 1(2) po () — (é — %) (pi(z) + um(;v))ﬂ > 0. (54)

z€(a,b)
If, in addition, there exists C' such that
(o (2)8,€) < ClgP? (55)
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for almost every x € (a,b) and for any & € R™, the converse assertion is also true.
In the particular case m = 2, the condition (B4)) is equivalent to

2
ess inf ldet o (x) — (% - %) (trﬂ{(x))?] > 0.

z€(a,b)

We remark that A — kI(d?/dx?) is LP-dissipative means that A is p-elliptic.
Generally speaking, the assumption (B3] cannot be removed even if o7 > 0.

Example 4. Consider (a,b) = (1,00), m = 2, o/ (x) = {a;;(x)}, where
ann(z) = (1=2/y/pp)e+27Y, aa(z) =an(z) =0,
ax(x) = (14 2/y/pp)x + L.

Then

paa(e) = (5= 1) (o) + o)) = 8+ 47)/pp)

and ([B4) holds. But (B3) is not satisfied because
L+ Vpp'/2) (@) + (1= V/pp/'/2) pa(w) = 2271

Corollary 9 ([10]). Let o be a real symmetric matriz. Let pi(z) and p,(x) be
the smallest and largest eigenvalues of of (x), respectively. There exists k > 0 such
that kI(d?/dx?) — A is LP-dissipative if and only if

esssup (1= VpP/2) 11(@) + (1 + VPP /2) (@) < o0 (56)

In the particular case m = 2, the condition (B6l) is equivalent to

Vpp
2

ess sup [tr,;z{(x) +
z€(a,b)

V(tres ()2 — 4det ,;z{(x)] < 0.

If o7 is positive, the following assertion holds.

Corollary 10 ([10]). Let o be a real symmetric matriz. Suppose that of > 0
almost everywhere. Let py(z) and pm () be the smallest and largest eigenvalues of
o (), respectively. There exists k > 0 such that kI(d*/dx®) — A is LP-dissipative
if and only if

esssup fhm () < 0o.

z€(a,b)

8.3. LP-dissipativity of the operator (BI)

We present necessary and sufficient conditions for the LP-dissipativity of the system

(&I), obtained in [10].
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Denote by yp the (n — 1)-dimensional vector (z1,...,Zp—1,Zp41,-..,T,) and
set w(yn) = {zn € R|z € Q}.

Lemma 5 ([1I0]). The operator ([BI) is LP-dissipative if and only if the ordinary
differential operators

Alyn)[u(zn)] = d(" (x)du/dzy) /dzy,
are LP-dissipative in w(yp) for almost every y, € R"~% (h =1,...,n). This condi-
tion is void if w(yp) = 0.
Theorem 14 ([10]). The operator (&1) is LP-dissipative if and only if
Re (7" (o)A, A) — (1 — 2/p)? Rel e (z0)w, w)(Re(\, w))?
— (1= 2/p) Re({e" (w0)w, ) — (@™ (z0) N\, w)) Re (A\,w) >0 (57)

for almost every xo € Q and for any \,w € C™, |w|=1, h=1,...,n.

In the scalar case (m = 1), the operator (GI]) can be considered as an operator
from Sec. [l

In fact, if Au=3";_, Op(a"Opu), a" is a scalar function, then A can be written
in the form @2) with o = {ca}, chn = a”, cnr = 0 if h # k. The conditions
obtained in Sec. @ can be directly compared with (57]). We know that the operator

A is LP-dissipative if and only if (24]) holds. In this particular case, it is clear that
@4) is equivalent to the following n conditions:

pip,aRe a") € + (Rea")n? — 2(1 — 2/p)(Ima”) én > 0 (58)

almost everywhere and for any ¢,7 € R, h = 1,...,n. On the other hand, in this

case, (B7) reads as

(Rea™|A\? = (1 —2/p)%(Rea”)(Re(M@)? — 2(1 — 2/p)(Im ") Re(A\@) Im(\w) > 0
(59)

almost everywhere and for any \,w € C, |w| =1, h = 1,...,n. Setting { + in = \w

and observing that [A|> = |A\0|? = (Re(A®D))?+(Im(AW))?, we see that the conditions

(8D (hence ([24) are equivalent to (E9).

