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Cross-Species Translation of Biophase Half-Life
and Potency of GalNAc-Conjugated siRNAs

Alessandro Boianelli,1 Yasunori Aoki,1 Maxim Ivanov,2 Anders Dahlén,3 and Peter Gennemark1,4

Small interfering RNAs (siRNAs) with N-acetylgalactosamine (GalNAc) conjugation for improved liver uptake
represent an emerging class of drugs to treat liver diseases. Understanding how pharmacokinetics and pharmacody-
namics translate is pivotal for in vivo study design and human dose prediction. However, the literature is sparse on
translational data for this modality, and pharmacokinetics in the liver is seldom measured. To overcome these
difficulties, we collected time-course biomarker data for 11 GalNAc–siRNAs in various species and applied the
kinetic-pharmacodynamic modeling approach to estimate the biophase (liver) half-life and the potency. Our analysis
indicates that the biophase half-life is 0.6–3 weeks in mouse, 1–8 weeks in monkey, and 1.5–14 weeks in human. For
individual siRNAs, the biophase half-life is 1–8 times longer in human than in mouse, and generally 1–3 times longer in
human than in monkey. The analysis indicates that the siRNAs are more potent in human than in mouse and monkey.
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Introduction

N-acetylgalactosamine (GalNAc)-conjugated small
interfering RNAs (siRNAs) are double-stranded mole-

cules containing a sense and an antisense strand, of which the
latter elicits the pharmacological effect [1]. These drugs are
designed to knock down a certain gene with complementary
nucleotide sequences by degrading mRNA after transcrip-
tion, and as an effect preventing translation. The GalNAc
conjugation targets the siRNA specifically to the liver, and
GalNAc–siRNAs represent an emerging class of drugs to
treat various liver diseases [2].

Understanding how pharmacokinetics and pharmacody-
namics translate between species is pivotal to set dose level
and dosing schedule in preclinical proof-of-concept studies,
to predict the human dose from preclinical data, and to set
safety margins. Important translational data in this direction
were recently reported in Ref. [3]. However, the literature is
generally sparse on translational data for these GalNAc–
siRNAs, and pharmacokinetics in the liver is seldom measured.

One way to learn more about translation of GalNAc–
siRNAs is to estimate drug pharmacokinetics in the liver,
target turnover, and siRNA potency from temporal biomarker
data using mathematical dose–response modeling, so-called
kinetic-pharmacodynamic (KPD) modeling [4]. Previous
study in this direction on oligonucleotides mainly considered
antisense oligonucleotides and human data [5]. In this study,
we present an analysis of 11 GalNAc–siRNAs in several
species. Specifically, we estimate biophase (liver) half-life
and potency across species of GalNAc–siRNAs that have
reached the clinical phase and for which data are available.

Materials and Methods

We collected and digitized available literature time-course
biomarker data from mice, monkeys (rhesus macaque Ma-
caca mulatta or cynomolgus Macaca fascicularis), and hu-
mans of the following 11 GalNAc–siRNAs: Revusiran [6–8],
Vutrisiran [9], Cemdisiran [10,11], Givlaari (Givosiran)
[12,13], Lumasiran [14,15], Fitusiran [16,17], Inclisiran
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[18–20], ALN-HBV02 [21,22], ARO-APOC3 [23–26],
ARO-ANG3 [27–30], and Olpasiran [31]. Compounds for
which we could at least find relevant human data were in-
cluded in the analysis. Group mean data were digitized using
MATLAB (R2020a; The MathWorks, Natick, MA) or Web-
plotDigitizer (Ver. 4.5; Automeris, Pacifica, CA).

We applied the K-PD modeling approach to estimate the
biophase half-life in the target organ and the potency (IDK50,
ie, the dose per unit of time that results in 50% reduction in
the target mRNA or protein), see Fig. 1. The pharmacoki-
netics is described by a virtual one-compartment model
aimed to represent the biophase. No drug concentration
measurements are required, or available, and the model de-
pends solely on the biomarker data for identification of all
parameters. We used an indirect-response PD model, where
the drug inhibits the zero-order synthesis rate kin of response.