If A has real coeflicients, we can characterize the LP-dissipativity in terms of
the eigenvalues of the matrices o7" ().

Theorem 15 ([10]). Let A be an operator of the form (&), where o/ are real
matrices {a?j} with i,5 = 1,...,m. Suppose that o7" = (")t and " >0 (h =
1,...,n). The operator A is LP-dissipative if and only if

(é - %) (3 () + pi (2))* < ot () ()

for almost every x € Q, h =1,...,n, where p(x) and p (x) are the smallest and
largest eigenvalues of the matriz o7"(x), respectively. In the particular case m = 2,
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this condition s equivalent to

11\’
(— - —) (tror™(x))? < det o™ (x)
2 p
for almost every x € Q, h=1,...,n.

9. The Angle of Dissipativity

By means of the necessary and sufficient conditions we have obtained, we can deter-
mine exactly the angle of dissipativity. Determining the angle of dissipativity of an
operator A, means to find necessary and sufficient conditions for the LP-dissipativity
of the differential operator zA, where z € C.

Consider first the scalar operator

A=V (2)V),

where o7 () = {ai;(x)} (i, =1,...,n) is a matrix with complex locally integrable
entries defined in a domain  C R™. If ¢ is a real matrix, it is well known (cf.,
for example [28] 29] [55]) that the dissipativity angle is independent of the operator
and is given by

|arg z| < arctan (

2vp—1
p7> (60)
lp—2|
If the entries of the matrix 7 are complex, the situation is different because the
dissipativity angle depends on the operator, as the next theorem shows.

Theorem 16 ([10]). Let a matriz of be symmetric. Suppose that the operator A

1s LP-dissipative. Let

. m of (2)§, ) _ m £,¢
M= e R e &) 2T S Re (0, €

where
E={(z,) € A xR" | (Re o/ (2)&, &) > 0}.
The operator zA is LP-dissipative if and only if

I <argz <94,

where®
p—1 p° 1 ) .
arccot - —m ifp#2,
0_ = (Ip—2| p—2[2vp—T+[p—2|A
arccot(Aq) — 7 if p=2,
PHere, 0 < arccoty < 7, arccot(+o00) = 0, arccot(—oo) = , and
.o (Im 7 (2)€, §) (Im o7 (2)¢, §)
[ S APA T VA, , V@S s) _
Coe=(Rea@E 8 | (oek(Rea @6

if = has zero measure.

2230003-25



Bull. Math. Sci. 2022.12. Downloaded from www.worldscientific.com
by LINKOPING UNIVERSITY on 09/12/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Cialdea & V. Maz’ya

2/p—1 P2 1 ) )
arccot | — + ifp#£2
0, = ( lp—2  Ip=2[2y/p—1—p—2|As

arccot(Ag) if p=2.

Note that for a real matrix ¢ we have A; = Ay = 0 and, consequently,

2yp—1 P’ lp — 2|

=2 2p—1Ip-2[ 2/p- T
Theorem [I0] asserts that zA is dissipative if and only if
-2 -2
arccot <2|5T_|1) — 7 < argz < arccot <%>,

i.e. if and only if (G0) holds.
We can precisely determine the angle of dissipativity also for the matrix ordinary
differential operator (52)) with complex coefficients.

Theorem 17 ([10]). Let the operator ([B2) be LP-dissipative. The operator zA is
LP-dissipative if and only if

I <argz <4,

where

¥_ = arccot <(ess inf (Q(:v,A,w)/P(w,A,w))) -,

T\ w)EE

¥4 = arccot ( €ss sup (Q(x,A,w)/P(:z:,A,w))),

(z,\w)EE
P(z,\w) = Re (7 (2)A\ A) — (1 — 2/p)” Re (o (2)w, w) (Re(A, w))?
— (1 =2/p) Re((o/ (2)w, A) — (o (2)A, w)) Re (A, w),
Q(z,\,w) = Im (o7 (x)\, A) — (1 = 2/p)?* Im (o (z)w, w) (Re(\, w))?
— (1 =2/p)Im({e (x)w, A) = (o ()X, w)) Re (A, w)
and Z is the set
Z={(z,\w) € (a,b) xC™" xC™ | |lw| =1, P*(z,\,w) + Q*(x,\,w) > 0}.