In the model, the synthesis rate constant kS of response
(R) is inhibited by a virtual infusion rate (IR), expressed in
drug amount (A) per time unit, through a sigmoid Emax model:

dA tð Þ=dt¼ � kelim · A tð Þ (1)

IR tð Þ¼A tð Þ · kelim (2)

kS tð Þ¼ kin · 1� IR tð Þc= IDK
c
50þ IR tð Þc

� �� �
(3)

dR tð Þ=dt¼ kS tð Þ � R tð Þ · kout (4)

R 0ð Þ ¼ kin=kout, A 0ð Þ¼Dose, (5)

where kelim represents the elimination rate constant from the
virtual compartment, kS and kout are the zero-order synthesis
and the first-order degradation rate constants of the response
R, R 0ð Þ is the baseline value of the response, kS is the time-
dependent synthesis rate constant, IDK50 represents IR that
leads to 50% inhibition of kS, IDK50 represents the apparent
in vivo potency of the drug reflecting the ratio of clearance
and bioavailability as well as the intrinsic potency of the
drug, and c is the Hill coefficient.

Numerical analyses were performed in MATLAB (R2020a;
The MathWorks, Natick, MA). Specifically, the Matlab

function fminsearch was used for solving the optimization
problems encountered during parameter estimation. Para-
meter estimation was performed according to a maximum
likelihood approach with an additive error model, using the
naive-pooled data approach.

Results and Discussion

Mouse, monkey, and human data were collected and digitized
for 7, 8, and 11 of the considered GalNAc-conjugated siRNAs,
respectively. Model parameters were generally well estimated
in terms of confidence intervals (Table 1 and Supplementary
Information). For example, Fig. 1B shows the data and model fit
for Olpasiran. The analysis indicates that the biophase half-life
of GalNAc-conjugated siRNAs is 0.6–3 weeks in mice, 1–8
weeks in monkey, and 1.5–14 weeks in humans.

For individual siRNAs, the biophase half-life is 1–8 times
longer in human than in mouse, and generally 1–3 times
longer in human than in monkey (Fig. 2A). Givlaari deviates
from the general pattern with a 28 times longer biophase half-
life in human than in monkey. There is no clear dependency
between translation of half-life between species and type of
chemistry (indicated by the colors of the markers in Fig. 2A).

Potencies in form of IDK50 were relatively similar between
mice and monkeys, and greater in humans. Specifically,
IDK50 was predicted to be similar or smaller (up to 30-fold) in
human than in mouse, and similar or smaller (up to 100-fold)
in human than in monkey (Fig. 2B). Similarly to half-life,
there is no clear dependency between translation of potency
between species and type of chemistry. The higher potency
observed in human is likely a result of optimization against
the human sequence in the screening phase.

For two estimated half-lives, we could compare the results
with previously reported data. First, the predicted biophase
half-life of Fitusiran in human of *3 weeks compares well
with the predicted liver half-life of 20 days in Ref. [32].
Second, the predicted biophase half-life of Givlaari in mon-
key of 1.8 days compares well with the predicted distribu-
tional half-life of 2.1 days from a two-compartment model fit
to measured liver concentration data by Ref. [33].

The approach taken is limited by the lack of publicly
available biomarker data in some species for certain siRNAs,
and by the modeling on group mean data and not on indi-
vidual data. The approach is supported by two compari-
sons with available reported data of biophase half-lives. The

FIG. 2. Predicted ratios between human and mouse and between human and monkey for biophase half-life (A) and
potency IDK50 (B) for the analyzed GalNAc–siRNAs. Black: Alnylam’s STC; blue: Alnylam’s ESC; magenta: Alnylam’s
ESC-plus (ESC+); red: arrowhead Pharmaceuticals’ chemistry. Biophase half-life was calculated as ln 2ð Þ=kelim . ESC,
enhanced stabilization chemistry; GalNAc, N-acetylgalactosamine; STC, standard template chemistry.
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reported quantitative translational relationships may help
guiding in vivo design and human dose predictions of GalNAc-
conjugated siRNAs. In conclusion, we present the first
systematic translational investigation of biophase (liver)
half-life and potency of GalNAc–siRNAs.
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