Finally Theorem [I4] allows us to determine the angle of dissipativity of the
operator (&1J).

Theorem 18 ([10]). Let the operator (Bl be LP-dissipative. The operator zA is
LP-dissipative if and only if

- <argz <9,
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where
J_ = max arccot( essinf (Qh(x,)\,W)/Ph(I,)\,w))> -,
h=1,...,n (z,\,w)EE},
Y4 = min arccot | esssup (Qp(z, \,w)/Pp(x, A\, w))
h=1,...,n (z,\,w)EE}
and

Py(z, A, w) = Re (7" (2)A, A) — (1 = 2/p)* Re (7" (2)w, w)(Re(A, w))?
— (1= 2/p) Re({ " (x)w, A) — {&"(x)A, w)) Re (A, w),
Qn(z, A,w) = Im (7" (@)X, A) — (1 = 2/p)Im (7" (2)w, W) (Re(A, w))?
— (1= 2/p) Im({e7" (x)w, A) — (7" (2)A,w)) Re (A, w),

Zh={(z,\w) €QAXC" xC™ | |w| =1, P2(z,\w) + Q%(x,\,w) > 0}.

10. Maximum Principles for Linear Elliptic Equations
and Systems

As said in the Introduction, Kresin and Maz’ya have obtained results on different
forms of maximum principles for linear elliptic equations and systems. Here, we
recall some of their results.

Let us consider the operator

=Y Apdi, (61)
J,k=1
where D, = (01,...,0,) and Aj, = Ay, are constant real (mxm)-matrices. Assume
that the operator 2 is strongly elliptic, i.e. that for all ¢ = (¢1,...,(n) € R™ and
o= (01,...,0n) € R", with {, 0 # 0, we have the inequality

< > AijjUkCa<> > 0.

J,k=1

Let Q be a domain in R™ with boundary 99 and closure 2. Let [Cp,(©2)]™ denote the
space of bounded m-component vector-valued functions which are continuous in Q.
The norm on [Cy,(Q)]™ is ||u|| = sup{|u(z)| : z € Q}. The notation [Cp,(92)]™ has a
similar meaning. By [C%(Q2)]™ we denote the space of m-component vector-valued
functions with continuous derivatives up to the second order in ).

Let
lullic, @y

K(2) = sup ,
() = sup e o

where the supremum is taken over all nonzero vector-valued functions in the class

[C(2)]™ N [C2(Q)]™ satisfying the system 2Uo(D,)u = 0.
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Clearly, K(2) is the best constant in the inequality
lu(z)] < K(Q) sup{lu(y)| : y € 00,

where z € © and u is a solution of the system 2/o(D,)u = 0 in the class [Cy,(Q)]™ N
[C2 (@)™

If K£(£2) = 1, then the classical maximum modulus principle holds for the system
QLO (D:E)u =0.

Kresin and Maz’ya proved the following criterion for the validity of this classical
modulus principle.

Theorem 19. Let Q be a domain in R™ with compact closure and C'-boundary.
The equality KC(Q) =1 holds if and only if the operator Ao(D,) is defined by

n
Ao(Da) =AY audin, (62)
Jik=1
where A and {a;} are positive-definite constant matrices of orders m and n, respec-
tively.

Suppose now that the operator (6Il) has complex coefficients, i.e. suppose that
A, = Ay, are constant complex (m x m)-matrices. Assume that the operator is
strongly elliptic. This means that

Re < Z AjkcrjcrkC,C> >0
gk=1
forall ( = (¢1,-.+,Gm) € C™ and 0 = (01,...,0,) € R, with {,0 # 0.
A necessary and sufficient condition for validity of the classical modulus principle
for operator (GIl) with complex coefficients in a bounded domain runs as follows.

Theorem 20. Let Q be a domain in R"™ with compact closure and C'-boundary.
The equality K(2) =1 holds if and only if the operator Ao (D) has the form (G2),
where now A is a constant complez-valued (m x m)-matriz such that Re(A¢, ) > 0
for all { € C™,( # 0, and {a;i} is a real positive-definite (n x n) matriz.

These results have been extended to more general systems and we refer to the
survey [37] for all the details.

11. Other Results

In this section, we briefly mention other results we have obtained.
In [I3], we found necessary and sufficient conditions for the LP-dissipativity of
systems of the first order. Namely, we have considered the matrix operator

Fu = #"(2)0hu + 9(x)u, (63)
where %" (z) = {bfj (x)} and 9(x) = {d;;j(z)} are matrices with complex locally
integrable entries defined in the domain  of R™ and u = (u1, ..., um) (1 <i,7 < m,
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1 < h <n). It states that, if p # 2, E is LP-dissipative if, and only if,
B"(x) =bp(x)I ae., (64)
by (z) being real locally integrable functions, and the inequality
Re((p™'0n 2" (z) — 2(2))¢,¢) 2 0

holds for any ¢ € C™, |¢| = 1 and for almost any x € Q. If p = 2 condition (G4 is
replaced by the more general requirement that the matrices %" (x) are self-adjoint
a.e.

We have applied this result also to second-order operators, obtaining a suffi-
cient condition for their LP-dissipativity. We have also determined the angle of
dissipativity of operator (G3]).

In [I4], we have considered the “complex oblique derivative” operator

Aovu= 20 S ou (65)
. u [ — a—
Ox, 4“7 0x;’
Jj=1
where A = (1,a1,...,a,-1) and a; are complex-valued functions. We gave neces-

sary and, separately, sufficient conditions under which such boundary operator is
LP-dissipative on R™~!. If the coefficients a; are real valued, we have obtained a
necessary and sufficient condition: the operator (GZ)) is LP-dissipative if and only if
there exists a real vector I' € L2 (R™) such that

loc
—0;(Rea;)d(zn) < S (divT — [TP)
p

in the sense of distributions.
In the same paper, we have considered also the class of integral operators which
can be written as

[ ) = wto)) i ar,a), (60

where the integral has to be understood as a principal value in the sense of Cauchy
and the kernel K (dz, dy) is a Borel positive measure defined on R™ x R" satisfying
certain conditions. The class of operators we considered includes the fractional
powers of the Laplacian (—A)*, with 0 < s < 1. For the latter we previously had
proved the following theorem.

Theorem 21 ([12, pp. 230-231]). Let 0 < o < 1. We have, for any u € C5°(R™),

o _ 2cq
[ walu2de = 25 P,
where

Ca = —1 24T (o +1/2) /T () > 0

dxdy )1/2
2

V|| pa.2(rn) = v(y v(x .
|| Hﬁ (R™) (,//nx nl ( ) ( )l |y |n+2a
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In [I4], we have established the LP-positivity of operator (60l), extending in this
way Theorem 211

12. The Functional Dissipativity

In [15], we have introduced the new concept of functional dissipativity. Roughly
speaking the idea is to replace |u[P~2 by a more general ¢(|u]), ¢ being a positive
function.

Let us consider the operator (22]) with L complex-valued coefficients. We say
that it is functional dissipative or L®-dissipative if

Re /Q<% Vu, V(p(|u))u)) de >0

for any u € H'(€) such that o(ju|)u € H(Q). Here, ¢ is a positive function defined
on RT = (0, +00) which satisfies the following conditions:

(1) ¢ € CH((0,+00));

(ii) (s¢(s)) > 0 for any s > 0;

(iii) the range of the strictly increasing function s p(s) is (0, +00);

(iv) there exist two positive constants C1,Cy and a real number r > —1 such that

C1s" < (sp(s)) < Cys", s€(0,s0)

for a certain sy > 0. If » = 0 we require more restrictive conditions: there
exists the finite limit lim, o+ ¢(s) = ¢4+(0) > 0 and lim,_,g+ s¢'(s) = 0.
(v) There exists s; > so such that

P'(s) >0 or¢'(s)<0 Vs> s,

The reason for requiring that function s ¢(s) is increasing is that in such a way
the function

D(s) = /05 o p(o)do (67)

is a Young function (i.e. a convex positive function such that ®(0) = 0 and
®(+00) = +00) . We note that, if t1)(¢) is the inverse function of s p(s), then

U(s) = /Osaw(a)da

is the conjugate Young function of ®.

The condition (iv) prescribes the behavior of the function ¢ in a neighborhood
of the origin, while (v) concerns the behavior for large s.

The function p(s) = sP=2 (p > 1) provides an example of such a function.
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A motivation for the study of the concept of functional dissipativity comes from
the decrease of the Luxemburg norm of solutions of the Cauchy—Dirichlet problem
v = Au,
(68)
u(0) = wo.

Indeed let us consider the Orlicz space of functions u for which there exists
a > 0 such that

/ Do |u|)dx < +o0.
Q

For the general theory of Orlicz spaces we refer to Krasnosel’skii and Rutickii
[34] and Rao and Ren [60]. As in ([@), if u(z,y) is a solution of the Cauchy-Dirichlet
problem (G8)), we have the decrease of the integrals

/ B(ju(z, 1)) dz

Q

if
e w, u)|u| e (lu|)dx .
R/Q<E, V1@ (u])dz < 0

This implies the decrease of the Luxemburg norm in the related Orlicz space

fut 6 =int {01 | @(utelnie <1},

In paper [15], we proved the following technical lemma, which played a key role.

Lemma 6. The operator A is L®-dissipative if and only if
Re [ [(or V0, 90) + A(ul){(a7 — o) Vlol, o 0V0)) +
Q

— A2(|v]) (o7 V|vl, V[v])]dz >0, Yove HY(Q),

where the function A is the function defined by the relation

B 5¢'(s)
AMsvel®) = = o T 2o

We remark that if ¢(s) = s?72, the function A is constant and

Aty =—(1=2/p), 1-A*(t)=4/(pp).

As corollaries of Lemma[6] we have obtained necessary and, separately, sufficient
conditions for the functional dissipativity of the operator F.

Corollary 11. If the operator A is L®-dissipative, we have
(Re o7 ()€,€) > 0 (69)

for almost every x € Q and for any £ € R™.
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Corollary 12. If
[1 = A*(O))(Re.o (2) €,€) + (Re.or () n,m) + [1 + A()|{Im o7 (2) €, )
+[1 =A@ Im o7 (z) §,m) > 0 (70)
for almost every x € Q and for anyt > 0,&,m7 € R™, the operator A is L® -dissipative.

Corollary 13. If the operator A has real coefficients and satisfies condition (G3I)
for almost every x € Q and for any & € R™, than it is L*-dissipative with respect
to any P.

The main result obtained in [I5] is the following necessary and sufficient
condition.

Theorem 22. Let the matriz Im o7 be symmetric, i.e. Im o7* = Im o7. Then the
operator A is L®-dissipative if, and only if,

s’ ()] [(Im o7 ()€, )| < 2v/p(s) [s o(s)]' (Re o7 (2) €, ) (71)
for almost every x € Q and for any s > 0, € R™.

Suppose that the condition Im o7 = Im ¢/? is not satisfied. Arguing as in the
proof of Theorem [22] one can prove that condition (ZI) is still necessary for the
L*-dissipativity of the operator E. However in general it is not sufficient, whatever
the function ¢ may be. This is shown by the next example.

Example 5. Let n =2, Q2 be a bounded domain, A be a real parameter and

1 i/\:vl
of = .
7Z'>\171 1

Since (Re o7 &,€) = [£)? and (Im o7 £,€) = 0 for any & € R", condition () is
satisfied.
If the corresponding operator Eu = Au + i A ou is L®-dissipative, then

Re/ (Au+iAdsu, ) p(lul) de <0, Vue C5(Q). (72)
Q

Take u(z) = o(x)e'*®2, where o € C§°(Q) is real valued and ¢t € R. Since
(Bu,u) = o[Ap+2itdyp — t20 + i A(D20 + ito)], condition ([2) implies

/gwwugndx—u/ QQw(lgl)dw—fQ/ Po(lel) dz < 0 (73)
] Q Q

for any ¢, A € R. The function ¢ being positive, we can choose p in such a way that

| @elleldz 0.
Q
Taking

2> 4 [ oBo(e)da (/Q g%(mnda:)l,

inequality (Z3) is impossible for all + € R. Thus E is not L®-dissipative, although
[ is satisfied.
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We have also the following corollary.
Corollary 14. Let the matriz Im o7 be symmetric, i.e. Im o7t = Im o7 . If

15/ (5)]
A =SsSup —
2 o) )]

then the operator E is L®-dissipative if, and only if,

< +o0, (74)

Ao [(Im o7 () €, €)| < (Re o7 (2) €, &) (75)

for almost every x € Q and for any € € R™. If \g = +oo the operator E is L®-
dissipative if and only if Im o7 = 0 and condition [69) is satisfied.

If we use the function ® (see ([G7)), condition (7I]) can be written as

s @"(s) — @' (s)| [{Im o7 (x) £, €)| < 2¢/s @'(s) (s) (Re o (x

for almost every x € Q and for any s > 0, € R™. In the same way, formula (4]
becomes

|s ®"(s) — P'(s)|

= < +o00.
5>0 24/5 P/ (s) P"(s)

We consider now some examples in which we indicate both the functions ® and
. It is easy to verify that in each example the function ¢ satisfies conditions (i)—(v)
(see p. 36).

Example 6. If ®(s) = s?, i.e. ¢(s) = psP~2, which corresponds to LP norm, the
function in (74) is constant and Ao = |p — 2|/(2v/p — 1). In this way we reobtain
Theorem [4]

Example 7. Let us consider ®(s) = sPlog(s + e) (p > 1), which is the Young
function corresponding to the Zygmund space L? log L. This is equivalent to saying
that p(s) = psP~2log(s +e) + sP"1(s + e) 1. By a direct computation we find

s 52
s B(s) — /(s >| B [ —2)log(s + ¢) + P22 — |
2/s®'(s) D" (s 2\/(plog(s +e)+ Sie)(p( —1)log(s +e) + Szf_‘z ﬁ)

(76)

Since

[s"(5) = @(s)| s @(s) — W) _ lp—2

lim im =
0t 25 () B (s) e 050 (5) 87(s) 2V 1

the function is bounded. Then we have the L®-dissipativity of the operator A if,
and only if, (78 holds, where Ag is the sup of the function (7@) in R*.
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Example 8. Let us consider the function ®(s) = exp(sP) — 1, ie. ¢(s) =
psP~2exp(sP). In this case

s ®"(s) —®(s)| _ _Ips"+p—2

2¢/s2(s)®"(s)  2¢/(ps”+p—1)

and \g = +o0. In view of Corollary (), the operator A is L®-dissipative, i.e.
Re [ (of u, Vlulul? ? expl(ul? s = 0
Q

for any u € H'(2) such that |ulP~2 exp(|u|P) u € H'(Q), if and only if the operator
A has real coefficients and condition (G9) is satisfied.

Example 9. Let ®(s) = s — arctans, i.e. ¢(s) = s/(s? + 1). In this case

[s®"(s) = ¥'(s)] _ _|s*—1]

2/sP'(s) D" (s)  24/2(s241)

and \g = +o00. As in the previous example, we have that

u| u
R dx >
e/Q<JZ{Vu,V<|u|2+1 x>0

for any u € H() such that |u|u/(Jul?> + 1) € H' (), if and only if the operator
A has real coefficients and condition (69 is satisfied.

Example 10. Let ®(s) = s?/(s% + 1), i.e. p(s) = 25%(2+ s2)/(s? + 1)2. In this
|s ®"(s) — ®'(s)| _ 2
2/50(5)®7(s) /(s + 1)(s2+2)(s* + 352 +6)

This function is decreasing and \g is equal to its value at 0, i.e. A\g = 1//3. The
operator A is L®-dissipative, i.e.

for any u € H'(Q) such that [u2(2 + |u|?)u/(jul? +1)2 € H(Q), if and only if
[(Im o7 (2) €, €)] < V3 (Re () €,€)

for almost any = € 2 and for any £ € R".
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Example 11. Let ®(s) = s2(s2+2)/(s>+1)—2log(s*+1), i.e. p(s) = 25 /(s2+1)2.
In this case
|s ®"(s )*@’(SN _ 2

2,/s®'(s) " (s V(2 +1)(s2+5)

This function is decreasing and )\ is equal to its value at 0, i.e. \g = 2/4/5. The
operator A is L®-dissipative, i.e.

o [ (w9 (%)>d >0

for any u € H'(Q) such that |ul*u/(Ju|? + 1)2 € HY(Q), if and only if
2|(Im o7 () €,6)| < V5 (Re o/ (2) £, €)
for almost any x € {2 and for any ¢ € R™.

By analogy to the LP? case, if we have an operator with lower order term (27) and
if the principal part is such that the left-hand side of (70 is not merely nonnegative
but strictly positive, i.e.

[1 = A2(D)](Re o ()€, &) + (Re o (x)n, 1) + [1+ A()|(Im o7 (2)¢, )
+[1 = A®)(Im o7 (2)&, 1) > K€ + n]*)

for a certain k£ > 0 and for almost every € 2 and for any ¢t > 0,£,n7 € R”, we say
that the operator A is (strongly) ®-elliptic.

We note that, if A is a (strongly) ®-elliptic operator, then there exists a constant
x such that for any nonnegative y € L>(Q) and any complex-valued u € H*(Q)
such that ¢(|u|)u € H*(Q), we have

Re/ﬂ(;z/Vu,V(goﬂuD z)dz > fe/ IV(Vo(Jul) w)*x (x)dx
(see [15] Corollary 4]).

13. Concluding Remarks

Our condition (25)) and its strengthened variant are getting more and more impor-
tant in many respects. We already considered the notion of p-ellipticity, but there
are also other applications.

We mention that Hémberg et al. [30] used some of the techniques introduced in
[9] to show the LP-dissipativity of a certain operator connected to the problem of
the existence of an optimal control for the heat equation with dynamic boundary
condition.

Beyn and Otten [3], 4] considered the semilinear system

AAv(z) 4 (Sz, Vou(z)) + f(v(x)) =0, x€ RN,

where A is a m x m matrix, S is a N X N skew-symmetric matrix and f is a
sufficiently smooth vector function. Among the assumptions they made, they require
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the existence of a constant v4 > 0 such that
|22 Re(w, Aw) + (p — 2) Re(w, 2) Re(z, Aw) > va|z|?|w|?

for any z,w € C™. This condition originates from our (&7)).

The results of [9] allowed Nittka [54] to consider the case of partial differential
operators with complex coefficients.

Ostermann and Schratz [56] have obtained the stability of a numerical proce-
dure for solving a certain evolution problem. The necessary and sufficient condition
@3) show that their result does not require the contractivity of the corresponding
semigroup.

Chill et al. [8] used some ideas from [J] in the study of the numerical range of
second-order elliptic operators with mixed boundary conditions in LP.

ter Elst et al. [64] considered second-order divergence form operators with com-
plex coefficients, complemented with Dirichlet, Neumann or mixed boundary con-
ditions. They proved several results related to the generation of strongly continuous
semigroups on LP.
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